

Real-time application mapping for many-cores

using a limited migrative model

Borislav Nikolic´ · Stefan M. Petters

Abstract

Many-core platforms are an emerging technology in the real-time embedded domain.

These devices offer various options for power savings, cost reductions and

contribute to the overall system flexibility, however, issues such as unpredictability,

scalability and analysis pessimism are serious challenges to their integration into the

aforementioned area. The focus of this work is on many-core platforms using a limited

migrative model (LM M). LM M is an approach based on the fundamental concepts of

the multi-kernel paradigm, which is a promising step towards scalable and predictable

many-cores. In this work, we formulate the problem of real-time application mapping

on a many-core platform using LM M , and propose a three-stage method to solve it.

An extended version of the existing analysis is used to assure that derived mappings

(i) guarantee the fulfilment of timing constraints posed on worst-case communication

delays of individual applications, and (ii) provide an environment to perform load

balancing for e.g. energy/thermal management, fault tolerance and/or performance

reasons.

Keywords

 Real-time systems, Embedded systems, Multiprocessors, Many-core systems, Worst-

case analysis, Limited migrative model

1 Introduction

Development trends in the semiconductor area reached the stage where further process-

ing power enhancements related to single-core devices are no longer affordable (Lund-

strom 2003). In order to meet the demands for more powerful computational devices,

chip manufacturers took a design paradigm shift (Intel 2014; Tilera 2014), and started

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

l

integrating multiple cores within a single chip. Nowadays, platforms consisting of

several cores (multi-cores) and more than a dozen cores (many-cores) became com-

monplace in many scientific areas (e.g. high-performance computing), while they are

still an emerging technology in some other domains, like real-time embedded com-

puting. This work focuses on the latter category.

In order to integrate many-core platforms into the real-time embedded domain, an

OS paradigm is needed which allows the system designer to exploit the full potential of

the underlying hardware resources, and yet assures predictability (Zimmer and Mueller

2012) and scalability (Baumann et al. 2009; Kumar et al. 2011), which are essential

prerequisites for deriving real-time guarantees. We elaborate on a model which we call

the limited migrative model, LMM hereafter (Nikolic ́and Petters 2012). It builds on

top of the foundations of the multi-kernel paradigm (Baumann et al. 2009), which is a

novel approach in the OS design (Baumann et al. 2009; Wentzlaff and Agarwal 2009;

Le and West 2014), and a promising step towards scalable and predictable many-cores.

The Network-on-Chip (NoC) architecture (Benini and De Micheli 2002) became

a predominant interconnect medium in many-cores, due to its scalability poten-

tial (Kavaldjiev and Smit 2003). On such platforms, a wormhole switching tech-

nique (Ni and McKinley1993) is widely applied (Intel 2014; Tilera 2014), because of

its good throughput and has small buffering requirements (Kavaldjiev and Smit 2003).

Contribution In this work, we focus on the mapping of real-time application work-

load onto a NoC-based, wormhole-switched many-core platform, using LM M . First,

we formulate the problem of real-time application mapping on such a system. Then,

we present an extension to the existing analysis, which assures that all timing con-

straints posed on worst-case communication delays of individual applications are met.

Finally, we propose a three-stage heuristics-based application mapping procedure,

which utilises the aforementioned analysis during the mapping process. The novelty

of our work is reflected by the fact that we study LM M , which is a model that allows

application migrations as a means to perform load balancing for e.g. energy/thermal

management, fault tolerance and/or performance reasons. The biggest contribution

of our work is that it merges real-time concepts with those from the embedded and

high-performance computing areas, resulting in a model which allows dynamically

changing system behaviour, while still providing hard real-time guarantees.

2 LMM concepts and motivation

Unpredictability, scalability and analysis pessimism are some of the reasons that make

the real-time analysis of many-cores a challenging subject. The existing state-of-the-art

methodologies addressing many-cores from the real-time perspective can be broadly

classified into two categories: non-migrative approaches and migrative approaches.

First, we define these categories, and then position LM M in that context.

Non-migrative approaches are in the scheduling theory also known as fully parti-

tioned approaches. The workload is statically assigned to cores at design time. Appli-

cations are migrationless and their execution is organised by independent single-core

schedulers residing on each core and utilising one of existing single-core schedul-

ing algorithms (e.g. Liu and Layland 1973). These approaches are inflexible and can

×

be very inefficient in scenarios where substantial load changes occur, and/or where

run-time load balancing is required.

Migrative approaches are additionally divided into semi-partitioned approaches,

global approaches and hybrid approaches. The first group (Bletsas and Andersson

2009; Kato et al. 2009) also assumes a static assignment of each application to a

particular core (or cores if it migrates). However, a migrative application also obeys

design-time decisions regarding its execution, i.e. it always executes the prescribed

fraction of work on each of its cores. Thus, these methods are very similar to fully

partitioned approaches, hence all conclusions regarding inflexibility to perform run-

time load balancing also hold in this context. Conversely, global approaches (Baker

et al. 2006; Baruah and Baker 2008) allow every application to migrate to any core

within the platform. However, this amount of flexibility comes at a price: due to the

necessity to maintain global structures (e.g. ready queue) within a centralised entity,

scalability issues arise, and serious challenges occur when attempting implementa-

tions (Bastoni et al. 2010). Finally, hybrid approaches (Calandrino et al. 2007) (also

known as clustered approaches) group cores into disjoint clusters, map distinctive

subsets of applications to each cluster, and apply a global scheduling policy within

each cluster. These approaches offer both runtime load balancing and scalability, how-

ever, they are inefficient in scenarios where migrations are driven by fault tolerance or

energy/thermal management, where inter-cluster migrations are a necessary option.

LM M (Nikolic ́and Petters 2012) exploits and extends the concepts of the multi-

kernel paradigm and poses a constraint that each application can execute only on a

subset of cores, which are decided at design-time. Unlike in clustered approaches, an

application is not tied to a particular cluster, but can be mapped to an arbitrary set

of cores, which allows performing migrations driven by the aforementioned reasons.

During runtime, an application can migrate between candidate cores and execute on

any of them. Yet, the greatest distinction of LM M from all the existing approaches

is that release/migration decisions are explicitly detached from scheduling decisions,

and are made by the applications themselves, not by scheduler instances. That is, the

application decides on which core it will release its job, while a local kernel on that

core is responsible to schedule it in a single-core fashion. This contributes to the scala-

bility of the approach, and yet gives the possibility to perform runtime load balancing.

More details about LM M are given in Sect. 4.2.

3 Related work

Application mapping for many-cores has been one of the most investigated topics

over the last decade, thus resulting in a vast amount of works. In this section we give

a brief overview of the state-of-the-art methods by mentioning only works that are

relevant for our cause. An interested reader may consult a comprehensive survey of

Sahu and Chattopadhyay (2013), which covers scientific publications related to the

entire application mapping topic.

The problem of application mapping is equivalent to the quadratic assignment

problem, which is NP-Hard, hence searching for the optimal solution can be pro-

hibitively expensive even for small NoC platforms, e.g. 4 4 cores (Hu and Marculescu

2003). Therefore, the existing approaches are predominantly heuristics-based. Lei and

Kumar (2003) assumed different processor types and developed a two-stage genetic

algorithm, where the workload is firstly mapped to a specific processor type and in the

second pass to a particular processor. Moein-darbari et al. (2009) use a modification of

the aforementioned heuristics, called the chaos-genetic algorithm. By employing the

branch-and-bound technique Hu and Marchulescu (2003) investigate mappings which

minimise the power consumption within the network. The authors present a power

model to calculate the energy spent by the NoC infrastructure, which is used as an

objective function to evaluate derived mappings. The concept of minimising the energy

consumption was further extended to include performance enhancements (Chou et al.

2008), network contentions (Chou and Marculescu 2008) and runtime mappings (Chou

and Marculescu 2007). Murali and De Micheli (2004) elaborate on bandwidth con-

straints and minimise the average communication delay, while Hung et al. (2004) study

thermal-aware placements. Marcon et al. (2005) are the first to consider the ordering

and dependencies among traffic messages, while Srinivasan and Chatha (2005) intro-

duce per-message latency constraints. Ascia et al. (2004) present an approach where

not one, but a group of mappings is considered (Pareto mappings), so as to derive a

solution to the multi-objective approach. Kreutz et al. (2005) explore the same topic

for interconnect topologies other than NoC, while Hu and Marculescu (2003) exploit

the routing flexibility in order to reduce the routing energy consumption and improve

the performance.

Assuming wormhole-switched priority-preemptive NoCs, Shi and Burns (2008,

2009) propose two worst-case communication delay analyses. The former analysis

was combined with genetic algorithms with the objective of mapping hard real-time

applications (Mesidis and Indrusiak 2011; Racu and Indrusiak 2012), while the latter

approach was further combined with a priority assignment algorithm with the same

aim (Shi and Burns 2010). Note that the works mentioned in this paragraph are the

most relevant to our approach, as they study the application-mapping problem from the

real-time perspective, where the main emphasis is on deriving a mapping such that all

temporal constraints posed on communication delays are always fulfilled, even under

the worst-case conditions. Also note that these approaches assume that each appli-

cation is statically assigned to a specific core at design-time, and does not have the

possibility to migrate (see fully partitioned approaches in Sect. 2), while we consider

LM M , which offers flexibility to perform run-time load balancing via migrations. In

the previous work, Nikolic ́et al. (2014) introduced techniques to make the LM M

traffic deterministic, and subsequently proposed the worst-case communication delay

analysis. In this work, we modify the existing analysis, so as to reduce its computa-

tional complexity, and go one step beyond by proposing a three-stage heuristics-based

method to map hard real-time applications on NoCs using LM M .

4 Model

4.1 Platform

The platform under consideration is a homogeneous, NoC-based many-core system,

consisting of m × n tiles, which are connected via a 2-D mesh interconnect. Each tile

c , c , . . . , c represent cores, and edges
l

l denote physical links

dr +dl

= |{ } ∈ C

C = { } L =

Fig. 1 TILE64 processor

contains a single core and a single router. The data transfer over the mesh is performed

by employing a deterministic, dimension-ordered XY routing policy, which is deadlock

and livelock free (Hu and Marculescu 2003). With this policy, a packet firstly travels

on the x-axis, and upon reaching the x-coordinate of the destination, traverses along

the y-axis. Furthermore, a packet transfer is performed with the wormhole switching

technique (Ni and McKinley 1993). In this regime, each data packet is, prior to send-

ing, divided into small fixed-size elements called flits. A flit is a basic transferable unit

across the NoC interconnect. All flits constituting one packet are sequentially sent,

where the header flit establishes the path, while the rest follow in a pipeline manner.

Each packet is prioritised and there exist virtual channels (Dally 1992; Dally and Seitz

1987). A virtual channel is implemented as an additional buffer within every port of

every router, and it is used to enforce flit-level preemptions (Song et al. 1997). The

number of needed virtual channels is equal to the maximum number of contentions

for any port, which guarantees that each packet will have an available virtual channel

in every port along its path (Nikolic ́et al. 2013). In this paper, the terms packet and

message are used interchangeably.

Note that our target platform is very similar to some existing many-core plat-

forms, such as the Single-Chip-Cloud Computer (Intel 2014) and the TILE64 family

of processors (Tilera 2014) (see Fig. 1). Specifically, both the mentioned platforms

contain a 2-D mesh interconnect, utilise the XY routing policy and perform the data

transfer with the wormhole switching technique. Moreover, the SCC interconnect con-

tains 8 virtual channels, which are on average sufficient to accommodate up to 400

different priority levels on a 10 × 10 NoC (Nikolic´ et al. 2013).

