
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF KAISERSLAUTERN

Master Thesis

Incremental Recomputation of Pig Latin’s
Nest and Unnest Operators

Rui Oscar Fernandes Miranda

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF KAISERSLAUTERN

Master Thesis

Incremental Recomputation of Pig Latin’s Nest and
Unnest Operators

Author: Rui Oscar Fernandes Miranda
1. Supervisor: Prof. Dr.-Ing. Stefan Deßloch
2. Supervisor: M. Sc. Yong Hu
Date: September 28, 2012





Ich versichere hiermit, dass ich die vorliegende Masterarbeit mit dem Thema ’Incremental
Recomputation of Pig Latin’s Nest and Unnest Operators’ selbstständig verfasst und keine
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Abstract

This master’s thesis addresses the maintenance of pre-computed structures, which store
a frequent or expensive query, for the nested bag data type in the high level work-flow
language Pig Latin. This thesis defines a model suitable to accommodate incremental ex-
pressions over nested bags on Pig Latin. Afterwards, the partitioned normal form for sets
is extended with further restrictions, in order to accommodate the nested bag model, allow
the Pig Latin nest and unnest operators revert each other, and create a suitable environ-
ment to the incremental computations. Subsequently, the extended operators – extended
union and extended difference – are defined for the nested bag data model with the parti-
tioned normal form for bags (PNF Bag) restriction, and semantics for the extended opera-
tors are given. Finally, incremental data propagation expressions are proposed for the nest
and unnest operators on the data model proposed with the PNF Bag restriction, and the
proof of correctness is given.

Resumo

Esta tese de mestrado aborda a problemática da manutenção de estruturas pré-cumputas,
que – regra geral – armazenam uma pesquisa computacionalmente dispendiosa ou fre-
quente, para a linguagem de fluxo de dados de alto nı́vel Pig Latin. Esta tese começa
por definir um modelo de dados para acomodar o tipo de dados nested bag do Pig Latin.
Posteriormente a partitioned normal form para sets é transformada para poder: acomodar o
tipo de dados nested bag, permitir que os operadores do Pig Latin nest e unnest possam
reverter-se mutuamente, e para criar um ambiente propicio à utilização de expressões in-
crementais. De seguida os operadores extendidos – extended union e extended difference – são
definidos para o modelo nested bag com a restrição partitioned normal form para bags (PNF
Bag), sendo a semântica dos operadores também dada nesta tese. Por fim, são propostas
expressões incrementais de propagação da informação para os operadores nest e unnest no
modelo proposto com a restrição PNF Bag.
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Resumo Alargado

Esta tese de mestrado aborda a problemática da manutenção de estruturas pré-computadas
para o tipo de dados nested bag na linguagem de fluxo de dados de alto nı́vel Pig Latin. As
estruturas pré-computadas (por exemplo views nos sistemas de bases de dados relacionais)
tradicionalmente são utilizadas para garantir um menor tempo de resposta dos sistemas
as pesquisas dos utilizadores, estas estruturas contem a resposta – total ou parcial – a uma
pesquisa frequentemente utilizada ou dispendiosa de computar, sendo garantindo desta
forma um menor tempo de resposta do sistema. No entanto, quando os dados que geraram
estas estruturas se alteram, estas deixam de conseguir responder consistentemente e com
exactidão às questões colocadas, razão pela qual necessitam de ser actualizas. O processo
de actualização destas estruturas pré-computadas é denominado por manutenção. Esta
manutenção pode ser feita repetindo a pesquisa sobre todos os dados (computação total),
ou pode ser feita utilizando a estrutura – que contem uma resposta antiga – e as alterações
que ocorreram nos dados (computação incremental). A manutenção de estruturas pré-
computadas de forma incremental, geralmente, é executada num perı́odo de tempo infe-
rior, utilizando menos recursos do sistema quando comparada com uma computação total.
Estas duas vantagens, tempo de resposta e recursos despendidos, tornam a abordagem in-
cremental interessante.

A linguagem Pig Latin destina-se a ser utilizada no processo de pesquisa sobre gigan-
tescos volumes de dados, tendo como principais vantagens a performance e a facilidade
de programação. A facilidade de programação refere-se à codificação dos programas ser
feita numa sequencia de passos, à semelhança das linguagens procedimentais, e ao mesmo
tempo estes passos apresentarem uma sintaxe de uma linguagem de pesquisa (e.g. SQL).
A performance da Linguem Pig Latin é obtida pela utilização da framework de computação
de alta performance MapReduce. Um exemplo de uma implementação da linguagem Pig
Latin é a framework Pig, que opera sobre a framework Hadoop (uma framework de MapRe-
duce). Os programas em Pig Latin são compilados em primitivas MapReduce, sende exe-
cutas sobre uma framework de MapReduce, sendo desta forma obtida alta performance,
sem a necessidade de o utilizador programar programas – para tarefas especificas – a
um nı́vel mais baixo, isto é, é utilizada uma linguagem genérica para executar pesquisas
difı́ceis de codificar em MapReduce. A principal alternativa às linguagens declarativas de
alto nı́vel é o uso de bases de dados paralelas, no entanto as bases de dados paralelas apre-
sentam elevados custos, podendo os mesmos tornar-se proibitivos à medida que o volume
de dados aumenta .

Esta tese começa por apresentar a semântica dos operadores nest e unnest, já presentes
na linguagem Pig Latin destinados à manipulação do tipo de dados nested bag. Após a
introdução destes operadores é proposto um modelo de dados, o nested bag data model,
compatı́vel com a linguagem Pig Latin. A principal restrição é a partitioned normal form para
bags (PNF Bag), que é a extensão da partitioned normal form para sets, uma das contribuições
desta tese, que aproxima a estrutura de dados bag da estrutura de dados set. O modelo de
dados e as restrições são tanto para; acomodar o tipo de dados nested bag, tornar os oper-
adores nest e unnest revertı́veis mutuamente, bem como tornar possı́vel a utilização de ex-
pressões incrementais. De seguida são propostos os operadores extendidos, extended union
e extended difference, que podem suscitante descritos como a adição de bags e subtracção de
bags, sendo também apresenta a semântica dos mesmos. Os operadores extendidos, não
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presentes no Pig Latin, são necessários para a computação incremental de estruturas. Adi-
cionalmente é demonstrado em que situações os operadores (nest, unnest, extended union e
extended difference) podem ser revertidos pelo seu inverso. Os operadores nest e unnest ape-
nas podem reverter-se mutuamente sem limitações, desde que o tipo de dados das relações
sobre os quais são aplicados, se encontrem em conformidade com o modelo proposto com
a restrição PNF Bag. No que concerne aos operadores estendidos a irreversibilidade não
é possı́vel, podendo sucintamente ser justiçada pela semântica do operador extended dif-
ference que não permite a existência de elementos com número de ocorrências negativo
no modelo. Como consequência desta irreversibilidade as operações de manutenção in-
cremental devem reflectir a mesma ordem que ocorreram nos dados aos quais a estrutura
pré-computada diz respeito. Por fim são propostas expressões de manutenção incremen-
tal das estruturas pré-computadas geradas pelos operadores nest e unnest. A opção por
uma abordagem equacional em detrimento duma abordagem algorı́tmica prende-se com
o facto de a prova de exactidão das expressões ser mais fácil quando comparada com a
abordagem algorı́tmica. Outra das vantagens da abordagem equacional é a possibilidade
de encadeamento de equações de diferentes operadores, o que alem de permitir que as
expressões geradas possam ser analisadas por um optimizador de queries, e por fim, per-
mitir a adição de novas expressões relativas a novos operadores. Esta última vantagem é
de todo impossı́vel na abordagem algorı́tmica. Não menos importante é a prova, formal
que as expressões de manutenção incremental das estruturas pré-computas estão correc-
tas. Sendo desta forma garantido que o resultado obtido por uma computação incremental
é o mesmo de uma computação completa para as estruturas que requerem manutenção.
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1 Introduction

This Chapter gives an introduction to the problem in hands on this thesis. Section 1.1
gives an overview of the technology related to this thesis problem. Section 1.2 presents the
motivation to write this thesis. Section 1.3 presents the related work, and finally, Section
1.4 presents the structure this thesis.

1.1 Technology Overview

This section presents an overview over the technology related to the emerging problem.
Subsection 1.1.1 gives an overview over the MapReduce framework, Subsection 1.1.2 gives
an overview over the high level query language Pig Latin and its implementation. Fi-
nally, Subsection 1.1.3 gives the overview of the incremental computations to maintain
pre-computed data structures (e.g. materialized views on relational databases) and the re-
lational database community approach to the problem.

1.1.1 MapReduce

MapReduce (Dean and Ghemawat, 2008) is a programing model to process large data sets
over a cluster of hundreds or thousands of machines. Processing large amounts of data
on a cluster arises concerns on how to parallelize custom computation, how to distribute
the data and how to handle machine failures. Google introduced MapReduce to handle
the problem of creating purpose specific programs to analyze large enormous amounts of
data coming from crawled documents, search query logs, etc. and to produce derivate
data such as graphs representing documents structure or the queries frequency (Dean and
Ghemawat, 2008).

Mapreduce was designed not only to allow the programmers to escape from the com-
plexity of the parallelization, distribution and balance over a cluster, but also to create
high-performance, reliable and scalable clusters over non reliable low-end hardware (Dean
and Ghemawat, 2008).

On a MapReduce implementation – e.g. Hadoop (The Apache Software Foundation,
2012a (accessed September 13, 2012) - the programmers have to code a Map and a Reduce
functions and provide them to the framework:

• The Map function takes as input a pair of <key initial, value initial > and after per-
form a transformation will generate a list of intermediate pair <key intermediate
,value intermediate > and pass it to the MapReduce framework.

• The Reduce function takes as input the intermediate key and a list intermediate val-
ues, and will merge, aggregate, filter or perform other transformations to produce
the desired value or list of values.

1



1 Introduction

Table 1.1: Inputs and outputs of Map and Reduce functions
Function Input Output
Map <key A, value A > → list(<key B, value B >)
Reduce <key B, list (value B) > → list(value C)

Table 1.1 summarizes the inputs and outputs of Map and Reduce functions.
Under this paradigm the programmer only needs to focus on code Map and Reduce

functions, and can leave herself from other concerns such as parallelization, message pass-
ing, load balance, decide how workers – and of what kind – are required to perform each
task, synchronization, etc.

MapReduce uses a master-slave architecture, where the master node assigns Map or
Reduce tasks to the slaves workers. Slave nodes can either run Map or Reduce tasks. A
MapReduce job has five main steps:

• Data split: the input data is split to be feed to workers running Map tasks.

• Map: slave workers execute theMap function. Transformations are done to the input
and some intermediate<key, value> pairs are is written to local data storage and the
master node is notified of such locations.

• Sort: intermediate <key ,value > pairs generated by Map workers are sorted by
keys.

• Shuffle: read the relevant intermediate <key ,value > pairs, sharing a common key.
A shuffle component is usually located within the worker running Reduce tasks.

• Reduce: slave workers execute theReduce function. Operations such as aggregation,
summarization, filter or further transformation are done. Finally, the result is written
into storage.

After the description of the principal execution steps, it becomes obvious why Reducer
tasks are to be executed after all the Map tasks finish, otherwise the Reducer tasks would
not be able to gather all the intermediate <key,value> pairs – produced by the Map tasks
and – required for merge operations.

Consider the example where a MapReduce job is created to analyze a music database
containing the information music artist’s performances, this is the information on Table
1.2. The MapReduce job has to for the given input identify of the popularity of music
genre by country. The information of country where performance occurred and music
genre of the artist is not – directly – present on the initial data; hence it will have to be
introduced during the Map phase. Finally, during the Reduce phase the intermediate data
will be aggregated. The tasks assigned to workers look like this:

• Map: look up where performance location is on the world (identify the country), and
look up what the genre of music the artist plays. The Map task uses as output keys
the combination music genre and country.

2



1.1 Technology Overview

Table 1.2: Music artist’s performances
Artist Name Performance Location
Madonna Bologna
Green Day Tokyo
Green Day Tokyo
Madonna London
Madonna Cologne
Michael Jackson London
Green Day Osaka

• Reduce: count the occurrences for a given combination of genre/country, and output
the genre, country and the result of this count function.

Figure 1.1 presents the overview of the execution of this MapReduce job.

As stated before, the MapReduce hardware infrastructure is built over over unreliable
low-end hardware; hence fault tolerance is provided. In an occasion when a worker ma-
chine fails, the master node can assign the task running on the faulty node to other (idle)
node. If the storage1 of intermediate results fail, the results can be computed by another
node and stored in the new node local storage. The final results storage is not likely to
fail because they are stored on the global file system. The master node fault tolerance is
guaranteed by tracking its state in checkpoints, and in the event of a master node failure a
worker machine can be promoted to master and resume the MapReduce job from the last
checkpoint.

1.1.2 Pig Latin

MapReduce have a rigid structure of the two phase functions – Map and Reduce – and the
a single input data source, this limitation of the architecture might require the program-
mers to pre-process the input or run multiple MapReduce jobs. Another drawback, to the
users, is the requirement to write the custom code used by the Map and Reduce functions;
The effort and complexity required to write this code is less than to write a purpose spe-
cific full solution. However, the user still has to code functions to perform simple actions
such as projection or selection (Olston, Reed, Srivastava, Kumar, and Tomkins, 2008). Pig
Latin (Olston, Reed, Srivastava, Kumar, and Tomkins, 2008) was proposed to be used as a
high level data flow query language and as a procedural programing language, this is, the
language as designed to facilitate the query of the data – having query syntax similar to
SQL language . However, the query operations on the low-level are done on MapReduce
making possible the manipulation of huge amounts of data with high performance. Pig
(The Apache Software Foundation, 2012b (accessed September 13, 2012) framework is an
implementation of the Pig Latin language, which runs on top of Hadoop .

