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Abstract. For diffeomorphisms on surfaces with basic sets, we show the following type of
rigidity result: if a topological conjugacy between them is differentiable at a point in the
basic set then the conjugacy has a smooth extension to the surface. These results generalize
the similar ones of D. Sullivan, E. de Faria and ours for one-dimensional expanding
dynamics.

1. Introduction

D. Sullivan [13] states the following rigidity theorem for a topological conjugacy between
two expanding circle maps: if the conjugacy is differentiable at a point then the
conjugacy is smooth everywhere. In Theorem 1, we prove the corresponding result for
diffeomorphisms with basic sets contained in a surface.

E. de Faria [2] proves a stronger version of D. Sullivan’s result, showing that it is
sufficient for the conjugacy to be uniformly asymptotically affine (uaa) at a point to imply
that the conjugacy is smooth everywhere. In [3], a generalization of this result to a larger
class of one-dimensional expanding maps is presented. In Theorem 2, we extend these
results to diffeomorphisms f and g defined on surfaces which are topologically conjugated
(h : Ay — A,) on their basic sets Ay and A,, proving, in particular, that (i) if & is
asymptotically affine (aa) at a point in A y with periodic orbit; (ii) if / is (aa) at a point
in A with dense orbit in A 7; (iii) if / is (uaa) at a point in A 7, then & has a C!THolder
extension to the surface (see the definition of (aa) and (uaa) maps in §1.2).

An interesting feature of the theorems proved in this paper is that they show an
unexpected rigidity property for the conjugacy between diffeomorphisms with basic sets
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contained in a surface since, in general, the conjugacies between these systems are just
Holder continuous but under the weak assumption of the conjugacy being differentiable at
a point, for instance, we show that the conjugacy is smooth everywhere. From a practical
point of view these results are also useful. We note that it is easier to check that a map is
C! at a point than everywhere.

1.1.  Smoothness from a point to everywhere. Throughout the paper f is a C!*Holder
diffeomorphism on a surface S and A is a basic set, i.e. a compact, topologically transitive,
hyperbolic and f-invariant set with a local product structure (see [11]). By C!THolder ye
mean C!t2 for some 0 < o < 1. By the Stable Manifold Theorem (see [6]), the local
stable leaves €* (x) and the local unstable leaves £ (x) passing through x € A are C!+Holder
embedded one-dimensional submanifolds of S. We define the stable leaf segments £ (x)
by £°(x) N A and the unstable leaf segments £'; (x) by £“(x) N A. Given any three distinct
points, x, y, z, either in a stable leaf or in an unstable leaf, the order along the leaf tells
us which one of these three points is between the other two. We use this order along the
stable leaves £°(x) and along the unstable leaves £“(x) to determine the order along the
stable leaf segments £°, (x) and along the unstable leaf segments £} (x), respectively.

Definition 1. The C'THOMer diffeomorphisms f and g are topologically conjugate on
their basic sets Ay and Ag if there is a homeomorphism & : Ay — Ag such that
ho f(x) = g oh(x), and h preserves the order along the stable leaf segments Ef\f (x) and

along the unstable leaf segments £} (x) forallx € Ay. If hhasa C I+Hzlder §iffeomorphic

extension to an open set containing A y then we say that f and g are C HHolder o ingate
on their basic sets Ay and Ng.

THEOREM 1. Let f and g be CYHON gittoomorphisms on surfaces which are
topologically conjugate on their basic sets" Ay and Ag. If the conjugacy is differentiable
at a point x € Ay, then f and g are C' T copjugate on their basic sets A y and A.

In §2, we give the proof of Theorem 1 which has essentially two parts. In the
first part, we transform the problem into two problems of one-dimensional expanding
dynamics corresponding to the stable and unstable directions associated with the maps
f and g. We do this by constructing C ' THoler Markov maps My, My, My s and Mg,
(with respect to atlases Ay, Ay, Ags and Ag ), which retain information about the
smooth structures along the stable and unstable leaves associated with the diffeomorphisms
f and g. Then, we use Theorem 1 in [3] which tells us that there is a C!*H59r conjugacy
Y5 between My,; and Mg s and a C 1+Holder conjugacy v, between My, and M ;. In the
second part, we use these C 14-Holder conjugacies, ¥ and v, between the one-dimensional
expanding dynamics together with orthogonal charts to prove that the conjugacy between
the diffeomorphisms f and g has a C!THolder extension to an open set of the surface.