The platform n(C, L) is described by a direct graph (Fig. 2), where vertices

1 2 m·n i j

of the interconnect. Every existing link lij (ci, c j , bij) ci, c j between the
cores ci and c j is characterised with bij , which describes its physical characteristics
(i.e. the bandwidth). In this work we assume that all links have identical character-

istics bij = b = size(f)
; the bandwidth is expressed as the size of one flit size(f),

+

Fig. 2 Platform n
cx

lxu

cu

lxy

lyx

lux lyv

luv

lvu

cy

lvy

cv

divided by the time needed to transfer it between two neighbouring cores dr dl . The

terms dr and dl correspond to the latency of one flit to traverse the router and the link,

respectively.

4.2 Software layers in LM M (Nikolic ́and Petters 2012)

As mentioned in Sect. 1, LM M builds on top of the multi-kernel paradigm, which

means that each core runs an independent kernel instance. Kernels communicate with

each other and constitute the basic communication infrastructure. Each kernel exposes

some of its functionalities to applications located on its core via system calls. Appli-

cations invoke system calls in order to interact with other applications residing on the

same or other cores. Furthermore, each kernel performs the scheduling on its core in a

single-core fashion. Practical examples of multi-kernel OSs are Barrelfish (Baumann

et al. 2009), fos (Wentzlaff and Agarwal 2009) and Quest-V (Li and West 2014).

We consider a sporadic application-set with constrained deadlines. Once during

every inter-arrival period, an application releases a job, which has to complete before

the new inter-arrival period begins. As discussed (Sect. 2), a job can be released

only on a subset of cores, which are, for each application, selected at design-time.

Once released, a job has to complete on the selected core, it cannot migrate (job-level

migrations are not allowed).

Unlike in traditional real-time approaches, in LM M the application itself makes

release/migration decisions. In order to do that, each application uses entities called

dispatchers. An application has a dispatcher on each of its candidate cores. Before the

job release, each dispatcher of that application gets the information from its local kernel

whether the guarantees can be provided regarding the execution of that job on that

core. That is, the dispatcher checks whether the job can be safely scheduled on its core

without missing a deadline. Recall, that each kernel schedules the workload on its core

in a single-core fashion. Once each dispatcher gets that information from its kernel,

dispatchers of the same application (each located on a different core), communicate

with each other. The purpose of their communication is to elect one dispatcher, called

the master dispatcher, which will subsequently release the job on its core on behalf of

the entire application. The aforementioned inter-dispatcher communication is called

the agreement protocol (Nikolic ́and Petters 2012). In this work, we assume that the

. . .

d1 d d

Kernel 1

. .
3 6 d d4

Kernel 2

.
2 d5 d

.
i

Kernel n

. . . Core 1 Core 2 Core n

set, and edges
l

m symbolise the intra- and inter-application traffic. An

(D M) ∈ A
M =

Fig. 3 LM M App 1 App 2 App 3 App x

Fig. 4 Workload E ap aq

mpp

mrr

ar

mrs

msq

mqs

as

applications are single-threaded, implemented as tasks, therefore at any time instant

there can be only one master per application.

When the new inter-arrival period begins, the master is responsible to initiate the

new instance of the agreement protocol, so as to elect a core (dispatcher) for the release

of the next job. The other dispatchers that participate in the protocol are called the

slave dispatchers. If the outcome of the protocol is that the newly elected dispatcher

is not the same as the previous master, then the migration occurs; the previous master

becomes the slave, while the newly elected dispatcher becomes the master. Addition-

ally, the execution context has to be transferred from the old to the new master. The

protocol execution is termed the intra-application communication. Perceived from the

application’s perspective, its dispatchers exchange one master token, thus a master is

only a temporary role for a dispatcher. We call this property the master volatility, and

it has several implications which are covered in Sect. 5.4. Figure 3 gives a graphical

representation of LM M , where current master dispatchers can be distinguished by

dots over their names.

Besides protocols, applications can also communicate with each other for e.g. syn-

chronisation or data-sharing purposes. We term this process the inter-application com-

munication, and it is performed by an exchange of messages between current master

dispatchers of interacting applications.

Execution workload E (A, M) is described by a direct graph (Fig. 4), where ver-

tices A = {a1, a2, ..., ax −1, ax } denote the applications comprising the application-

ij

application a Pa, Ta, Wa, Ia, a, a has a unique priority Pa , a minimum
inter-arrival period Ta , a temporal constraint on its worst-case communication delay

Wa ≤ Ta (explained in Sect. 4.3), an importance of its distributed mapping Ia

=

=

= ()|{ } ∈ A

D M

≤

E →

(explained in Sect. 6), a set of dispatchers a and a set of messages a . A message

mij di, d j , Pij , size, path, nhops ai, a j between a source dispatcher

di and a destination dispatcher d j is characterised by a priority Pij , the amount

of exchanged data size(mij), and a traversed path expressed by (i) a set of links

path(mij), (ii) a number of hops nhops(mij). If mij is the intra-application message,

then di and d j belong to the same application a, thus Pij Pa (dashed lines in Fig. 4).

Conversely, if mij is the inter-application message, then di and d j are the current mas-

ters of the interacting applications ai and a j , thus Pij Pi (solid lines in Fig. 4), i.e.

an inter-application message always inherits the priority of a sender application.

4.3 Work objectives

The goal of this work is to propose an application mapping method which finds a

feasible mapping of a given application workload onto a given NoC platform (n).

A mapping is feasible if all applications are feasible. An application a is feasible if

its worst-case communication delay, termed del(a), is less than, or equal to its timing

constraint, i.e. del(a) Wa . The worst-case communication delay of an application

is equal to the sum of the worst-case delays of its intra-application and sent inter-

application messages. The secondary objective is to provide a feasible mapping, such

that the applications can perform migrations across spatially distributed dispatchers.

This objective is motivated with the fact that far migrations are the efficient means

to implement energy/thermal management, and increase the resilience to core/cluster

malfunctions.

The mapping process consists of several stages. The first is to map the application-

set on the given platform (Sect. 7). The second is to perform the analysis and check if

the derived mapping is feasible (Sect. 5). Finally, assuming that the feasible mapping

was found, the goal is to optimise it, with respect to the secondary objectives (Sect. 6).

Note that these three stages are not necessarily performed sequentially, but can be

interleaved.

5 Worst-case communication delay analysis

5.1 Preliminaries

In this subsection, we will briefly cover the components that constitute the worst-case

traversal delay of a single message m, termed del(m).

5.1.1 Isolation delay

Each message m traverses an XY-routed path between the source and the destination

dispatcher. The delay of a message when traversing in isolation is in the literature

known as the basic network latency (Duato et al. 2002) (Eq. 1). It is equal to the time

it takes a header flit to establish the path and reach the destination, augmented by the

∈ M ∈ M

M = { } M = { }

transfer time of the rest of the flits.

5.1.2 Lower priority blocking

Due to the flit-level preemptions, m can be blocked by the lower-priority traffic. The

worst-case scenario occurs if m reaches the router just at the moment when a lower-

priority message started its transfer, hence m can be blocked at most for the duration

of one flit transfer time before it preempts. This scenario can occur within each router

on the path of m (Eq. 2).

delB(m) = nhops(m) · (dr + dl) (2)

5.1.3 Same priority blocking

Messages of the same priority share the same virtual channel and may compete for

the same physical resource if they have a common part of the path. This can cause

complex blocking scenarios (Shi and Burns 2009, 2010), described below.

Definition 1 (Directly blocking message) If a message m 1 has the same priority as the

message under analysis m, and shares a part of the path with m, it is considered as a

directly blocking message of m and belongs to the set MDB(m). Formally:

∀m1 ∈ M : m1 /= m ∧ Pm1 = Pm ∧ path(m 1) ∩ path(m) /= ∅ ⇒ m1 ∈ MDB(m)

Definition 2 (Indirectly blocking message) If a message m11 has the same priority as

the message under analysis m and does not share a part of the path with m, but shares

it with another message m1 which is either directly or indirectly blocking message of

m (recursive definition), then m11 is considered as an indirectly blocking message of

m and belongs to the set MIB (m). Formally:

∀m11 ∈ M : Pm11 = Pm ∧ path(m11) ∩ path(m) = ∅ ∧

∃m1 ∈ (MDB(m) ∪ MI B (m)) ∧ path(m11) ∩ path(m1) /= ∅ ⇒ m11 ∈ MI B (m)

A message under analysis m can suffer the blocking from its directly blocking mes-

sage m1
DB(m), but also from its indirectly blocking message m11

I B (m).

We explain this with an illustrative example given in Fig. 5, where rectangles depict

routers, and arrows symbolise messages (the arrow tail represents the source and the

arrow head represents the destination of the message). All the messages have the same

priority and traverse some links of the path l. By Definitions 1–2, the blocking rela-

tionships of the message m are as follows: DB(m) mi , IB (m) m j , mk .

It is visible that m can suffer the blocking from mi , which can in turn suffer the block-

ing from m j , which can in turn suffer the blocking from mk . Thus, m can suffer the

blocking from each of these messages {mi, m j , mk }. The maximum delay caused by

≤

∈ M

∈ M

Fig. 5 Example of blocking Priority level P

m
m i

m j

m k

l

one traversal of a blocking message (either directly or indirectly) is equal to the sum

of its isolation delay and its lower priority blocking delay, computed by Eqs. 1 and 2,

respectively.

Note, by considering that each message has to complete its traversal within a tem-

poral constraint posed on its application Wa Ta , messages belonging to different

inter-arrival periods of the same application cannot exist concurrently and hence can-

not cause the blocking.

5.1.4 Interference

Additionally, m can suffer the interference from the higher-priority messages.

Definition 3 (Directly interfering message) If a message m1 has a higher priority than

the message under analysis m, and shares a part of the path with m, it is considered as

a directly interfering message of m and belongs to the set MDI (m). Formally:

∀m1 ∈ M : Pm1 > Pm ∧ path(m1) ∩ path(m) /= ∅ ⇒ m1 ∈ MDI (m)

m can be preempted by every m1
DI (m) and consequently suffer the interference.

The maximum delay caused by one traversal of m1 is equal to the sum of its isolation

delay and its lower-priority blocking delay.

Definition 4 (Indirectly interfering message) If a message m11 has a higher priority

than the message under analysis m and does not share a part of the path with m, but

shares it with another message m1 which is either directly or indirectly blocking

message of m, then m11 is considered as an indirectly interfering message of m and

belongs to the set MII (m). Formally:

∀m11 ∈ M : Pm11 > Pm ∧ path(m11) ∩ path(m) = ∅ ∧

∃m1 ∈ {MDB(m) ∪ MI B (m)} ∧ path(m11) ∩ path(m1) /= ∅ ⇒ m11 ∈ MI I (m)

A message m11
I I (m) can preempt a message m1 which is already directly

or indirectly blocking m, hence additionally contributing to the total delay of m. The

maximum interference caused to m by one traversal of m11 is equal to the sum of its

isolation delay and its lower-priority blocking delay.

An illustrative example of the aforementioned inter-message relationships is given

in Fig. 6. Assuming the priorities Ps > Pr > Pq > Pp, the inter-message rela-

tionships of the message under analysis m p1 are as follows: MDB(m p1) = {m p2},

MDI (m p1) = {mr }, MII (m p1) = {mq }. Observe, by definition, ms does not

M

M

M

∀ ∈ A : ≤

Fig. 6 Example of interference

Priority level Q

mq

Priority level S

m s

Priority level R

mr

Priority level P
 mp1

 mp2

l

belong to II (m p1), even though it is directly interfering with mr , which belongs to

DI (m p1). Due to the existence of per-priority virtual channels, ms cannot directly

cause the interference to m p1 (Shi and Burns 2008). However, ms can cause the interfer-

ence to mr , influence its occurrence patterns and in that way passively contribute to the

interference that mr causes to m p1. That is, ms can cause two consecutive appearances

of mr to be distanced by less than the inter-arrival period. Thus, when computing the

worst-case delay of m p1, considering periodic appearances of mr would be an unsafe

assumption (Shi and Burns 2008). Note that the definition of indirect interferences in

our work excludes ms , while the other works include it (Shi and Burns 2008, 2009,

2010).

