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Abstract  

 

Many-core platforms are an emerging technology in the real-time embedded domain. 

These devices offer various options for power savings, cost reductions and 

contribute to the overall system flexibility, however, issues such as unpredictability, 

scalability and analysis pessimism are serious challenges to their integration into the 

aforementioned area. The focus of this work is on many-core platforms using a limited 

migrative model (LM M ). LM M is an approach based on the fundamental concepts of 

the multi-kernel paradigm, which is a promising step towards scalable and predictable 

many-cores. In this work, we formulate the problem of real-time application mapping 

on a many-core platform using LM M , and propose a three-stage method to solve it. 

An extended version of the existing analysis is used to assure that derived mappings 

(i) guarantee the fulfilment of timing constraints posed on worst-case communication 

delays of individual applications, and (ii) provide an environment to perform load 

balancing for e.g. energy/thermal management, fault tolerance and/or performance 

reasons. 
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1 Introduction 

Development trends in the semiconductor area reached the stage where further process- 

ing power enhancements related to single-core devices are no longer affordable (Lund- 

strom 2003). In order to meet the demands for more powerful computational devices, 

chip manufacturers took a design paradigm shift (Intel 2014; Tilera 2014), and started 
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integrating multiple cores within a single chip. Nowadays, platforms consisting of 

several cores (multi-cores) and more than a dozen cores (many-cores) became com- 

monplace in many scientific areas (e.g. high-performance computing), while they are 

still an emerging technology in some other domains, like real-time embedded com- 

puting. This work focuses on the latter category. 

In order to integrate many-core platforms into the real-time embedded domain, an 

OS paradigm is needed which allows the system designer to exploit the full potential of 

the underlying hardware resources, and yet assures predictability (Zimmer and Mueller 

2012) and scalability (Baumann et al. 2009; Kumar et al. 2011), which are essential 

prerequisites for deriving real-time guarantees. We elaborate on a model which we call 

the limited migrative model, LMM hereafter (Nikolic  ́and Petters 2012). It builds on 

top of the foundations of the multi-kernel paradigm (Baumann et al. 2009), which is a 

novel approach in the OS design (Baumann et al. 2009; Wentzlaff and Agarwal 2009; 

Le and West 2014), and a promising step towards scalable and predictable many-cores. 

The Network-on-Chip (NoC) architecture (Benini and De Micheli 2002) became 

a predominant interconnect medium in many-cores, due to its scalability poten-    

tial (Kavaldjiev and Smit 2003). On such platforms, a wormhole switching tech- 

nique (Ni and McKinley1993) is widely applied (Intel 2014; Tilera 2014), because of 

its good throughput and has small buffering requirements (Kavaldjiev and Smit 2003). 

Contribution In this work, we focus on the mapping of real-time application work- 

load onto a NoC-based, wormhole-switched many-core platform, using LM M . First, 

we formulate the problem of real-time application mapping on such a system. Then, 

we present an extension to the existing analysis, which assures that all timing con- 

straints posed on worst-case communication delays of individual applications are met. 

Finally, we propose a three-stage heuristics-based application mapping procedure, 

which utilises the aforementioned analysis during the mapping process. The novelty 

of our work is reflected by the fact that we study LM M , which is a model that allows 

application migrations as a means to perform load balancing for e.g. energy/thermal 

management, fault tolerance and/or performance reasons. The biggest contribution 

of our work is that it merges real-time concepts with those from the embedded and 

high-performance computing areas, resulting in a model which allows dynamically 

changing system behaviour, while still providing hard real-time guarantees. 

 

2 LMM concepts and motivation 

 
Unpredictability, scalability and analysis pessimism are some of the reasons that make 

the real-time analysis of many-cores a challenging subject. The existing state-of-the-art 

methodologies addressing many-cores from the real-time perspective can be broadly 

classified into two categories: non-migrative approaches and migrative approaches. 

First, we define these categories, and then position LM M in that context. 

Non-migrative approaches are in the scheduling theory also known as fully parti- 

tioned approaches. The workload is statically assigned to cores at design time. Appli- 

cations are migrationless and their execution is organised by independent single-core 

schedulers residing on each core and utilising one of existing single-core schedul- 

ing algorithms (e.g. Liu and Layland 1973). These approaches are inflexible and can 
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be very inefficient in scenarios where substantial load changes occur, and/or where 

run-time load balancing is required. 

Migrative approaches are additionally divided into semi-partitioned approaches, 

global approaches and hybrid approaches. The first group (Bletsas and Andersson 

2009; Kato et al. 2009) also assumes a static assignment of each application to a 

particular core (or cores if it migrates). However, a migrative application also obeys 

design-time decisions regarding its execution, i.e. it always executes the prescribed 

fraction of work on each of its cores. Thus, these methods are very similar to fully 

partitioned approaches, hence all conclusions regarding inflexibility to perform run- 

time load balancing also hold in this context. Conversely, global approaches (Baker 

et al. 2006; Baruah and Baker 2008) allow every application to migrate to any core 

within the platform. However, this amount of flexibility comes at a price: due to the 

necessity to maintain global structures (e.g. ready queue) within a centralised entity, 

scalability issues arise, and serious challenges occur when attempting implementa- 

tions (Bastoni et al. 2010). Finally, hybrid approaches (Calandrino et al. 2007) (also 

known as clustered approaches) group cores into disjoint clusters, map distinctive 

subsets of applications to each cluster, and apply a global scheduling policy within 

each cluster. These approaches offer both runtime load balancing and scalability, how- 

ever, they are inefficient in scenarios where migrations are driven by fault tolerance or 

energy/thermal management, where inter-cluster migrations are a necessary option. 

LM M (Nikolic  ́and Petters 2012) exploits and extends the concepts of the multi- 

kernel paradigm and poses a constraint that each application can execute only on a 

subset of cores, which are decided at design-time. Unlike in clustered approaches, an 

application is not tied to a particular cluster, but can be mapped to an arbitrary set  

of cores, which allows performing migrations driven by the aforementioned reasons. 

During runtime, an application can migrate between candidate cores and execute on 

any of them. Yet, the greatest distinction of LM M from all the existing approaches 

is that release/migration decisions are explicitly detached from scheduling decisions, 

and are made by the applications themselves, not by scheduler instances. That is, the 

application decides on which core it will release its job, while a local kernel on that 

core is responsible to schedule it in a single-core fashion. This contributes to the scala- 

bility of the approach, and yet gives the possibility to perform runtime load balancing. 

More details about LM M are given in Sect. 4.2. 

 

3 Related work 

 
Application mapping for many-cores has been one of the most investigated topics 

over the last decade, thus resulting in a vast amount of works. In this section we give 

a brief overview of the state-of-the-art methods by mentioning only works that are 

relevant for our cause. An interested reader may consult a comprehensive survey of 

Sahu and Chattopadhyay (2013), which covers scientific publications related to the 

entire application mapping topic. 

The problem of application mapping is equivalent to the quadratic assignment 

problem, which is NP-Hard, hence searching for the optimal solution can be pro- 

hibitively expensive even for small NoC platforms, e.g. 4 4 cores (Hu and Marculescu 

2003). Therefore, the existing approaches are predominantly heuristics-based. Lei and 



 

 

Kumar (2003) assumed different processor types and developed a two-stage genetic 

algorithm, where the workload is firstly mapped to a specific processor type and in the 

second pass to a particular processor. Moein-darbari et al. (2009) use a modification of 

the aforementioned heuristics, called the chaos-genetic algorithm. By employing the 

branch-and-bound technique Hu and Marchulescu (2003) investigate mappings which 

minimise the power consumption within the network. The authors present a power 

model to calculate the energy spent by the NoC infrastructure, which is used as an 

objective function to evaluate derived mappings. The concept of minimising the energy 

consumption was further extended to include performance enhancements (Chou et al. 

2008), network contentions (Chou and Marculescu 2008) and runtime mappings (Chou 

and Marculescu 2007). Murali and De Micheli (2004) elaborate on bandwidth con- 

straints and minimise the average communication delay, while Hung et al. (2004) study 

thermal-aware placements. Marcon et al. (2005) are the first to consider the ordering 

and dependencies among traffic messages, while Srinivasan and Chatha (2005) intro- 

duce per-message latency constraints. Ascia et al. (2004) present an approach where 

not one, but a group of mappings is considered (Pareto mappings), so as to derive a 

solution to the multi-objective approach. Kreutz et al. (2005) explore the same topic 

for interconnect topologies other than NoC, while Hu and Marculescu (2003) exploit 

the routing flexibility in order to reduce the routing energy consumption and improve 

the performance. 

Assuming wormhole-switched priority-preemptive NoCs, Shi and Burns (2008, 

2009) propose two worst-case communication delay analyses. The former analysis 

was combined with genetic algorithms with the objective of mapping hard real-time 

applications (Mesidis and Indrusiak 2011; Racu and Indrusiak 2012), while the latter 

approach was further combined with a priority assignment algorithm with the same 

aim (Shi and Burns 2010). Note that the works mentioned in this paragraph are the 

most relevant to our approach, as they study the application-mapping problem from the 

real-time perspective, where the main emphasis is on deriving a mapping such that all 

temporal constraints posed on communication delays are always fulfilled, even under 

the worst-case conditions. Also note that these approaches assume that each appli- 

cation is statically assigned to a specific core at design-time, and does not have the 

possibility to migrate (see fully partitioned approaches in Sect. 2), while we consider 

LM M , which offers flexibility to perform run-time load balancing via migrations. In 

the previous work, Nikolic  ́et al. (2014) introduced techniques to make the LM M 

traffic deterministic, and subsequently proposed the worst-case communication delay 

analysis. In this work, we modify the existing analysis, so as to reduce its computa- 

tional complexity, and go one step beyond by proposing a three-stage heuristics-based 

method to map hard real-time applications on NoCs using LM M . 

 
 

4 Model 

 
4.1 Platform 

 
The platform under consideration is a homogeneous, NoC-based many-core system, 

consisting of m × n tiles, which are connected via a 2-D mesh interconnect. Each tile 
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Fig. 1   TILE64 processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contains a single core and a single router. The data transfer over the mesh is performed 

by employing a deterministic, dimension-ordered XY routing policy, which is deadlock 

and livelock free (Hu and Marculescu 2003). With this policy, a packet firstly travels 

on the x-axis, and upon reaching the x-coordinate of the destination, traverses along 

the y-axis. Furthermore, a packet transfer is performed with the wormhole switching 

technique (Ni and McKinley 1993). In this regime, each data packet is, prior to send- 

ing, divided into small fixed-size elements called flits. A flit is a basic transferable unit 

across the NoC interconnect. All flits constituting one packet are sequentially sent, 

where the header flit establishes the path, while the rest follow in a pipeline manner. 

Each packet is prioritised and there exist virtual channels (Dally 1992; Dally and Seitz 

1987). A virtual channel is implemented as an additional buffer within every port of 

every router, and it is used to enforce flit-level preemptions (Song et al. 1997). The 

number of needed virtual channels is equal to the maximum number of contentions 

for any port, which guarantees that each packet will have an available virtual channel 

in every port along its path (Nikolic  ́et al. 2013). In this paper, the terms packet and 

message are used interchangeably. 