A Pig Latin program is declared as a sequence of high level operators, which facilitate
human readability, and consequently the effort necessary to produce a program is lower

1intermediate results are stored on the local storage of the node assigned to execute the Map task
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1 Introduction

Figure 1.1: MapReduce execution overview
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1.1 Technology Overview

Algorithm 1.1 Pig Latin example code
rawData= LOAD ’Table 1.2’ using PigStorage(’;’) AS (name: chararray, city:charray);
cities = GROUP rawData BY city;
concertsPerCity = FOREACH cities GENERATE group, COUNT(rawData.citiy);
STORE concertsPerCity INTO ’output’ ;

Figure 1.2: PigLatin compilation overview on MapReduce

compared to effort necessary to produce an equivalent program on MapReduce. Compar-
ing Pig Latin with high-performance parallel databases the advantages are obvious: the
price of the solution is lower when deployed on large cluster; to users PigLatin step by step
approach is is easier to create code or scripts than SQL (Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008). PigLatin additionally allows the programmers to create their own
custom functions – UDF (User Defined Functions)– on the Java programing language, to
be used together with the PigLatin constructs extending the query’s flexibility and expres-
siveness. Pig Latin is therefore a powerful language to perform ad-hoc queries over large
datasets.

Consider the data present on Table 1.2 and a Pig Latin program, presented on Algorithm
1, to count the number of concerts music artist’s gave by city. Algorithm 1 statements are
explained bellow:

• The data is loaded and placed on the rawData variable having the attributes city and
name as schema.

• The data is aggregated by the attribute city and placed on the variable cities.

• The FOREACH .... GENERATE statement iterates over all tuples of the variable cities
and generates a new variable containing for each city the number of occurrences on
the variable cities.

• Finally, the query is saved into the permanent storage (e.g. the file system).

Pig converts its sequence step by step instructions to a lower level Hadoop code, and
the program is executed over the Hadoop framework. Figure 1.2 presents the compilation
overview of the example program over the MapReduce framework.

Consider the case of a data analyst hugely proficient in the use of spreadsheets, it would be
easier to query large amount of data using a high level query language, such as Pig Latin,
and export the results to be further used with her spreadsheet software than perform the
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same query task coding Map and Reduce functions. This is, coding Map and Reduce
functions, in a language such as Java, is less natural than write step by step Pig Latin state-
ments. It can be argued that MapReduce give more freedom to the user, it’s completely
true. However, Pig allows the user to write its own user defined functions (UDF) on the
Java programming language to be used together Pig Latin operators. It can also be argued
that to perform the queries in as a high-performance parallelized SQL database would be
a better solution, this is not entirely true: Pig Latin has the infrastructure price advantage,
as Pig Latin runs on top of the MapReduce framework; and the use of SQL not only does
not feel very natural to the users, but also write complex SQL query’s not an easy task.

1.1.3 Incremental Computations

As the time moves the data also moves, this is, the data is not static it keeps changing.
For example, on the Internet based approach the new user generated content is generated
every day: search queries, products added or removed from shopping wish lists, millions
of sales done every day, new click streams generated, new pictures uploaded to social
network sites, comments and ’likes’ added to those pictures, etc.

The queries over the data are often repeated over the time. However, the data keeps
changing, which explains why the same query is repeated over and over different ver-
sions of the data; it is of no use always make the same question to always obtain the same
answer, but because of data changes the answer to the same question also changes. This
arises the opportunity to merge the valid answer – given by old data – with a new answer –
given by the new data –, this is, use an incremental approach to avoid a query over the full
data in order to obtain a faster and accurate answer. As long the result obtained is similar
to the result obtained by a query over the full data, the solution which delivers a response
faster and uses less system resources is preferable. The relational database community had
done similar work in the past, with for example, the view maintenance problem (Blake-
ley, Larson, and Tompa, 1986; Gupta and Mumick, 1995). A view can be defined as the
answer or a partial answer to a query, if the view is physically stored – e.g. to answer a
frequent or an expensive query – it is said to be a materialized view. The use of materi-
alized views, by the relational database community, demonstrated to be a valid approach
to reduce the response time of the system. When data on source database tables change,
the pre-computed data present on materialized views is no longer consistent; therefore the
views require maintenance to be able to accurately answer the incoming queries. Usually
only a part of the source data changes; hence these changes can be propagated to the ma-
terialized to the view, this is, a incremental update computation. Using the incremental
update computation is usually less expensive than a full re-computation; therefore use the
the incremental approach to maintain materialized views is desirable (Blakeley, Larson,
and Tompa, 1986; Gupta and Mumick, 1995).

The materialized views maintenance can be done using two approaches an algorithmic
or equational. Equations, incremental expressions, hold several advantages when com-
pared with maintenance algorithms. Not only the proof of correctness is easy, but most
important, the equations can be chained with each other. This is, if new operators are in-
cluded in the language, new equations have to be derivated for the new operators and
the old equations – for the old operators – remain valid; in opposition, on the algorithmic
approach a new algorithm have to be purposed. Additionally, the equations can be feed
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to a query optimizer which might find a more efficient and equivalent expression (Griffin
and Libkin, 1995).

In this thesis the term pre-computed data structure or pre-computed structure refers to a log-
ical relation which is the answer to a query or a partial query. This answer is physically
stored somewhere in file system, and this thesis makes no considerations regarding how
the storage should be implemented. Furthermore, every time, an incremental update com-
putation is performed, the state of the pre-computed structure is updated to always answer
accurately to the last query made.

1.2 Motivation

Cloud computing (Armbrust, Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin,
Stoica, et al., 2010; Fox, Griffith, et al., 2009) is emerging as solution to provide supercom-
puter grade services and at same time provide the service at a reasonable price. Cloud
computing can be seen as a usage-based pricing, this is a pay as you go solution where
customers purchase hours of service which can be used non-uniformly in time (Armbrust,
Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica, et al., 2010). (Gross-
man, 2009). MapReduce is one of these cloud computing services, being offered, for ex-
ample, by Amazon Elastic Compute Cloud2. MapReduce delivers super-computer grade
performance, which is desirable feature when it comes to analyze very large amounts of
data. Another desirable feature on the data analysis process is the ability the users tell the
system what is to be done; and here MapReduce fails, MapReduce requires the user to
code the Map and Reduce functions; therefore, making it only usable by people familiar
with programing languages. It is, indeed, true that a MapReduce programs complexity is
lower than a purpose specific ’old style’ distributed program, however, that is not enough.
For this reason, the use of a high level data flow language, such as Pig Latin, on top of
MapReduce makes this super-computer grade service available to a wide new audience.
The use of a data flow programing have several arguments on its favor: makes the pro-
grams more intuitive, easy to code, easy to maintain and easy to debug.

The work on thesis focus on Pig Latin because, for the data analysts is easier to use
Pig Latin on their daily work than MapReduce (Olston, Reed, Srivastava, Kumar, and
Tomkins, 2008). On their jobs data analysts query the data, export the results of the
query, and then import these results to be used on spreadsheets or dataminning software.
Because Pig, a Pig Latin implementation, runs of top a MapReduce framework, high-
performance is also delivered; hence users can create programs and scripts at a higher
level and achieve the super-computer grade performance.

Data analysis queries are repeated over the time. However, the base data only changes
in the amount of a small portion. Hence, instead of the make the query over the full data,
it can be queried only the new data and merge the answer with the old answer previously
made. As long the results of the incremental approach are identical to a full computation,
does not take longer, and are done in a transparent way (this is, the user does everything

2Amazon Elastic MapReduce http://aws.amazon.com/elasticmapreduce/
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as she always did, without notice any change), the user has nothing to argue against such
solution or even notice any change had occurred. In addition, in most cases, the incremen-
tal computation of the queries have two benefits: the speedup of the computation; and a
lower resource usage. This is a win-win situation for the user whom have to wait less for
her results, and the companies which have to pay less for the computation power required.

This thesis focus on the maintenance of incremental computations on Pig Latin, and the
equational approach is used. The equational approach was preferred over the algorith-
mic approach, in the way this thesis only covers the nested data type related operators
of Pig Latin; hence, the incremental equations proposed can be used together with other
incremental expressions valid for the nested bag data type.

1.3 Related work

Gupta and Mumick (1995) addressed the view maintenance problem, and proposed to
the view maintenance problem to be classified under a taxonomy of four dimensions: in-
formation dimension, modification dimension, language dimension and instance dimen-
sion. Over this space problem they present algorithms developed under the taxonomy
proposed.

Albert (1991) work focused on the algebraic properties of the bag data types and how
algebraic transformations can be used to query optimization on the bag data type environ-
ment. Albert (1991) furthermore demonstrated some of the set algebraic properties fail if
applied to bags, however – also demonstrated – that if a bag is result of a boolean selection
and the extend operators are applied, query optimization algebraic transformations are
valid. A later work from Libkin and Wong (1993) pointed that ’bag language is inadequate
in expressive power as it stands’ (Libkin and Wong, 1993) and proposed further primitives to
improve bag environment expressive power.
Dayal, Goodman, and Katz (1982) extended the union, intersection and difference to pro-
vide control over duplicate elimination. A latter work from Roth, Korth, and Silberschatz
(1988) extended the relational algebra and extendeded the basic algebra operators for
nested set relations, however the set data model does not allow duplicates. Furthermore,
Albert (1991) pointed out that the extended operators on bags preserved the boolean al-
gebra structure. Roth, Korth, and Silberschatz (1988) extended the relational nested set
algebra to use the partitioned normal form (PNF) and gave the proof that under PNF on
his extended algebra the unnest operator could be reverted by the nest operator. Hulin
(1990) have a similar work on restructuring set nested relations on PNF.

Qian and Wiederhold (1991) proposed an algorithm to derive incremental expressions
from incremental relations on sets. An improvement to this algorithm was latter proposed
by Griffin, Libkin, and Trickey (1997) where the concept of minimality was introduced.
Minimality, in the context of incremental expressions, refers to update operations which
do not require unnecessary tuples computations – this is, all the tuples on the to be deleted
set are present on the relation to be maintained (e.g. a view) and all tuples on the to be
inserted set neither are present on the relation to be maintained or on the to be deleted set.
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Later, Griffin and Libkin (1995) presented an algorithm to derive incremental expressions
from incremental relations to maintain views with duplicates. However, Griffin and Libkin
(1995) incremental expressions do not take in consideration the nest and unnest operators.
Liu, Vincent, and Mohania (1999) derivated incremental expressions to be used with the
nest and unnest operators in nested set relations and PNF nested set relations. Following
this work Liu, Vincent, et al. (2003) derivatived incremental expressions for the expansion,
projection, selection, intesection, join operators for nested relational model on PNF.

1.4 Thesis structure

This thesis is structured as the follows: on this Chapter it was given an overview of the
technologies related to this thesis subject, and it was presented the related work and mo-
tivation for this master’s work. Chapter 2 presents the nested bag data type model and
the restrictions applied to the model. Chapter 3 presents the operators used to manipulate
the nested bag data type which are already present on Pig Latin, and the extended oper-
ators required for the incremental computations. Chapter 4 introduces the reader to the
need of process the incremental computations in the same order as they happened on the
base relations and to which – and under what circumstances – operators can be reverted.
Additionally, and most important, the data propagation rules are presented and the proof
of correctness is given. Finally, on Chapter 5 the contributions of this masters work are
summarized and directions to further work are given.
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2 Data Model Definition

A bag, or ’multiset’, is a container of elements, but unlike a set, the bag might contain du-
plicates (Albert, 1991). On Pig Latin a bag is a collection of data where the tuples might
be characters, numbers, booleans – atomic attributes – or another bags – non atomic at-
tributes. When a bag is contained inside a tuple of another bag, this last bag is a nested
bag, this is, a bag with relational attribute on its schema.

This chapter is structured as the follows: Section 2.1 defines the nested bag data model to
be used on this thesis, Section 2.2 gives the definition of the partitioned normal form (PNF),
and finally, on Section 2.3 the partitioned normal form for bags (PNF Bag) is defined.

The use of the nested bag model and the PNF Bag, defined on this chapter, are the two
main assumptions used on the remainder of this thesis.

2.1 Nested Bag Model

A nested relational schema R is a collection of rules and attributes having the form R =
(A1, ..., An,R

∗
1, ..., R

∗
q), where the number of atomic attributes, Ai, is non-negative (n ≥ 0),

the number of relational attributes, R∗j , is non-negative (q ≥ 0), and the schema contains at
least one attribute (q+n ≥ 1). Each relational attribute has it own sub-schema, this means
the relational attributes are also sub-relations.

Example 2.1 (The music database schema)
Consider the example where a music database contains the name of a music artist (Artist Name),
the music genre (Genre) of this artist – to not generate a very complex example, each artist has only
one music genre –, the artist’s tour information (Tour), and the published albums (Records). The
schema for this example contains the following rules:

Music DB = (Artist Name,Genre, Tour∗, Records∗)
Tour = (Country, Performance∗)
Performance = (City,Date)
Records = (Album, Y ear)

On this example Music DB, Tour, Performance and Records are relational attributes, and all
the other fields – Artist Name, Genre, Country, City, Date, Album and Year – are atomic at-
tributes.

The relational attributes are also sub-schemes, for example Tour is a relational attribute on the
schema Music DB, and it has it owns scheme that is:

Tour = (Country, Performance)
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Table 2.1: A nested relation over the Music DB schema
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Tokyo 16 Aug 12 Kerplunk 1992

Punk Japan Tokyo 18 Aug 12 Dookie 1994
Green Day Rock Osaka 19 Aug 12 Insomniac 1995

England London 23 Aug 12 Nimrod 1997
M. Gladbach 29 Aug 12 Warning 2000

Germany Berlin 30 Aug 12 American Idiot 2004
Berlin 30 Aug 12 American Idiot 2004
Konstanz 01 Sep 12 ¡Uno! 2012

Portugal Coimbra 24 Jun 12 Like a Prayer 1989
Madonna Pop Germany Cologne 10 Jul 12 MDNA 2012

Norway Oslo 15 Aug 12 Music 2000
London 28 Aug 09 Thriller 1982

M. Jackson Pop England London 13 Jul 09
London 06 Mar 10
London 06 Mar 10

A database instance r over the schema R (R =
{
A1, ..., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q ≥ 0, n +

q ≥ 1), is a finite set if of elements over R. A tuple t of a relation r, is composed by atomic at-
tributes (ai ∈ {A1, ..., An}) and/or instances of the relational attributes (r∗i ∈

{
R∗1, ..., R

∗
q

}
),

this is:

R = schema(r) =
{
A1, ..., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q ≥ 0, n+ q > 0

t ∈ r : t =
(
a1, ..., an, r

∗
1, ..., r

∗
q

)
, ai ∈ {A1, ..., An} , r∗i ∈ {R∗1, ..., R∗n}

Example 2.2 (The music database instances)

On the Table 2.1 is presented an database instance of the Music DB schema introduced on Ex-
ample 2.1.
A tuple from this relation can be for example:

tuple =

M.Jackson, Pop,

England,


(London, 28Aug09)
(London, 13Jul09)
(London, 06March10)


 , {(Thriller, 1982)}


The nesting level refers to the maximum number of sub-schemes a relation contains. The

nesting level should be evaluated using the above rules:

• Atomic attributes are evaluated as 0.
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• Relational attributes are evaluated as 1 incremented to their own level, this means
the nesting level definition should be applied recursively.