The worst-case traversal delay of m p1 is equal to the sum of (i) the isolation delay, (ii)

the lower-priority blocking, (iii) the same-priority blocking and (iv) the higher-priority

interference. Note that the messages may additionally suffer the release jitter (Shi and

Burns 2010), which is defined as a maximum deviation of successive packet releases

from its period. In this work, the release jitters are assumed to be zero.

After defining these components, in Sect. 5.2 we describe the existing method to

compute the worst-case delay of a single message. Then, we propose a modification

to reduce the computational complexity (Sect. 5.3). Finally we extend the analysis

(i) to consider the entire application instead of the individual message and (ii) to be

applicable to LM M (Sect. 5.4).

5.2 Existing analysis to compute worst-case message delays (Shi and Burns 2009)

5.2.1 Description

Shi and Burns (2009) proposed a method called the priority share policy, which com-

putes the worst-case delays of messages, assuming that some might share the same

priority. The model is constrained to scenarios where a deadline of each message is less

than, or equal to its minimum inter-arrival period, which is also the case in our model,

but expressed on an application-level (a Wa Ta). Due to the direct and indi-

rect blockings, as well as the direct and indirect interferences, complex interference

patterns might occur, as depicted in the previously presented examples (Figs. 5, 6).

To overcome this problem, the authors proposed to group the same-priority messages

into a new entity called the composite message m̊ . Note that only the messages of

the priority under analysis are grouped within a composite message, while messages

with other priorities are still considered separately. Let C(m̊) be a set of messages

constituting m̊ , i.e. all messages that have the same priority Pm̊ . The isolation delay of

the composite message m̊ is equal to the sum of the isolation latencies of all messages

constituting MC(m̊) (Eq. 3).

l

−

= −

Similarly, the lower-priority blocking of the composite message is equal to the sum

of the lower-priority blockings suffered by its messages (Eq. 4).

As the messages with the same priority Pm̊ are all grouped within m̊ , this implies

that m̊ cannot suffer the same-priority blocking. That is, there are no other messages

that are sharing the same priority with m̊ and are directly or indirectly blocking it

(see Definitions 1–2). This further implies that the indirect interference cannot exist,

as it requires at least one blocking message (see Definition 4). Hence, only direct

interferences are possible. This significantly simplifies the analysis.
A message is a directly interfering message of m̊ if it can cause the direct inter-

ference to any message from MC(m̊), i.e. MDI (m̊) =
∀m∈MC (m̊)

MDI (m). The

maximum interference that m̊ can suffer within a time interval t is equal to the sum

of the interferences caused by each of the directly interfering messages (Eq. 5). The

individual terms are obtained by multiplying the maximum number of occurrences of

a higher priority message m1 within t , with the interference caused by a single occur-

rence of m1. The term del(m1) represents the worst-case delay of m1, which is, due to

the recursive notion, here used as a constant and explained later. The additional term

in the ceiling brackets: del(m1) delI (m1) is called the interference jitter – del J (m1),

and it accounts for the potentially non-periodic occurrence pattern of m 1. That is, due to

its higher-priority interference, two consecutive occurrences of m1 might be separated

by less than Tam1 , and that case has to be covered. Specifically, the first occurrence of

m1 can be delayed by at most del J (m1) del(m1) delI (m1). Note that del J (m1) has

a non-zero value only if m1 suffers direct interference from some other message that is

not directly interfering with m. This is a well known issue in the wormhole switching,

and for a more detailed explanation the reviewer is advised to consult the works of

Shi and Burns (2008, 2009, 2010).

The worst-case delay of a composite message m̊ (Eq. 6) is equal to the sum of (i) the

isolation latency, (ii) the lower-priority blocking, (iii) the interference, of all messages

constituting it. Note that in the interference component, the term t is substituted with

the worst-case delay, thus giving it a recursive notion. Equation 6 is solved iteratively,

until reaching a fixed-converging point (if one exists).

∀ ∈ M : =

=

= =

= =

= + =

Table 1 Example of messages

Note that this analysis holds only under the assumption that the same-priority

messages are treated in FIFO order. This assumption assures that any two same-

priority messages, even though they can have different periods, can directly block

each other only once. As will be discussed later, in our approach such a restriction is

not necessary.

Upon obtaining the worst-case delay of m̊ , each message constituting it assumes the

same value, i.e. m C(m̊) del(m) del(m̊). In this way, the worst-case delay

is computed for every priority level and every message within the system. Notice two

things: (i) the approach can be pessimistic, as it groups the same-priority messages,

while many of them do not influence each other and can be treated independently and

(ii) assuming that the same-priority messages belong to the same application (i.e. have

the same deadline and the inter-arrival period), the obtained value represents not only

the worst-case delay of a single message, but the worst-case delay of the joint traversal

of all the same-priority messages. The second fact is further exploited in Sect. 5.4.

5.2.2 Numerical example

Consider the example given in Fig. 6 with the message parameters given in Table 1,

where the message m p1 is under analysis, and the goal is to compute its worst-case

delay - del(m p1).
For the clarity of the example we take a simplifying assumption that the lower-

priority blocking does not exist (delB 0). We start by computing the worst-case

delay of the highest-priority message ms . Its delay is equivalent to its isolation latency,

del(ms) delI (ms) 2. The message mr can suffer the interference from ms , so its

delay is:

The message mq cannot suffer the interference, so its delay is equal to its isolation

latency, del(mq) delI (mq) 2.

The messages m p1 and m p2 share the same priority Pp, hence are grouped within

m˚p. The isolation latency of m p̊ is equal to the sum of the isolation latencies of

both messages, delI (m˚p) delI (m p1) delI (m p2) 4. Moreover, m p̊ has two

interfering messages: mq and mr . The worst-case delay of m p̊ is:

Message Priority delI W T

m p1 Pp 2 20 25

m p2 Pp 2 20 25

mq Pq > Pp 2 9 9

mr Pr > Pq 2 6 6

ms Ps > Pr 2 10 10

= = =

The worst-case delay of m p1 and m p2 is equal to the worst-case delay of the

composite message, i.e. del(m p1) del(m p2) del(m˚p) 14.

This analysis faces two challenges. First, its computational complexity is significant

and might not be acceptable for the application-mapping process, where the analysis

has to be performed numerous times (see Sect. 5.3). Second, it suits the models in

which all messages have their routes defined at design time, e.g. Shi and Burns (2010).

However, under LM M , each application has the possibility to execute on multiple

cores, hence routes of all messages related to one application will highly depend on

which dispatcher is the current master at the moment of observation. In other words, the

master volatility property causes non-deterministic message routes. This renders the

analysis inapplicable to LM M (see Sect. 5.4). In the next two sections we describe the

modifications of the existing analysis that are necessary in order to make it applicable

to our cause - the application mapping assuming LM M .

5.3 Complexity reduction

5.3.1 Rationale

Notice that in the analysis presented in Sect. 5.2 the worst-case delay of a message

directly depends on the worst-case delay of each of its interfering messages. Addition-

ally, the worst-case delay of each of these messages also depends on the worst-case

delay of their interfering messages. In the example presented in Sect. 5.2.2 and Fig. 6

the delay of m p1 and m p2 depends on the delay of mr , while the delay of mr depends

on the delay of ms . Therefore, any changes in the parameters of ms (the position on the

grid, the size, the priority, etc.) would require to recheck the feasibility of not only mr ,

but also m p1 and m p2. Thus, any manipulation with the parameters of a high-priority

message, can cause a cascading effect and invoke the feasibility rechecks of many

lower-priority messages. As a result, the entire feasibility rechecking process has an

exponential complexity. However, during the application mapping process, messages

can be subjected to frequent parameter manipulations with the objective of finding

−

/

=

= = = =

a feasible mapping, hence, performing the analysis presented in Sect. 5.2 might be

prohibitively expensive.

In order to reduce the complexity, we propose a modification to the existing analysis,

such that it renders more pessimistic results, but significantly reduces the number of

necessary feasibility rechecks. Specifically, we assume that the first occurrence of each

interfering message m 1 can be delayed as much as possible such that its feasibility is

preserved: Wam1 delI (m1), and not like in the aforementioned analyses by del J (m1).
In this way, the worst-case delay of a message m does not depend on the worst-case

delay of its interfering message m1 (i.e. del(m) f (del(m1))), so any cascading

effect is prevented and the analysis complexity is reduced to linear. The implications

are that in the example illustrated in Fig. 6 any parameter manipulations performed on

ms would trigger only a feasibility recheck of mr and will not influence m p1 and m p2

at all. The only change is in the computation of the interference component; instead

of Eq. 5, Eq. 7 is used.

5.3.2 Numerical example revisited

Let us return to the numerical example and see how this change influences the computed

delays. Messages ms and mq do not suffer the interference, so their worst-case delays

are del(ms) del(mq) delI (ms) delI (mq) 2.

The message mr can suffer the interference from ms and its delay is:

Notice, that the delay of mr is now 6, while it was 4 with the previous approach. Now

we compute the delay of the composite message m˚p.

The delay of m˚p (and consequently m p1 and m p2) is now 18, while it was 14 with

the previous method.

5.4 Determinism and master-independence of message-paths

5.4.1 L M M challenges

When considering LM M , the non-determinism of message paths is related to both

intra- and inter-application messages. We explain this with two illustrative examples.

In Fig. 7a the top and the bottom part present generated intra-application messages

of the same application, captured at two different time instances (i.e. represented by

emphasized circles different current masters communicate with all the slaves). As is

obvious, depending on the master selection, two entirely different message-sets can

be generated. Similar problem occurs when analysing the inter-application traffic.

In Fig. 8a is given an example where two applications communicate. As stated in

Sect. 4, the inter-application communication is performed by an exchange of messages

between the current masters. Due to the master volatility property, a message between

these applications can take any of the routes given in Fig. 8a.

One possible solution is to analyse all scenarios arising from the fact that any

dispatcher of an application under analysis can be a master. However, this also requires

to investigate all possible subscenarios, as every other application can have any of

its dispatchers as a current master. Fixing a master dispatcher for each application,

exhaustively enumerating all possible combinations and checking the feasibility with

the analysis presented in Sect. 5.3 can be prohibitively expensive, as the complexity

of the approach is O(|D||A|), where |D| represents the number of dispatchers per

(a) Unconstrained messages (b) Re-routed messages (c) Supermessages

Fig. 7 Intra-application communication

proxy
proxy

|A|

Application j

Application i

(a) Without proxy dispatchers

Fig. 8 Intra-application communication

Application j

Application i

(b) With proxy dispatchers

application and stands for the number of applications in the system. This can

cause the analysis intractability even for few applications and dispatchers.

Another possibility is to consider a concurrent existence of all possible messages

of every application. However, many messages are mutually exclusive, as each one

of them can exist only under specific conditions (one specific dispatcher being the

master). Thus, considering a concurrent existence of all possible messages can be

overly pessimistic.

The problems of intractability and pessimism are the consequence of non-

deterministic message paths. In order to solve this problem, we use the concepts

introduced in the work of Nikolic´ et al. (2014), namely the mapping and rerouting

constraints, the supermessages and the proxies.

5.4.2 Constraints, supermessages and proxy dispatchers

Constraint 1 (Nikolic ́et al. 2014) Dispatchers of an application can be positioned

only on the edges of a rectangular a×b structure, such that no corner is left unoccupied

and a, b ∈ N. The special case is a line-like shape, where one dimension of the

application shape is equal to 1, that is a = 1 or b = 1.

In Fig. 7c are depicted two applications, where dispatcher positions fulfil Con-

straint 1. In the lower part of Fig. 7c is the application with the rectangular shape of

dimensions 4 × 2, while in the upper part of Fig. 7c is the application with a line-like

shape of dimensions 4 × 1.

Constraint 2 (Nikolic ́et al. 2014) Intra-application messages travel only on the edges

of the shape its application is forming, and re-routing occurs where needed to comply

with the global XY routing policy. An individual message rotation (i.e. clockwise or

counterclockwise) is chosen such that the traversal distance is minimised.