Note that our target platform is very similar to some existing many-core plat- 

forms, such as the Single-Chip-Cloud Computer (Intel 2014) and the TILE64 family 

of processors (Tilera 2014) (see Fig. 1). Specifically, both the mentioned platforms 

contain a 2-D mesh interconnect, utilise the XY routing policy and perform the data 

transfer with the wormhole switching technique. Moreover, the SCC interconnect con- 

tains 8 virtual channels, which are on average sufficient to accommodate up to  400 

different priority levels on a 10 × 10 NoC (Nikolic´ et al. 2013). 

The  platform  n(C, L) is  described  by  a  direct  graph  (Fig.  2),  where  vertices 

1     2 m·n i j  

of the interconnect. Every existing link lij      (ci, c j , bij )  ci, c j between the 
cores ci and c j is characterised with bij , which describes its physical characteristics 
(i.e. the bandwidth). In this work we assume that all links have identical character- 

istics bij  = b  =  size( f ) 
; the bandwidth is expressed as the size of one flit size( f ), 
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divided by the time needed to transfer it between two neighbouring cores dr dl . The 

terms dr and dl correspond to the latency of one flit to traverse the router and the link, 

respectively. 

 

 
4.2 Software layers in LM M (Nikolic  ́and Petters 2012) 

 
As mentioned in Sect. 1, LM M builds on top of the multi-kernel paradigm, which 

means that each core runs an independent kernel instance. Kernels communicate with 

each other and constitute the basic communication infrastructure. Each kernel exposes 

some of its functionalities to applications located on its core via system calls. Appli- 

cations invoke system calls in order to interact with other applications residing on the 

same or other cores. Furthermore, each kernel performs the scheduling on its core in a 

single-core fashion. Practical examples of multi-kernel OSs are Barrelfish (Baumann 

et al. 2009), fos (Wentzlaff and Agarwal 2009) and Quest-V ( Li and West 2014). 

We consider a sporadic application-set with constrained deadlines. Once during 

every inter-arrival period, an application releases a job, which has to complete before 

the new inter-arrival period begins. As discussed (Sect. 2), a job can be released 

only on a subset of cores, which are, for each application, selected at design-time. 

Once released, a job has to complete on the selected core, it cannot migrate (job-level 

migrations are not allowed). 

Unlike in traditional real-time approaches, in LM M the application itself makes 

release/migration decisions. In order to do that, each application uses entities called 

dispatchers. An application has a dispatcher on each of its candidate cores. Before the 

job release, each dispatcher of that application gets the information from its local kernel 

whether the guarantees can be provided regarding the execution of that job on that 

core. That is, the dispatcher checks whether the job can be safely scheduled on its core 

without missing a deadline. Recall, that each kernel schedules the workload on its core 

in a single-core fashion. Once each dispatcher gets that information from its kernel, 

dispatchers of the same application (each located on a different core), communicate 

with each other. The purpose of their communication is to elect one dispatcher, called 

the master dispatcher, which will subsequently release the job on its core on behalf of 

the entire application. The aforementioned inter-dispatcher communication is called 

the agreement protocol (Nikolic  ́and Petters 2012). In this work, we assume that the 



 

  

. . . 

d1    d d 

Kernel 1 

. . 
3 6 d d4 

Kernel 2 

. 
2 d5    d 

. 
i 

Kernel n 

. . . Core 1 Core 2 Core n 

set, and edges 
l 

m symbolise the intra- and inter-application traffic. An 

( D   M )  ∈ A 
M = 

 

Fig. 3   LM M App 1 App 2 App 3 App x 

 

 

 

 

 

 

 

 

 

Fig. 4  Workload E ap aq
 

 

 
mpp 

mrr 

 

ar 

 

 

 

mrs 

 
msq 

 
mqs 

 
 

as 

 
 

applications are single-threaded, implemented as tasks, therefore at any time instant 

there can be only one master per application. 

When the new inter-arrival period begins, the master is responsible to initiate the 

new instance of the agreement protocol, so as to elect a core (dispatcher) for the release 

of the next job. The other dispatchers that participate in the protocol are called the 

slave dispatchers. If the outcome of the protocol is that the newly elected dispatcher 

is not the same as the previous master, then the migration occurs; the previous master 

becomes the slave, while the newly elected dispatcher becomes the master. Addition- 

ally, the execution context has to be transferred from the old to the new master. The 

protocol execution is termed the intra-application communication. Perceived from the 

application’s perspective, its dispatchers exchange one master token, thus a master is 

only a temporary role for a dispatcher. We call this property the master volatility, and 

it has several implications which are covered in Sect. 5.4. Figure 3 gives a graphical 

representation of LM M , where current master dispatchers can be distinguished by 

dots over their names. 

Besides protocols, applications can also communicate with each other for e.g. syn- 

chronisation or data-sharing purposes. We term this process the inter-application com- 

munication, and it is performed by an exchange of messages between current master 

dispatchers of interacting applications. 

Execution workload E (A, M) is described by a direct graph (Fig. 4), where ver- 

tices A = {a1, a2, ..., ax −1, ax } denote the applications comprising the application- 

ij  

application  a  Pa, Ta, Wa, Ia,  a,    a has a unique priority  Pa ,  a minimum 
inter-arrival period Ta , a temporal constraint on its worst-case communication delay 

Wa  ≤ Ta  (explained in Sect. 4.3), an importance of its distributed mapping  Ia 
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(explained in Sect. 6), a set of dispatchers  a and a set of messages   a . A message 

mij        di, d j , Pij , size, path, nhops ai, a j between a source dispatcher 

di  and a destination dispatcher d j  is characterised by a priority  Pij , the amount     

of exchanged data size(mij ), and a traversed path expressed by (i) a set of links 

path(mij ), (ii) a number of hops nhops(mij ). If mij  is the intra-application message, 

then di and d j belong to the same application a, thus Pij Pa (dashed lines in Fig. 4). 

Conversely, if mij  is the inter-application message, then di and d j are the current mas- 

ters of the interacting applications ai and a j , thus Pij    Pi  (solid lines in Fig. 4), i.e. 

an inter-application message always inherits the priority of a sender application. 

 

 
4.3 Work objectives 

 
The goal of this work is to propose an application mapping method which finds a 

feasible mapping of a given application workload onto a given NoC platform (  n). 

A mapping is feasible if all applications are feasible. An application a is feasible if 

its worst-case communication delay, termed del(a), is less than, or equal to its timing 

constraint, i.e. del(a)   Wa . The worst-case communication delay of an application 

is equal to the sum of the worst-case delays of its intra-application and sent inter- 

application messages. The secondary objective is to provide a feasible mapping, such 

that the applications can perform migrations across spatially distributed dispatchers. 

This objective is motivated with the fact that far migrations are the efficient means 

to implement energy/thermal management, and increase the resilience to core/cluster 

malfunctions. 

The mapping process consists of several stages. The first is to map the application- 

set on the given platform (Sect. 7). The second is to perform the analysis and check if 

the derived mapping is feasible (Sect. 5). Finally, assuming that the feasible mapping 

was found, the goal is to optimise it, with respect to the secondary objectives (Sect. 6). 

Note that these three stages are not necessarily performed sequentially, but can be 

interleaved. 

 

 
5 Worst-case communication delay analysis 

 
5.1 Preliminaries 

 
In this subsection, we will briefly cover the components that constitute the worst-case 

traversal delay of a single message m, termed del(m). 

 

5.1.1 Isolation delay 

 
Each message m traverses an XY-routed path between the source and the destination 

dispatcher. The delay of a message when traversing in isolation is in the literature 

known as the basic network latency (Duato et al. 2002) (Eq. 1). It is equal to the time 

it takes a header flit to establish the path and reach the destination, augmented by the 
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transfer time of the rest of the flits. 

  

5.1.2 Lower priority blocking 

 
Due to the flit-level preemptions, m can be blocked by the lower-priority traffic. The 

worst-case scenario occurs if m reaches the router just at the moment when a lower- 

priority message started its transfer, hence m can be blocked at most for the duration 

of one flit transfer time before it preempts. This scenario can occur within each router 

on the path of m (Eq. 2). 
 

delB(m) = nhops(m) · (dr + dl) (2) 

5.1.3 Same priority blocking 

 
Messages of the same priority share the same virtual channel and may compete for 

the same physical resource if they have a common part of the path. This can cause 

complex blocking scenarios (Shi and Burns 2009, 2010), described below. 

Definition 1  (Directly blocking message) If a message m 1 has the same priority as the 

message under analysis m, and shares a part of the path with m, it is considered as a 

directly blocking message of m and belongs to the set MDB(m). Formally: 

∀m1 ∈ M : m1 /= m ∧ Pm1 = Pm ∧ path(m 1) ∩ path(m) /= ∅ ⇒ m1 ∈ MDB(m) 

Definition 2  (Indirectly blocking message) If a message m11 has the same priority as 

the message under analysis m and does not share a part of the path with m, but shares 

it with another message m1 which is either directly or indirectly blocking message of 

m (recursive definition), then m11 is considered as an indirectly blocking message of 

m and belongs to the set MIB (m). Formally: 

∀m11 ∈ M : Pm11 = Pm ∧ path(m11) ∩ path(m) = ∅ ∧ 

∃m1 ∈ (MDB(m) ∪ MI B (m)) ∧ path(m11) ∩ path(m1) /= ∅ ⇒ m11 ∈ MI B (m) 

A message under analysis m can suffer the blocking from its directly blocking mes- 

sage m1 
DB(m), but also from its indirectly blocking message m11 

I B (m). 

We explain this with an illustrative example given in Fig. 5, where rectangles depict 

routers, and arrows symbolise messages (the arrow tail represents the source and the 

arrow head represents the destination of the message). All the messages have the same 

priority and traverse some links of the path l. By Definitions 1–2, the blocking rela- 

tionships of the message m are as follows:      DB(m)     mi  ,      IB (m)      m j , mk  . 

It is visible that m can suffer the blocking from mi , which can in turn suffer the block- 

ing from m j , which can in turn suffer the blocking from mk . Thus, m can suffer the 

blocking from each of these messages {mi, m j , mk }. The maximum delay caused by 
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Fig. 5   Example of blocking Priority level P 
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one traversal of a blocking message (either directly or indirectly) is equal to the sum 

of its isolation delay and its lower priority blocking delay, computed by Eqs. 1 and 2, 

respectively. 

Note, by considering that each message has to complete its traversal within a tem- 

poral constraint posed on its application Wa Ta , messages belonging to different 

inter-arrival periods of the same application cannot exist concurrently and hence can- 

not cause the blocking. 

 
5.1.4 Interference 

 
Additionally, m can suffer the interference from the higher-priority messages. 