• The highest value obtained on the above rules is the nesting level.

Example 2.3 (The music database nesting level)

For the Music DB schema the level of the schema can be evaluated as 2, which is comes from the
value of the highest level sub-relation, Tour, plus 1:

level = max{ Atomic attributes level, Tour level, Records level} ⇔
level = max {0, 1 + 1, 0 + 1} = max{0, 2, 1} = 2

Tour level = max {0, P erformance level} = max {0, 0 + 1} = max {0, 1} = 1
Performance level = max {City,Date} = max {0, 0} = 0
Records level = max {Album, Y ear} = max {0, 0} = 0

Let f be a function function that counts the occurrence of each an element, tuple, in
a relation r. The outcome of the count function must always generate a non negative
number, this is:

t ∈ r,N0 = N ∪ {0}
fr (t)→ N0

Example 2.4 ( The count function)
Let r be a relation over the schema :

schema(r) = (Artist Name, Tour∗)
Tour = (Country, CityA∗)
CityA = (CityB)

The relation r is presented on Table 2.2 and above are illustrated the evaluations of some tuples
the using the count function over the relation r.

fr (Green Day, (Japan, {(Tokyo)})) = 2
fr (Green Day, (Japan, {(Osaka)})) = 1
fr (Madonna, (Japan, {(Osaka)})) = 0, this tuple does not belong to the relation

fr

M.Jackson,

England,


(London)
(London)
(London)


 = 1

fr

(
M.Jackson,

(
England,

{
(London)
(London)

}))
= 0, this tuple does not belong to the relation

fr (Green Day) = 0, this tuple schema does not match with r schema
fr (M.Jackson, (England, {(London)})) = 0, this tuple does not belong to the relation
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Table 2.2: Relation to be used on the count example
Artist Name Tour

Country CityA
CityB

Green Day Japan Tokyo
Green Day Japan Tokyo
Green Day Japan Osaka
Green Day England London

M. Gladbach
Green Day Germany Berlin

Konstanz
Madonna Portugal Coimbra
Madonna Germany Cologne
Madona Norway Oslo

London
M. Jackson England London

London

Now let t be a tuple from r such that:

t =

M. Jackson,

England,


(London)
(London)
(London)




And let t’ be a tuple ∈ t [Tour∗], this is:

t′ =

England,


(London)
(London)
(London)




Underneath is presented the evaluation of the count function for the relational attribute (sub-
relation or sub-bag) CityA:

ft[CityA∗] (London) = 3

ft[CityA∗] (Paris) = 0, this tuple does not belong to the relation

ft[CityA∗]


London
London
London


 = 0, the count function takes a tuple as argument, and a bag was provided

The nested bag data type can be defined as:

• r is a relation over a nested relation schema R (R =
{
A1, ..., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q ≥

0, n+ q ≥ 1), where Ai is a atomic attribute and R∗j is a relational attribute.
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• if a tuple belongs to the relation, the result of the count function is always positive,
otherwise will be zero:

1. ∀t ∈ r, fr(t) > 0

2. ∀t /∈ r, fr(t) = 0
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2.2 Partition Normal Form (PNF)

The partitioned normal form (PNF) (Roth et al., 1988) is required for on the set data model
the unnest operations can be reverted by a nest operation.

The partitioned normal form (PNF) relies on functional dependency; hence, after an in-
troduction to the nest and unnest operators, the functional dependency definition will be
given, and afterwards, the PNF definition will be given.

Nest and Unnest operations

The nest and unnest operators are already present on Pig Latin, they aim at the manipu-
lation of the nested bag data type. The nest operator takes a relation and generates a new
relation by aggregating the tuples sharing the same atomic nesting keys into a new tuple
containing the nest keys as atomic attributes and the remainder attributes, of the initial
tuples, inside a new relational attribute. The unnest operator have the reverse purpose of
the nest operator, this is, for a given relation the relational attributes are to be flattened.
In other words, the unnest operator takes a nested relation and generates a new relation,
where, for each tuple of the initial relation, the relational attribute to be unnested is con-
verted into multiple tuples and the remainder attributes of the initial tuple are remain the
same. Example 2.5 introduces the use of nest and unnest over of two relations.

Example 2.5 (Nest and unnest)

Let r be the relation present on Table 2.4 having the flat schema:

schema(r) = (Artist Name,Country, City)

The relation r nested by the atomic attribute Artist Name as key generates the relation s present on
Table 2.3 .
As it is possible to state on Table 2.3, the tuples were aggregated by Artist Name, and two tuples
were generated having on the atomic attribute the values Green Day and Madonna. The remain-
der attributes were ’placed’ on the new relational attribute Performance, and the dependency they
had with the Artist Name was preserved.

Now let s, Table 2.3, have the schema:

schema(s) = (ArtistName, Performance∗)
Performance = (Country, City)

Unnesting the relation s by the relational attribute Performance generates the relation r. As it is
possible to state on Table 2.4, the relation was ’flattened’.

Functional dependency

On the nested set model exists functional dependency between atomic attributes, and re-
lation attributes iff, for all tuples of a relation r over a schema R (R = (A1, ..., An,R

∗
1, ..., R

∗
q), n ≥

0, q ≥ 0, q+n ≥ 1), there are no two (or more) tuples, containing the same atomic attributes
(t[A1, ..., An]) and containing a different versions of the relational attribute, this is:
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Table 2.3: Relation nested (Example 2.5)

.

Music DB
Artist Name Performance

Country City
Japan Tokyo

Green Day Japan Osaka
England London

Madonna Paris France
England London

Table 2.4: Relation unnested (Example 2.5)
Music DB

Artist Name Country City
Green Day Japan Tokyo
Green Day Japan Osaka
Green Day England London
Madonna Paris France
Madonna England London

∀t ∈ r, if∃t′ : t [A1, ..., An] = t′ [A1, ..., An]⇒ t
[
A1, ..., An, R

∗
1, ..., R

∗
q

]
= t′

[
A1, ..., An, R

∗
1, ..., R

∗
q

]
Example 2.6 (The music database functional dependency)

Consider the Music DB instance presented on Table 2.5, the functional dependency is not fulfilled
for this nested bag. There exists two tuples, whose atomic attributes for the Artist Name and Genre
– M. Jackson and Pop respectively – which can refer to different instances of the relational attribute
Records; hence on this instance the functional dependency is not preserved, this is:

t =

M.Jackson, Pop,

England,


(London, 28Aug09)
(London, 14Jul09)
(London, 06Mar10)


 , {(Thriller, 1982)}


t′ =

M.Jackson, Pop,

England,


(London, 28Aug09)
(London, 14Jul09)
(London, 06Mar10)


 ,


(Music&Me, 1973)
(Bad, 1987)
(Dangerous, 1991)




t [AArtist Name, AGenre] /→ t [R∗]⇔

t [AArtist Name, AGenre] = t′ [AArtisttextName, AGenre] ∧ t [R∗Records] 6= t′ [R∗Records]
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Table 2.5: Violation of the functional dependency
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
London 14 Jul 09

M. Jackson Pop England London 14 Jul 09 Thriller 1982
London 06 Mar 10
London 28 Aug 09 Music & Me 1973

M. Jackson Pop England London 14 Jul 09 Bad 1987
London 06 Mar 10 Dangerous 1991

Partitioned normal form (PNF)

A relation r, over a schema R (R = (A1, ..., An,R
∗
1, ..., R

∗
q), n > 0, q > 0, q + n ≥ 1) on the

partitioned normal form (PNF) (Roth, Korth, and Silberschatz, 1988), iff :

1. There is a functional dependency between the atomic attributes and the relational
attributes:

∀t ∈ r, if∃t′ : t [A1, ..., An] = t′ [A1, ..., An]⇒
t
[
A1, ..., An, R

∗
1, ..., R

∗
q

]
= t′

[
A1, ..., An, R

∗
1, ..., R

∗
q

]
2. For every tuple, all relational attributes – subrelations – are also in PNF:

∀t ∈ r ∧ ∀r′ ∈
{
t [R∗1] , ..., t

[
R∗q
]}
, r’ is also on PNF

3. Tuples containing only atomic attributes are on PNF:

∀t ∈ r, if∃t′ : t [A1, ..., An] = t′ [A1, ..., An]⇒
t [A1, ..., An] = t′ [A1, ..., An]

Example 2.7 (The music database PNF)

The relation example presented on Table 2.5 is not on PNF because there is no functional depen-
dency – explained on Example 2.6 –, conversely the example presented on Table 2.6 is on PNF.

2.3 Bag Partitioned Normal Form (PNF Bag)

The partitioned normal form (PNF) is intent to be used on the set environment. How-
ever, the bag environment has different characteristics of the set environment, namely the
bag allows duplicates. The partitioned normal form for bags (PNF Bag) is proposed as an
extension of the PNF with further restrictions. With such restriction the unnest and nest
operators can revert each other on the nested bag model with the PNF Bag restriction.

A relation r, over a schema R (R = (A1, ..., An,R
∗
1, ..., R

∗
q), n ≥ 0, q ≥ 0, q + n ≥ 1) on

PNF Bag, iff:
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Table 2.6: Relation on the partitioned normal form
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
London 28 Aug 09 Music & Me 1973

M. Jackson Pop England London 14 Jul 09 Bad 1987
London 06 Mar 10 Dangerous 1991
London 28 Aug 09 Music & Me 1973

M. Jackson Pop England London 14 Jul 09 Bad 1987
London 06 Mar 10 Dangerous 1991

• The relation fulfills PNF.

• The outcome of the count function must be evaluated as zero or one for tuples having
relational attributes, this is, the tuple might or might not belong to the relation and
no duplicates are allowed for tuples having relational attributes: if(q > 0) → ∀t ∈
r, f (t) = 1

• The outcome of the count function must be evaluated as non-negative for tuples hav-
ing only atomic attributes, this is, duplicates are allowed for tuples without relational
attributes: if (q = 0)→ ∀t ∈ r, f (t) > 0

• For every tuple, all it’s relational attributes – subrelations – are also on PNF bag:

∀t ∈ r, ∀r′
{
t [R∗1] , ..., t

[
R∗q
]}

, r’ is on PNF Bag

Example 2.8 (PNF Bag example)
Consider two relations r and s having the same schema that is:

schema(r) = schema(s) = (Artist Name, Performance∗)
Performance = (Country, City)

Let r be defined as : r = {(Madonna, {(England, London)}) , (Madonna, {(England, London)})}
r is on PNF, however is not on PNF bag. The count evaluation of the tuple (Madonna, {(England, London)})

is higher than one; hence the relation r is not on PNF bag.

fr (Madonna, {(England, London)}) = 2

In opposition, let s be defined as: s = {(Madonna, {(England, London) , (England, London)})}.
On s, the count function evaluates all tuples – belonging to the relation – containing relational at-
tributes as one, conversely tuples having exclusively atomic attributes can be evaluated with values
higher than one.

For example consider t be the tuple from s having the atomic attribute Madonna, now let t’ be
a tuple extracted from the relational attribute Performance from t having as atomic attributes the
values England and London. The count function evaluates this tuple as two, and because this
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tuple has only atomic attributes, the result of the evaluation of count functions is allowed to be
evaluated a value higher than one. This is, s fulfills PNF Bag:

t ∈ s ∧ t = (Madonna, {(England, London) , (England, London)})
t′ ∈ t [Performance∗] ∧ t′ = (England, London)
fs (t) = 1
ft[Performance∗] (t

′) = 2
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This chapter presents and gives the formal definition of the Pig Latin operators that ma-
nipulate nested relations, this is nest and unnest operators. Additionally, the extended
operators, required to perform incremental computations, are defined and formal defini-
tion is provided. All the operators definitions are given over the nested bag data model
with the partitioned normal form for bags (PNF Bag) restriction.

This chapter is structured as the follows, section 3.1 presents the Pig Latin operators,
and section 3.2 presents the extended operators.

3.1 Pig Latin Operators

This section describe, and provide a formal definition of, nest and unnest operators im-
plemented and present on Pig Latin. Table 3.1 gives an overview of the nest and unnest
operators.

Subsection 3.1.1 presents the nest operator and finally, Subsection 3.1.2 presents the
unnest operator.

3.1.1 Nest Operator

The nest operator generates a new relation, from another already existent, by grouping
attributes into a new relational attribute sharing common nesting keys – which must be
atomic attributes. On Pig Latin the nest operator, represented as n, is implemented by the
GROUP operator.

Let r be a relation having the schema: schema (r) =
{
A1, .., An, R

∗
1, ..., R

∗
q

}
, n > 0, q ≥

0. The nesting of a finite number of atomic attributes ω belonging to r, this is, ω =
{A1, ..., Am} ⊆ {A1, .., An} and m ≤ n, can be formally represented as:

(3.1)

Table 3.1: Pig Latin operators overview
Operator Symbol Pig Latin
Nest nω (r) GROUP
Unnest µω (r) FLATTEN
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Table 3.2: Relation r to be nested (Example 3.1)
Music DB

Artist N. Country City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson England London 13 Jul 09
M. Jackson England London 06 Mar 10

nω (r) =


t|∃u ∈ r, (t [A1, ...Am] = r [A1, ..., Am])∧

R∗1 =

{
t′|t′ [Am+1, ..., An] = u [Am+1, ..., An]∧
t′
[
R∗1, ..., R

∗
q

]
= u

[
R∗1, ..., R

∗
q

] }  =

=


t|∃u ∈ r, (t [ω] = r [ω])∧

R∗1 =

{
t′|t′ [{A1, .., An} − ω] = u [{A1, .., An} − ω]∧
t′
[
R∗1, ..., R

∗
q

]
= u

[
R∗1, ..., R

∗
q

] } 
• If r is on PNF Bag, then nω (r) is also on PNF Bag.