The top and the bottom part of Fig. 7b illustrate how the messages should be routed.

The shaded dispatchers depict locations where reroutings occur. A rerouting is a fast

on-core routine, performed in an interrupt-like manner, which can be implemented

by instrumenting the HardwallTM technology of Tilera platforms (Tilera 2014). Note

that the rerouting mechanism is employed to assure that the traffic transfer complies

with the global XY routing policy, which is the most common routing mechanism in

the present many-core platforms. If the platform allows routing of messages across

arbitrary paths, the reroutings are not needed.

Notice, that with these constraints the part of the NoC infrastructure that intra-

application traffic uses is made deterministic. In order to make it also master-

independent, a construct called the supermessage is used.

Definition 5 (Supermessage) (Nikolic ́et al. 2014) A supermessage is a message which

connects (i) diagonally-placed dispatchers if an application has a rectangular shape,

or (ii) terminal dispatchers if an application has a line-like shape.

An application with a rectangular shape has 4 supermessages, while an application

with a line-like shape has only 2, and does not require reroutings (see Fig. 7c). Super-

messages have three interesting properties, (i) they are master-independent, (ii) their

number is substantially smaller than the number of possible intra-application mes-

sages (iii) the intra-application traffic of an application can be expressed as a linear

combination of its supermessages (Nikolic ́et al. 2014).

In order to make the inter-application traffic also deterministic and master-

independent, we introduce proxy dispatchers:

Definition 6 (Proxy dispatcher) (Nikolic ́et al. 2014) A proxy dispatcher is a dis-

patcher which is selected at design time, and which participates in the inter-application

communication. It mediates the communication between its master and the proxy dis-

patcher of the interacting application.

An illustrative example of Definition 6 is given in Fig. 8b. In this scenario, an

inter-application message is divided into 5 different components: (i) a message from

the master sender to its proxy, (ii) a rerouting on the core of the proxy sender, (iii) a

message between the proxies, (iv) a rerouting on the core of the proxy receiver, (v)

a message from the proxy receiver to its master. Proxies are decided at design-time,

thus a message between proxy dispatchers is deterministic and master-independent.

Additionally, the communication between masters and their proxies, on both the sender

and receiver side, complies with the rules of the intra-application traffic, thus can be

expressed as a linear combination of supermessages.

To summarise, Constraints 1–2 and Definitions 5–6 allow expressing the intra-

and inter-application traffic as a linear combination of supermessages and inter-proxy

messages, which are deterministic and master-independent. In this paper we perform

the analysis on such a model.

5.4.3 Performing the analysis

The analysis is very similar to that of Shi and Burns (2009), introduced in Sect. 5.2 and

modified in Sect. 5.3. However, there are several differences: (i) deadlines are posed

per-application and not per-individual message, (ii) the analysis involves reroutings

=

=

and, (iii) instead of once, each supermessage and inter-proxy message m can appear

multiple times during one inter-arrival period of its application. Let m be a super-

message or an inter-proxy message, and let O(m) be the maximum number of its

occurrences, when the traffic of its application is expressed as a combination of super-

messages and inter-proxy messages. Moreover, let supermessages inherit the priority

of the corresponding application, while inter-proxy messages inherit the priority of

the sender application. The motivation behind such a priority assignment is to make

all messages contributing to the worst-case delay of one application (all its superme-

ssages and sent inter-proxy messages) share the same priority. Subsequently, let all

same-priority messages be grouped within a common composite message, a concept

introduced in Sect. 5.2.

Assuming that the same-priority supermessages and inter-proxy messages are

grouped within the composite message m̊ , its delay (Eq. 8) is equal to the sum of (i) the

isolation latency, (ii) the lower-priority blocking, (iii) the rerouting, of all messages

constituting it, and (iv) the interference. delR(m̊) represents the maximum rerouting

delay of m̊ . The work of Nikolić et al. (2014) describes the steps how to obtain O(m)

and delR(m̊). Recall that every message in this analysis is either a supermessage or

an inter-proxy message.

 B

Note that by allowing each message to appear multiple times during the inter-

arrival period of its application, multiple direct same-priority blockings between any

two messages are possible. Indeed, our approach allows such a possibility, and does not

require the restriction that the same-priority messages should be treated in a FIFO order.

In fact, in our approach the ordering of the same-priority messages is entirely irrelevant.

So far, we have explained how to compute the worst-case delay of a composite

message. That delay presents not only the upper-bound on the worst-case delay of

individual messages constituting it, but also on their joint delay. That is, the delay of

a composite message from the aforementioned example del(m˚p) 18 presents an

upper bound on the delay of both m p1 and m p2, but also on their joint traversal. Thus,

the worst-case delay of a composite message represents the joint worst-case delay of

all messages having the same priority as the composite message. Therefore, if m å is

the composite message of the application a, then the worst-case delay of a is equal to

the worst-case delay of m̊a , i.e. del(a) del(m̊a). This infers that the application is

feasible if the worst-case delay of its composite message is less than or equal to its

temporal constraint: del(m̊a) ≤ Wa .

−
−

M = { }

M = { }

≤ ∧ ≤ ∧ ≤
M = { }

×

Application i

Fig. 9 Example of supermessages and inter-proxy messages

Application k

An illustrative example is given in Fig. 9, where three applications commu-

nicate with each other. Messages mi 1 mi 4 are the supermessages of ai , mes-

sages m j 1 and m j 2 of a j , and messages mk1 mk4 of ak . Moreover, messages

mij , m ji , mik, mki, m jk, mkj are the inter-proxy messages.

In order to test the feasibility, a composite message has to be constructed for the

application under analysis, which is demonstrated with the following example. The

composite message of ai , denoted by m̊i , includes the messages with the same prior-

ity as ai : its supermessages and its sent inter-proxy messages (solid lines in Fig. 9),

i.e. C(m̊i) mi 1, mi 2, m i 3, mi 4, mi j , mik . The application a j has the compos-
ite message m̊ j which contains its supermessages and its sent inter-proxy messages

(dashed lines in Fig. 9), i.e. C(m̊ j) m j 1, m j 2, m j i , m jk . Finally, the application
ak has the composite message m k̊ , which includes its supermessages and its sent inter-

proxy messages (dotted lines in Fig. 9), C(m̊k) mk1, mk2, mk3, mk4, mki , mk j .

The application-set is feasible if del(m̊i) Wi del(m̊ j) W j del(m̊k) Wk .

Notice, that supermessages and reroutings inherently bring additional pessimism.

That is, each message may traverse only a fraction of the path of the supermes-

sages which are used to express it. Additionally, reroutings induce additional delay

and potentially “sacrifice” the performance, in order to achieve the predictability of

message-paths. However, these concepts solve the issue of non-deterministic message

paths, and dramatically reduce the number of messages (i.e. only supermessages and

inter-proxy messages of each application are considered), which makes the analysis

tractable.

6 Mapping quality

The multi-objective nature of the proposed approach is reflected by the fact that the

goal is not just to provide a mapping which is feasible, but to provide a feasible

mapping which maximises the abilities of the application-set to perform runtime load

balancing via application migrations. There are two aspects which we consider relevant

for the migrative potential of an application, namely the dimensions of the rectangular

a b shape its dispatchers are forming and the distribution of the dispatchers on that

shape. The approach we apply when evaluating the mapping of the application can be

summarised with the following two observations:

Observation 1 The greater the shape of the application is, the greater its migrative

abilities are.

 m
o

 m
o

 m
o

i

j

k

mi1

mi2

mi3

mi4

mki

m ji

mik

m jk

m ij

 mj1

m
j2

Application j mkj

mk1

mk2

mk3

mk4

ai
D

Observation 2 Assuming a fixed shape, the more even the distances between the

application dispatchers are, the greater its migrative abilities are.

The reasoning is that, given that the migration has to occur, it is better to accom-

modate the execution on some far core, rather than on some near core, because far

migrations allow efficient global load balancing, energy/thermal management and

make the system more resilient to clustered failures (i.e. a part of the chip starts mal-

functioning). Conversely, near migrations only partially solve these issues, or don’t

solve them at all. Thus, the intention behind our approach is to prevent near migra-

tions by (i) maximising the shape of the application (Observation 1), and distributing

its dispatchers on the shape, such that the inter-dispatcher distances are as even as

possible (Observation 2).

Although it may seem that these objectives superficially contradict the feasibility

requirement, this is not entirely true. If perceived as an optimisation problem, migrative

abilities of applications are the objective function which has to be maximised, and the

feasibility is a constraint which must be fulfilled. Subsequently, the solution should be

found such that (i) all the applications are feasible, (ii) the dimensions of the application

shapes are as big as possible, (iii) the distances between the dispatchers of the same

application are as equal as possible.

In order to qualitatively evaluate different mappings, a proper metric has to be
established such that it implements the aforementioned reasoning. Let (d j , dk) denote

a pair of neighbouring dispatchers of one application, and let nhops(dj, dk) be the

distance between them, expressed in hops. Moreover, let P denote all such pairs

of neighbouring dispatchers of the application ai . A quality of a mapping of the

application ai , denoted by qi (Eq. 9), is equal to the product of the distances between

its neighbouring dispatchers, multiplied by its migration coefficient Ii .

The migration coefficient Ii was introduced in Sect. 4.2 and it symbolises the

importance of application’s spatially distributed mapping. In other words, the more

the system would benefit from the application’s spatially distributed mapping, the

greater this parameter is. For example, a computationally demanding application may

have a significant impact on the thermal properties of the core where it is executing

(and its surrounding), therefore, having the possibility to perform far migrations of that

application is desirable from the thermal perspective. Consequently, for every such

application ai its coefficient Ii should be set high. Similarly, allowing far migrations

for a critical application may improve its resilience towards core/cluster failures. Thus,

each such application ai should have its Ii coefficient set high. In this work we do not

elaborate on the values of migration coefficients of individual applications. In fact, we

just assume that the values have already been specified, and that the same are used

as a means to classify the applications according to the importance of their spatially

distributed mappings.

There are three reasons why a product of inter-dispatcher distances is used as the

evaluation metric. Primarily, because it is a computationally cheap operation. That is,

C

1

|
C

|

l

|
C

|

=

act

Fig. 10 Comparison of mappings

due to the rectangular or line-like structure of the application shape (Constraint 1), the

inter-dispatcher distances can be obtained in a single traversal across the circumference

of the application’s shape in either clockwise or couter-clockwise direction. Since

during the mapping process the evaluation of many different shapes of all applications

will be performed, it is of paramount importance to limit its complexity. Secondly,

the product of inter-dispatcher distances is monotonically increasing with the shape

size (see Observation 1). Finally, when assuming that the shape has been decided,

the product of inter-dispatcher distances reaches the maximum when all the distances

are as even as possible (see Observation 2 and for the formal proof see Theorem 2 in

Appendix).

Note that a zero-distance between dispatchers presents a special case where the same

are located on a common core. In the assumed model, such a mapping is meaningless

and the metric expressed with Eq. 9 also penalises such mappings, hence returning

qi 0.

Assuming that the circumference of an application shape C and the number of

dispatchers |D| are given, choosing and applying an optimal dispatcher placement

would be trivial: if possible, make all distances equal |D| , otherwise make distances

either or . However, the corners of the application shape pose implicit

constrain
D

ts regardin
D

g the inter-dispatcher distances and, in some cases, prevent optimal

solutions. Also, not all the cores located on the edges of the application shape might

be available due to schedulability reasons (Sect. 7.4), thus further preventing optimal

solutions. Therefore, the purpose of the aforementioned evaluation metric is to provide

a qualitative comparison between different possible suboptimal dispatcher placements,

in cases when optimal ones are not possible.