Definition 3  (Directly interfering message) If a message m1 has a higher priority than 

the message under analysis m, and shares a part of the path with m, it is considered as 

a directly interfering message of m and belongs to the set MDI (m). Formally: 

∀m1 ∈ M : Pm1 > Pm ∧ path(m1) ∩ path(m) /= ∅ ⇒ m1 ∈ MDI (m) 

m can be preempted by every m1          
DI (m) and consequently suffer the interference. 

The maximum delay caused by one traversal of m1 is equal to the sum of its isolation 

delay and its lower-priority blocking delay. 

Definition 4  (Indirectly interfering message) If a message m11 has a higher priority 

than the message under analysis m and does not share a part of the path with m, but 

shares it with another message m1 which is either directly or indirectly blocking 

message of m, then m11 is considered as an indirectly interfering message of m and 

belongs to the set MII (m). Formally: 

∀m11 ∈ M : Pm11 > Pm ∧ path(m11) ∩ path(m) = ∅ ∧ 

∃m1 ∈ {MDB(m) ∪ MI B (m)} ∧ path(m11) ∩ path(m1) /= ∅ ⇒ m11 ∈ MI I (m) 

A message m11 
I I (m) can preempt a message m1 which is already directly 

or indirectly blocking m, hence additionally contributing to the total delay of m. The 

maximum interference caused to m by one traversal of m11 is equal to the sum of its 

isolation delay and its lower-priority blocking delay. 

An illustrative example of the aforementioned inter-message relationships is given 

in Fig. 6. Assuming the priorities  Ps  >  Pr   >  Pq   >  Pp, the inter-message rela- 

tionships of the message under analysis m p1  are as follows: MDB(m p1) =  {m p2}, 

MDI (m p1)  =  {mr }, MII (m p1)  =  {mq }. Observe, by definition, ms  does not 
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Fig. 6   Example of interference 
 

 

 

 
Priority level Q 

mq    

 
Priority level S 

m s    

Priority level R 

mr    

Priority level P 
 mp1  

 mp2  

l 

 

belong to II  (m p1), even though it is directly interfering with mr , which belongs to 

DI (m p1). Due to the existence of per-priority virtual channels, ms cannot directly 

cause the interference to m p1 (Shi and Burns 2008). However, ms can cause the interfer- 

ence to mr , influence its occurrence patterns and in that way passively contribute to the 

interference that mr causes to m p1. That is, ms can cause two consecutive appearances 

of mr to be distanced by less than the inter-arrival period. Thus, when computing the 

worst-case delay of m p1, considering periodic appearances of mr would be an unsafe 

assumption (Shi and Burns 2008). Note that the definition of indirect interferences in 

our work excludes ms , while the other works include it (Shi and Burns 2008, 2009, 

2010). 

The worst-case traversal delay of m p1 is equal to the sum of (i) the isolation delay, (ii) 

the lower-priority blocking, (iii) the same-priority blocking and (iv) the higher-priority 

interference. Note that the messages may additionally suffer the release jitter (Shi and 

Burns 2010), which is defined as a maximum deviation of successive packet releases 

from its period. In this work, the release jitters are assumed to be zero. 

After defining these components, in Sect. 5.2 we describe the existing method to 

compute the worst-case delay of a single message. Then, we propose a modification 

to reduce the computational complexity (Sect. 5.3). Finally we extend the   analysis 

(i) to consider the entire application instead of the individual message and (ii) to be 

applicable to LM M (Sect. 5.4). 

 
5.2 Existing analysis to compute worst-case message delays (Shi and Burns 2009) 

 
5.2.1 Description 

Shi and Burns (2009) proposed a method called the priority share policy, which com- 

putes the worst-case delays of messages, assuming that some might share the same 

priority. The model is constrained to scenarios where a deadline of each message is less 

than, or equal to its minimum inter-arrival period, which is also the case in our model, 

but expressed on an application-level (  a Wa   Ta ). Due to the direct and indi- 

rect blockings, as well as the direct and indirect interferences, complex interference 

patterns might occur, as depicted in the previously presented examples (Figs. 5, 6). 

To overcome this problem, the authors proposed to group the same-priority messages 

into a new entity called the composite message m̊ . Note that only the messages of 

the priority under analysis are grouped within a composite message, while messages 

with other priorities are still considered separately. Let      C(m̊ ) be a set of messages 

constituting m̊ , i.e. all messages that have the same priority Pm̊ . The isolation delay of 

the composite message m̊  is equal to the sum of the isolation latencies of all messages 

constituting MC(m̊ ) (Eq. 3). 
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Similarly, the lower-priority blocking of the composite message is equal to the sum 

of the lower-priority blockings suffered by its messages (Eq. 4). 

 

 

  

As the messages with the same priority Pm̊  are all grouped within m̊ , this implies 

that m̊  cannot suffer the same-priority blocking. That is, there are no other messages 

that are sharing the same priority with m̊  and are directly or indirectly blocking it 

(see Definitions 1–2). This further implies that the indirect interference cannot exist, 

as it requires at least one blocking message (see Definition 4). Hence, only direct 

interferences are possible. This significantly simplifies the analysis. 
A message is a directly interfering message of m̊  if it can cause the direct inter- 

ference to any message from MC(m̊ ), i.e. MDI (m̊ )  = 
∀m∈MC (m̊ ) 

MDI (m). The 

maximum interference that m̊  can suffer within a time interval t  is equal to the sum 

of the interferences caused by each of the directly interfering messages (Eq. 5). The 

individual terms are obtained by multiplying the maximum number of occurrences of 

a higher priority message m1 within t , with the interference caused by a single occur- 

rence of m1. The term del(m1) represents the worst-case delay of m1, which is, due to 

the recursive notion, here used as a constant and explained later. The additional term 

in the ceiling brackets: del(m1)    delI (m1) is called the interference jitter – del J (m1), 

and it accounts for the potentially non-periodic occurrence pattern of m 1. That is, due to 

its higher-priority interference, two consecutive occurrences of m1 might be separated 

by less than Tam1 , and that case has to be covered. Specifically, the first occurrence of 

m1 can be delayed by at most del J (m1)     del(m1)    delI (m1). Note that del J (m1) has 

a non-zero value only if m1 suffers direct interference from some other message that is 

not directly interfering with m. This is a well known issue in the wormhole switching, 

and for a more detailed explanation the reviewer is advised to consult the works of 

Shi and Burns (2008, 2009, 2010). 
 

  
 

 
  

 

 

The worst-case delay of a composite message m̊ (Eq. 6) is equal to the sum of (i) the 

isolation latency, (ii) the lower-priority blocking, (iii) the interference, of all messages 

constituting it. Note that in the interference component, the term t is substituted with 

the worst-case delay, thus giving it a recursive notion. Equation 6 is solved iteratively, 

until reaching a fixed-converging point (if one exists). 
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Table 1   Example of messages 

 

 

 

 

 

 

 

 

 
Note that this analysis holds only under the assumption that the same-priority 

messages are treated in FIFO order. This assumption assures that any two same- 

priority messages, even though they can have different periods, can directly block 

each other only once. As will be discussed later, in our approach such a restriction is 

not necessary. 

Upon obtaining the worst-case delay of m̊ , each message constituting it assumes the 

same value, i.e.   m          C(m̊ )   del(m)     del(m̊ ). In this way, the worst-case delay 

is computed for every priority level and every message within the system. Notice two 

things: (i) the approach can be pessimistic, as it groups the same-priority messages, 

while many of them do not influence each other and can be treated independently and 

(ii) assuming that the same-priority messages belong to the same application (i.e. have 

the same deadline and the inter-arrival period), the obtained value represents not only 

the worst-case delay of a single message, but the worst-case delay of the joint traversal 

of all the same-priority messages. The second fact is further exploited in Sect. 5.4. 

 
 

5.2.2 Numerical example 

 

Consider the example given in Fig. 6 with the message parameters given in Table 1, 

where the message m p1 is under analysis, and the goal is to compute its worst-case 

delay - del(m p1). 
For the clarity of the example we take a simplifying assumption that the lower- 

priority blocking does not exist (delB 0). We start by computing the worst-case  

delay of the highest-priority message ms . Its delay is equivalent to its isolation latency, 

del(ms) delI (ms) 2. The message mr can suffer the interference from ms , so its 

delay is: 

 

The message mq cannot suffer the interference, so its delay is equal to its isolation 

latency, del(mq)     delI (mq)   2. 

The messages m p1 and m p2 share the same priority Pp, hence are grouped within 

m˚p. The isolation latency of m p̊ is equal  to the sum of the isolation latencies  of  

both messages, delI (m˚p) delI (m p1) delI (m p2)  4. Moreover, m p̊  has two 

interfering messages: mq and mr . The worst-case delay of m p̊ is: 

Message Priority delI W T 

m p1 Pp 2 20 25 

m p2 Pp 2 20 25 

mq Pq  > Pp 2 9 9 

mr Pr  > Pq 2 6 6 

ms Ps > Pr 2 10 10 

 



 

= = = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The worst-case delay of m p1 and m p2 is equal to the worst-case delay of the 

composite message, i.e. del(m p1)     del(m p2)     del(m˚p)   14. 

This analysis faces two challenges. First, its computational complexity is significant 

and might not be acceptable for the application-mapping process, where the analysis 

has to be performed numerous times (see Sect. 5.3). Second, it suits the models in 

which all messages have their routes defined at design time, e.g. Shi and Burns (2010). 

However, under LM M , each application has the possibility to execute on multiple 

cores, hence routes of all messages related to one application will highly depend on 

which dispatcher is the current master at the moment of observation. In other words, the 

master volatility property causes non-deterministic message routes. This renders the 

analysis inapplicable to LM M (see Sect. 5.4). In the next two sections we describe the 

modifications of the existing analysis that are necessary in order to make it applicable 

to our cause - the application mapping assuming LM M . 

 

5.3 Complexity reduction 

 
5.3.1 Rationale 

 
Notice that in the analysis presented in Sect. 5.2 the worst-case delay of a message 

directly depends on the worst-case delay of each of its interfering messages. Addition- 

ally, the worst-case delay of each of these messages also depends on the worst-case 

delay of their interfering messages. In the example presented in Sect. 5.2.2 and Fig. 6 

the delay of m p1 and m p2 depends on the delay of mr , while the delay of mr depends 

on the delay of ms . Therefore, any changes in the parameters of ms (the position on the 

grid, the size, the priority, etc.) would require to recheck the feasibility of not only mr , 

but also m p1 and m p2. Thus, any manipulation with the parameters of a high-priority 

message, can cause a cascading effect and invoke the feasibility rechecks of many 

lower-priority messages. As a result, the entire feasibility rechecking process has an 

exponential complexity. However, during the application mapping process, messages 

can be subjected to frequent parameter manipulations with the objective of  finding 
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a feasible mapping, hence, performing the analysis presented in Sect. 5.2 might be 

prohibitively expensive. 