1.2. (aa) and (uaa) regularities. Here, we present and give some motivation for
the definitions of asymptotically affine (aa) and uniformly asymptotically affine (uaa)
(or, equivalently, symmetric) functions, that we will use to generalize Theorem 1
(as presented in Theorem 2).
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(Uaa) functions are relevant in several distinct mathematical contexts as we point
out next by recalling some fundamental results about them. We start by noting that
by the Beurling—Ahlfors extension theorem every quasi-symmetric homeomorphism of
R has an extension to a quasi-conformal homeomorphism of the upper half-plane
(we say that a homeomorphism /4 is quasi-symmetric if the modulus of continuity
Xec of h in Definition 2 is just a bounded function). In [§], it is proved that
(uaa) (or, equivalently, symmetric) homeomorphisms are the boundary values of quasi-
conformal homeomorphisms of the upper half-plane whose conformal distortion tends
to zero at the boundary. (Uaa) homeomorphisms turn out to be precisely those
homeomorphisms which have a boundary dilatation equal to one, in the sense of Strebel
[12]. In [S], it is also noted that the (uaa) homeomorphisms of a circle comprise the
closure, in the quasi-symmetric topology, of the real-analytic homeomorphisms and this
closure contains the set of C! diffeomorphisms. Another application of (uaa) functions
appears in the following extension of the classic Arnold—-Herman—Yoccoz rigidity theorem
for diffeomorphisms of the circle: a C!+#gmund diffeomorphism of a circle with a golden
rotation number is (uaa) conjugate to the rigid golden rotation (see [4]). Finally, we observe
that in [14], a one-to-one correspondence between (uaa) conjugacy classes of expanding
circle maps and complex structures on a solenoidal surface is shown; and, moreover, that
the (uaa) conjugacy classes of (uaa) expanding circle maps form a natural completion of
the C!TH0ler conjugacy classes of C1HHder expanding circle maps.

As we pass on to explain, the definition of an (uaa) function f is a geometric notion
consisting in a bound to the ratio distortion for triples of points called the modulus of
continuity x () of f. This bound is slightly weaker than the one satisfied by smooth
functions. We recall that if f is C!** then the modulus of continuity x (¢) satisfies the
inequality x () < O(|t|¥), where 0 < @ < 1. The (uaa) regularity is characterized by only
demanding that x (#) converges to zero when ¢ tends to zero. Hence, the (uaa) regularity
arises as a natural limit on the degree 1 + « of smoothness of the functions when « tends
to 0, instead of the usual C ! smoothness.

Definition 2. The local homeomorphism ¢ : I C R — R is uniformly asymptotically
affine (uaa) at a point x € I if, for all ¢ > 1, there is a continuous function y. : RS‘ — RS‘
satisfying x.(0) = 0 such that for all points y1, y2, y3 € I with ¢™' < (y3 — y2)/(y2 — y1)
< ¢, we have

¢ (y2) —p(y1) y3 — y2
¢ (y3) —d(2) y2 — y1

< Xe(max{|y3 —x[, [y1 — x|}). 1)

We call x. the modulus of continuity of ¢. The left-hand side of (1) is called the ratio
distortion of ¢ at the points yr, y» and y3.

The local homeomorphism ¢ : I — R is (uaa) if ¢ is (uaa) at every point x € I and the
modulus of continuity x. does not depend upon the point x.

We say that ¢ : I — R is asymptotically affine (aa) at a point x € I if ¢ satisfies
inequality (1) in the case where y, = x.

The classical definition of an (uaa) (or, equivalently, symmetric) function ¢ is given by
taking ¢ = 1. Here, we consider all ¢ > 1 in the definition because / does not have to be an
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interval. For instance, I can be a Cantor set. However, we note that these two conditions
are equivalent if / is an interval (see Remark 1 in [3]).

Definition 3. The homeomorphism 2 : Ay — Ag is (aa) (respectively (uaa)) at a
point x € Ay if hlﬂf\f (x) and hlﬂ’j\f (x) are (aa) (respectively (uaa)) at the point x.
The homeomorphism & : Ay — Ag is (aa) in a set X C Ay if, for every x € X,
hlﬂf\f (x) and hlﬂ’j\f (x) are (aa) at x, and the modulus of continuity does not depend upon
the point x € X.

A generating set G is a subset of A y with the property that
Ar=cl({f"(@):aeG and n=>0}).