The example in Fig. 10 illustrates how different mappings are evaluated. Two pos-

sibilities are presented, in both of them the application claims the same shape, but

the placement of the inner dispatchers differs. All dispatchers are represented with a

star sign. For clarity purposes, assume that the migration coefficient is equal to 1. By

obtaining the values with Eq. 9, we find that the left solution has qi = 144, while

the right one has qi = 324, which favours more the latter. This coincides with our

reasoning and intentions. Also note that for a given example C = 16, |D| = 6, and C = 16 = 2.67. Therefore, the right mapping presents one of optimal solutions, due

t
|
o
D|

the f
6

that its all dispatcher distances are either 2 or 3.

Upon defining the individual, per-application quality metric, now we define the

quality of an entire solution (Eq. 10). It is equal to the sum of individual qualities of

all applications comprising an application-set A.

* * *

* * *

* * *

* * *

OP

IP FP

∈ H

FP OP

H IP
≤ ≤

|H| H

|H|
IP |H|

7 Mapping procedure

After defining the feasibility analysis (Sect. 5) and the qualitative metric for secondary

objectives (Sect. 6), in this section we present the application mapping process. The

proposed method consists of three stages: Initial Phase (), Feasibility Phase ()

and Optimisation Phase ().

Before the mapping process begins, based on their priorities, all applications are

divided into two groups: a set of high-priority applications H and a set of low-priority

applications L (Eq. 11).

Pmax and Pmin denote the maximum and the minimum system priorities, respec-

tively, while the parameter P (0 P 1) is arbitrarily chosen by the system designer.

All applications belonging to the group will be mapped during and will not

be subject to any changes during and . The rationale for this decision is

that any change in the mapping of an application a (e.g. its shape, the position

of its dispatchers) requires a new feasibility check of both a and all lower priority

applications which composite messages are directly interfered by the composite mes-

sage of a. Thus, the recalculation triggered by a high-priority application might be

computationally expensive, as there might be a substantial number of directly inter-

fered applications. Therefore, the parameter P is introduced as a means to control the

complexity of the entire mapping process.

7.1 Initial phase (IP)

As already described, during this phase only the high-priority applications are mapped.

The applications are sorted non-increasingly with respect to their priorities, and

mapped sequentially in that order. By performing the mapping in this manner, in

most cases, the mapping of one application will not have an impact on the feasibility

of previously mapped (higher-priority) applications. Exceptions are the cases when

there exists an inter-application message from some already mapped higher priority

application a1, to the currently mapping application a. In such cases, the mapping of a

also maps the inter-proxy message between a1 and a which has the priority of a1 and

belongs to m̊a1 . This invokes an update of m̊a1 , a feasibility recheck of a1 and all inter-

fered applications with intermediate priorities. Depending on the frequency of these

situations, the complexity of ranges between O() (no feasibility rechecks nec-

essary) and O(2) (the mapping of every application invokes feasibility rechecks),

where stands for the amount of applications in . As will be seen in Sect. 8, the

actual complexity is closer to the former estimate (a linear complexity).

L

H

L

IP

= ≤
=

× × ×

H IP

{ × × × × × × × × × }
× = = = ≤

IP

When mapping an application, we differentiate between several types of mappings.

A narrow mapping presents a mapping where an application shape covers the mini-

mum possible surface, i.e. a mapping where all dispatchers of an application occupy

consecutive cores. For instance, the possible narrow mappings for a 4-dispatcher appli-

cation are: 1 4, 4 1, 2 2. Conversely, a wide mapping is a mapping where an

application shape covers the maximum possible surface, in most cases the boundaries

of the grid. We refer to the surfaces of the narrow and the wide mapping as to Smin

and Smax , respectively.

Since the applications from are mapped during , and are not subject to any

changes in the subsequent mapping phases, it is essential to dedicate a proper shape to

each of these applications. Assuming wide mappings for most applications during

will create significant high priority traffic within the network, which might cause the

applications from to be unable to reach the feasibility. Conversely, restricting the

applications from to claim the narrow mappings might unnecessarily preserve the

network resources underutilised, as there might be very few applications in . In order

to manage this design trade-off we introduce the parameter G. It controls the mapping

“greediness” of high-priority applications. G presents an upper-bound on the allowed

application shapes. For instance, if G 0 only the shapes which surface S is less than

or equal to Smin are allowed. Similarly, if G 1, shapes which fulfil S Smax are

allowed, which includes all rectangular/linear shapes. If 0 < G < 1, allowed shapes

are calculated by Eq. 12. That is, if the mapping of a 4-dispatcher application has to be

performed on a 8 8 platform with G 0.5, then Smin 4, Smax 64 and S 34.

This excludes shapes 8 8, 8 7, 7 8, 7 7, 8 6, 6 8, 7 6, 6 7, 6 6

from the consideration.

S ≤ Smin + G · (Smax − Smin) (12)

Algorithm 1 illustrates how the stage is performed. First, the high-priority

applications are selected and sorted by priorities, non-increasingly (lines 1–4). The

applications are treated sequentially; the values of Smin and Smax are obtained (line

6), and a shape surface threshold S is calculated (line 7). Then, only the shapes which

surface is less than or equal to the calculated threshold S are selected and sorted

by the shape surface, non-increasingly (lines 8–11). The mapping is attempted on

the entire grid with the selected application and the biggest allowed shape (lines 14–

15). Note that this process involves (i) the placement of the shape at the particular

location on the grid, (ii) the generation of the supermessages, (iii) the assignment of the

individual proxy roles for both the application under analysis and the other applications

communicating with it, (iv) the generation of the inter-application messages assuming

the elected proxies, (v) the generation of the composite message (vi) the feasibility

check for the composite message. Each inter-application message sent to the currently

mapping application has a higher priority, hence each such message has to be added

to the respective composite message (lines 17–20). Consequently, the feasibility of

the applications containing those composite messages has to be rechecked. This may

also trigger the rechecks of other applications influenced by these updates, therefore

a feasibility recheck is performed for each such application (lines 21–27).

H

≤

=

∈

/

=

= + · −

23 do

/= ∧ /=
=

↓

 Algorithm 1: IP(A, P, G) The first mapping phase IP (Initial Phase)

input : A, P,G

1 foreach (a ∈ A : Pa > P

min + P · (P

max

− Pmin

)) do

2 add(a,); // Select all high-priority applications
3 end

4 H.sort(P↓); // Sort by priority, non-increasingly

5 foreach (a ∈ H) do

6 Smin = a.min_area(); Smax = a.max_area(); // Compute Smin and Smax

7 S Smin G (Smax Smin); // Find a shape surface threshold
8 foreach (shape : shape.S() S) do

9 add(shape, Allowed); // Select allowed shapes

10 end

11 Allowed.sort(S); // Sort by shape surface, non-increasingly
12 f easible f alse;

13 while (f easible true Allowed empty) do

14 shape = Allowed.remove(); // Get the biggest existing shape

15 f easible a.test(shape);
16 if (feasible == true) then

17 foreach (a1 a.Senders()) // Update of composite messages
18 do

19 a1.update();

20 end

21 if (a.Senders() /= ∅) then

22 foreach (a1 ∈ H : a1.recheck() == true) // Feasibility recheck

24 f easible = f easible ∧ a1.test(a1.shape);

25 if (f easible /= true) then break ;

26 end

27 end

28 end

29 if (feasible == true) then

30 location = a.find_best_location(shape); // Find the best location

31 a.map(shape, location);

32 a.distribute_dispatchers(); // Maximise the mapping quality

33 end

34 end

35 if (feasible true) then Mapping.Failed(a); // Declare failure of IP

36

37 end

 38 Mapping.Success(); // Declare success of IP

If the application can be mapped with the selected shape on multiple places of the

grid, the location is found such that the worst-case delay of the composite message

is minimised. In this way the algorithm searches for the position on the grid where

the application suffers the least interference from the other traffic. Notice, that this

strategy forces interacting applications to be mapped close to each other. A special

case occurs when proxies of two interacting applications share the same core and the

inter-proxy message does not exist. Furthermore, if there are several locations on the

grid where the application can be mapped and for which the delay of the composite

message is minimised, the approach selects the one for which the sum of the dispatcher

distances from the center of the grid is minimised. The intention behind mapping the

L

IP

FP FP

application as close to the center of the grid as possible is as follows: any lower-priority

application which is yet to be mapped, and which performs the communication with

the said application, will have the possibility to evaluate more mapping options so

as to minimise the communication penalty, while that would not be the case if the

said application was mapped on the border of the grid. Note that these two location

selection criteria are not explicitly mentioned in Algorithm 1, but we assume that this

logic is encapsulated within the method in the line 30.

Once the best location is found, the application is considered mapped (line 31).

Subsequently, the rest of dispatchers (if any) are positioned on the edges of the shape,

such that the mapping quality qi is maximised (line 32).

If the application cannot be mapped on the grid with the current shape, the map-

ping is attempted with the next shape from the collection of allowed shapes. The

process repeats until the proper shape and location are found, such that the feasibility

constraints are satisfied for the currently mapping and the previously mapped applica-

tions. If the feasibility cannot be reached with any of the shapes, the mapping process

declares a failure (line 35). Conversely, when all the applications from H are mapped,

IP declares a success (line 38).

7.2 Feasibility phase (FP)

This phase performs the mapping of low-priority applications, with the primary objec-

tive to derive a feasible solution where the entire application-set is mapped. Therefore,

during , every application is mapped with the narrow mapping. is described by

Algorithm 2. First, all low-priority applications are grouped in and sorted by priority,

non-increasingly (lines 1–4). The applications are treated sequentially; a surface of a

narrow mapping Smin is found (line 6), and subsequently it is used to find all possible

shapes which correspond to the narrow mapping of the application (lines 7–9). The

mapping is attempted with the first shape from the list, without any preference, as

all selected shapes represent narrow mappings (lines 12–13). The same logic used in

applies here: if needed, the composite messages of higher-priority applications

are updated (lines 15–18) and subsequently the feasibility of relevant applications is

rechecked (lines 20–24). Similarly, if multiple grid locations are available for the same

shape, the one with the minimum delay of the composite message is selected, while

if more than one location report the same delay, the one closer to the center of the

grid has the precedence (line 28). Once the best location is found, the application is

mapped (line 29).

If the attempted shape violates the feasibility of the currently mapping application,

or any other already mapped application, the mapping is attempted with the next one

from the list of allowed shapes. The process is repeated until a shape is found such

that all applications are feasible. If none of the shapes satisfies this requirement, the

mapping process declares a failure (line 32). Conversely, once all the applications are

mapped, FP declares a success (line 35). The computational complexity of FP also

varies. If there are no feasibility rechecks necessary, the complexity is equal to O(|L|),
where |L| denotes the number of low-priority applications. Conversely, if the mapping

of every application requires feasibility rechecks, the complexity is O(|L|·|A|), where

|A| denotes the total number of applications in the application-set, i.e. |A|= |H|+|L|.

L

=

∈

/

=

= ∧

/

=

21 do

/= ∧ /=
=

FP

FP

OP

L
OP

 Algorithm 2: FP(A, P) The second mapping phase FP (Feasibility Phase)

input : A, P

1 foreach (a ∈ A : Pa ≤ P

min + P · (P

max

− Pmin

) do

2 add(a,); // Select all low-priority applications
3 end

4 L.sort(P↓); // Sort by priority, non-increasingly

5 foreach (a ∈ L) do

6 Smin = a.min_area(); // Compute Smin

7 foreach (shape : shape.S() == Smin) do

8 add(shape, Allowed); // Select narrow-mapping shapes
9 end

10 f easible f alse;

11 while (f easible true Allowed empty) do

12 shape = Allowed.remove(); // Get the first allowed shape

13 f easible a.test(shape);
14 if (feasible == true) then

15 foreach (a1 a.Senders()) // Update of composite messages
16 do

17 a1.update();

18 end

19 if (a.Senders() /= ∅) then

20 foreach (a1 ∈ A : a1.recheck() == true) // Feasibility rechecks

22 f easible f easible a1.test(a1.shape);

23 if (f easible true) then break ;

24 end

25 end

26 end

27 if (feasible == true) then

28 location = a.find_best_location(shape); // Find the best location
29 a.map(shape, location);

30 end

31 end

32 if (feasible true) then Mapping.Failed(a); // Declare failure of FP

33

34 end

 35 Mapping.Success(); // Declare success of FP

As will be seen in Sect. 8, the actual complexity is closer to the former estimate (linear).