In order to reduce the complexity, we propose a modification to the existing analysis, 

such that it renders more pessimistic results, but significantly reduces the number of 

necessary feasibility rechecks. Specifically, we assume that the first occurrence of each 

interfering message m 1 can be delayed as much as possible such that its feasibility is  

preserved: Wam1    delI (m1), and not like in the aforementioned analyses by del J (m1). 
In this way, the worst-case delay of a message m does not depend on the worst-case 

delay of its interfering message m1 (i.e. del(m)       f (del(m1))), so any cascading 

effect is prevented and the analysis complexity is reduced to linear. The implications 

are that in the example illustrated in Fig. 6 any parameter manipulations performed on 

ms would trigger only a feasibility recheck of mr and will not influence m p1 and m p2 

at all. The only change is in the computation of the interference component; instead 

of Eq. 5, Eq. 7 is used. 

  
 

 

  

5.3.2 Numerical example revisited 

 

Let us return to the numerical example and see how this change influences the computed 

delays. Messages ms and mq do not suffer the interference, so their worst-case delays 

are del(ms)     del(mq)     delI (ms)     delI (mq)  2. 

The message mr can suffer the interference from ms and its delay is: 

 

 

 

Notice, that the delay of mr is now 6, while it was 4 with the previous approach. Now 

we compute the delay of the composite message m˚p. 



 

 

 

 

 

 

 

 

The delay of m˚p (and consequently m p1 and m p2) is now 18, while it was 14 with 

the previous method. 

 
5.4 Determinism and master-independence of message-paths 

 
5.4.1 L M M challenges 

 
When considering LM M , the non-determinism of message paths is related to both 

intra- and inter-application messages. We explain this with two illustrative examples. 

In Fig. 7a the top and the bottom part present generated intra-application messages 

of the same application, captured at two different time instances (i.e. represented by 

emphasized circles different current masters communicate with all the slaves). As is 

obvious, depending on the master selection, two entirely different message-sets can 

be generated. Similar problem occurs when analysing the inter-application traffic. 

In Fig. 8a is given an example where two applications communicate. As stated in 

Sect. 4, the inter-application communication is performed by an exchange of messages 

between the current masters. Due to the master volatility property, a message between 

these applications can take any of the routes given in Fig. 8a. 

One possible solution is to analyse all scenarios arising from the fact that any 

dispatcher of an application under analysis can be a master. However, this also requires 

to investigate all possible subscenarios, as every other application can have any of 

its dispatchers as a current master. Fixing a master dispatcher for each application, 

exhaustively enumerating all possible combinations and checking the feasibility with 

the analysis presented in Sect. 5.3 can be prohibitively expensive, as the complexity 

of the approach is  O(|D||A|), where |D| represents the number of dispatchers   per 
 
 

 

 

(a) Unconstrained messages (b) Re-routed messages (c) Supermessages 

Fig. 7   Intra-application communication 
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Fig. 8   Intra-application communication 
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(b) With proxy dispatchers 

 

application and   stands for the number of applications in the system. This can   

cause the analysis intractability even for few applications and dispatchers. 

Another possibility is to consider a concurrent existence of all possible messages 

of every application. However, many messages are mutually exclusive, as each one 

of them can exist only under specific conditions (one specific dispatcher being the 

master). Thus, considering a concurrent existence of all possible messages can be 

overly pessimistic. 

The problems of intractability and pessimism are the consequence of non- 

deterministic message paths. In order to solve this problem, we use the concepts 

introduced in the work of Nikolic´ et al. (2014), namely the mapping and rerouting 

constraints, the supermessages and the proxies. 

 

5.4.2 Constraints, supermessages and proxy dispatchers 

 
Constraint 1 (Nikolic  ́et al. 2014) Dispatchers of an application can be positioned 

only on the edges of a rectangular a×b structure, such that no corner is left unoccupied 

and a, b ∈ N. The special case is a line-like shape, where one dimension of the 

application shape is equal to 1, that is a = 1 or b = 1. 

In Fig. 7c are depicted two applications, where dispatcher positions fulfil Con- 

straint 1. In the lower part of Fig. 7c is the application with the rectangular shape of 

dimensions 4 × 2, while in the upper part of Fig. 7c is the application with a line-like 

shape of dimensions 4 × 1. 

Constraint 2 (Nikolic  ́et al. 2014) Intra-application messages travel only on the edges 

of the shape its application is forming, and re-routing occurs where needed to comply 

with the global XY routing policy. An individual message rotation (i.e. clockwise or 

counterclockwise) is chosen such that the traversal distance is minimised. 

The top and the bottom part of Fig. 7b illustrate how the messages should be routed. 

The shaded dispatchers depict locations where reroutings occur. A rerouting is a fast 



 
 

 

 

on-core routine, performed in an interrupt-like manner, which can be implemented 

by instrumenting the HardwallTM technology of Tilera platforms (Tilera 2014). Note 

that the rerouting mechanism is employed to assure that the traffic transfer complies 

with the global XY routing policy, which is the most common routing mechanism in 

the present many-core platforms. If the platform allows routing of messages across 

arbitrary paths, the reroutings are not needed. 

Notice, that with these constraints the part of the NoC infrastructure that intra- 

application traffic uses is made deterministic. In order to make it also master- 

independent, a construct called the supermessage is used. 

Definition 5 (Supermessage) (Nikolic  ́et al. 2014) A supermessage is a message which 

connects (i) diagonally-placed dispatchers if an application has a rectangular shape, 

or (ii) terminal dispatchers if an application has a line-like shape. 

An application with a rectangular shape has 4 supermessages, while an application 

with a line-like shape has only 2, and does not require reroutings (see Fig. 7c). Super- 

messages have three interesting properties, (i) they are master-independent, (ii) their 

number is substantially smaller than the number of possible intra-application mes- 

sages (iii) the intra-application traffic of an application can be expressed as a linear 

combination of its supermessages (Nikolic  ́et al. 2014). 

In order to make the inter-application traffic also deterministic and master- 

independent, we introduce proxy dispatchers: 

Definition 6 (Proxy dispatcher) (Nikolic  ́et al. 2014) A proxy dispatcher is a dis- 

patcher which is selected at design time, and which participates in the inter-application 

communication. It mediates the communication between its master and the proxy dis- 

patcher of the interacting application. 

An illustrative example of Definition 6 is given in Fig. 8b. In this scenario, an 

inter-application message is divided into 5 different components: (i) a message from 

the master sender to its proxy, (ii) a rerouting on the core of the proxy sender, (iii) a 

message between the proxies, (iv) a rerouting on the core of the proxy receiver, (v)  

a message from the proxy receiver to its master. Proxies are decided at design-time, 

thus a message between proxy dispatchers is deterministic and master-independent. 

Additionally, the communication between masters and their proxies, on both the sender 

and receiver side, complies with the rules of the intra-application traffic, thus can be 

expressed as a linear combination of supermessages. 

To summarise, Constraints 1–2 and Definitions 5–6 allow expressing the intra- 

and inter-application traffic as a linear combination of supermessages and inter-proxy 

messages, which are deterministic and master-independent. In this paper we perform 

the analysis on such a model. 

 

5.4.3 Performing the analysis 

 
The analysis is very similar to that of Shi and Burns (2009), introduced in Sect. 5.2 and 

modified in Sect. 5.3. However, there are several differences: (i) deadlines are posed 

per-application and not per-individual message, (ii) the analysis involves reroutings 
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and, (iii) instead of once, each supermessage and inter-proxy message m can appear 

multiple times during one inter-arrival period of its application. Let m be a super- 

message or an inter-proxy message, and let O(m) be the maximum number of its 

occurrences, when the traffic of its application is expressed as a combination of super- 

messages and inter-proxy messages. Moreover, let supermessages inherit the priority 

of the corresponding application, while inter-proxy messages inherit the priority of 

the sender application. The motivation behind such a priority assignment is to make 

all messages contributing to the worst-case delay of one application (all its superme- 

ssages and sent inter-proxy messages) share the same priority. Subsequently, let all 

same-priority messages be grouped within a common composite message, a concept 

introduced in Sect. 5.2. 

Assuming that the same-priority supermessages and inter-proxy messages are 

grouped within the composite message m̊ , its delay (Eq. 8) is equal to the sum of (i) the 

isolation latency, (ii) the lower-priority blocking, (iii) the rerouting, of all messages 

constituting it, and (iv) the interference. delR(m̊ ) represents the maximum rerouting 

delay of m̊ . The work of Nikolić et al. (2014) describes the steps how to obtain O(m) 

and delR(m̊ ). Recall that every message in this analysis is either a supermessage or 

an inter-proxy message. 
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Note that by allowing each message to appear multiple times during the inter- 

arrival period of its application, multiple direct same-priority blockings between any 

two messages are possible. Indeed, our approach allows such a possibility, and does not 

require the restriction that the same-priority messages should be treated in a FIFO order. 

In fact, in our approach the ordering of the same-priority messages is entirely irrelevant. 

So far, we have explained how to compute the worst-case delay of a composite 

message. That delay presents not only the upper-bound on the worst-case delay of 

individual messages constituting it, but also on their joint delay. That is, the delay of 

a composite message from the aforementioned  example del(m˚p) 18 presents an 

upper bound on the delay of both m p1 and m p2, but also on their joint traversal. Thus, 

the worst-case delay of a composite message represents the joint worst-case delay of 

all messages having the same priority as the composite message. Therefore, if m å is 

the composite message of the application a, then the worst-case delay of a is equal to 

the worst-case delay of m̊a , i.e. del(a) del(m̊a). This infers that the application is 

feasible if the worst-case delay of its composite message is less than or equal to   its 

temporal constraint: del(m̊a) ≤ Wa . 
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An illustrative example is given in Fig. 9, where three applications commu- 

nicate with each other.  Messages mi 1  mi 4  are the supermessages of ai , mes-   

sages m j 1  and m j 2  of a j , and messages mk1    mk4 of ak . Moreover,  messages   

mij  , m ji , mik, mki, m jk, mkj are the inter-proxy messages. 

In order to test the feasibility, a composite message has to be constructed for the 

application under analysis, which is demonstrated with the following example. The 

composite message of ai , denoted by m̊i , includes the messages with the same prior- 

ity as ai : its supermessages and its sent inter-proxy messages (solid lines in Fig.  9), 

i.e.      C(m̊i )       mi 1, mi 2, m i 3, mi 4, mi j , mik  . The application a j  has the compos- 
ite message m̊ j which contains its supermessages and its sent inter-proxy messages 

(dashed lines in Fig. 9), i.e.     C(m̊ j )      m j 1, m j 2, m j i , m jk  . Finally, the application 
ak has the composite message m k̊ , which includes its supermessages and its sent inter- 

proxy messages (dotted lines in Fig. 9),      C(m̊k )      mk1, mk2, mk3, mk4, mki , mk j  . 

The application-set is feasible if del(m̊i )     Wi     del(m̊ j )     W j     del(m̊k )     Wk . 

Notice, that supermessages and reroutings inherently bring additional pessimism. 

That is, each message may traverse only a fraction of the path of the supermes- 

sages which are used to express it. Additionally, reroutings induce additional delay 

and potentially “sacrifice” the performance, in order to achieve the predictability of 

message-paths. However, these concepts solve the issue of non-deterministic message 

paths, and dramatically reduce the number of messages (i.e. only supermessages and 

inter-proxy messages of each application are considered), which makes the analysis 

tractable. 