A sub-orbitis a subset { /" (p) : i € Z} of Ay, where p € Ay and (n;);cz is an increasing
sequence of integers.

THEOREM 2. Let f and g be C'H9T giffeomorphisms on surfaces with basic sets Ay

and Ag, and topologically conjugate by a homeomorphismh : Ay — Ag.

()  Ifhis (aa) in a sub-orbit then f and g are C'THT coniyeate on their basic sets
Ay and Ag.

(i) Ifhis (aa) in a generating set then f and g are
sets Ay and Ag.

(iii) If h is (uaa) at a point in A ¢ then f and g are
sets Ay and Ag.

C1HHOMer oo piugate on their basic

C1HHoMder oningate on their basic

We would like to point out that the previous conditions used in the previous theorem
correspond to very natural and simple dynamical objects. An example of a generating
set G is a point with a dense orbit; and an example of a sub-orbit is a point with a periodic
orbit.

The proof of Theorem 2 follows in the same way as the proof of Theorem 1.

2. Properties of basic sets
The proof of Theorem 1 involves several properties of basic sets that we will recall in this
section.

2.1. Rectangles. Let p be a C!TH99r Riemannian metric on S and d the distance
on § determined by p. Since Ay has a local product structure, there exist constants
&,& > 0 such that, for every x,y € Ay with d(x,y) < &, the bracket [x, ylg ¢ =
£5(x, &) NL"(y, &) is a single point contained in A s, where

Cx,e)={yeS:d(f"x), f*(y)) <e, foralln > 0}

and
x,e)={yeS:d(f"(x), f"(y)) <e¢, foralln > 0}.

A rectangle R = R/ is a sub-set of Ay which is closed under the bracket, i.e. for every
X,y € R, the bracket [x, y]¢ ¢ is contained in R. A rectangle R is proper if R is the
closure of its interior in A y. A stable spanning leaf segment £ (x) contained in a proper
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rectangle R is the union of a stable leaf segment @Xf (x) with its endpoints and satisfying
the property that [x, yle ¢ € £%(x) for every y € R. Similarly, we define the unstable
spanning leaf segment £% (x), replacing @Xf (x) by é’j\f (x). Let 3£ (x) be the set consisting
of the endpoints of £} (x), and let £%(x) \ 9€}%(x) be denoted by int £} (x) for T € {s, u}.
By the local product structure of A ¢, for every proper rectangle R and for every x € R,
the interior of Ris intR = {[y, zlc ¢ : y € £%(x) and z € £%(x)}, and the boundary of R
is

OR = {[y, zleer : (y € 3l%(x) and z € £ (x)) or (y € £x(x) and z € 3Ly (x))}.

Note that the definitions of int R and d R do not depend upon x € R. A t-side of R is a
T-spanning leaf segment £} (x) contained in the boundary of R for T € {s, u}. A corner of
R is an endpoint of a side of R.

2.2. Basic holonomies. Let T be equal to s or u and 7’ be the opposite of 7. Given a
proper rectangle R and two points x, y € R, we denote by © : £} (x) — £3(y) the basic
holonomy given by ©(z) = Zg(z) N L% (y) for every z € £5(x). From Theorem 2.1 in [7],
we get the following result.

LEMMA 1. Each basic holonomy © : £%(x) — €%(y) is a C'TH digfeomorphism,
i.e. © has a C'THOC oyronsion © @ €7 (x) — L% (y) to the leaves €7 (x) and £¥ (y) such
that £5(x) C L5 (x) N A g and LH(y) C LT (y) N Ay.

2.3.  Markov partition. By Theorem 3.12 from [1, p. 79], the basic set A  has a Markov
partition given by a collection M = {Ry, ..., R, } of proper rectangles with the following
properties: (i) intR; () intR; = @, if i # j; (i) Ay = /L, R;; and (iii) if x € R; and
f(x) € Rj, then
@ [l (x) C L (f(x)) and f_l(ﬂ‘,‘e_, (f (x))) C €% (x); and
(®) [ NNR; = e (f)) and [ (€5 (f D)) N Ri = €5, (x).

The last condition means that f(R;) goes across R; just once. The proper rectangles
R; € M are called Markov rectangles.

3.  From two- to one-dimensional dynamics

We will use the properties of the basic sets presented in the previous section to pass
from two-dimensional dynamics to one-dimensional expanding dynamics. We do this by
constructing C ! 1519 Markov maps on train tracks.