Note that the output of FP is the first feasible solution of an entire application-set.

7.3 Optimisation phase (OP)

The objective of this phase is to improve on the solution received from . This is

performed by attempting to extend the shapes of narrow mappings that low-priority

applications claimed during . The process ends when no further extensions are

possible. That also marks the end of the entire mapping process and the reached

solution presents the final output. is depicted by Algorithm 3.

Similarly, applications from are selected and sorted non-increasingly (lines 1–4),

but during by the parameter I . As mentioned in Sect. 6, it represents the signifi-

cance of the spatially distributed mapping of an application, i.e. the more the system

L

=

=

∈ L

L ↓

/

=

= ∧

12 do

OP FP

OP

 Algorithm 3: OP(A, P) The third mapping phase OP (Optimisation Phase)

input : A, P

1 foreach (a ∈ A : Pa ≤ P

min + P · (P

max

− Pmin

) do

2 add(a,); // Select all low-priority applications
3 end

4 .sort(I); // Sort by migration coefficient, non-increasingly
5 foreach (a) do

6 f easible true;

7 while (feasible == true) do

8 new_shape = a.expand(a.shape); // Find expanded shape to attempt

9 f easible a.test(new_shape);
10 if (feasible == true) then

11 foreach (a1 ∈ A : a1.recheck() == true) // Feasibility re-checks

13 f easible f easible a1.test(a1.shape);

14 if (f easible true) then break ;

15 end

16 if (feasible == true) then

17 a.shape = new_shape; // Claim expanded shape

18 a.rearrange_dispatchers(); // Maximise the mapping quality

19 end

20 end

21 end

22 end

 23 Mapping.Success(); // Declare success of OP and entire mapping process

would benefit from the spatially distributed mapping of an application, the greater its

parameter I is. The positive side is that applications for which distribution matters

more are given the possibility to claim resources before others, thus increasing the

chances of the mapping process to derive a good quality solution. The downside is

that the number of necessary feasibility rechecks significantly increases; an expanding

application can invoke not only feasibility rechecks mentioned in the previous map-

ping stages, but also of all its directly interfered lower-priority applications, which

was not possible in the previous stages as applications were sorted by their prior-

ities, non-increasingly. Thus, unlike the previous mapping stages, where feasibility

rechecks were an exception, during the same will be performed regularly. The

computational complexity of is identical to that of , however, as will be seen

in Sect. 8, the actual complexity is closer to the higher (sub-quadratic) estimate.

The applications are treated sequentially; the expanded shape is found and the map-

ping attempted (lines 8–9). The process consists of an attempt to stretch the application

shape: (i) the supermessages are re-generated, (ii) the proxy roles are re-assigned for

both the application under analysis and the other applications interacting with it, (iii)

the inter-application messages are re-generated assuming the newly elected proxies,

(iv) the composite messages containing the modified inter-application messages are

re-generated. As described above, this may require a significant amount of feasibility

rechecks (lines 11–15). The application is expanded until any further stretches will

cause infeasibility of either itself or any other application. Every expansion is followed

by a rearrangement of dispatchers of an expanding application, so as to equalise the

L

a

a

= −

≤ = −

inter-dispatcher distances as much as possible and improve the mapping quality (line

18). Once this process is performed for all applications from , the entire mapping

process concludes (line 23) and returns the current solution as the final output.

7.4 Schedulability

As already mentioned (Sect. 4.2), the greatest distinction of LM M from the existing

approaches is that release/migration decisions are explicitly detached from scheduling

decisions. In other words, via its agreement protocol, each application itself decides

on which of its candidate cores will the next job be released, while scheduling the job

is the responsibility of the independent single-core scheduler that is located on the

selected core.

The schedulability analysis of LM M is still an unexplored topic. Given that this

aspect is not the objective of this work, and for the sake of completeness, here we

address the schedulability by making the following simplifying assumptions. An appli-

cation is schedulable, if at least one of its dispatchers is schedulable. A dispatcher is

schedulable, if it can release a job on its core, on behalf of its application, which will

not miss a deadline. A job does not miss a deadline, if its worst-case response time

Ra (Burns and Wellings 2009) is less than or equal to its deadline Da , when treating

that core as an independent single-core system with the fixed-priority scheduling (jobs

inherit dispatcher priorities, while dispatchers inherit application priorities). Specifi-

cally, a job of an application a has the deadline equal to the period of a, reduced by

its communication deadline, i.e. Da Ta Wa .
Let Rmin be the minimum of the response times of the application a, on all the cores

where it has dispatchers. Then, a is schedulable if Rmin Da Ta Wa . Notice, that

this simplistic approach assures that each application will always be able to execute on

at least one of the cores of its dispatchers, while the possibility to migrate will depend

on the outcome of online schedulability tests, performed by its dispatchers on their

respective cores during agreement protocols at runtime.

At this stage several questions can be asked: (i) How to perform the schedulabil-

ity analysis when applications have more sophisticated schedulability requirements,

e.g. require multiple schedulable dispatchers (useful in scenarios with voluntary core

shutdowns and core failures)? (ii) What is the most efficient way to assign priorities to

dispatchers and jobs they release? (iii) Which single-core scheduling policy to imple-

ment within kernels? These important questions and open problems are guidelines for

our future work.

8 Evaluations

In this section we perform the evaluation of the proposed approach. Specifically,

through different case studies, we investigate the overall efficiency and applicabil-

ity of the proposed application mapping method, as well as how different choices

and trade-offs, achievable through parameter manipulations, influence the quality of

derived solutions.

−
−

−

FP

8.1 Case study 1: application shapes and overheads of constrained routes

In many situations, several shapes have similar or identical characteristics, especially

during when only narrow mappings are considered. In order to asses the dif-

ferences between shape types and reason about their applicability, we analyse their

characteristics which we consider relevant, namely a traversal distance of the average

and the longest intra-application message. For easier calculation, in all cases narrow

mappings are assumed, while for rectangular shapes only an even number of dispatch-

ers is considered.

Equation 13 calculates the average traversal distance of an intra-application mes-

sage, assuming a n-dispatcher application with a line-like shape. If the i -th dispatcher

of a horizontally stretched application is the master, it communicates with i 1 dis-

patchers on the left and the rest n i dispatchers on its right (the terms in the brackets

of Eq. 13). The outer summation is performed so as to account for all possible masters.

In order to obtain the distance of the average message, we divide the result by the total

number of messages (n masters sent n 1 messages each). Similarly, the value is calcu-

lated for the rectangular shape, where the message routes obey to Constraint 2 (Eq. 14).

Finding the maximum message distance for both shapes is trivial (Eqs. 15, 16).

Figure 11 illustrates how the number of dispatchers influences the distance traversed

by the average and the longest intra-application message of these two shape types. The

rectangular shape type performs better than the line one, for both the average and the

longest message, but at the expense of potential reroutings, which do not occur in

the latter case. The decision regarding the shape type precedence can be made by the

system designer, or left to the mapping process to decide.

In order to estimate the penalty of constrained intra-application message routes, tra-

versal distances of the average and the longest message are computed for a rectangular

shape with the free point-to-point communication between dispatchers (Eqs. 17, 18),

and subsequently plotted in Fig. 11. Equation 17 is derived by using the intermediate

results of Eq. 13.

Line−AVG

Line−MAX

Rect−AVG

Rect−MAX

Free−AVG

Free−MAX

i

i

IP
= =

min

Fig. 11 Shape comparison 20

18

16

14

12

10

8

6

4

2

0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of dispatchers

Fig. 12 Rerouting penalty

estimation
30

25

20

15

10

5

0
4 6 8 10 12 14 16 18 20

Number of dispatchers

Figure 11 demonstrates that the removal of Constraint 2 improves the performance

for the average message, but keeps the same longest message and, as recognised

in Sect. 5.4, significantly complicates the analysis. Unlike Fig. 11, which visualises

the overhead of forced paths expressed in absolute values, Fig. 12 depicts the same

overhead expressed relatively. In practical terms, Constraint 2 causes a 19 % longer

traversal path for the average intra-application message of a 10-dispatcher application

with a rectangular shape.

8.2 Analysis and workload parameters

In the subsequent experiments we perform the mapping process, assuming the work-

load synthetically generated by using the parameters from Table 2. An asterisk sign

denotes a randomly generated value, assuming a uniform distribution. To assure that

all considered application-sets are indeed feasible, the individual per-application con-

straints on the worst-case communication delays were derived as follows. First, each

application-set is mapped with the parameters ∀ai ∈ A : Wi = Ti − Rmin, and

P G 0, where R was introduced in Sect. 7.4. This approach assures that all

applications will be mapped during the phase with shapes that correspond to nar-

row mappings, and will consequently suffer small worst-case communication delays,

F
o

rc
e

d
 r

o
u

te
 p

e
n

a
lt
y
,

in
 %

 o
f

u
n

c
o

n
s
tr

a
in

e
d
 m

e
s
s
a

g
e

D
is

ta
n
c
e

 (
in

 h
o

p
s
)

35

= =
≥

∀ ∈ A : = ·

= ∀ ∈ A : = ·
=

×

Table 2 Analysis and workload
parameters Routing delay + link transfer delay 3 + 1 cycles

 Link bandwidth 16 bytes

 Application utilisation [0–0.7]*

 Application periods [30 mS–1 S]*

 Application migration coefficient [0–50]*

 Number of dispatchers (migrative application) [2–10]*

 Agreement message size 64 bytes

 Inter-application message size [16–64]* bytes

 Migrative applications 50 %

 Probability of inter-application communication 5 %

Fig. 13 The influence of the application-set size on the analysis time

called narrow shape delays (NSDs), hereafter. Thus, by assigning each application a

communication constraint which is equal to, or greater than its respective NSD (i.e.

Wi NSDi), we know that the given application-set is feasible with at least one selec-

tion of the mapping parameters (P G 0). In the subsequent experiments, we set

the communication constraints to be equal to multiples of NSDs of respective applica-

tions, i.e. ai Wi n NSDi . Notice, that a bigger value of n gives applications

more “freedom” to claim wider shapes, but also decreases the schedulability potential

of applications, because bigger Wi also means tighter job deadlines (Di = Ti − Wi).

8.3 Case study 2: scalability

The objective of this case study is to test the scalability potential of the proposed

approach. We vary the number of applications in the range [2–200]. For each given

value of the application-set size we generate and map 1000 application-sets on a 8 8

grid, in accordance with the values from Table 2. The other parameters are: G 0.3,

P 0.5 and ai Wi 10 NSDi . We perform the timing analysis by capturing

the duration of the mapping process of each run.

Figure 13a demonstrates the results. The horizontal axis stands for the application-

set size. For clarity purposes we present a reciprocal cumulative graph, where the

× ×

20

Analysis time

18 Analysis time in logarithmic scale

16

14

12

10

10

2

10
1

10
0

10 −1

8

6

4

2

0

1 20 40 60 80 100 120 140 160 180 200

Application−set size

10 −2

10 −3

10 −4

Fig. 14 The influence of the application-set size on the analysis time

vertical axis depicts the quantity of the runs that still did not complete the mapping

process within a given time interval (depth axis). For small application-sets, almost

all the runs complete very fast. As the number of applications increases, the mapping

process takes more time, thus the slope of the curve flattens. At the end of the first

observed period (0–3 s), almost all the smaller sets finished, while very few of the

largest ones report the completion of the mapping process.

The second observed period (3–40 s) is presented in Fig. 13b. Most of the runs for

application-sets up to 150 applications already finished, while the runs for the larger

sets keep the completion rate steady. Note that the observation period is larger, thus

the slope looks steeper. At the end of the observed period, only a small fraction of the

largest application-sets did not complete.