Example 3.1 (Nesting example)

Let r be the relation defined on Table 3.2, having the flat schema:

schema(r) = (Artist Name,Country, City,Date)

A new relation v generated from nesting the r by Artist Name, Country, this is:
nArtist Name,Country (r), is presented on Table 3.3.
The relation v, can be further nested, if v is nested by Artist Name, this is:
nArtist (nArtistName,Country (r)), this relation is presented on Table 3.4.

It is obvious that Table 3.4 have better redeability and takes less space to store than Table 3.2.

Notes regarding the nest definition

This definition differs from the real Pig implementation, in the way the nest operator
places all the attributes (including the nesting keys) on the relational attribute of the gen-
eration relation, this is:
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Table 3.3: s= µTour (r) = µTour (Table3.4)

Music DB
Artist N. Country Performance

City Date
Tokyo 16 Aug 12

Green Day Japan Tokyo 18 Aug 12
Osaka 19 Aug 12

Green Day England London 23 Aug 12
M. Gladbach 29 Aug 12

Green Day Germany Berlin 30 Aug 12
Konstanz 01 Sep 12

Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12

London 28 Aug 09
M. Jackson England London 13 Jul 09

London 06 Mar 10

n′ω (r) =

{
t|∃u ∈ r (t [ω] = r [ω])∧
R∗1 =

{
t′|t′

[
A1, .., An, R

∗
1, ..., R

∗
q

]
= u

[
A1, .., An, R

∗
1, ..., R

∗
q

]} }
The placement of redundant atomic values on the relational attribute is unnecessary;

therefore on the nest operator definition they are omitted.

3.1.2 Unnest Operator

The unnest operator generates a new relation, by flattening a relational attribute of a ex-
isting relation. The unnest operator, represented as µ, on Pig Latin is implemented by the
FLATTEN function.

Let r be a relation having the schema: schema (r) =
{
A1, .., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q > 0,

the unnest of an relational attribute ω belonging to the relation relational attributes, this is
ω ∈

{
R∗1, ..., R

∗
q

}
and q ≥ 1, can be formally represented as:

(3.2)

µω (r) =
{t|∃u ∈ r, t [A1, ..., An] = u [A1, ..., An]} , if r is flat

t|∃u ∈ r, t [A1, ..., An] = u [A1, ..., An] ,(
t
[{
R∗1, ..., R

∗
q

}
− {ω}

]
= u

[{
R∗1, ..., R

∗
q

}
− {ω}

])
∧(

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [ω]

)
 , if r is nested

23



3 Data Operation Models

Table 3.4: Relation r to be unnested ( Example 3.2 )
Music DB

Artist N. Tour
Country Performance

City Date
Tokyo 16 Aug 12

Japan Tokyo 18 Aug 12
Green Day Osaka 19 Aug 12

England London 23 Aug 12
M. Gladbach 29 Aug 12

Germany Berlin 30 Aug 12
Konstanz 01 Sep 12

Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12

Norway Oslo 15 Aug 12
London 28 Aug 09

M. Jackson England London 13 Jul 09
London 06 Mar 10

• If r is on PNF Bag, then µω (r) is also on PNF Bag.

Example 3.2 (Unnest example) Let r be the relation present on Table 3.4, having the schema:

schema(r) = (ArtistName, Tour∗)
Tour = (Country, Performance∗)
Performance = (City,Date)

A new relation v generated from unnesting the relational attribute Tour, this is, µTour (r). Re-
lation v is presented on Table 3.3 and has the following schema:

schema(v) = (ArtistName,Country, Performance∗)
Performance = (City,Date)

v can be further unnested, this time by the Performance relational attribute generating the flat
relation s. s is presented on Table 3.2 and has the following schema:

schema(s) = (ArtistName,Country, City,Date)

3.2 Extended Operators For Nested Bags

This section presents, and give formal definition of, the extended operators for bags. These
operators are not present on Pig Latin however, they are required to perform incremental
computations. The extended operators for nested bags are different from the extended
operators for nested sets, present on (Roth, Korth, and Silberschatz, 1988), in the way sets
and bags have different semantics. Therefore, on this section the extended operators are
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Table 3.5: Extended operators overview
Operator Symbol
Extended Union r ⊕ s
Extended Difference r 	 s

redefined for the nested bag model with the partition normal form for bags (PNF Bag)
restriction.

Table 3.5 presents an overview of the extended operators, presented in this this chapter
as the follows: Subsection 3.2.1 presents the extended union, and Subsection 3.2.2 presents
the extended difference.

3.2.1 Extended Union

The extended union is an operator which takes two relations over the same schema and
generates a new relation under the same schema. The extended union uses, all, the rela-
tion atomic attributes as union keys and, recursively, performs the extended union of the
relational attributes. If the two relations being united under the extended union operator
are on PNF Bag, the new relation will also be on PNF Bag. On a more formal way, the
extended union can be described as:

Let r and s be two nested bag relations sharing the same schema, this is, schema(r) =
schema(s) =

{
A1, ..., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q ≥ 0, n+q > 0, whereAi are atomic attributes

and Rj are relational attributes.
The extended union, represented by the ⊕ operator, can be formally defined as:

(3.3)

r ⊕ s =
{t| (t ∈ r ∨ t ∈ s) ∧ fr⊕s (t) = fr (t ∈ r) + fs (t ∈ s)} , if r and s are flat

t| (∃u ∈ r, ∃v ∈ s)(
(t[A1, ..., An] = u[A1, ..., An] = v[A1, ..., An])∧(
t [R∗1] = u[R∗1]⊕ v[R∗1], ..., t

[
R∗q
]) )

∨(
(t[A1, ..., An] = u[A1, ..., An] 6= v[A1, ..., An])∧(
t [R∗1] = u[R∗1], ..., t

[
R∗q
]

= u[R∗q ]
) )

∨(
(t[A1, ..., An] = v[A1, ..., An] 6= u[A1, ..., An])∧(
t [R∗1] = v[R∗1], ..., t

[
R∗q
]

= v[R∗q ]
) )


, if r and s are nested relations

• If r and s are on PNF Bag, then r ⊕ s is also on PNF Bag.

The above extended union definition, can be described as:

• A tuple, belonging to the relation on the left side of the operator, with no match
match on the second relation, will belong to the new relation.
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Table 3.6: A nested relation over the Music DB schema
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Tokyo 16 Aug 12 Kerplunk 1992

Punk Japan Tokyo 18 Aug 12 Dookie 1994
Green Day Rock Osaka 19 Aug 12 Insomniac 1995

England London 23 Aug 12 Nimrod 1997
M. Gladbach 29 Aug 12 Warning 2000

Germany Berlin 30 Aug 12 American Idiot 2004
Konstanz 01 Sep 12 ¡Uno! 2012

Portugal Coimbra 24 Jun 12 Like a Prayer 1989
Madonna Pop Germany Cologne 10 Jul 12 MDNA 2012

Norway Oslo 15 Aug 12 Music 2000
London 28 Aug 09 Thriller 1982

M. Jackson Pop England London 13 Jul 09
London 06 Mar 10

• A tuple, belonging to the relation on the right side of the operator, with no match
match on the left side of the operator, will belong to the new relation.

• A tuple belonging to the relation on left side of the operator, with no relational at-
tributes and with a match on the second relation, the generated tuple it will be subject
to the outcome of the addition of the count function for both relations.

• A tuple belonging to the relation on the left side of the operator, with relational at-
tributes and with a match on the second relation, the generated tuple it will be sub-
ject to the outcome of the extended union of the relational attributes of both relations
(applied recursively).

• The generate relation is on PNF Bag, if the both base relations are also on PNF Bag.

Example 3.3 (Extended union)

Let r be the relation defined on Table 3.6, and the s the relation defined on Table 3.7. Both r and s
share the same the Music DB schema, which is:

Music DB = (Artist Name,Genre, Tour∗, Records∗)
Tour = (Country, Performance∗)
Performance = (City,Date)
Records = (Album, Y ear)

Let v be the resultant relation from the extended union of r and s, this is: r ⊕ s = v. Table 3.8
presents the relation v.
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Table 3.7: s relation over the Music DB schema containing tuples to be inserted
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Punk England Reading 25 Aug 12 39/Smooth 1990

Green Day Rock USA Las Vegas 21 Sep 12
The Cranberries Rock Germany Berlin 08 Oct 12 Roses 2012
M. Jackson Pop England London 09 Jan 10

London 12 Jan 10 ∅

3.2.2 Extended Difference

The extended difference is an operator takes two relations over the same schema and gen-
erates a new relation under the same schema. The new relation is generated from the
tuples present on the relation on the left side of the extended operator, deducted from the
tuples present on the relation on the right side of the extended operator operator. The ex-
tended difference uses the atomic attributes – as keys to match tuples – and, recursively,
performs the extended difference of the relational attributes. The extended difference, rep-
resented by the 	 operator, can be formally defined as:

Let r and s be two nested bag relations sharing the same schema, which is schema(r) =
schema(s) =

{
A1, ..., An, R

∗
1, ..., R

∗
q

}
, n ≥ 0, q ≥ 0, n+q > 0, whereAi are atomic attributes

and Rj are relational attributes.

(3.4)

r 	 s =
{t| (t ∈ r ∨ t ∈ s) ∧ fr	s (t) = max {0, fr (t ∈ r)− fs (t ∈ s)}} , if r and s are flat

t| (∃u ∈ r, ∃v ∈ s) (t[A1, ..., An] = u[A1, ..., An] = v[A1, ..., An])∧(
t [R∗1] = u[R∗1]	 v[R∗1], ..., t

[
R∗q
]

= u[R∗q ]	 v[R∗q ]
)
∧

(t [R∗] 6= ∅)

∨(
(t[A1, ..., An] = u[A1, ..., An] 6= v[A1, ..., An])∧(
t [R∗1] = u[R∗1], ..., t

[
R∗q
]

= u[R∗q ]
) )


, if r and s are nested relations

• If r is on PNF Bag, then r 	 s is also on PNF Bag.

The above extended difference definition, can be described as:

• A tuple, belonging to the relation on the left side of the operator, with no match
match on the second relation, will belong to the new relation.
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Table 3.8: Extended union from the relations present on Table 3.6 and Table 3.7
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Tokyo 16 Aug 12 Kerplunk 1992

Japan Tokyo 18 Aug 12 Dookie 1994
Green Day Punk Osaka 19 Aug 12 Insomniac 1995

Rock USA Las Vegas 21 Sep 12 39/Smooth 1990
England Reading 25 Aug 12 ¡Uno! 2012

London 23 Aug 12 Nimrod 1997
M. Gladbach 29 Aug 12 Warning 2000

Germany Berlin 30 Aug 12 American Idiot 2004
Konstanz 01 Sep 12

Portugal Coimbra 24 Jun 12 Like a Prayer 1989
Madonna Pop Germany Cologne 10 Jul 12 MDNA 2012

Norway Oslo 15 Aug 12 Music 2000
The Cranberries Rock Germany Berlin 08 Oct 12 Roses 2012

London 28 Aug 09 Thriller 1982
M. Jackson Pop England London 13 Jul 09

London 06 Mar 10
London 09 Jan 10
London 12 Jan 10

• A tuple belonging to the relation on the left side of the operator, with no relational
attributes and with a match on the second relation, the generated tuple it will be
subject to the outcome of the difference of the count function for both relations.

• A tuple belonging to the relation on the left side of the operator, with relational at-
tributes and with a match on the second relation, the generated tuple it will be subject
to the outcome of the extended difference of the relational attributes (applied recur-
sively).

• A relational attribute, i.e a sub-relation, with no tuples is empty.

• A generated tuple, containing relational attributes, whose all relational attributes are
empty is discarded – this is, the tuple will not be present on the result relation.

• The generate relation is on PNF Bag, if the relation on the left side of the extended
difference operator is also on PNF Bag.

Example 3.4 (Extended difference) Let r be the relation defined on Table 3.6, and the s the rela-
tion defined on Table 3.9. Both r and s share the same the Music DB schema, which is:
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Table 3.9: Relation over the Music DB schema, containing tuples to be ’deleted’
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Punk England London 23 Aug 12 Dookie 1994

Green Day Rock France Paris 26 Aug 12 American Idiot 2004
The Cranberries Rock Germany Berlin 08 Oct 12 Roses 2012

London 06 Mar 10
M. Jackson Pop England London 13 Jul 09 ∅

London 28 Aug 09

Table 3.10: Extended difference from the relations present on Table 3.6 	 Table 3.9
Music DB

Artist N. Genre Tour Records
Country Performance Year Album

City Date
Tokyo 16 Aug 12 Kerplunk 1992

Punk Japan Tokyo 18 Aug 12 Nimrod 1997
Green Day Rock Osaka 19 Aug 12 Insomniac 1995

M. Gladbach 29 Aug 12 Warning 2000
Germany Berlin 30 Aug 12 ¡Uno! 2012

Konstanz 01 Sep 12
Portugal Coimbra 24 Jun 12 Like a Prayer 1989

Madonna Pop Germany Cologne 10 Jul 12 MDNA 2012
Norway Oslo 15 Aug 12 Music 2000

M. Jackson Pop ∅ Thriller 1982

Music DB = (Artist Name,Genre, Tour∗, Records∗)
Tour = (Country, Performance∗)
Performance = (City,Date)
Records = (Album, Y ear)

Let v be the resultant relation from the extended difference of r and s, this is: r 	 s = v.
Table 3.10 presents the relation v.
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4 Incremental Expressions

An incremental expression, is a rule that given a pre-computed structure (e.g. a relational
database materialized view) and the changes of the base relations from which that pre-
computed structure was generated, can produce a new version of the pre-computed structure.
This version of the pre-computed structure have equivalent content to a full re-computation.
However, it is desirable that the incremental expression is cheaper or faster to compute than
a full re-computation.

This chapter is structured as the follows: Section 4.1 discusses the importance of the
incremental operations be performed in the same order they occurred in the initial rela-
tions. Section 4.2 discusses what operations can can be reverted and what conditions must
be fulfilled. Finally, on Section 4.3 the incremental data propagation rules are given for
relations on the nested bag model on PNF Bag.

4.1 Execution Order

Let t1 and t2 be two different data modifications, and let r be a relation over the schema R.
Let rt1 be the state of relation r on t1 and rt2 be the state of relation r on t2. Between t1 and
t2, some tuples from r were deleted ∆r and some tuples were inserted∇r, this is:

rt2 = rt1 ⊕∆r 	∇r (4.1)

The Equation 4.1 holds if no other data modifications occurred between t1 and t2, this
means ∆r = ∅ or ∇r = ∅. If other data modifications occurred between t1 and t2 the
Equation 4.1 might not hold as the Example: 4.1 illustrates.