 

6 Mapping quality 

 
The multi-objective nature of the proposed approach is reflected by the fact that the 

goal is not just to provide a mapping which is feasible, but to provide a feasible 

mapping which maximises the abilities of the application-set to perform runtime load 

balancing via application migrations. There are two aspects which we consider relevant 

for the migrative potential of an application, namely the dimensions of the rectangular 

a b shape its dispatchers are forming and the distribution of the dispatchers on that 

shape. The approach we apply when evaluating the mapping of the application can be 

summarised with the following two observations: 
 

Observation 1 The greater the shape of the application is, the greater its migrative 

abilities are. 
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Observation 2 Assuming a fixed shape, the more even the distances between the 

application dispatchers are, the greater its migrative abilities are. 

The reasoning is that, given that the migration has to occur, it is better to accom- 

modate the execution on some far core, rather than on some near core, because far 

migrations allow efficient global load balancing, energy/thermal management and 

make the system more resilient to clustered failures (i.e. a part of the chip starts mal- 

functioning). Conversely, near migrations only partially solve these issues, or don’t 

solve them at all. Thus, the intention behind our approach is to prevent near migra- 

tions by (i) maximising the shape of the application (Observation 1), and distributing 

its dispatchers on the shape, such that the inter-dispatcher distances are as even as 

possible (Observation 2). 

Although it may seem that these objectives superficially contradict the feasibility 

requirement, this is not entirely true. If perceived as an optimisation problem, migrative 

abilities of applications are the objective function which has to be maximised, and the 

feasibility is a constraint which must be fulfilled. Subsequently, the solution should be 

found such that (i) all the applications are feasible, (ii) the dimensions of the application 

shapes are as big as possible, (iii) the distances between the dispatchers of the same 

application are as equal as possible. 

In order to qualitatively evaluate different mappings, a proper metric has to be 
established such that it implements the aforementioned reasoning. Let (d j , dk) denote 

a pair of neighbouring dispatchers of one application, and let nhops(dj, dk) be the 

distance between them, expressed in hops. Moreover, let     P  denote all such   pairs 

of neighbouring dispatchers of the application ai . A quality of a mapping of the 

application ai , denoted by qi (Eq. 9), is equal to the product of the distances between 

its neighbouring dispatchers, multiplied by its migration coefficient Ii . 

 
 
 

 
  

 

The migration coefficient Ii was introduced in Sect. 4.2 and it symbolises the 

importance of application’s spatially distributed mapping. In other words, the more 

the system would benefit from the application’s spatially distributed mapping, the 

greater this parameter is. For example, a computationally demanding application may 

have a significant impact on the thermal properties of the core where it is executing 

(and its surrounding), therefore, having the possibility to perform far migrations of that 

application is desirable from the thermal perspective. Consequently, for every such 

application ai its coefficient Ii should be set high. Similarly, allowing far migrations 

for a critical application may improve its resilience towards core/cluster failures. Thus, 

each such application ai should have its Ii coefficient set high. In this work we do not 

elaborate on the values of migration coefficients of individual applications. In fact, we 

just assume that the values have already been specified, and that the same are used 

as a means to classify the applications according to the importance of their spatially 

distributed mappings. 

There are three reasons why a product of inter-dispatcher distances is used as the 

evaluation metric. Primarily, because it is a computationally cheap operation. That is, 
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Fig. 10   Comparison of mappings 

 
due to the rectangular or line-like structure of the application shape (Constraint 1), the 

inter-dispatcher distances can be obtained in a single traversal across the circumference 

of the application’s shape in either clockwise or couter-clockwise direction. Since 

during the mapping process the evaluation of many different shapes of all applications 

will be performed, it is of paramount importance to limit its complexity. Secondly, 

the product of inter-dispatcher distances is monotonically increasing with the shape 

size (see Observation 1). Finally, when assuming that the shape has been decided, 

the product of inter-dispatcher distances reaches the maximum when all the distances 

are as even as possible (see Observation 2 and for the formal proof see Theorem 2 in 

Appendix). 

Note that a zero-distance between dispatchers presents a special case where the same 

are located on a common core. In the assumed model, such a mapping is meaningless 

and the metric expressed with Eq. 9 also penalises such mappings, hence returning 

qi     0. 

Assuming that the circumference of an application shape C and the number of 

dispatchers |D| are given, choosing and applying an optimal dispatcher placement 

would be trivial: if possible, make all distances equal |D| , otherwise make distances 

either or . However, the corners of the application shape  pose implicit 

constrain
D

ts regardin
D

g the inter-dispatcher distances and, in some cases, prevent optimal 

solutions. Also, not all the cores located on the edges of the application shape might 

be available due to schedulability reasons (Sect. 7.4), thus further preventing optimal 

solutions. Therefore, the purpose of the aforementioned evaluation metric is to provide 

a qualitative comparison between different possible suboptimal dispatcher placements, 

in cases when optimal ones are not possible. 

The example in Fig. 10 illustrates how different mappings are evaluated. Two pos- 

sibilities are presented, in both of them the application claims the same shape, but 

the placement of the inner dispatchers differs. All dispatchers are represented with a 

star sign. For clarity purposes, assume that the migration coefficient is equal to 1. By 

obtaining the values with Eq. 9, we find that the left solution has qi = 144, while  

the right one has qi = 324, which favours more the latter. This coincides with our 

reasoning and intentions. Also note that for a given example C  = 16, |D| = 6, and   C   = 16 = 2.67. Therefore, the right mapping presents one of optimal solutions, due 

t
|
o
D|

the f 
6   

that its all dispatcher distances are either 2 or 3. 

Upon defining the individual, per-application quality metric, now we define the 

quality of an entire solution (Eq. 10). It is equal to the sum of individual qualities of 

all applications comprising an application-set A. 
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7 Mapping procedure 

 
After defining the feasibility analysis (Sect. 5) and the qualitative metric for secondary 

objectives (Sect. 6), in this section we present the application mapping process. The 

proposed method consists of three stages: Initial Phase (  ), Feasibility Phase (  ) 

and Optimisation Phase (      ). 

Before the mapping process begins, based on their priorities, all applications are 

divided into two groups: a set of high-priority applications H and a set of low-priority 

applications L (Eq. 11). 

 
 

 

 

 

Pmax and Pmin denote the maximum and the minimum system priorities, respec- 

tively, while the parameter P (0 P  1) is arbitrarily chosen by the system designer. 

All applications belonging to the group      will be mapped during      and will not  

be subject to any changes during      and      . The rationale for this decision is      

that any change in the mapping of an application a        (e.g. its shape, the position 

of its dispatchers) requires a new feasibility check of both a and all lower priority 

applications which composite messages are directly interfered by the composite mes- 

sage of a. Thus, the recalculation triggered by a high-priority application might be 

computationally expensive, as there might be a substantial number of directly inter- 

fered applications. Therefore, the parameter P is introduced as a means to control the 

complexity of the entire mapping process. 

 

7.1 Initial phase (IP) 

As already described, during this phase only the high-priority applications are mapped. 

The applications are sorted non-increasingly with respect to their priorities, and 

mapped sequentially in that order. By performing the mapping in this manner, in 

most cases, the mapping of one application will not have an impact on the feasibility 

of previously mapped (higher-priority) applications. Exceptions are the cases when 

there exists an inter-application message from some already mapped higher priority 

application a1, to the currently mapping application a. In such cases, the mapping of a 

also maps the inter-proxy message between a1 and a which has the priority of a1 and 

belongs to m̊a1 . This invokes an update of m̊a1 , a feasibility recheck of a1 and all inter- 

fered applications with intermediate priorities. Depending on the frequency of these 

situations, the complexity of ranges between O( ) (no feasibility rechecks nec- 

essary) and O( 2) (the mapping of every application invokes feasibility rechecks), 

where stands for the amount of applications in  . As will be seen in Sect. 8, the 

actual complexity is closer to the former estimate (a linear complexity). 
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When mapping an application, we differentiate between several types of mappings. 

A narrow mapping presents a mapping where an application shape covers the mini- 

mum possible surface, i.e. a mapping where all dispatchers of an application occupy 

consecutive cores. For instance, the possible narrow mappings for a 4-dispatcher appli- 

cation are: 1 4, 4 1, 2 2. Conversely, a wide mapping is a mapping where an 

application shape covers the maximum possible surface, in most cases the boundaries 

of the grid. We refer to the surfaces of the narrow and the wide mapping as to Smin 

and Smax , respectively. 

Since the applications from are mapped during , and are not subject to any 

changes in the subsequent mapping phases, it is essential to dedicate a proper shape to 

each of these applications. Assuming wide mappings for most applications during 

will create significant high priority traffic within the network, which might cause the 

applications from  to be unable to reach the feasibility. Conversely, restricting the 

applications from  to claim the narrow mappings might unnecessarily preserve the 

network resources underutilised, as there might be very few applications in . In order 

to manage this design trade-off we introduce the parameter G. It controls the mapping 

“greediness” of high-priority applications. G presents an upper-bound on the allowed 

application shapes. For instance, if G 0 only the shapes which surface S is less than 

or equal to Smin are allowed. Similarly, if G 1, shapes which fulfil S Smax are 

allowed, which includes all rectangular/linear shapes. If 0 < G < 1, allowed shapes 

are calculated by Eq. 12. That is, if the mapping of a 4-dispatcher application has to be 

performed on a 8 8 platform with G  0.5, then Smin  4, Smax 64 and S 34. 

This excludes shapes  8 8, 8 7, 7 8, 7 7, 8 6, 6 8, 7 6, 6 7, 6 6 

from the consideration. 