The results show an obvious trend regarding the duration of the mapping process

across application-set sizes, however, the mappings of two sets of the same size

can report significantly different durations, sometimes by an order of magnitude. To

emphasize this fact, we give a different representation of the same data in Fig. 14.

The horizontal axis stands for the application-set size. The left and the right vertical

axis represent the duration of the mapping process, in linear and logarithmic scale,

respectively. Even though the whiskers were set to the 25th and 75th percentiles,

which corresponds to the 99.3 % coverage for the normal distribution, it is visible

that a non-negligible amount of runs falls outside the aforementioned area. This infers

that the duration of the mapping process may hugely vary and highly depends on the

application-set parameters.

Overall, the duration of the mapping process exponentially increases with the num-

ber of applications. However, it is averaging at 12 seconds for the sets consisting of

200 applications and we thus believe that the proposed approach is applicable to most

of realistic scenarios in the real-time embedded domain.

We performed another scalability test by varying the grid size (from 8 8 to 16 16),

while keeping all the other parameters at the same values. The size of the application-

set is 150. Thousand sets were generated and subsequently mapped. Figure 15a shows

A
n

a
ly

s
is

 t
im

e
 (

in
 s

e
c
o

n
d

s
)

A
n

a
ly

s
is

 t
im

e
 (

in
 l
o

g
a

ri
th

m
ic

 s
c
a

le
)

IP

IP FP + OP

FP OP FP OP

IP

H

20

18

16

14

12

10

8

6

4

2

0

(a)

8 9 10 11 12 13 14 15 16

Grid size

(b)

Fig. 15 The influence of the grid size on the analysis time

how the variation of the grid size (horizontal axis) influences the analysis time (depth

axis). A cumulative reciprocal representation is used, where vertical axis stands for the

number of application-sets for which the mapping did not finish within a given time.

It is visible that, within 6 s, in almost all cases the mapping completed for smaller

grids, while larger grids are more time consuming and report fewer completions in

the same time interval. Conversely to application-set size variations, the grid size

variations cause a linear increase in the duration of the mapping process, visible in

Fig. 15b. Note that these results infer that on average, the mapping process on a

platform with 144 cores takes only 2 times more than on a 64-core one, assuming the

same workload is mapped in both cases. The explanation is as follows. Even though

larger grids require more cores to be checked while mapping, at the same time this

gives the opportunity to map the applications in such a way that complex interference

scenarios are avoided, which decreases the duration of feasibility rechecks, since fewer

contentions occur. The number of outliers again confirms huge variations in duration

times of the mapping process, demonstrating that for some specific application-sets

the duration of the mapping process can significantly exceed the average time needed

for that particular workload and platform size.

8.4 Case study 3: parameter P

The parameter P controls the amount of applications which will be grouped in

and hence mapped during , while the rest of the applications will undergo a two-

stage mapping process in and . Note that and are computationally

more intensive than , so mapping more applications during can cause a

significant increase in the computation time. However, this process is more thorough

in search and potentially has higher chances of finding better application mappings.

Conversely, mapping most of the applications during may save the computation

time, but makes the efficiency of the mapping process highly dependant on the right

selection of the parameter G, as is shown in Case Study 4. Thus, an intuitive assumption

is that the selection of the parameter P creates a trade-off between the analysis time

and the solution quality.

A
n
a
ly

s
is

 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Solution Quality
 Analysis time

IP Mapping
 FP Mapping
 OP Mapping

×

=

OP

OP

OP

[−]

= IP

IP

FP OP

L
FP OP

=

IP OP

= ∀ ∈ A : = ·
A

n
a

ly
s
is

 t
im

e
 (

in
 s

e
c
o

n
d

s
)

F
ra

c
ti
o

n
 o

f
to

ta
l
a

n
a

ly
s
is

 t
im

e
 (

in
 %

)

x 10
4

4

100

6
90

80

5

70

3 4

60

50

3 40

30

2
2

20

1

1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter P

(a)

10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter P

(b)

Fig. 16 The influence of the parameter P on the mapping process

Assuming G 0.3 and ai Wi 10 NSDi , all the application-sets are

feasible across the entire observed domain, where we vary the parameter P in the

range 0 1 . The application-set size is 150, and 1,000 sets are created and mapped

on a 8 8 platform, for each incremental step of P, as shown in Fig. 16a. We perform

the timing analysis (the right vertical axis), but also collect the qualities of generated

solutions (the left vertical axis), since the objective is to observe the effect of P on

both the analysis time and the solution quality.

As expected, the increase of the parameter P causes the duration time of the mapping

process to grow exponentially. As P increases, more applications undergo a more

computationally extensive mapping process, which results in longer analysis times.

However, the results report a logarithmic growth of the solution quality, almost on

the entire domain. The only exception is the case when P 1, that is, when all

applications are mapped during and .

The results suggest that putting more applications in and placing them during

and might not produce a solution with a significantly better quality. The

explanation is that the final mapping phase sorts the applications non-increasingly

by the parameter I and tries to optimise their placements in that order. Since does

not have a greediness control mechanism, every application will greedily assume

the widest possible mapping such that its feasibility is preserved. Thus, most of the

available network resources are consumed by the applications that are considered early

during , which leaves the ones considered later to be able to barely optimise their

placements, if at all. Another interesting conclusion is that mapping some applications

during (i.e. P < 1) may prevent the phase to optimise the mapping in the most

efficient way. This is confirmed with the substantial increase in the solution quality

when all applications undergo the optimisation phase (P 1).

In order to gain a more detailed insight into the influence of P on the duration of

the mapping process, we observed the durations of the individual mapping phases.

Figure 16b shows the fraction of the total analysis time that each phase consumes

and compares them in relative terms. For small values of P, almost all applications

are mapped during , hence leaving less workload for the subsequent phases. Until

P 0.25, witnesses an exponential decrease of the analysis time, while the other

two phases report a linear increase. Notice, that although all three stages have the

S
o

lu
ti
o

n
 q

u
a

li
ty

OP

OP

L

H

L

×

=

OP

OP

H FP

= ∀ ∈ A : = ·

sub-quadratic complexity, as P increases the complexity of becomes a dominant

factor, while P > 0.75 results in scenarios where the analysis time is almost entirely

spent in . This is explained with the amount of necessary feasibility rechecks,

which in the first two stages occur rarely and cause their almost linear complexity,

while in the last mapping stage are performed regularly, thus contributing to the true

sub-quadratic complexity.

8.5 Case study 4: parameter G

The parameter G controls the amount of greediness allowed to high-priority applica-

tions. An intuitive reasoning suggests that the greater value of G causes the greater

amount of traffic as a consequence of spatially distributed mappings of applications

from . Consequently, low-priority applications, which get placed during and

, will have less possibilities to assume well distributed placements, since the net-

work resources were greedily consumed by the applications from . In some cases

this may cause applications from to be unable to claim feasibility even with narrow

mappings, resulting in a failure of the mapping process. Conversely, smaller G may

limit the distribution of high-priority workload and unnecessary preserve the network

for applications from , while there might be only few of them. This can significantly

impact the solution quality.

The effects of the parameter G highly depend on the parameter P, since G applies

only to high-priority applications, which amount is directly controlled by the parameter

P. For small values of P, the influence of G is amplified the most. As P increases,

the effects of G mitigate and at some point become negligible. To better observe the

impact of G on the mapping process, we kept P 0 and ai Wi 10 NSDi .

Notice, that this parameter selection caused some application-sets to be infeasible

on the entire domain, where we varied the parameter G in the range [0–1]. Thus, in

this part of the experiment we only consider those application-sets which are feasible

on the entire domain. The application-set size is 150, and 1,000 sets are created and

mapped on a 8 8 platform, for each incremental step of G, as shown in Fig. 17a.

We perform the timing analysis (the right vertical axis), but also observe qualities of

derived solutions (the left vertical axis), so as to study the effect of G on both the

analysis time and the solution quality.

It is visible that the duration of the mapping process is constant and does not depend

on the parameter G. However, G has a significant effect on the solution quality. Specif-

ically, as G increases, high priority applications gain more freedom in assuming map-

pings wider than narrow ones, resulting in a constant increase of the solution quality.

This effect is noticeable until G 0.75. For higher values of G, the solution quality

starts to decrease, since high G allows greedy mappings of high-priority applications,

and hence preserves less resources for the later mapping stages. In fact, for G > 0.75,

the network is so greedily consumed by high-priority applications, that low-priority

ones barely claim the feasibility with narrow mappings. Note that high values of G

not only significantly limit the optimisation of lower priority workload during ,

but also severely affect the feasibility, as explained below.

As already mentioned, Fig. 17a considered only those application-sets which were

feasible across the entire domain of G. Now we investigate the impact of the parameter

Solution Quality

 Analysis time

=

= ×

=

A
n

a
ly

s
is

 t
im

e
 (

in
 s

e
c
o

n
d

s
)

F
e

a
s
ib

le
 a

p
p
li
c
a
ti
o

n
−

s
e
ts

 (
in

 %
)

x 10
4

5

5 100

90

4 4 80

70

3 3 60

50

2 2 40

30

1 1

0 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter G

(a)

20

10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter G

(b)

Fig. 17 The influence of the parameter G on the mapping process

G on the feasibility (Fig. 17b). The application-set size is 150, and 1,000 sets are

created. For each generated application-set we vary the individual per-application

communication constraints by allowing them to be 2, 5, 10 and 20 times greater than

the respective NSDs. Subsequently, assuming again P 0, we map them on a 8 8

platform and observe how the number of feasible application-sets (the vertical axis)

changes with the parameter G (the horizontal axis).

It is visible that the parameter G significantly impacts the feasibility, and as G

increases, the number of feasible application-sets decreases. This is expected, because

giving more freedom to high-priority applications allows them to more greedily con-

sume the available network resources. This inevitably leaves low-priority applications

with fewer resources, which, in many cases are not enough to claim the feasibility

even with narrow mappings. Notice, that even if the communication constraints are 20

times greater than the respective NSDs, when G 1 only 30 % of the application-sets

are feasible.

8.6 Discussion

The efficiency of the mapping process significantly depends on the right selection of

the parameters P and G. But more than that, it highly depends on the parameters of the

application-set upon which it is being applied. As observed through the experiments,

there are no individual values of P and G which derive the best solution for every

application-set. We used the experiments to identify and explain the general trends

associated to these parameters, but also to show that different mapping strategies can

in some cases provide competitive results, and conversely, the same mapping strategy

may vary substantially in terms of efficiency when applied to different cases.

For instance, for sets with tight communication constraints, setting low values to

P and G will very fast produce a feasible mapping but without a significant quality.

Increasing P in such cases may result in a solution with the better quality, but at the

expense of the additional time. If the computational complexity is not the problem, in

such cases setting P 1 is the preferable option. For sets where applications have

similar communication constraints the best strategy is to invoke the balanced network

consumption by keeping P low and G low or moderate, depending on the tightness

Wi = 2 × NSD i
Wi = 5 × NSD i
Wi = 10 × NSD i
Wi = 20 × NSD i

S
o
lu

ti
o

n
 q

u
a
li
ty

= { } ∈

of the constraints. Conversely, the sets with significant differences in communication

constraints will benefit the most from a spatial partialisation approach invoked by

moderate or high values of P and high values of G. This parameter selection will allow

only a limited number of applications to claim wide mappings and utilise the routes

on the boundaries of the grid, and at the same time preserve the central cores free for

the applications with tight constraints. Finally, for sets with relaxed communication

constraints setting P low or moderate and G high may result in a mapping with

the good solution quality, but may also deem the application-set infeasible with that

particular parameter selection. In such cases, decreasing the parameter G until the

application-set becomes feasible is a preferable option.

The advantage of the proposed method is that by setting P and G low, a feasi-

ble solution can be derived very fast. This option may be useful in scenarios where

limited computational capacities are available, and the system designer is not very

knowledgeable about the nature of the workload. Alternatively, if additional computa-

tional capacities are available, the designer might choose to increase P, until reaching

a desirable trade-off between the solution quality and the computational complexity.