Example 4.1 (Equation 4.1 does not hold multiple transactions)
Let t1 and t2 be two different transactions, and let the MusicDB schema:

MusicDB = (Artist Name, Performance∗)
Performance = (Country, City)

Let the relation r, presented on Table 4.1, be an relation having the schema Music DB, on t1.
Between t1 and t2 some tuples were deleted ∇r, this relation is presented on Table 4.2, and some
tuples were inserted ∆r, this relation is presented on Table 4.3. It becomes obvious that:

rt1 ⊕∆r 	∇r 6= rt1 	∇r ⊕∆r ⇔
⇔ Table4.5 6= Table4.4

On Table 4.5 is presented the state of rt2 – this is, the state of r on t2 – if the insertions are
computed first than the deletions, conversely on Table 4.4 is presented another version of rt2 state if
the deletions are processed first than the insertions. Table 4.5 have a tuple which is not present on
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Table 4.1: State of r on t1 (Example 4.1)
Music DB

Artist Name Performance
Country City
Japan Tokyo

Green Day Japan Osaka
England London
Germany Berlin

Table 4.2:∇r, tuples to be deleted (Example 4.1)
Music DB

Artist Name Performance
Country City
Japan Tokyo
Japan Tokyo

Green Day England London
Germany Berlin
Italy Bologna

Table 4.4; therefore this example illustrates that the order the insertions and deletions are performed
have influence the final state of the relation.

4.2 Reverse Operators

This section focus on present what operators can be reverted and under what circum-
stances. If base bag nested relations fulfill PNF Bag restriction, nest and unnest can always
be reverted by an unnest or nest operation, respectively. In contrast an extended difference
operation, cannot always be reverted by an extended difference operation.

Subsection 4.2.1 presents this claim for extended bag operators, and Subsection 4.2.2
presents this claim for nest and unnest operators.

Table 4.3: ∆r, tuples to be inserted (Example 4.1)
Music DB

Artist Name Performance
Country City
Japan Tokyo
England London

Green Day France Paris
USA Las Vegas
Italy Bologna
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Table 4.4: r′t2 = rt1 	∇r ⊕∆r (Example 4.1)
Music DB

Artist Name Performance
Country City
Japan Tokyo
Japan Osaka

Green Day England London
France Paris
USA Las Vegas

Table 4.5: r′′t2 = rt1 ⊕∆r 	∇r (Example 4.1)
Music DB

Artist Name Performance
Country City
Japan Osaka

Green Day France Paris
England London
USA Las Vegas

4.2.1 Extended Union and Extended Difference

An extended difference operation cannot always be reverted by an extended union oper-
ation using the same bag on the right side of the operator, this is, let r and s be two bags
sharing the same schema, then the following equation is not always true: r 	 s ⊕ s = r.
This behavior is easily explained by the extended operator definition (Section 3.2); for the
flat bag case the extended union perform the addition of the of two results of the count
functions, and the extended difference performs the subtraction of the two results of count
functions. However, the extended difference adds an additional condition, the result of
the subtraction of the count functions is to be equalized to zero if its initially evaluated as
a negative number. The Example 4.2 illustrates this claim.

Example 4.2 (The extended difference cannot always be reverted)

Let r and s be two bags having a flat schema, this is:

schema(r) = schema(s) = (Artist Name,City)
r = {(GreenDay, Tokyo)}
s = {(Madonna, Paris)}

Performing the extended difference from r and s generates v, this is:

v = r 	 s =
= {(GreenDay, Tokyo)} 	 {(Madonna, Paris)} =
= {(GreenDay, Tokyo)}

Reverting the operation using the extended union to perform v ⊕ s generates r’:
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r′ = v ⊕ s =
= {(GreenDay, Tokyo)} ⊕ {(Madonna, Paris)} =
= {(GreenDay, Tokyo), (Madonna, Paris)}

The values from r’ and r are not the same; hence this example demonstrated an extended difference
operation cannot always be reverted by the extended union.

r′ 6= r ⇔
⇔ {(GreenDay, Tokyo), (Madonna, Paris)} 6= {(GreenDay, Tokyo)}

4.2.2 Nesting and Unnesting

A nest operation can always be reverted by an unnest operation, conversely an unnest
operation cannot always be reverted by a nest operation. If the relation, being unnested,
is not on PNF Bag there is no guarantee that the nesting of its nested version generates
the initial relation. The proof to this claim can be found on Roth, Korth, and Silberschatz
(1988, p. 398-399). In order to for an unnest operation can be reverted by a nest operation
the nested relation must be on both PNF and PNF Bag form. The PNF Bag restriction was
added to the model to enforce relational database alike semantics to the model – and con-
sequently make the model similiar to the one Roth, Korth, and Silberschatz (1988) used
–, this is there should not be possible to find duplicate tuples unless the tuples are on the
inner most lever. Using other words, only the tuples containing only atomic attributes can
be evaluated by the count function with a value higher than one. If a relation fulfills PNF
Bag conditions, a nest operation can be successfully revert an unnest operation.

Let r be a relation over a nested schema R ( R = {A1, ..., An, R1, ..., Rq} , n ≥ 0, q > 0),
and ω a relational attribute of R ( ω ∈ {R1, ..., Rq} ), then the above equations are true:

r = µω (nω (r))
r?=nω (µω (r) ) , if r is not on PNF Bag
r = nω (µω (r)) , if r is on PNF Bag

Example 4.3 illustrates how on a relation not on PNF Bag form cannot be reverted to its
initial state after an unnest operation.

Example 4.3 (Nest operator is not always the inverse of the unnest operator)

Let r be the relation presented on Table 4.6 – this relation is on PNF, but it is not on PNF Bag –
having the schema:

schema(r) = (Artist Name, Tour∗)
Tour = (Country, Performance∗)
Performance = (City,Date)
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Table 4.6: Base relation to be unnested, this relation is not on PNF Bag (Example 4.3)
Music DB

Artist N. Tour
Country Performance

City Date
Japan Tokyo 16 Aug 12
Japan Tokyo 18 Aug 12

Green Day England London 23 Aug 12
Germany M. Gladbach 29 Aug 12
Germany Berlin 30 Aug 12
Germany Konstanz 01 Sep 12

Table 4.7: r′′ = µPerformance (µTour (r)) = µPerformance (µTour (Table4.6))

Music DB
Artist N. Country Performance

City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12

Let r’ be the relation generated by unnesting the Tour relational attribute from r: r’ = µTour (r).
Let r”, presented on Table 4.7, be the relation generated by unnesting r’ by the Performance
relational attribute from r”:

r′′ = µPerformance

(
r′
)
⇔ r′′ = µPerformance (µTour (r))

Now let s be the relation generated by nesting r” by the atomic attributes Artist Name and
Country:s = nArtist Name,Country (r′′).
And let s’, the relation presented on Table 4.8, is generated by nesting s’ by the atomic attribute
Artist Name:

s′ = nArtist Name (s′)⇔ s′ = nArtist Name (nArtist Name,Country (r′′))⇔
⇔ s′′ = nArtist Name (nArtist Name,Country (µPerformance (r′)))⇔
⇔ s′′ = nArtist Name (nArtist Name,Country (µPerformance (µTour (r))))

The relation present on Table 4.7 is different from the relation on Table 4.8, this happens because
the relation unnested is not on PNF Bag; This example illustrates how an unnest operation cannot
always be reverted by a nest operation; hence the relation being unnested should be in PNF Bag in
order to restored to its initial state by an nest operation.
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Table 4.8: nArtist Name (nArtist Name,Performance (Table4.7))

Music DB
Artist N. Tour

Country Performance
City Date

Japan Tokyo 16 Aug 12
Tokyo 18 Aug 12

Green Day England London 23 Aug 12
M. Gladbach 29 Aug 12

Germany Berlin 30 Aug 12
Konstanz 01 Sep 12

4.3 Incremental Data Propagation Rules

An incremental data propagation rule is a rule to be applied repeatedly on a complex struc-
ture generated by a query in order to incrementally compute the changes to the structure.
These propagation rules use the pre-computed data structure (e.g. a relational database ma-
terialized view) and the changes made to the initial relations. As stated on Section 4.1 the
order the operations are executed does matter; therefore the change data propagation rules
are to be applied in the same order as the changes occurred on the initial relations.

The term incremental update is used to refer to the changes occurred on the initial re-
lation and that will be propagated to the structure storing a query made over the initial
relation. Consequently, the initial relation r and the incremental update s have the same
schema, this is: schema(r) = schema(s).

For the nesting operator, the relations must be on PNF Bag and have at least one atomic
attribute, schema(r) = {A1, ..., An, R

∗
1, ..., R

∗
q}, n > 0, q ≥ 0 and ω ⊆ {A1, ..., An}. The

incremental data propagation rules for the nest operator are presented underneath:

nω (r ⊕ s) = nω (r)⊕ nω (s) (4.2)

nω (r 	 s) = nω (r)	 nω (s) (4.3)

Regarding the unnesting propagation rules the relations must be on PNF Bag and have
at least one relational attribute, schema(r) = {A1, ..., An, R

∗
1, ..., R

∗
q}, n ≥ 0, q > 0 and

ω ∈
{
R∗1, ..., R

∗
q

}
. The incremental data propagation rules for the unnnest operator are

presented underneath:

µω (r ⊕ s) = µω (r)⊕ µω (s) (4.4)

µω (r 	 s) = µω (r)	 µω (s) ,

(q = 1) ∧ (∀R∗ on the schema have one relational attribute, or all the attributes are atomic)

(4.5)
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4.3.1 Nest the Extened Union of Two Relations

Let r be the base relation, and s be an incremental addition update; hence is obvious that r
and s share the same schema – that is: schema(r) = schema(r) =

(
A1, ..., Am, ..., An, R

∗
1, ..., R

∗
q

)
,

n ≥ 1, q ≥ 0. And let ω be the atomic attributes for which the relation r was nested, this is:
ω = (A1, ..., Am) ,m ≤ n, ω ⊆ (A1, ..., Am, ..., An) ,m ≥ 1. Under these circumstances the
proof that equation 4.2 is correct will be given, equation 4.2 is:

nω (r ⊕ s) = nω (r)⊕ nω (s)

• r or s are empty relations

– r is an empty relation, r = ∅.
On this case by the extended union definition (Section 3.2.1) on the right hand
side (RHS) the nesting of the extended union of r with s would be the same as
the nesting of s, this is:

nω (r ⊕ s) = nω (∅ ⊕ s) = nω (s)

On the left hand side (LHS) the nesting of an empty relation will also generate
and empty relation; therefore is the same as the extended union of an empty
bag with a nested relation, this is:

nω (r)⊕ nω (s) = nω (∅)⊕ nω (s) = ∅ ⊕ nω (s) = nω (s)

When r is an empty relation, the equation holds.

– s is an empty relation ( s = ∅ ).

Same case as when r is an empty relation.

The equation holds when r or s are empty.

• The nesting of the extended union of two bags, r and s, is contained on the extended
union of the nested version of these bags, this is:

nω (r ⊕ s) ⊆ nω (r)⊕ nω (s)

– On the LHS for every tuple αlhs generated by nesting the extended union two
bags, r and s, this tuple is contained on the extended union of the nested version
of these two bags, that is:

∀αlhs ∈ nω (r ⊕ s)⇒ αlhs ∈ nω (r)⊕ nω (s)

For this tuple, αlhs, it does exist another tuple β, such that αlhs can be generated
by nesting β. There is a r′ and a s′, contained on r and s respectively, and are
not empty, such that their extended union generates β, this is:

β = r′ ⊕ s′, r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅
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After this initial constraints, β can be written as:

β =



t|∃u ∈ r′, ∃v ∈ s′, t [A1, ...,Am] = u [A1, ...,Am] = v [A1, ...,Am]∧
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= u

[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∨ t [A1, ...,Am] = u [A1, ...,Am] = v [A1, ...,Am]∧
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= v

[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∨ t [A1, ...,Am,Am+1, ...,An] = u [A1, ...,Am,Am+1, ...,An] =
v [A1, ...,Am,Am+1, ...,An]∧
t [R∗1] = u [R∗1]⊕ v [R∗1] , ..., t

[
R∗q
]

= u
[
R∗q
]
⊕ v

[
R∗q
]




Nesting β generates αlhs:

αlhs ∈ nω (β) =



t′|∃b ∈ β, t′ [A1, ..., Am] = b [A1, ..., Am] , t′ [R∗1] =



{t|∃u ∈ r′,∃v ∈ s′,


t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
=

u
[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∪
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
=

v
[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∪
t [Am+1, ...,An] = u [Am+1, ...,An] =
v [Am+1, ...,An]∧
t [R∗1] = u [R∗1]⊕ v [R∗1] , ...,
t
[
R∗q
]

= u
[
R∗q
]
⊕ v

[
R∗q
]










– On the RHS for every tuple αrhs generated by the extended union of two nested

bags, r and s, this tuple is contained on the extended union of the nested version
of these two bags, this is:

∀αrhs ∈ nω (r)⊕ nω (s)⇒ αrhs ∈ nω (r ⊕ s)

Additionally there is a r′ and a s′, contained on r and s respectively, and are not
empty, such that after being nested their extended union generates αrhs, that is:

r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅
nω (r′ ⊕ s′)⇒ αrhs

αrhs can be expressed as:
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4.3 Incremental Data Propagation Rules

αrhs ∈{
t′|u ∈ r′, (t′ [A1, ..., Am] = u [A1, ..., Am])
t′ [R∗1] =

{
t|t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= r

[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]} }⊕{
t′|v ∈ s′, (t′ [A1, ..., Am] = v [A1, ..., Am])
t′ [R∗1] =

{
t|t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= v

[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]} }⇔

⇔ αrhs ∈



t′|t′ = t′ [A1, ..., Am] = u [A1, ..., Am]
= v [A1, ..., Am] , t′ [R∗1] =

{∃u ∈ r′, ∃v ∈ s′,


t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
=

u
[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∪
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
=

v
[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [Am+1, ...,An] 6= v [Am+1, ...,An]

∪
t [Am+1, ...,An] = u [Am+1, ...,An] =
v [Am+1, ...,An]∧
t [R∗1] = u [R∗1]⊕ v [R∗1] , ...,
t
[
R∗q
]

= u
[
R∗q
]
⊕ v

[
R∗q
]








b [A1, ..., Am] can be re-written as u [A1, ..., Am] = v [A1, ..., Am], making obvious that
αlhs ⊆ αrhs; hence it can be concluded that nω (r ⊕ s) ⊆ nω (r)⊕ nω (s).