3.1. Train tracks. Let T*™ = TJE be the set of all 7’-leaf spanning segments ég(x)
for all R € M and for all x € R, where we identify two of these t’-leaf spanning
segments ég(x) and ég(y) if inté%(x) N intE;,/(y) # (). The set TT is a train track.
Letmys. : Ay — T7 be the projection which associates a point x € A ¢ with the spanning
leaf segment (or segments) £ € T which contains x. We note that, for every x € int R,
the projection 7 ¢ (x) is a single point in 7. For a point x contained in the r-side of a
Markov rectangle the projection 7 £ ; (x) can consist in more than one point.
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FIGURE 1. The chart ¢ on T%.

3.2. Atlas on train tracks. We say that I C T is a segment of T* associated with a leaf
segment £7 (not intersecting the T-boundary of a Markov rectangle) if and only if (i) for
every x € {] there exists a leaf ¢” € I such that £ N €7 # ¥ and (ii) for every e,
€N # B Achart ¢ - I — R on a segment I is defined by ¢(£7) = i(€° N £3),
where i : £; — R is a homeomorphism onto its image which preserves the local order
of the points in £7. The map ¢ : I — R defined by qb(Ef/) = i(Z’/ N £}) is a chart on
T7 (see Figure 1). We say that the charts ¢ : I — Rand : J — Ron T7 are C!*
compatible if the overlapmap o ¢! : (I N J) — (I N J) has a C' ¢ diffeomorphic
extension to R, where @ > 0. A C1HHMer g4146 AT on T consists on a finite set of charts
on TT which cover all small segments of 77 and any two of them are C!'*¢ compatible
with C!1*2 bounded norm, for some a > 0.

Let I C T7 be a segment of 7" associated with a leaf segment £]. Let E; be a leaf
containing £7 and ¢ : (—1,1) — 55 a C'*¢ diffeomorphism given by the Stable Manifold
Theorem applied to f. We say that A; is an atlas on T™ determined by f if A% is a set

consisting of charts ¢ : I — R given by qbf(Z’/) =c ' n £7).

3.3. Markov maps. The C'*Hoer diffeomorphism f determines Markov maps My, :
T° — T¥and My, : T* — T" such that the following diagrams commute:

! f
Ay — Ay Ay — Ay
l”.f\s l” fs and l”.f\w Jj’ﬁu
Mf,s ) Mf,u
T8 — T T — T
The Markov partition {Ry, ..., Ry} of f determines the Markov partition {I], ..., I} of
My, where IT = UxeR,- Zfé_ (x) foreveryi =1,...,m.

A Markov map M, is C!HHer with respect to an atlas A% if (i) for every charts
¢:1 - Randy : J — Rin A%, the composition ¥ o My, o™l p() — Y(J)

is a homeomorphism and has a C'** extension My to R with uniformly bounded
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C'*® norm; and (ii) there exist c,A > O such that for all possible compositions
Mg, ¢, © -0 Mg, ¢, we have

1Mg,,¢,—1 © 0 Mgy gollct > cA™. )

LEMMA 2. If f is a C'HO gittoomorphism of a compact surface with a basic set then
the atlas A; determined by f is C1 19T g pp frisaC 1HH0lder A1 rkov map with respect
to the atlas A},for T € {s,u}.

Proof. Let us prove Lemma 2 in two parts. In the first part we prove that the overlap maps
for charts in A% are C I-HHslder and so A%isaC I+Holder at1as. In the second part we prove
that the Markov map M s ; is C!THO9er with respect to AT

Let I and J be segments associated with leaf segments £} and €7, and ¢ : I — R and
Y : J — R be charts in A% such that ¢ (¢€') = ¢ ' (€7 N €}) and Y (£7) = ¢ ' (€7 Ne€Y),
where ¢; and ¢ are CHHIer cypyeg given by the Stable Manifold Theorem (see [6]).