 

S ≤ Smin + G · (Smax − Smin) (12) 

Algorithm 1 illustrates how the stage is performed. First, the high-priority 

applications are selected and sorted by priorities, non-increasingly (lines 1–4). The 

applications are treated sequentially; the values of Smin and Smax are obtained (line 

6), and a shape surface threshold S is calculated (line 7). Then, only the shapes which 

surface is less than or equal to the calculated threshold  S  are selected and sorted  

by the shape surface, non-increasingly (lines 8–11). The mapping is attempted on 

the entire grid with the selected application and the biggest allowed shape (lines 14–

15). Note that this process involves (i) the placement of the shape at the particular 

location on the grid, (ii) the generation of the supermessages, (iii) the assignment of the 

individual proxy roles for both the application under analysis and the other applications 

communicating with it, (iv) the generation of the inter-application messages assuming 

the elected proxies, (v) the generation of the composite message (vi) the feasibility 

check for the composite message. Each inter-application message sent to the currently 

mapping application has a higher priority, hence each such message has to be added 

to the respective composite message (lines 17–20). Consequently, the feasibility of 

the applications containing those composite messages has to be rechecked. This may 

also trigger the rechecks of other applications influenced by these updates, therefore 

a feasibility recheck is performed for each such application (lines 21–27). 
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  Algorithm 1: IP(A, P, G) The first mapping phase IP (Initial Phase)  

input   : A, P,G  

1 foreach (a ∈ A : Pa > P 

 
min + P · (P 

 
max 

− Pmin 

 
)) do 

2 add(a,     ); // Select all high-priority applications 
3 end 

4  H.sort(P↓); // Sort by priority, non-increasingly 

5  foreach (a ∈ H) do 

6 Smin = a.min_area(); Smax  = a.max_area(); // Compute Smin   and Smax 

7 S Smin     G   (Smax     Smin); // Find a shape surface threshold 
8 foreach (shape : shape.S()     S) do 

9 add(shape, Allowed); // Select allowed shapes 

10 end 

11 Allowed.sort(S  ); // Sort by shape surface, non-increasingly 
12 f easible f alse; 

13 while ( f easible true Allowed empty) do 

14 shape = Allowed.remove(); // Get the biggest existing shape 

15 f easible a.test(shape); 
16 if (feasible == true) then 

17 foreach (a1    a.Senders()) // Update of composite messages 
18 do 

19 a1.update(); 

20 end 

21 if (a.Senders() /= ∅) then 

22 foreach (a1 ∈ H : a1.recheck() == true) // Feasibility recheck 

24 f easible =  f easible ∧ a1.test(a1.shape); 

25 if ( f easible /= true) then  break ; 

26 end 

27 end 

28 end 

29 if (feasible == true) then 

30 location = a.find_best_location(shape); // Find the best location 

31 a.map(shape, location); 

32 a.distribute_dispatchers(); // Maximise the mapping quality 

33 end 

34 end 

35 if (feasible true) then Mapping.Failed(a); // Declare failure of IP 

36 

37 end 

  38 Mapping.Success(); // Declare success of IP  

 
 

 
If the application can be mapped with the selected shape on multiple places of the 

grid, the location is found such that the worst-case delay of the composite message 

is minimised. In this way the algorithm searches for the position on the grid where 

the application suffers the least interference from the other traffic. Notice, that this 

strategy forces interacting applications to be mapped close to each other. A special 

case occurs when proxies of two interacting applications share the same core and the 

inter-proxy message does not exist. Furthermore, if there are several locations on the 

grid where the application can be mapped and for which the delay of the composite 

message is minimised, the approach selects the one for which the sum of the dispatcher 

distances from the center of the grid is minimised. The intention behind mapping the 
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application as close to the center of the grid as possible is as follows: any lower-priority 

application which is yet to be mapped, and which performs the communication with 

the said application, will have the possibility to evaluate more mapping options so  

as to minimise the communication penalty, while that would not be the case if the 

said application was mapped on the border of the grid. Note that these two location 

selection criteria are not explicitly mentioned in Algorithm 1, but we assume that this 

logic is encapsulated within the method in the line 30. 

Once the best location is found, the application is considered mapped (line 31). 

Subsequently, the rest of dispatchers (if any) are positioned on the edges of the shape, 

such that the mapping quality qi is maximised (line 32). 

If the application cannot be mapped on the grid with the current shape, the map- 

ping is attempted with the next shape from the collection of allowed shapes. The 

process repeats until the proper shape and location are found, such that the feasibility 

constraints are satisfied for the currently mapping and the previously mapped applica- 

tions. If the feasibility cannot be reached with any of the shapes, the mapping process 

declares a failure (line 35). Conversely, when all the applications from H are mapped, 

IP declares a success (line 38). 

7.2 Feasibility phase (FP) 

This phase performs the mapping of low-priority applications, with the primary objec- 

tive to derive a feasible solution where the entire application-set is mapped. Therefore, 

during , every application is mapped with the narrow mapping. is described by 

Algorithm 2. First, all low-priority applications are grouped in and sorted by priority, 

non-increasingly (lines 1–4). The applications are treated sequentially; a surface of a 

narrow mapping Smin is found (line 6), and subsequently it is used to find all possible 

shapes which correspond to the narrow mapping of the application (lines 7–9). The 

mapping is attempted with the first shape from the list, without any preference, as 

all selected shapes represent narrow mappings (lines 12–13). The same logic used in 

applies here: if needed, the composite messages of higher-priority  applications 

are updated (lines 15–18) and subsequently the feasibility of relevant applications is 

rechecked (lines 20–24). Similarly, if multiple grid locations are available for the same 

shape, the one with the minimum delay of the composite message is selected, while 

if more than one location report the same delay, the one closer to the center of the 

grid has the precedence (line 28). Once the best location is found, the application is 

mapped (line 29). 

If the attempted shape violates the feasibility of the currently mapping application, 

or any other already mapped application, the mapping is attempted with the next one 

from the list of allowed shapes. The process is repeated until a shape is found such 

that all applications are feasible. If none of the shapes satisfies this requirement, the 

mapping process declares a failure (line 32). Conversely, once all the applications are 

mapped, FP declares a success (line 35). The computational complexity of FP also 

varies. If there are no feasibility rechecks necessary, the complexity is equal to O(|L|), 
where |L| denotes the number of low-priority applications. Conversely, if the mapping 

of every application requires feasibility rechecks, the complexity is O(|L|·|A|), where 

|A| denotes the total number of applications in the application-set, i.e. |A|= |H|+|L|. 
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  Algorithm 2: FP(A, P) The second mapping phase FP (Feasibility  Phase)  

input   : A, P  

1  foreach (a ∈ A : Pa  ≤ P 

 
min + P · (P 

 
max 

− Pmin 

 
) do 

2 add(a,    ); // Select all low-priority applications 
3 end 

4  L.sort(P↓); // Sort by priority, non-increasingly 

5  foreach (a ∈ L) do 

6 Smin = a.min_area(); // Compute Smin 

7 foreach (shape : shape.S() == Smin) do 

8 add(shape, Allowed); // Select narrow-mapping shapes 
9 end 

10 f easible f alse; 

11 while ( f easible true Allowed empty) do 

12 shape = Allowed.remove(); // Get the first allowed shape 

13 f easible a.test(shape); 
14 if (feasible == true) then 

15 foreach (a1    a.Senders()) // Update of composite messages 
16 do 

17 a1.update(); 

18 end 

19 if (a.Senders() /= ∅) then 

20 foreach (a1 ∈ A : a1.recheck() == true) // Feasibility rechecks 

22 f easible f easible     a1.test(a1.shape); 

23 if ( f easible true) then  break ; 

24 end 

25 end 

26 end 

27 if (feasible == true) then 

28 location = a.find_best_location(shape); // Find the best location 
29 a.map(shape, location); 

30 end 

31 end 

32 if (feasible true) then  Mapping.Failed(a); // Declare failure of FP  

33 

34 end 

  35 Mapping.Success(); // Declare success of FP  

 
 

As will be seen in Sect. 8, the actual complexity is closer to the former estimate (linear). 

Note that the output of FP is the first feasible solution of an entire application-set. 

7.3 Optimisation phase (OP) 

The objective of this phase is to improve on the solution received from . This is 

performed by attempting to extend the shapes of narrow mappings that low-priority 

applications claimed during . The process ends when no further extensions are 

possible. That also marks the end of the entire mapping process and the reached 

solution presents the final output.       is depicted by Algorithm 3. 

Similarly, applications from are selected and sorted non-increasingly (lines 1–4), 

but during by the parameter I . As mentioned in Sect. 6, it represents the signifi- 

cance of the spatially distributed mapping of an application, i.e. the more the system 
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  Algorithm 3: OP(A, P) The third mapping phase OP (Optimisation  Phase)  

input   : A, P  

1  foreach (a ∈ A : Pa  ≤ P 

 
min + P · (P 

 
max 

− Pmin 

 
) do 

2 add(a,    ); // Select all low-priority applications 
3 end 

4     .sort(I  ); // Sort by migration coefficient, non-increasingly 
5 foreach (a ) do 

6 f easible true; 

7 while (feasible == true) do 

8 new_shape = a.expand(a.shape); // Find expanded shape to attempt 

9 f easible a.test(new_shape); 
10 if (feasible == true) then 

11 foreach (a1 ∈ A : a1.recheck() == true) // Feasibility re-checks 

13 f easible f easible     a1.test(a1.shape); 

14 if ( f easible true) then  break ; 

15 end 

16 if (feasible == true) then 

17 a.shape = new_shape; // Claim expanded shape 

18 a.rearrange_dispatchers(); // Maximise the mapping quality 

19 end 

20 end 

21 end 

22 end 

  23   Mapping.Success(); // Declare success of OP   and entire mapping process  

 

 

 

would benefit from the spatially distributed mapping of an application, the greater its 

parameter I is. The positive side is that applications for which distribution matters 

more are given the possibility to claim resources before others, thus increasing the 

chances of the mapping process to derive a good quality solution. The downside is 

that the number of necessary feasibility rechecks significantly increases; an expanding 

application can invoke not only feasibility rechecks mentioned in the previous map- 

ping stages, but also of all its directly interfered lower-priority applications, which 

was not possible in the previous stages as applications were sorted by their prior- 

ities, non-increasingly. Thus, unlike the previous mapping stages, where feasibility 

rechecks were an exception, during the same will be performed regularly. The 

computational complexity of      is identical to that of       , however, as will be seen 

in Sect. 8, the actual complexity is closer to the higher (sub-quadratic) estimate. 

The applications are treated sequentially; the expanded shape is found and the map- 

ping attempted (lines 8–9). The process consists of an attempt to stretch the application 

shape: (i) the supermessages are re-generated, (ii) the proxy roles are re-assigned for 

both the application under analysis and the other applications interacting with it, (iii) 

the inter-application messages are re-generated assuming the newly elected proxies, 

(iv) the composite messages containing the modified inter-application messages are 

re-generated. As described above, this may require a significant amount of feasibility 

rechecks (lines 11–15). The application is expanded until any further stretches will 

cause infeasibility of either itself or any other application. Every expansion is followed 

by a rearrangement of dispatchers of an expanding application, so as to equalise the 
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inter-dispatcher distances as much as possible and improve the mapping quality (line 

18). Once this process is performed for all applications from , the entire mapping 

process concludes (line 23) and returns the current solution as the final output. 

 
 

7.4 Schedulability 

 
As already mentioned (Sect. 4.2), the greatest distinction of LM M from the existing 

approaches is that release/migration decisions are explicitly detached from scheduling 

decisions. In other words, via its agreement protocol, each application itself decides 

on which of its candidate cores will the next job be released, while scheduling the job 

is the responsibility of the independent single-core scheduler that is located on the 

selected core. 