• The proof of nω (r)⊕nω (s) ⊆ nω (r ⊕ s) is similar to the proof of nω (r ⊕ s) ⊆ nω (r)⊕
nω (s) , therefore is omitted.

The proof that nω (r ⊕ s) = nω (r)⊕ nω (s) is concluded.

Example 4.4 (Nest the extended union of two relations)

Let r and s be two flat relations sharing the same schema:
schema(r) = schema(s) = (Artist Name,Genre, Country, City,Date).
Relation r is presented on Table 4.10 and relation s is presented on Table 4.9, the extended union of
r and s is presented on Table 4.11. Nesting r ⊕ s by artist generates the relation present on Table
4.12.
Let r’ be the relation generated by nesting r by the atomic attribute Artist Name, present on Table
4.14, and on the same way s’ generated by nesting s by the atomic attribute Artist Name, present
on Table 4.13. The extended union of r’ and s’ is presented on Table 4.15.
The relation present on 4.12 is the same as the one present on Table 4.15, this is:

nArtistName (r ⊕ s) = nArtistName (r)⊕ nArtistName (s)⇔
Table 4.12 = Table 4.15
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Table 4.9: Flat relation s (Example 4.4)
Artist Name Genre Country City Date
Green Day Punk Rock Japan Tokyo 18 Aug 12
Green Day Punk Rock Japan Osaka 19 Aug 12
Madonna Pop Germany Cologne 10 Jul 12
M. Jackson Pop England London 13 Jul 09

Table 4.10: Flat relation r (Example 4.4)
Artist Name Genre Country City Date
Green Day Punk Rock Japan Tokyo 16 Aug 12
Green Day Punk Rock England London 23 Aug 12
Green Day Punk Rock Germany M. Gladbach 29 Aug 12
Green Day Punk Rock Germany Berlin 30 Aug 12
Green Day Punk Rock Germany Konstanz 01 Sep 12
Madonna Pop Portugal Coimbra 24 Jun 12
Madonna Pop Norway Oslo 15 Aug 12
M. Jackson Pop England London 28 Aug 09
M. Jackson Pop England London 06 Mar 10

Table 4.11: r ⊕ s = Table 4.10 ⊕ Table 4.9
Artist Name Genre Country City Date
Green Day Punk Rock Japan Tokyo 16 Aug 12
Green Day Punk Rock Japan Tokyo 18 Aug 12
Green Day Punk Rock Japan Osaka 19 Aug 12
Green Day Punk Rock England London 23 Aug 12
Green Day Punk Rock Germany M. Gladbach 29 Aug 12
Green Day Punk Rock Germany Berlin 30 Aug 12
Green Day Punk Rock Germany Konstanz 01 Sep 12
Madonna Pop Portugal Coimbra 24 Jun 12
Madonna Pop Germany Cologne 10 Jul 12
Madonna Pop Norway Oslo 15 Aug 12
M. Jackson Pop England London 28 Aug 09
M. Jackson Pop England London 13 Jul 09
M. Jackson Pop England London 06 Mar 10
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Table 4.12: nArtist Name (r ⊕ s) = nArtist Name (Table4.10⊕ Table4.9)

Artist Name Relational Attribute
Genre Country City Date
Punk Rock Japan Tokyo 16 Aug 12
Punk Rock Japan Tokyo 18 Aug 12
Punk Rock Japan Osaka 19 Aug 12

Green Day Punk Rock England London 23 Aug 12
Punk Rock Germany M. Gladbach 29 Aug 12
Punk Rock Germany Berlin 30 Aug 12
Punk Rock Germany Konstanz 01 Sep 12
Pop Portugal Coimbra 24 Jun 12

Madonna Pop Germany Cologne 10 Jul 12
Pop Norway Oslo 15 Aug 12
Pop England London 28 Aug 09

M. Jackson Pop England London 13 Jul 09
Pop England London 06 Mar 10

Table 4.13: s′ = nArtist Name (s) = nArtist Name (Table4.9)

Artist Name Relational Attribute
Genre Country City Date

Green Day Punk Rock Japan Tokyo 18 Aug 12
Punk Rock Japan Osaka 19 Aug 12

Madonna Pop Germany Cologne 10 Jul 12
M. Jackson Pop England London 13 Jul 09

Table 4.14: r′ = nArtist Name (r) = nArtist Name (Table4.10)

Artist Name Relational Attribute
Genre Country City Date
Punk Rock Japan Tokyo 16 Aug 12
Punk Rock England London 23 Aug 12

Green Day Punk Rock Germany M. Gladbach 29 Aug 12
Punk Rock Germany Berlin 30 Aug 12
Punk Rock Germany Konstanz 01 Sep 12

Madonna Pop Portugal Coimbra 24 Jun 12
Pop Norway Oslo 15 Aug 12

M. Jackson Pop England London 28 Aug 09
Pop England London 06 Mar 10
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Table 4.15: r′ ⊕ s′ = nArtist Name (r)⊕ nArtist Name (s)

Artist Name Relational Attribute
Genre Country City Date
Punk Rock Japan Tokyo 16 Aug 12
Punk Rock Japan Tokyo 18 Aug 12
Punk Rock Japan Osaka 19 Aug 12

Green Day Punk Rock England London 23 Aug 12
Punk Rock Germany M. Gladbach 29 Aug 12
Punk Rock Germany Berlin 30 Aug 12
Punk Rock Germany Konstanz 01 Sep 12
Pop Portugal Coimbra 24 Jun 12

Madonna Pop Germany Cologne 10 Jul 12
Pop Norway Oslo 15 Aug 12
Pop England London 28 Aug 09

M. Jackson Pop England London 13 Jul 09
Pop England London 06 Mar 10

4.3.2 Nest the Extened Difference of Two Relations

Let r be the bag relation on the left side of the extended difference operator, and s be
the bag on the right side of the difference operator; hence, r and s must share the same
schema – this is schema(r) = schema(r) =

(
A1, ..., Am, ..., An, R

∗
1, ..., R

∗
q

)
, n ≥ 1, q ≥ 0.

And let ω be the atomic attributes for which the relations are to be nested, this is: ω =
(A1, ..., Am) ,m ≤ n, ω ⊆

(
A1, ..., Am, ..., An, R

∗
1, ..., R

∗
q

)
,m ≥ 1 . Under these circum-

stances the proof that equation 4.3 is correct will be given, equation 4.3 is:

nω (r 	 s) = nω (r)	 nω (s)

• r or s are empty relations

– s is an empty relation, s = ∅.
On this case by the extended difference definition (Subsection 3.2.2) on the right
hand side (RHS) the nesting of the extended difference of r with s is the same
as only nesting r, this is:

nω (r 	 s) = nω (r 	 ∅) = nω (r)

On the left hand side (LHS) the nesting of an empty relation also generates an
empty relation; therefore it is the same as the extended difference of a nested
relation with an empty bag, this is:

nω (r)	 nω (s) = nω (r)	 nω (∅) = nω (r)	 ∅ = nω (r)

When s is an empty relation, the equation holds.
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– r is an empty relation ( r = ∅ ).

This case is very similar to when s is an empty bag. Applying the extended
difference definition (Section 3.2.2) on the RHS the nesting of the extended dif-
ference of r with s would be the same as the nesting of an empty relation, this
is:

nω (r 	 s) = nω (∅ 	 s) = nω (∅) = ∅

On the LHS the nesting of an empty relation will also generate and empty re-
lation; therefore is the same as the extended difference of an empty bag with a
nested relation, this is:

nω (r)	 nω (s) = nω (∅)	 nω (s) = ∅

When s is an empty relation, the equation holds.

The equation holds when r or s are empty.

• The relation generated by nesting of the extended difference of two bags, r and s, is
contained on the extended union of the nested version of these bags, that is:

nω (r 	 s) ⊆ nω (r)	 nω (s)

– On the LHS for every tuple αlhs generated by nesting the extended difference
two bags, r and s, this tuple is contained on the extended difference of the
nested version of these two bags, this is:

∀αlhs ∈ nω (r 	 s)⇒ αlhs ∈ nω (r)	 nω (s)

For this tuple, αlhs, it does exist another tuple β, such that αlhs can be generated
by nesting β. There is an r′ and an s′, contained on r and s respectively, which
are not empty, such that their extended difference generates β, that is:

β = r′ 	 s′, r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅

After these initial constraints β can be expressed as:

β =



t|∃u ∈ r′,∃v ∈ s′, t [A1, ...,Am] = u [A1, ...,Am]∧
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= u

[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧(

u [A1, ...,Am] 6= v [A1, ...,Am]
)

∨
t [A1, ...,Am,Am+1, ...,An] = u [A1, ...,Am,Am+1, ...,An] =
v [A1, ...,Am,Am+1, ...,An]∧
t [R∗1] = u [R∗1]	 v [R∗1] , ..., t

[
R∗q
]

= u
[
R∗q
]
	 v

[
R∗q
]
∧

t [R∗] 6= ∅
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Nesting β generates αlhs:

αlhs ∈ nω (β) =

t′|∃b ∈ β, t′ = [A1, ..., Am] = b [A1, ..., Am] , t′ [R∗1] =

{t|∃u ∈ r′,∃v ∈ s′,

{
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= u

[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [A1, ...,Am] 6= v [A1, ...,Am]

}
∪

t [A1, ...,Am,Am+1, ...,An] = u [A1, ...,Am,Am+1, ...,An] =
v [A1, ...,Am,Am+1, ...,An]∧
t [R∗1] = u [R∗1]	 v [R∗1] , ..., t

[
R∗q
]

= u
[
R∗q
]
	 v

[
R∗q
]
∧

t [R∗] 6= ∅








– On the RHS for every tuple αrhs generated by the extended difference of two

nested bags, r and s, this tuple is contained on the extended difference of the
nested version of these two bags, this is:

∀αrhs ∈ nω (r)	 nω (s)⇒ αrhs ∈ nω (r 	 s)

Additionally there is a r′ and a s′, contained on r and s respectively, and are not
empty, such that after being nested their extended union generates αrhs, that is:

r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅
nω (r′ 	 s′)⇒ αrhs

αrhs can be expressed as:

αrhs ∈


t′|u ∈ r′, (t′ [A1, ..., Am] = u [A1, ..., Am])

t′ [R∗1] =

{
t|t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
=

r
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

] } 	


t′|v ∈ s′, (t′ [A1, ..., Am] = v [A1, ..., Am])

t′ [R∗1] =

{
t|t =

[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
v
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

] } 
⇔

αrhs ∈

t′|t′ = t′ [A1, ..., Am] = u [A1, ..., Am] , t′ [R∗1] =

{∃u ∈ r′,∃v ∈ s′,

{
t
[
Am+1, ..., An, R

∗
1, ..., R

∗
q

]
= u

[
Am+1, ...,An, R

∗
1, ..., R

∗
q

]
∧

u [A1, ...,Am] 6= v [A1, ...,Am]

}
∪

t [A1, ...,Am,Am+1, ...,An] = u [A1, ...,Am,Am+1, ...,An] =
v [A1, ...,Am,Am+1, ...,An]∧
t [R∗1] = u [R∗1]	 v [R∗1] , ..., t

[
R∗q
]

= u
[
R∗q
]
	 v

[
R∗q
]
∧

(t [R∗] 6= ∅)








b [A1, ..., Am] can be re-written as u [A1, ..., Am]], making obvious that αlhs ⊆ αrhs;
hence it can be concluded that nω (r 	 s) ⊆ nω (r)	 nω (s).
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Table 4.16: Relation r (Example 4.5 )
Artist Name Country City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day USA Las Vegas 21 Sep 12
Green Day England Reading 25 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12
The Cranberries Germany Berlin 08 Oct 12
M. Jackson England London 28 Aug 09
M. Jackson England London 06 Mar 10
M. Jackson England London 09 Jan 10
M. Jackson England London 12 Jan 10

• The proof of nω (r)	nω (s) ⊆ nω (r 	 s) is similar to the proof of nω (r 	 s) ⊆ nω (r)	
nω (s) , therefore omitted.

The proof that nω (r 	 s) = nω (r)	 nω (s) is concluded.

Example 4.5 (The extended difference nesting example)

Let r and s be two flat relations sharing the same schema:
( schema(r) = schema(s) = (Artist Name,Country, City,Date)).
Relation r is presented on Table 4.16 and relation s is presented on Table 4.17 , the extended dif-
ference of r 	 s is presented on table 4.18, the relation generated by nesting r 	 s by the atomic
attribute Country is presented on Table 4.19.

r’ is generated by nesting r by the atomic attribute Country is presented in table 4.20, and on
the same way s’ is generated by nesting s by the atomic attribute Country is presented on Table
4.21. The extended difference of r’ 	 s’ is presented on Table 4.22.
The relation present on 4.19 is the same as the one present on Table 4.22.

nCountry (r 	 s) = nCountry (r)	 nCountry (s)⇔
Table 4.19 = Table 4.22
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Table 4.17: Relation s (Example 4.5)
Artist Name Country City Date
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Norway Oslo 15 Aug 12
M. Jackson England London 09 Jan 10
M. Jackson England London 12 Jan 10

Table 4.18: r 	 s = Table 4.16 	 Table 4.17
Artist Name Country City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day USA Las Vegas 21 Sep 12
Green Day England Reading 25 Aug 12
Green Day England London 23 Aug 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
The Cranberries Germany Berlin 08 Oct 12
M. Jackson England London 28 Aug 09
M. Jackson England London 06 Mar 10

4.3.3 Unnest the Extended Union of Two Relations

Let r and s to be two nested bag relations on PNF Bag to be united under the extended
union and then unnested; hence, r and smust share the same schema, this is: schema(r) =
schema(s) =

(
A1, ..., An, R

∗
1, ..., R

∗
q

)
, n ≥ 0, q > 0. And let ω be the relational attribute for

which the addition of the relation is to be unnested, this is: ω ∈
{
R∗1, ..., R

∗
q

}
. Under these

circumstances the proof that equation 4.4 is correct will be given, equation 4.4 is:

µω (r ⊕ s) = µω (r)⊕ µω (s)

• r or s are empty relations

– r is an empty relation, r = ∅.