Moreover, if the designer knows workload characteristics (e.g. the number of appli-

cations, the number of dispatchers, the tightness of the constraints), he can take that

knowledge into account and make an informed decision regarding the parameter G,

which may additionally improve the solution quality.

9 Conclusions and future work

NoC-based many-core platforms are the next frontier technology in the real-time

embedded domain. Their design not only allows cost reductions and power savings,

but also contributes to the overall system flexibility. In this work we focus on many-

cores using a limited migrative model (LM M). LM M extends the concepts of the

multi-kernel paradigm, which is a novel OS design and a promising step towards

scalable and predictable many-cores. The main contribution of this work is that we

formulate the problem of application mapping on a many-core platform using LM M ,

and propose a three-stage process to solve it. The extended version of the existing

analysis is utilised to assure that derived solutions (i) guarantee the fulfilment of timing

constrains posed on worst-case communication delays of individual applications and

(ii) provide an environment to perform load balancing for various beneficial reasons,

e.g. energy/thermal management, performance enhancements or fault tolerance.

Regarding the future work, we plan to extend the approach to additionally con-

sider memory operations of individual applications. Moreover, we plan to study the

schedulability aspects of LM M and propose the schedulability analysis which will be

considered during the application mapping process. Both these activities would help

to derive a more complete analysis framework for LM M , which is a promising step

towards the integration of many-core platforms into the real-time domain.

Appendix

Theorem 1 Let X x1, x2,..., xn R be a set of real number variables, such that

the following holds:

n

≥ ∀ ∈

/= = = · ·· = =

∃ ∈ ∃ ∈ | = = ∧ /=
=

Proof Proven directly. This is a constrained optimisation problem, with one constraint

expressed by the equality (Eq. 19), and n constraints expressed by the inequalities

(Inequality 20). If we (temporarily) exclude the inequalities from consideration, the

extreme values of the function f (X), subject to the equality constraint, can be found

by the Lagrange Multipliers Method.

A new variable λ is called the Lagrange multiplier. According to the first derivative
test, the necessary condition for the extreme point is that the partial derivative of the

Lagrange function with respect to ∀xi ∈ X and λ is equal to 0 (see Eqs. 22–24).

We analyse two cases: (1) λ = 0 and (2) λ /= 0.

(1) λ 0: This is possible only if at least two of the variables are also equal to 0,

that is xi X, x j X xi x j 0 i j . There exists an infinite amount

of these points and they are both critical and stationary, and therefore should be

further examined by the second derivative test.

(2) λ 0: There exists only one point and that is x1 x2 xn
 C

. This point is also critical and stationary. It also holds for this point that it can

be examined by the second derivative test.

Additionally, due to the inequality constraints (xi 0, xi X), it is necessary
to check the boundaries of the solution space as well. The boundaries are represented

with the solutions where only one of the variables is 0, (i.e. ∃xi ∈ X ∧ / ∃x j ∈ X |

xi = x j = 0 ∧ i /= j). Those are called boundary points and there exists no test to

=

∀ ∈
∀ ∈

= =

| | =

Fig. 18 General Form of Bordered Hessian for n Variables and

1 Constraint

Fig. 19 Bordered Hessian for

prove their properties, they have to be individually checked. In our case it is easy; it

is obvious that those points represent the minima on the domain, since f (X) 0 for

all of them.

Now we proceed with the second derivative test for the cases (1) and (2). It is

conducted in the form of the Bordered Hessian. The process consists of finding the

first partial derivatives of g(X) with respect to xi X , then finding the second

partial derivatives of f (X) also with respect to xi X and finally putting them into

the matrix called the Bordered Hessian. The general form of the Bordered Hessian is

represented by Fig. 18.

(1) λ 0: Fig. 19 presents the Bordered Hessian for the case where λ 0. The

variable zij stands for the second partial derivative with respect to the variables

xi and x j and is described by Eq. 25. zij has a non-zero value only in cases

where at most two variables are equal to zero, otherwise it is also equal to zero.

A sufficient condition for the local maximum is that the Bordered Hessian is

negative definite, i.e. the determinants of its principal minors alternatively change

their signs (Eq. 26). However, from Fig. 19 it is visible that there always exists

some Hi 0, thus making this test inconclusive. In such cases, each of the

points should be examined individually. Yet, in our case it is obvious that these

points represent the minima on the domain, since f (X) = 0 for all of them.

References

Ascia G, Catania V, Palesi M (2004) Multi-objective mapping for mesh-based noc architectures. In: Pro-

ceedings of the 2nd international conference on hardware/software codesign and system synthesis,

pp. 182–187

Baker TP (2006) An analysis of fixed-priority schedulability on a multiprocessor. Real-Time Syst J 32:49–71

Baruah S, Baker T (2008) Schedulability analysis of global edf. Real-Time Syst J 38:223–235

Bastoni A, Brandenburg B, Anderson J (2010) An empirical comparison of global, partitioned, and clustered

multiprocessor edf schedulers. In: Proceedings of the 31st IEEE real-time systems symposium

Baumann A, Barham P, Dagand PE, Harris T, Isaacs R, Peter S, Roscoe T, Schüpbach A, Singhania A

(2009) The multikernel: a new os architecture for scalable multicore systems. In: ACM symposium

on operating systems principles

Benini L, De Micheli G (2002) Networks on chips: a new soc paradigm. Comput J 35(1):70–78

Bletsas K, Andersson B (2009) Preemption-light multiprocessor scheduling of sporadic tasks with high

utilisation bound. In: Proceedings of the 30th IEEE real-time systems symposium

Burns A, Wellings A (2009) Real-time systems and programming languages. Addison-Wesley Educational

Publishers Inc

Calandrino J, Anderson J, Baumberger D (2007) A hybrid real-time scheduling approach for large-scale

multicore platforms. In: Proceedings of the 19th euromicro conference on real-time systems

Chou CL, Marculescu R (2007) Incremental run-time application mapping for homogeneous nocs with

multiple voltage levels. In: Proceedings of the 5th international conference on hardware/software

codesign and system synthesis

Chou CL, Marculescu R (2008) Contention-aware application mapping for network-on-chip communication

architectures. In: Proceedings of the international conference on computer design

Chou CL, Ogras U, Marculescu R (2008) Energy- and performance-aware incremental mapping for networks

on chip with multiple voltage levels. IEEE Trans Comput Aided DesIntegr Circuits Syst 27(10):1866–

1879

Dally W (1992) Virtual-channel flow control. IEEE Trans Parallel Distrib Syst 3(2):194–205

Dally W, Seitz C (1987) Deadlock-free message routing in multiprocessor interconnection networks. IEEE

Trans Comput 36:547–553

Duato J, Yalamanchili S, Lionel N (2002) Interconnection networks: an engineering approach. M.K. Pub-

lishers

Hu J, Marculescu R (2003) Energy-aware mapping for tile-based noc architectures under performance

constraints. In: Proceedings of the 8th Asia and South Pacific design automation conference

Hu J, Marculescu R (2003) Exploiting the routing flexibility for energy/performance aware mapping of

regular noc architectures. In: Proceedings of the 6th conference on design automation and test in

Europe

Hung W, Addo-quaye C, Theocharides T, Xie Y, Vijaykrishnan N, Irwin M (2004) Thermal-aware ip

virtualization and placement for networks-on-chip architecture. In: Proceedings of the international

conference on computer design

Intel: Single-Chip-Cloud Computer. www.intel.com/content/dam/www/public/us/en/documents/technolo

gy-briefs/intel-labs-single-chip-cloud-article.pdf. Accessed September 2014

Kato S, Yamasaki N, Ishikawa Y (2009) Semi-partitioned scheduling of sporadic task systems on multi-

processors. In: Proceedings of the 21st Euromicro conference on real-time systems

Kavaldjiev NK, Smit GJM (2003) A survey of efficient on-chip communications for soc. In: Proceedings

of the 4th symposium on embedded systems

Kreutz M, Marcon C, Carro L, Calazans N, Susin A (2005) Energy and latency evaluation of noc topologies.

In: Proceedings of the international symposium on circuits and systems, Vol. 6, pp. 5866–5869

Kumar R, Mattson T, Pokam G, van der Wijngaart R (2011) The case for message passing on many-core

chips. In: Multiprocessor system-on-chip. Springer, New York

Lei T, Kumar S (2003) A two-step genetic algorithm for mapping task graphs to a network on chip archi-

tecture. In: Proceedings of the Euromicro symposium on digital systems design, p. 180

Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J

ACM 20(1):46–61

Lundstrom M (2003) Moore’s law forever? Science 299:210–211

http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf

Marcon C, Borin A, Susin A, Carro L, Wagner F (2005) Time and energy efficient mapping of embed-

ded applications onto nocs. In: Proceedings of the 10th Asia and South Pacific design automation

conference, vol. 1, pp. 33–38

Mesidis P, Indrusiak L (2011) Genetic mapping of hard real-time applications onto noc-based mpsocs—a

first approach. In: 6th International workshop on reconfigurable communication-centric systems-on-

chip

Moein-darbari F, Khademzade A, Gharooni-fard G (2009) Cgmap: a new approach to network-on-chip

mapping problem. IEICE Electron. Express 6(1):27–34

Murali S, De Micheli G (2004) Bandwidth-constrained mapping of cores onto noc architectures. In: Pro-

ceedings of the 7th conference on design automation and test in Europe, p. 20896

Nikolic ́B, Yomsi PM, Petters SM (2014) Worst-case communication delay analysis for many-cores using

a limited migrative model. In: Proceedings of the 20th IEEE conference on embedded and real-time

computing and applications

Ni LM, Mckinley PK (1993) A survey of wormhole routing techniques in direct networks. Comput J

26:62–76

Nikolic´ B, Ali HI, Petters SM, Pinho LM (2013) Are virtual channels the bottleneck of priority-aware

wormhole-switched noc-based many-cores? In: Proceedings of the 21th international conference on

real-time networks and systems

Nikolic ́B, Petters SM (2012) Towards network-on-chip agreement protocols. In: Proceedings of the 12th

international conference on embedded software

Racu A, Indrusiak L (2012) Using genetic algorithms to map hard real-time on noc-based systems. In: 7th

International workshop on reconfigurable communicationcentric systems-on-chip

Sahu PK, Chattopadhyay S (2013) A survey on application mapping strategies for network-on-chip design.

J Syst Arch 59:60–76

Shi Z, Burns A (2008) Real-time communication analysis for on-chip networks with wormhole switching.

In: International symposium on networks-on- chip

Shi Z, Burns A (2009) Real-time communication analysis with a priority share policy in on-chip networks.

In: Proceedings of the 21st Euromicro conference on real-time systems

Shi Z, Burns A (2010) Schedulability analysis and task mapping for real-time on-chip communication.

Real-Time Syst J 46(3):360–385

Song H, Kwon B, Yoon H (1997) Throttle and preempt: a new flow control for real-time communications

in wormhole networks. In: Proceedings of the 1997 international conference on parallel processing

Srinivasan K, Chatha K (2005) A technique for low energy mapping and routing in network-on-chip archi-

tectures. In: Proceedings of the international symposium on low power electronics and design

Tilera: TILE64™ Processor. www.tilera.com/products/processors/TILEPro_Family. Accessed September

2014

Wentzlaff D, Agarwal A (2009) Factored operating systems (fos): the case for a scalable operating system

for multicores. SIGOPS Oper Syst Rev 42(3):76–85

Li Y, Danish M, West R (2014) Quest-v: a virtualized multikernel for high-confidence systems. Technical

report http://www.cs.bu.edu/~richwest/quest.html. Accessed September 2014

Zimmer C, Mueller F (2012) Low contention mapping of real-time tasks onto tilepro 64 core processors.

In: Proceedings of the 18th IEEE real-time technology and applicationssymposium

http://www.tilera.com/products/processors/TILEPro_Family
http://www.cs.bu.edu/~richwest/quest.html