The schedulability analysis of LM M is still an unexplored topic. Given that this 

aspect is not the objective of this work, and for the sake of completeness, here we 

address the schedulability by making the following simplifying assumptions. An appli- 

cation is schedulable, if at least one of its dispatchers is schedulable. A dispatcher is 

schedulable, if it can release a job on its core, on behalf of its application, which will 

not miss a deadline. A job does not miss a deadline, if its worst-case response time 

Ra (Burns and Wellings 2009) is less than or equal to its deadline Da , when treating 

that core as an independent single-core system with the fixed-priority scheduling (jobs 

inherit dispatcher priorities, while dispatchers inherit application priorities). Specifi- 

cally, a job of an application a has the deadline equal to the period of a, reduced by 

its communication deadline, i.e. Da     Ta      Wa . 
Let Rmin be the minimum of the response times of the application a, on all the cores 

where it has dispatchers. Then, a is schedulable if Rmin     Da     Ta     Wa . Notice, that 

this simplistic approach assures that each application will always be able to execute on 

at least one of the cores of its dispatchers, while the possibility to migrate will depend 

on the outcome of online schedulability tests, performed by its dispatchers on their 

respective cores during agreement protocols at runtime. 

At this stage several questions can be asked: (i) How to perform the schedulabil- 

ity analysis when applications have more sophisticated schedulability  requirements, 

e.g. require multiple schedulable dispatchers (useful in scenarios with voluntary core 

shutdowns and core failures)? (ii) What is the most efficient way to assign priorities to 

dispatchers and jobs they release? (iii) Which single-core scheduling policy to imple- 

ment within kernels? These important questions and open problems are guidelines for 

our future work. 

 
 

8 Evaluations 

 
In this section we perform the evaluation of the proposed approach. Specifically, 

through different case studies, we investigate the overall efficiency and applicabil- 

ity of the proposed application mapping method, as well as how different choices 

and trade-offs, achievable through parameter manipulations, influence the quality of 

derived solutions. 
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8.1 Case study 1: application shapes and overheads of constrained routes 

 
In many situations, several shapes have similar or identical characteristics, especially 

during when only narrow mappings are considered. In order to asses the dif- 

ferences between shape types and reason about their applicability, we analyse their 

characteristics which we consider relevant, namely a traversal distance of the average 

and the longest intra-application message. For easier calculation, in all cases narrow 

mappings are assumed, while for rectangular shapes only an even number of dispatch- 

ers is considered. 

Equation 13 calculates the average traversal distance of an intra-application mes- 

sage, assuming a n-dispatcher application with a line-like shape. If the i -th dispatcher 

of a horizontally stretched application is the master, it communicates with i 1 dis- 

patchers on the left and the rest n i dispatchers on its right (the terms in the brackets 

of Eq. 13). The outer summation is performed so as to account for all possible masters. 

In order to obtain the distance of the average message, we divide the result by the total 

number of messages (n masters sent n 1 messages each). Similarly, the value is calcu- 

lated for the rectangular shape, where the message routes obey to Constraint 2 (Eq. 14). 

Finding the maximum message distance for both shapes is trivial (Eqs. 15, 16). 

 

 
 

 

 
 

 

 

 

 

Figure 11 illustrates how the number of dispatchers influences the distance traversed 

by the average and the longest intra-application message of these two shape types. The 

rectangular shape type performs better than the line one, for both the average and the 

longest message, but at the expense of potential reroutings, which do not occur in 

the latter case. The decision regarding the shape type precedence can be made by the 

system designer, or left to the mapping process to decide. 

In order to estimate the penalty of constrained intra-application message routes, tra- 

versal distances of the average and the longest message are computed for a rectangular 

shape with the free point-to-point communication between dispatchers (Eqs. 17, 18), 

and subsequently plotted in Fig. 11. Equation 17 is derived by using the intermediate 

results of Eq. 13. 
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Figure 11 demonstrates that the removal of Constraint 2 improves the performance 

for the average message, but keeps the same longest message and, as recognised    

in Sect. 5.4, significantly complicates the analysis. Unlike Fig. 11, which visualises 

the overhead of forced paths expressed in absolute values, Fig. 12 depicts the same 

overhead expressed relatively. In practical terms, Constraint 2 causes a 19 % longer 

traversal path for the average intra-application message of a 10-dispatcher application 

with a rectangular shape. 

 

8.2 Analysis and workload parameters 

 
In the subsequent experiments we perform the mapping process, assuming the work- 

load synthetically generated by using the parameters from Table 2. An asterisk sign 

denotes a randomly generated value, assuming a uniform distribution. To assure that 

all considered application-sets are indeed feasible, the individual per-application con- 

straints on the worst-case communication delays were derived as follows. First, each 

application-set is mapped with the parameters ∀ai  ∈ A  :  Wi  = Ti  − Rmin,   and 

P G 0, where R was introduced in Sect. 7.4. This approach assures that all 

applications will be mapped during the phase with shapes that correspond to nar- 

row mappings, and will consequently suffer small worst-case communication delays, 
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Table 2   Analysis and workload  
parameters Routing delay + link transfer delay 3 + 1 cycles 

 Link bandwidth 16 bytes 

 Application utilisation [0–0.7]* 

 Application periods [30 mS–1 S]* 

 Application migration coefficient [0–50]* 

 Number of dispatchers (migrative application) [2–10]* 

 Agreement message size 64 bytes 

 Inter-application message size [16–64]* bytes 

 Migrative applications 50 % 

 Probability of inter-application communication 5 % 

 
 

Fig. 13  The influence of the application-set size on the analysis time 

 
 

called narrow shape delays (NSDs), hereafter. Thus, by assigning each application a 

communication constraint which is equal to, or greater than its respective NSD (i.e. 

Wi NSDi ), we know that the given application-set is feasible with at least one selec- 

tion of the mapping parameters ( P   G    0). In the subsequent experiments, we set 

the communication constraints to be equal to multiples of NSDs of respective applica- 

tions, i.e.   ai Wi   n NSDi . Notice, that a bigger value of n gives applications 

more “freedom” to claim wider shapes, but also decreases the schedulability potential 

of applications, because bigger Wi also means tighter job deadlines (Di = Ti − Wi ). 

 
8.3 Case study 2: scalability 

 
The objective of this case study is to test the scalability potential of the proposed 

approach. We vary the number of applications in the range [2–200]. For each given 

value of the application-set size we generate and map 1000 application-sets on a 8 8 

grid, in accordance with the values from Table 2. The other parameters are: G  0.3, 

P      0.5 and   ai Wi     10 NSDi . We perform the timing analysis by capturing 

the duration of the mapping process of each run. 

Figure 13a demonstrates the results. The horizontal axis stands for the application- 

set size. For clarity purposes we present a reciprocal cumulative graph, where the 
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Fig. 14  The influence of the application-set size on the analysis time 

 

vertical axis depicts the quantity of the runs that still did not complete the mapping 

process within a given time interval (depth axis). For small application-sets, almost 

all the runs complete very fast. As the number of applications increases, the mapping 

process takes more time, thus the slope of the curve flattens. At the end of the first 

observed period (0–3 s), almost all the smaller sets finished, while very few of the 

largest ones report the completion of the mapping process. 

The second observed period (3–40 s) is presented in Fig. 13b. Most of the runs for 

application-sets up to 150 applications already finished, while the runs for the larger 

sets keep the completion rate steady. Note that the observation period is larger, thus 

the slope looks steeper. At the end of the observed period, only a small fraction of the 

largest application-sets did not complete. 

The results show an obvious trend regarding the duration of the mapping process 

across application-set sizes, however,  the mappings  of two sets of the same size  

can report significantly different durations, sometimes by an order of magnitude. To 

emphasize this fact, we give a different representation of the same data in Fig. 14. 

The horizontal axis stands for the application-set size. The left and the right vertical 

axis represent the duration of the mapping process, in linear and logarithmic scale, 

respectively. Even though the whiskers were set to the 25th and 75th percentiles, 

which corresponds to the 99.3 % coverage for the normal distribution, it is visible 

that a non-negligible amount of runs falls outside the aforementioned area. This infers 

that the duration of the mapping process may hugely vary and highly depends on the 

application-set parameters. 

Overall, the duration of the mapping process exponentially increases with the num- 

ber of applications. However, it is averaging at 12 seconds for the sets consisting of 

200 applications and we thus believe that the proposed approach is applicable to most 

of realistic scenarios in the real-time embedded domain. 

We performed another scalability test by varying the grid size (from 8 8 to 16 16), 

while keeping all the other parameters at the same values. The size of the application- 

set is 150. Thousand sets were generated and subsequently mapped. Figure 15a shows 
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Fig. 15  The influence of the grid size on the analysis time 

 

how the variation of the grid size (horizontal axis) influences the analysis time (depth 

axis). A cumulative reciprocal representation is used, where vertical axis stands for the 

number of application-sets for which the mapping did not finish within a given time. 

It is visible that, within 6 s, in almost all cases the mapping completed for smaller 

grids, while larger grids are more time consuming and report fewer completions in 

the same time interval. Conversely to application-set size variations, the grid size 

variations cause a linear increase in the duration of the mapping process, visible in 

Fig. 15b. Note that these results infer that on average, the mapping process on a 

platform with 144 cores takes only 2 times more than on a 64-core one, assuming the 

same workload is mapped in both cases. The explanation is as follows. Even though 

larger grids require more cores to be checked while mapping, at the same time this 

gives the opportunity to map the applications in such a way that complex interference 

scenarios are avoided, which decreases the duration of feasibility rechecks, since fewer 

contentions occur. The number of outliers again confirms huge variations in duration 

times of the mapping process, demonstrating that for some specific application-sets 

the duration of the mapping process can significantly exceed the average time needed 

for that particular workload and platform size. 

 

 
8.4 Case study 3: parameter P 

 
The parameter  P  controls the amount of applications which will be grouped in   

and hence mapped during , while the rest of the applications will undergo a two- 

stage mapping process in  and . Note that and are computationally 

more intensive than , so mapping more applications during  can cause a 

significant increase in the computation time. However, this process is more thorough 

in search and potentially has higher chances of finding better application mappings. 

Conversely, mapping most of the applications during  may save the computation 

time, but makes the efficiency of the mapping process highly dependant on the right 

selection of the parameter G, as is shown in Case Study 4. Thus, an intuitive assumption 

is that the selection of the parameter P creates a trade-off between the analysis time 

and the solution quality. 
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Fig. 16  The influence of the parameter P on the mapping process 

 

 
Assuming G       0.3 and   ai Wi       10 NSDi , all the application-sets are 

feasible across the entire observed domain, where we vary the parameter P in the 

range  0  1 . The application-set size is 150, and 1,000 sets are created and mapped 

on a 8 8 platform, for each incremental step of P, as shown in Fig. 16a. We perform 

the timing analysis (the right vertical axis), but also collect the qualities of generated 

solutions (the left vertical axis), since the objective is to observe the effect of P on 

both the analysis time and the solution quality. 

As expected, the increase of the parameter P causes the duration time of the mapping 

process to grow exponentially. As P increases, more applications undergo a more 

computationally extensive mapping process, which results in longer analysis times. 

However, the results report a logarithmic growth of the solution quality, almost on 

the entire domain. The only exception is the case when P 1, that is, when all 

applications are mapped during        and       . 