On this case by the extended union definition (Subsection 3.2.1), on the right
hand side (RHS) the unnesting of the extended union of r with s would be the
same as unnesting s, this is:

µω (r ⊕ s) = µω (∅ ⊕ s) = µω (s)
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Table 4.19: nCountry (r 	 s) = nCountry (Table4.16	 Table4.17)

Artist Name Country City Date
Green Day Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Osaka 19 Aug 12
Green Day USA Las Vegas 21 Sep 12
Green Day Reading 25 Aug 12
Green Day London 23 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson London 06 Mar 10
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
The Cranberries Berlin 08 Oct 12

On the left hand side (LHS) the unnesting of an empty relation will also generate
and empty relation; therefore is the same as the extended union of an empty bag
with a unnested relation, this is:

µω (r)⊕ µω (s) = nω (∅)⊕ µω (s) = ∅ ⊕ µω (s) = µω (s)

When r is an empty relation, the equation holds.

– s is an empty relation ( s = ∅ ).

Same case as when r is an empty relation.

The equation holds if r or s are empty.

• The relation generated by unnesting of the extended union of two bags, r and s, is
contained on the extended union of the unnested version of these bags, this is:

µω (r ⊕ s) ⊆ µω (r)⊕ µω (s)

– On the LHS for every tuple αlhs generated by unnesting the extended union
two bags, r and s, this tuple is contained on the extended union of the unnested
version of these two bags, this is:

∀αlhs ∈ µω (r ⊕ s)⇒ αlhs ∈ µω (r)⊕ µω (s)

For this tuple, αlhs, it does exist another tuple β, such that αlhs can be generated
by unnesting β, that is: there is an r′ and s′, contained on r and s respectively,
and are not empty, such that their extended union generates β, that is:

β = r′ ⊕ s′, r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅

β can be expressed as:
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Table 4.20: nCountry (r) = nCountry (Table4.16)

Artist Name Country City Date
Green Day Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Osaka 19 Aug 12
Green Day USA Las Vegas 21 Sep 12
Green Day Reading 25 Aug 12
Green Day London 23 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson London 06 Mar 10
M. Jackson London 09 Jan 10
M. Jackson London 12 Jan 10
Green Day M. Gladbach 29 Aug 12
Green Day Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Cologne 10 Jul 12
The Cranberries Berlin 08 Oct 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Norway Oslo 15 Aug 12

β =



t|∃u ∈ r′, ∃v ∈ s′,(
(t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧(
t
[
R∗1, ..., R

∗
q

]
= u

[
R∗1, ..., R

∗
q

]
⊕ v

[
R∗1, ..., R

∗
q

]) )∨ (t [A1, ...,An] = u [A1, ...,An])∧
(u [A1, ...,An] 6= v [A1, ...,An])∧
t
[
R∗1, ..., R

∗
q

]
= u

[
R∗1, ..., R

∗
q

]
∨ (t [A1, ...,An] = v [A1, ...,An])∧

(u [A1, ...,An] 6= v [A1, ...,An])∧
t
[
R∗1, ..., R

∗
q

]
= v

[
R∗1, ..., R

∗
q

]




Unnesting β generates αlhs:
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4.3 Incremental Data Propagation Rules

Table 4.21: nCountry (s) = nCountry (Table4.17)

Artist Name Country City Date
Green Day M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Konstanz 01 Sep 12
Madonna Norway Oslo 15 Aug 12
M. Jackson England London 09 Jan 10
M. Jackson London 12 Jan 10

Table 4.22: nCountry (r)	 nCountry (s) = Table 4.20 	 Table 4.21
Artist Name Country City Date
Green Day Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Osaka 19 Aug 12
Green Day USA Las Vegas 21 Sep 12
Green Day Reading 25 Aug 12
Green Day London 23 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson London 06 Mar 10
Madonna Germany Cologne 10 Jul 12
The Cranberries Berlin 08 Oct 12
Madonna Portugal Coimbra 24 Jun 12

αlhs ∈ µωβ =



t|∃u ∈ r′,∃v ∈ s′,
(t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧(
t
[{
R∗1, ..., R

∗
q

}
− {ω}

]
=

u
[{
R∗1, ..., R

∗
q

}
− {ω}

]
⊕ v

[{
R∗1, ..., R

∗
q

}
− {ω}

] )∧(
t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ (u [ω]⊕ v [ω])

)
∨

 (t [A1, ...,An] = u [A1, ...,An] 6= v [A1, ...,An])∧(
t
[{
R∗1, ..., R

∗
q

}
− {ω}

]
= u

[{
R∗1, ..., R

∗
q

}
− {ω}

])
∧(

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [ω]

)
∨

 (t [A1, ...,An] = v [A1, ...,An] 6= u [A1, ...,An])∧(
t
[{
R∗1, ..., R

∗
q

}
− {ω}

]
= v

[{
R∗1, ..., R

∗
q

}
− {ω}

])
∧(

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ v [ω]

)



– On the RHS for every tupleαrhs generated by the extended union of two unnested

bags, r and s, this tuple is contained on the extended union of the unnested ver-
sion of these two bags, this is:

∀αrhs ∈ µω (r)⊕ µω (s)⇒ αrhs ∈ µω (r ⊕ s)
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Additionally there is a r′ and a s′, contained on r and s respectively, which are
not empty, such that after being unnested their extended union generates αrhs,
that is:

r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅
µω (r′ ⊕ s′)⇒ αrhs

αrhs can be expressed as:

µω (r′)⊕ µω (s′)⇒ αrhs ⇔

αrhs ∈


t|∃u ∈ r′,(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

u
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )
∧

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [ω]

⊕
t|∃v ∈ s′,(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

v
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )
∧

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ v [ω]

⇔
αrhs ∈

t|∃v ∈ s′,∃u ∈ r′,
(t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧ t

[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

u
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
⊕

v
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
∧(

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [R∗ω]⊕ v [ω]

)

∨


(t [A1, ...,An] = u [A1, ...,An] 6= v [A1, ...,An])∧(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

u
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )
∧

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [ω]

∨


(t [A1, ...,An] = v [A1, ...,An] 6= u [A1, ...,An])∧(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

v
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )
∧

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ v [ω]





αrhs can be re-written as:
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4.3 Incremental Data Propagation Rules

αrhs ∈

t|∃v ∈ s′, ∃u ∈ r′,
(t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧(
t
[{
R∗1, ..., R

∗
q

}
− {ω}

]
=

u
[{
R∗1, ..., R

∗
q

}
− {ω}

]
⊕ v

[{
R∗1, ..., R

∗
q

}
− {ω}

] )∧(
t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [R∗ω]⊕ v [ω]

)
∨


(t [A1, ...,An] = u [A1, ...,An] 6= v [A1, ...,An])∧(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
=

u
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )
∧

t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ u [ω]

∨


(t [A1, ...,An] = v [A1, ...,An] 6= u [A1, ...,An])∧(
t
[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

]
= v

[{
A1, .., An, R

∗
1, ..., R

∗
q

}
− {ω}

] )∧
t
[
Ai1, ..., Ain, R

∗
j1, ..., R

∗
jq

]
∈ v [ω]




The equations for α generated on the RHS and on the LHS are equivalent, making
obvious that αlhs ⊆ αrhs; hence it can be concluded that µω (r ⊕ s) ⊆ µω (r)⊕ µω (s).

• The proof of µω (r)⊕µω (s) ⊆ µω (r ⊕ s) is similar to the proof of µω (r ⊕ s) ⊆ µω (r)⊕
µω (s), therefore omitted.

The proof that µω (r ⊕ s) = µω (r)⊕ µω (s) is concluded.

Example 4.6 (Unnest the extended union of two relations)

Let r and s be two nested relations sharing the same schema:

schema(r) = schema(s) = (Artist Name, Performance∗)
Performance = (Country, City,Date)

Relation r is presented on Table 4.23 and relation s is presented on Table 4.24, the extended union
of r and s is presented on Table 4.25. Unnesting r ⊕ s by the relational attribute Performance
generates the relation present on Table 4.26.

Let r’, presented on Table 4.27, be the relation generated by unnesting r over the relational at-
tribute Performance, and let s’, presented on Table 4.28, be the relation generated by unnesting s
over the relational attribute Performance. The extended union of s’ with r’ is presented on Table
4.29.

Apart from the order of the tuples – there is not ordering guarantee on Pig Latin – the tuples
from the relation on Table 4.29 are the same as the tuples from the relation on Table Table 4.26.

µPerformance (r ⊕ s) = µPerformance (r)⊕ µPerformance (s)⇔
Table 4.26 = Table 4.29
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4 Incremental Expressions

Table 4.23: Nested relation r (Example 4.6)
Artist Name Performance

Country City Date
Japan Tokyo 16 Aug 12
Japan Tokyo 18 Aug 12

Green Day Japan Osaka 19 Aug 12
England London 23 Aug 12
Germany M. Gladbach 29 Aug 12
Germany Berlin 30 Aug 12
Germany Konstanz 01 Sep 12
Portugal Coimbra 24 Jun 12

Madonna Germany Cologne 10 Jul 12
Norway Oslo 15 Aug 12
England London 28 Aug 09

M. Jackson England London 13 Jul 09
England London 06 Mar 10

Table 4.24: Nested relation s (Example 4.6)
Artist Name Performance

Country City Date
Green Day France Paris 26 Aug 12

USA Los Angeles 06 Sep 12
Germany Berlin 29 Sep 12

Radiohead England Manchester 06 Oct 12
France Strasbourg 16 Oct 12

Madonna Austria Vienna 29 Jul 12
Switzerland Zurich 18 Aug 12

4.3.4 Unnest the Extended Difference of Two Relations

Let r be the base relation, and s be a bag containing deleted tuples; hence, is obvious that, r
and s share the same schema, this is: schema(r) = schema(s) =

(
A1, ..., Am, ..., An, R

∗
1, ..., R

∗
q

)
,

n ≥ 1, q > 0. And let ω be the relational attribute for which the relation r was unnested,
this is: ω ∈

(
R∗1, ..., R

∗
q

)
. Under these circumstances equation 4.5 is correct, if both the

following constraints is verified:

• The schema only allows one relational attribute.

• All the relational attributes, this is, included the nested ones allow only at most one
relational attribute.

Equation 4.5 is:
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4.3 Incremental Data Propagation Rules

Table 4.25: r ⊕ s = Table 4.23 ⊕ Table 4.24
Artist Name Performance

Country City Date
France Paris 26 Aug 12
USA Los Angeles 06 Sep 12
Japan Tokyo 16 Aug 12
Japan Tokyo 18 Aug 12

Green Day Japan Osaka 19 Aug 12
England London 23 Aug 12
Germany M. Gladbach 29 Aug 12
Germany Berlin 30 Aug 12
Germany Konstanz 01 Sep 12
Portugal Coimbra 24 Jun 12
Germany Cologne 10 Jul 12

Madonna Norway Oslo 15 Aug 12
Austria Vienna 29 Jul 12
Switzerland Zurich 18 Aug 12
Germany Berlin 29 Sep 12

Radiohead England Manchester 06 Oct 12
France Strasbourg 16 Oct 12
England London 28 Aug 09

M. Jackson England London 13 Jul 09
England London 06 Mar 10

µω (r 	 s) = µω (r)	 µω (s) ,
(q = 1) ∧ (∀R∗on the schema have one relational attribute, or all the attributes are atomic)

The Example 4.8 illustrates a failure when a relation have more than one relational at-
tribute and Example 4.7 illustrates a failure when a relation have more than one relational
attribute and the relational attribute being unnested is a subset of the same relational at-
tribute on the other bag.

Example 4.7 (The unnesting the extended difference constraint: subset)

Let r and s be two nested bag relations sharing the same schema, which is:

schema(r) = schema(s) = (Artist, Tour∗, Records∗)
Tour = (Performance∗)
Performance = (City,Date)
Records = (Album, Y ear)

r = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , {(Employment, 2005)}}
s = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , {(Off with Their Heads, 2008)}}
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Table 4.26: µPerformance (r ⊕ s) =µPerformance (Table 4.23⊕ Table 4.24)

Artist Name Country City Date
Green Day France Paris 26 Aug 12
Green Day USA Los Angeles 06 Sep 12
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12
Madonna Austria Vienna 29 Jul 12
Madonna Switzerland Zurich 18 Aug 12
Radiohead Germany Berlin 29 Sep 12
Radiohead England Manchester 06 Oct 12
Radiohead France Strasbourg 16 Oct 12
M. Jackson England London 28 Aug 09
M. Jackson England London 13 Jul 09
M. Jackson England London 06 Mar 10

Unnesting r and s over the relational attribute Tour generates r’ and s’ such that:

µTour (r) = r′ = {KaiserChiefs, Portugal, {(Gaia, 19Jul12)} , {(Employment, 2005)}}
µTour (s) = s′ = {KaiserChiefs, Portugal, {(Gaia, 19Jul12)} , {(OffwithTheirHeads, 2008)}}

Performing the extended difference of r’ 	 s’, generates v, which is:

µTour (r)	 µTour (s) = v = {KaiserChiefs, Portugal, {∅} , {(Employment, 2005)}}

In opposition r 	 s generates:

r 	 s = {KaiserChiefs, {(null, {∅})} , {(Employment, 2005)}}
Unnesting r 	 s over the relational attribute Tour generates:

µTour (r 	 s) = {KaiserChiefs,null, {∅} , {(Employment, 2005)}}
This example illustrated that when the relations have more than one relational attribute, and

on the relation on the left side of the extended difference operator the relational attribute being
unnested is contained on contained on the relational attribute from the relation on the right side of
the extended difference operator, the equation 4.5 cannot be applied : µTour (r 	 s) 6= µTour (r) 	
µTour (s)
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Table 4.27: µPerformance (r) =µPerformance (Table 4.23)

Artist Name Country City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson England London 13 Jul 09
M. Jackson England London 06 Mar 10

Table 4.28: µPerformance (s) =µPerformance (Table 4.24)

Artist Name Country City Date
Green Day France Paris 26 Aug 12
Green Day USA Los Angeles 06 Sep 12
Radiohead Germany Berlin 29 Sep 12
Radiohead England Manchester 06 Oct 12
Radiohead France Strasbourg 16 Oct 12
Madonna Austria Vienna 29 Jul 12
Madonna Switzerland Zurich 18 Aug 12

Example 4.8 (The unnesting the extended difference constraint: multiple relational attributes)

Let r and s be two nested bag relations sharing the same schema, that is:

schema(r) = schema(s) = (Artist, Tour∗, Records∗)
Tour = (Performance∗)
Performance = (City,Date)
Records = (Album, Y ear)

r = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , {(Employment, 2005)}}
s = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , {(Off with Their Heads, 2008)}}

Unnesting r and s over the relational attribute Records generates r’ and s’, which are:

µRecords (r) = r′ = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , Employment, 2005}
µRecords (s) = s′ = {KaiserChiefs, {(Portugal, {(Gaia, 19 Jul 12)})} , Off with Their Heads, 2008}

55



4 Incremental Expressions

Table 4.29: µPerformance (r)⊕ µPerformance (s) = µPerformanc (T4.23)⊕ µPerformanc (T4.24)

Artist Name Country City Date
Green Day Japan Tokyo 16 Aug 12
Green Day Japan Tokyo 18 Aug 12
Green Day Japan Osaka 19 Aug 12
Green Day England London 23 Aug 12
Green Day Germany M. Gladbach 29 Aug 12
Green Day Germany Berlin 30 Aug 12
Green Day Germany Konstanz 01 Sep 12
Madonna Portugal Coimbra 24 Jun 12
Madonna Germany Cologne 10 Jul 12
Madonna Norway Oslo 15 Aug 12
M. Jackson England London 28 Aug 09
M. Jackson England London 13 Jul 09
M. Jackson England London 06 Mar 10
Green Day France Paris 26 Aug 12
Green Day USA Los Angeles 06 Sep 12
Radiohead Germany Berlin 29 Sep 12
Radiohead England Manchester 06 Oct 12
Radiohead France Strasbourg 16 Oct 12
Madonna Austria Vienna 29 Jul 12
Madonna Switzerland Zurich 18 Aug 12

Performing the extended difference of r’ 	 s’, generates r’ – since none of the tuples of r’ and s’
do not share the same atomic attributes –, this is: r’ 	 s’ = r’.