Part I: Let us suppose that I N J # @. The segment I N J has leaf segments E}, ; C
and 65), C 7 associated with it, and v o o = c;l 0B ocy wheref : £}, — €7, isa
holonomy. By Lemma 1, 6 is C1+H0der apd 50 c}l 00 o ¢y has a ¢11Holder
extension to R. Hence, the atlas A7 is C1+Hélder

Part II: Let us suppose that yo M 7, o o i) > Yo M ¢, (1) is a homeomorphism.
Let éfw), = My, (¢;) and 6 : Eﬁ,“ — {5 be a holonomy. First, we note that
C1+Hélder

diffeomorphic

YoMy, ol = C;I o8 o f ocyand by Lemma 1,0;1 ofBo focrhasa
diffeomorphic extension to R. Since Ay is hyperbolic, we obtain that the Markov map
M, also satisfies inequality (2). O

3.4, CHHsMer copjyugacies between Markov maps.  Leth : Ay — A, be the conjugacy
between f and g on their basic sets. Given a Markov partition My = {Ry, ..., Ry}
of f, we consider the Markov partition of g given by M, = {A(R1),..., h(Rn)}.
The conjugacy h : Ay — A, determines the conjugacy ¥ : T; — T, between the
Markov maps My, and M, ;, and the conjugacy v, : TJ’f — T' between the Markov
maps My, and M, , such that the following diagrams commute:

Ay oA, Ay A,
lﬂ fis lﬂ fs and lﬂ fou lﬂ fou
oo v Yoo g
f 8 f 8

LEMMA 3. Let f and g be C'TH99" diffeomorphisms on surfaces which are topologically
conjugate on their basic sets. If the conjugacy between f and g satisfies the hypotheses of
Theorem 1 or 2 then M s, and Mg ; are C1THr copjycate for v € {s, u}.

Proof. Similarly to Lemma 2 (using that the basic holonomies are C!*Holder) if the
conjugacy & is C! at a point p then ¥, is C! at the point s (p) for T € {s, u}. Hence, by
Theorem 1 in [3], we obtain that ¥, has a C!TH0der extension. m|

Downloaded from http:/www.cambridge.org/core. Open University Libraryy, on 22 Dec 2016 at 19:21:25, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.
http://dx.doi.org/10.1017/S0143385702001347


http://dx.doi.org/10.1017/S0143385702001347
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

516 F. Ferreira and A. A. Pinto

4.  From one- to two-dimensional dynamics
Here, we do the last step of the proof of Theorem 1 which consists in using the C!+Holder
conjugacies between Markov maps, as proved in Lemma 3, to prove the existence of a
C!+Helder diffeomorphic extension of the conjugacy between C!+H9der diffeomorphisms
on surfaces as claimed in Theorems 1 and 2.

4.1.  Proof of Theorems I and 2. For every x € Ay, let R/ be a rectangle containing
x in its interior. Let ésf (x) and E’J‘c (x) be stable and unstable leaves with the property that

Ejf(x) NAp = Eje.f (x) and E’}(x) NAp = Zl;ef (x). By the Stable Manifold Theorem,
Cl—i—l—lblder

there are curves crs : (—1,1) — E‘}(x) and cp, @ (=1,1) — 6‘}(x)
with czi(x) = c;}l(x) = 0. Let us denote by iy : intR/ — R? the orthogonal
map given by if(z) = (C})i([x, z]), c;i([z,x])), for every z € intR/. Similarly, for
R® = h(R') we define, as before, C!THIr curves ¢, ¢ 0 (—=1,1) — £ (h(x)) and
cgu © (=1,1) — ég(h(x)) and the orthogonal map i, : intR8 — R2. Since the
Markov maps M., and Mg . are C'tHO1%r conjugate then ¢ o hocyyand ¢y, 0 hocyy
have (!tHolder diffeomorphic extensions h s - R - R and ﬁu : R — R. Hence,
the map iy o h o i;l has a C!*THolder diffeomorphic extension H : R> — R? given by
H(z,w) = (hs(2), hu(w)).

Since Sy and S, are C1+H0er manifolds, there are C1+Hor aglases Sy on Sy and S,
on S, consisting of charts with C1+H¢r gyerlap maps. Using Proposition 5.4 in [8], the
orthogonal map i  extends to a chart i £ on an open set U f C Sy containing x and which
is contained in the smooth atlas Sy. Similarly, the orthogonal map i, extends to a chart fg
on an open set U ¢ C S, containing /2(x) and which is contained in the smooth atlas S,.

We choose an open set Uy C U r of Sy containing x and small enough such that
UsNR/ =UfNApand H(Uy) C ﬁg. Hence, for every x € Ay the map 2[(Uy N A )
has a C!*THO1r diffeomorphic extension to Uy given by i;!' o H o iy. Therefore, using
partitions of the unity (see Lemma 5.6 in [8]) the map & : Ay — Ag has a C!HHoler
diffeomorphic extension to an open set Uy of Sy containing A 7. O
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