The results suggest that putting more applications in and placing them during 

and might not produce a solution with a significantly better quality. The 

explanation is that the final mapping phase  sorts the applications non-increasingly 

by the parameter I and tries to optimise their placements in that order. Since does 

not have a greediness control mechanism, every application will greedily assume 

the widest possible mapping such that its feasibility is preserved. Thus, most of the 

available network resources are consumed by the applications that are considered early 

during  , which leaves the ones considered later to be able to barely optimise their 

placements, if at all. Another interesting conclusion is that mapping some applications 

during  (i.e. P < 1) may prevent the phase to optimise the mapping in the most 

efficient way. This is confirmed with the substantial increase in the solution quality 

when all applications undergo the optimisation phase ( P 1). 

In order to gain a more detailed insight into the influence of P on the duration of 

the mapping process, we observed the durations of the individual mapping phases. 

Figure 16b shows the fraction of the total analysis time that each phase consumes 

and compares them in relative terms. For small values of P, almost all applications 

are mapped during    , hence leaving less workload for the subsequent phases. Until 

P   0.25,   witnesses an exponential decrease of the analysis time, while the other 

two phases report a linear increase. Notice, that although all three stages have the 
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sub-quadratic complexity, as P increases the complexity of becomes a dominant 

factor, while P > 0.75 results in scenarios where the analysis time is almost entirely 

spent in . This is explained with the amount of necessary feasibility rechecks, 

which in the first two stages occur rarely and cause their almost linear complexity, 

while in the last mapping stage are performed regularly, thus contributing to the true 

sub-quadratic complexity. 

 
8.5 Case study 4: parameter G 

The parameter G controls the amount of greediness allowed to high-priority applica- 

tions. An intuitive reasoning suggests that the greater value of G causes the greater 

amount of traffic as a consequence of spatially distributed mappings of applications 

from     . Consequently, low-priority applications, which get placed during         and 

, will have less possibilities to assume well distributed placements, since the net- 

work resources were greedily consumed by the applications from . In some cases 

this may cause applications from to be unable to claim feasibility even with narrow 

mappings, resulting in a failure of the mapping process. Conversely, smaller G may 

limit the distribution of high-priority workload and unnecessary preserve the network 

for applications from , while there might be only few of them. This can significantly 

impact the solution quality. 

The effects of the parameter G highly depend on the parameter P, since G applies 

only to high-priority applications, which amount is directly controlled by the parameter 

P. For small values of P, the influence of G is amplified the most. As P increases, 

the effects of G mitigate and at some point become negligible. To better observe the 

impact of G on the mapping process, we kept P      0 and   ai Wi      10 NSDi . 

Notice, that this parameter selection caused some application-sets to be infeasible  

on the entire domain, where we varied the parameter G in the range [0–1]. Thus, in 

this part of the experiment we only consider those application-sets which are feasible 

on the entire domain. The application-set size is 150, and 1,000 sets are created and 

mapped on a 8 8 platform, for each incremental step of G, as shown in Fig. 17a.  

We perform the timing analysis (the right vertical axis), but also observe qualities of 

derived solutions (the left vertical axis), so as to study the effect of G on both the 

analysis time and the solution quality. 

It is visible that the duration of the mapping process is constant and does not depend 

on the parameter G. However, G has a significant effect on the solution quality. Specif- 

ically, as G increases, high priority applications gain more freedom in assuming map- 

pings wider than narrow ones, resulting in a constant increase of the solution quality. 

This effect is noticeable until G 0.75. For higher values of G, the solution quality 

starts to decrease, since high G allows greedy mappings of high-priority applications, 

and hence preserves less resources for the later mapping stages. In fact, for G > 0.75, 

the network is so greedily consumed by high-priority applications, that low-priority 

ones barely claim the feasibility with narrow mappings. Note that high values of G 

not only significantly limit the optimisation of lower priority workload during , 

but also severely affect the feasibility, as explained below. 

As already mentioned, Fig. 17a considered only those application-sets which were 

feasible across the entire domain of G. Now we investigate the impact of the parameter 
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Fig. 17  The influence of the parameter G on the mapping process 

 
G on the feasibility (Fig. 17b). The application-set size is 150, and 1,000 sets are 

created. For each generated application-set we vary the individual per-application 

communication constraints by allowing them to be 2, 5, 10 and 20 times greater than 

the respective NSDs. Subsequently, assuming again P 0, we map them on a 8 8 

platform and observe how the number of feasible application-sets (the vertical axis) 

changes with the parameter G (the horizontal axis). 

It is visible that the parameter G significantly impacts the feasibility, and as G 

increases, the number of feasible application-sets decreases. This is expected, because 

giving more freedom to high-priority applications allows them to more greedily con- 

sume the available network resources. This inevitably leaves low-priority applications 

with fewer resources, which, in many cases are not enough to claim the feasibility 

even with narrow mappings. Notice, that even if the communication constraints are 20 

times greater than the respective NSDs, when G 1 only 30 % of the application-sets 

are feasible. 

 

8.6 Discussion 

 
The efficiency of the mapping process significantly depends on the right selection of 

the parameters P and G. But more than that, it highly depends on the parameters of the 

application-set upon which it is being applied. As observed through the experiments, 

there are no individual values of P and G which derive the best solution for every 

application-set. We used the experiments to identify and explain the general trends 

associated to these parameters, but also to show that different mapping strategies can 

in some cases provide competitive results, and conversely, the same mapping strategy 

may vary substantially in terms of efficiency when applied to different cases. 

For instance, for sets with tight communication constraints, setting low values to 

P and G will very fast produce a feasible mapping but without a significant quality. 

Increasing P in such cases may result in a solution with the better quality, but at the 

expense of the additional time. If the computational complexity is not the problem, in 

such cases setting P 1 is the preferable option. For sets where applications have 

similar communication constraints the best strategy is to invoke the balanced network 

consumption by keeping P low and G low or moderate, depending on the  tightness 
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of the constraints. Conversely, the sets with significant differences in communication 

constraints will benefit the most from a spatial partialisation approach invoked by 

moderate or high values of P and high values of G. This parameter selection will allow 

only a limited number of applications to claim wide mappings and utilise the routes 

on the boundaries of the grid, and at the same time preserve the central cores free for 

the applications with tight constraints. Finally, for sets with relaxed communication 

constraints setting P low or moderate and  G  high may result in a mapping with  

the good solution quality, but may also deem the application-set infeasible with that 

particular parameter selection. In such cases, decreasing the parameter G until the 

application-set becomes feasible is a preferable option. 

The advantage of the proposed method is that by setting P and G  low, a feasi-  

ble solution can be derived very fast. This option may be useful in scenarios where 

limited computational capacities are available, and the system designer is not very 

knowledgeable about the nature of the workload. Alternatively, if additional computa- 

tional capacities are available, the designer might choose to increase P, until reaching 

a desirable trade-off between the solution quality and the computational complexity. 

Moreover, if the designer knows workload characteristics (e.g. the number of appli- 

cations, the number of dispatchers, the tightness of the constraints), he can take that 

knowledge into account and make an informed decision regarding the parameter G, 

which may additionally improve the solution quality. 

 
9 Conclusions and future work 

NoC-based many-core platforms are the next frontier technology in the real-time 

embedded domain. Their design not only allows cost reductions and power savings, 

but also contributes to the overall system flexibility. In this work we focus on many- 

cores using a limited migrative model (LM M ). LM M extends the concepts of the 

multi-kernel paradigm, which is a novel OS design and a promising step towards 

scalable and predictable many-cores. The main contribution of this work is that we 

formulate the problem of application mapping on a many-core platform using LM M , 

and propose a three-stage process to solve it. The extended version of the existing 

analysis is utilised to assure that derived solutions (i) guarantee the fulfilment of timing 

constrains posed on worst-case communication delays of individual applications and 

(ii) provide an environment to perform load balancing for various beneficial reasons, 

e.g. energy/thermal management, performance enhancements or fault tolerance. 

Regarding the future work, we plan to extend the approach to additionally   con- 

sider memory operations of individual applications. Moreover, we plan to study the 

schedulability aspects of LM M and propose the schedulability analysis which will be 

considered during the application mapping process. Both these activities would help 

to derive a more complete analysis framework for LM M , which is a promising step 

towards the integration of many-core platforms into the real-time domain. 

 
Appendix 

Theorem 1  Let  X      x1, x2,..., xn      R be a set of real number variables, such that 

the following holds: 
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Proof Proven directly. This is a constrained optimisation problem, with one constraint 

expressed by the equality (Eq. 19), and n constraints expressed by the inequalities 

(Inequality 20). If we (temporarily) exclude the inequalities from consideration, the 

extreme values of the function f (X), subject to the equality constraint, can be found 

by the Lagrange Multipliers Method. 

 

 

 

 

 

 

 

A new variable λ is called the Lagrange multiplier. According to the first derivative 
test, the necessary condition for the extreme point is that the partial derivative of the 

Lagrange function with respect to ∀xi ∈ X and λ is equal to 0 (see Eqs. 22–24). 

    

 

 

 

 

 

 

 

  

We analyse two cases: (1) λ = 0 and (2) λ /= 0. 

(1) λ  0: This is possible only if at least two of the variables are also equal to 0,  

that is   xi      X,  x j      X  xi      x j      0     i       j . There exists an infinite amount  

of these points and they are both critical and stationary, and therefore should be 

further examined by the second derivative test. 

(2) λ     0: There exists only one point and that    is  x1       x2 xn 
 C 

. This point is also critical and stationary. It also holds for this point that it can 

be examined by the second derivative test. 

Additionally, due to the inequality constraints (xi      0,   xi      X ), it is necessary  
to check the boundaries of the solution space as well. The boundaries are represented 

with the solutions where only one of the variables is 0, (i.e. ∃xi ∈ X ∧ / ∃x j ∈ X | 

xi  = x j  = 0 ∧ i  /= j ). Those are called boundary points and there exists no test to 
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Fig. 18 General Form of Bordered Hessian for n Variables and 

1 Constraint  

 
 
 

    

 
Fig. 19   Bordered Hessian for 

 

 

prove their properties, they have to be individually checked. In our case it is easy; it 

is obvious that those points represent the minima on the domain, since f (X) 0 for 

all of them. 

Now we proceed with the second derivative test for the cases (1) and (2). It is 

conducted in the form of the Bordered Hessian. The process consists of finding the 

first partial derivatives of g(X) with respect to  xi  X , then finding the second  

partial derivatives of  f (X) also with respect to  xi   X and finally putting them into 

the matrix called the Bordered Hessian. The general form of the Bordered Hessian is 

represented by Fig. 18. 

(1) λ 0: Fig. 19 presents the Bordered Hessian for the case where λ  0. The  

variable zij stands for the second partial derivative with respect to the variables 

xi and x j and is described by Eq. 25. zij has a non-zero value only in cases 

where at most two variables are equal to zero, otherwise it is also equal to zero. 

A sufficient condition for the local maximum is that the Bordered Hessian is 

negative definite, i.e. the determinants of its principal minors alternatively change 

their signs (Eq. 26). However, from Fig. 19 it is visible that there always exists 

some  Hi  0, thus making this test inconclusive. In such cases, each of the  

points should be examined individually. Yet, in our case it is obvious that these 

points represent the minima on the domain, since f (X) = 0 for all of them. 
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