In opposition, the extended difference of r 	 s generates:

r 	 s = {KaiserChiefs, {∅} , {(Employment, 2005)}}

Unnesting r 	 s over the relational attribute Records generates:

µRecords (r 	 s) = {KaiserChiefs, {∅} , Employment, 2005}

This example demonstrated that when the relations have more than one relational attribute:
µrecords (r 	 s) 6= µrecords (r)	 µrecords (s)

When the constraints are fulfilled the Equation 4.5 holds, as the above proof confirms:

• r or s are empty relations

– r is an empty relation, r = ∅. On this case by the extended difference defini-
tion (Subsection 3.2.2) on the left hand side (LHS) the nesting of the extended
difference of r with s would be the same as the empty set, this is:
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µω (r 	 s) = µω (∅ 	 s) = µω (∅) = ∅

On the right hand side (RHS) the unnesting of an empty relation will also gen-
erate and empty relation; therefore the outcome is the same as the extended
difference of an empty bag with a unnested relation, this is:

µω (r)	 µω (s) = µω (∅)	 µω (s) = ∅ 	 µω (s) = ∅

When r is a empty relation, the equation holds.

– s is an empty relation, that is s = ∅. On this case by the extended difference
definition (Subsection 3.2.2) on the LHS the unnesting of the extended difference
of r with a empty set would be the same as the unnesting of r, this is:

µω (r 	 s) = µω (r 	 ∅) = µω (r)	 ∅ = µω (r)

On the RHS, unnesting a empty relation generates an empty relation; therefore
is the same as the extended difference of a unnested relation with an empty bag,
this is:

µω (r)	 µω (s) = µω (r)	 µω (∅) = µω (r)	 ∅ = µω (r)

When s is an empty relation, the equation holds.

The equation holds if r or s are empty.

• The unnesting of the extended difference of two bags, r and s, is contained on the
extended difference of the unnested version of these bags, that is:

µω (r 	 s) ⊆ µω (r)	 µω (s)

– On the LHS for every tuple αlhs generated by unnesting the extended difference
of two bags, r and s, this tuple is contained on the extended difference of the
unnested version of these two bags, this is:

∀αlhs ∈ µω (r 	 s)⇒ αlhs ∈ µω (r)	 µω (s)

For this tuple, αlhs, it does exist another tuple β, such that αlhs can be generated
by unnesting β, that is: There is an r′ and s′, contained on r and s respectively,
and are not empty, such that their extended difference generates β, that is:

β = r′ 	 s′, r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅

β can be expressed as:
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β =



t|∃u ∈ r′,∃v ∈ s′, (t [A1, ...,Am] = u [A1, ...,Am] = v [A1, ...,Am])∧
(t [ω] = u [ω]	 v [ω])∧
t [ω] 6= ∅

∨ (t [A1, ...,Am] = u [A1, ...,Am])∧
(u [A1, ...,Am] 6= v [A1, ...,Am])∧
t [ω] = u [ω]





Unnesting β generates αlhs:

αlhs ∈ µω (β) =



t|∃u ∈ r′, ∃v ∈ s′, (t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧(
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ u [ω]	 v [ω]

)
∧

t [R∗1] 6= ∅

∨(
(t [A1, ...,An] = u [A1, ...,An] 6= v [A1, ...,An])∧(
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ u [ω]

) )



– On the RHS for every tuple αrhs generated by the extended difference of two
unnested bags, r and s, this tuple is contained on the extended difference of the
unnested version of these two bags, this is:

∀αrhs ∈ µω (r)	 µω (s)⇒ αrhs ∈ µω (r 	 s)

Additionally there is a r′ and a s′, contained on r and s respectively, which are
not empty, such that after being unnested their extended union generates αrhs,
that is:

r′ ⊆ r, s′ ⊆ s, r 6= ∅, s 6= ∅
µω (r′ 	 s′)⇒ αrhs

αrhs can be expressed as:
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µω (r′)	 µω (s′)⇒ αrhs ⇔

αrhs ∈


t|u ∈ r′,
(t [A1, .., An] = u [A1, .., An])∧
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ u [ω]

	
t|v ∈ s′,
(t [A1, .., An] = v [A1, .., An])∧
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ v [ω]

⇔

αrhs ∈



t|v ∈ s′, u ∈ r′, (t [A1, ...,An] = u [A1, ...,An] = v [A1, ...,An])∧(
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ u [ω]	 v [ω]

)
∧

t [R∗1] 6= ∅

∨(
(t [A1, ...,An] = u [A1, ...,An] 6= v [A1, ...,An])∧
t
[
Ai1, ..., Ain, R

∗
j1

]
∈ u [ω]

)
∨


The equations for α generated on the RHS and on the LHS are equivalent, making
obvious that αlhs ⊆ αrhs; hence it can be concluded that µω (r 	 s) ⊆ µω (r)	 µω (s).

• The proof of µω (r)	µω (s) ⊆ µω (r 	 s) is similar to the proof of µω (r 	 s) ⊆ µω (r)	
µω (s) , therefore is omitted.

The proof that µω (r 	 s) = µω (r)	 µω (s) is concluded.

Example 4.9 (Unnest the extended difference of two relations)

Let r and s be two nested relations sharing the same schema:

schema(r) = schema(s) = (Artist Name,Records∗)
Records = (Album, Y ear)

Relation r is presented on Table 4.30 and relation s is presented on Table 4.31, the extended dif-
ference of r 	 s is presented on Table 4.32. Unnesting r 	 s by the relational attribute Records
generates the relation present on Table 4.33.

Let r’, presented on Table 4.34 be the relation generated by unnesting r over the relational at-
tribute Records, and let s’, presented on Table 4.35, generated by unnesting s over the relational
attribute Records. The extended union of s’ with r’ is presented on Table 4.36.

Apart from the order of the tuples – Pig does not guarantee ordering of the tuples on a relation
being nested or unnested – the tuples from the relation on Table 4.33 are the same as as the tuples
from the relation on Table Table 4.36.

µRecords (r ⊕ s) = µRecords (r)⊕ µRecords (s)⇔
Table 4.33 = Table 4.36
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Table 4.30: r nested relation (Example 4.9)
Artist Name Records

Album Year
Kerplunk 1992
Dookie 1994

Green Day Insomniac 1995
Nimrod 1997
Warning 2000
American Idiot 2004
¡Uno! 2012
Like a Prayer 1989

Madonna MDNA 2012
Music 2000

M. Jackson Thriller 1982

Table 4.31: s nested relation (Example 4.9)
Artist Name Records

Album Year
Insomniac 1995

Green Day Nimrod 1997
Warning 2000

Madonna MDNA 2012
Music 2000

M. Jackson Thriller 1982

Table 4.32: r 	 s = Table 4.30 	 Table 4.31
Artist Name Records

Album Year
Kerplunk 1992

Green Day Dookie 1994
American Idiot 2004
¡Uno! 2012

Madonna Like a Prayer 1989

Table 4.33: µRecords (r 	 s) = µRecords (Table4.30	 Table4.31)

Artist Name Album Year
Green Day Kerplunk 1992
Green Day Dookie 1994
Green Day American Idiot 2004
Green Day ¡Uno! 2012
Madonna Like a Prayer 1989
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Table 4.34: µRecords (r) = µRecords (Table4.30)

Artist Name Album Year
Green Day Kerplunk 1992
Green Day Dookie 1994
Green Day Insomniac 1995
Green Day Nimrod 1997
Green Day Warning 2000
Green Day American Idiot 2004
Green Day ¡Uno! 2012
Madonna Like a Prayer 1989
Madonna MDNA 2012
Madonna Music 2000
M. Jackson Thriller 1982

Table 4.35: µRecords (s) = µRecords (Table4.31)

Artist Name Album Year
Green Day Insomniac 1995
Green Day Nimrod 1997
Green Day Warning 2000
Madonna MDNA 2012
Madonna Music 2000
M. Jackson Thriller 1982

Table 4.36: µRecords (r)	 µRecords (s) = µRecords (Table4.30) 	 µRecords (Table4.31)

Artist Name Album Year
Green Day Kerplunk 1992
Green Day Dookie 1994
Green Day American Idiot 2004
Green Day ¡Uno! 2012
Madonna Like a Prayer 1989
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5 Conclusion

This thesis proposes incremental expressions to maintain pre-computed data structures gen-
erated from queries containing Pig Latin’s nest or unnest operators. The incremental ex-
pressions rely on the use of the extended operators for nested bags, purposed and defined
on this thesis, and the use of the nested bag model with the partitioned normal form for
bags restriction, also proposed and defined on this thesis. This contributions and how
they relate to other authors work are explored in detail on Section 5.1. Finally, Section 5.2
presents directions to further work.

5.1 Contribution

This thesis proposes a nested bag data type model, that when used with the partitioned
normal form for bags (PNF Bag), suitable to use incremental data propagation expressions.
The PNF Bag extends the partitioned normal form (PNF), allowing only duplicates on the
inner most levels of a relation. The use of PNF Bag makes the semantics of the bag more
alike with a set; therefore it suggests that other authors contributions for models that do
not allow duplicates might be possible on a model that allows duplicates. By further ex-
tended the PNF restrictions with PNF Bag the nest operator is the reverse of the unnest
operator (and vice versa) on bag nested bag relation that respect PNF Bag. The addition of
PNF bag to the nested bag model suggests that the conditions presented by Roth, Korth,
and Silberschatz (1988) for nested relations on sets are fulfilled.

It proposes and gives the formal definition of the extended nested bag operators under
the nested bag model with PNF Bag restriction. The extended operators presented on this
thesis are different from the nested set extended operators from Roth, Korth, and Silber-
schatz (1988) in the way the nested bag data model allows duplicates. Given the nature
of semantics the extended difference operator for nested bags, it was demonstrated the
order the update operations are performed – using the extended operators – does matter;
Consequently incremental updates should be performed by the same order the changes
occurred on the relations that originate the pre-computed structures.

It gives incremental data propagation expressions for nest and unnest operators, and the
proof of correctness. This incremental expressions – with the exception of the nest of the
extended union – differ from the ones from Liu, Vincent, and Mohania (1999) in the way
they clear and plainer; which is explained by the different semantics of the restrictions
introduced by PNF Bag over the nested bag data model, and by the Pig Latin restrictions
of nest operator – Pig Latin only allow atomic attributes to be nested, in opposition (Liu,
Vincent, and Mohania, 1999) nest operator allow the nesting of both atomic and relational
attributes.
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5 Conclusion

Although the incremental expression for the unnest of the extended difference have lim-
itations, the incremental expression can only be used under a very limited number of re-
strictions, the reminder incremental expressions contribute to the solution of the incremen-
tal pre-computed data structures maintenance problem on the bag nested data type with the
PNF Bag restriction.

5.2 Further Work

Two main issues arrive when performing the maintenance of pre-computed data structures:
identify the changes to the base relations and apply the changes to the pre-computed struc-
tures. This thesis focused on propagate the changes to the pre-computed structures assumed
that changes made to base relations are delivered by the right order; hence, capture the
changes to the base relations by the same order they occurred is a challenge that should be
addresses to guarantee the consistency of the pre-computed data structures.

The use of minimal incremental updates, in a similar way as presented by Griffin, Libkin,
and Trickey (1997), would contribute to solve the right order execution of the updates
problem. However, bags and sets have different semantics; hence the definition of the se-
mantics of minimal update for nested bag relations must be provided.

Another challenge is to decide when a full re-computation should be performed in pref-
erence of an incremental re-computation of the pre-computed data structures. Usually the
incremental computation is computationally cheaper than a full computation. However,
this should not be taken for granted and the system should be able to evaluate and decide
on this matter. The multidimensional space of the pre-computed data structures maintenance
problem is complex (Gupta and Mumick, 1995) therefore, evaluation heuristic algorithms
should be proposed.

Finally, the Pig Latin incremental expressions have to be implemented within the MapRe-
duce framework. The incremental expressions are constructed using the extended oper-
ators for nested bags. The extended operators are defined in a recursive way; hence to
use a recursive approach, several MapReduce rounds are required to perform the compu-
tation. The use of an alternative architecture such as Map-Reduce-Merge (Yang, Dasdan,
Hsiao, and Parker, 2007) seems to be more appropriate, in the way the update usually is
very small compared to the full amount of data; therefore most of the tuples are not to be
changed and can be transferred a latter happening computation round; in a similliar way
endgame problem reported on Afrati, Borkar, Carey, Polyzotis, and Ullman (2011).
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