

A NEW POSSIBLE APPROACH FOR THERAPY AND FOLLOW UP OF BLADDER CANCER

<u>Ferreira S</u>^{1,2,3}, Abrantes AM^{1,4}, Brito A¹, Laranjo M¹, Metello L³, Zeevart J⁵, Louw W⁵, Dormehl I⁶, Botelho MF^{1,4}

¹Biophysics Unit, Institute for Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

²School of Sciences, University of Minho, Braga, Portugal

³Nuclear Medicine Course, High Institute of Allied Health Technologies of Porto's Polytechnic Institute, Porto, Portugal

⁴Centre of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

⁵Radiochemistry Department, NECSA, Pretoria, South Africa

⁶Department of Internal Medicine, University of Pretoria, South Africa

Introduction: The polymer PEI-MP (polyethyleneimine, functionalised with methylphosphonate groups) that might be labelled with ¹⁸⁸Re and ^{99m}Tc, have a strong potential for metabolic radiotherapy and diagnosis, respectively. The aim of this study was to evaluate the efficacy of ¹⁸⁸Re-PEI-MP as therapeutic agent for bladder carcinoma and ^{99m}Tc-PEI-MP for its follow up.

Material and Methods: Cytotoxicity of PEI-MP was investigated in bladder carcinoma cell line (CRL-1472) using the MTT test for different concentrations of PEI-MP (1 µM to 1000 µM) and incubation times (24h, 48h, 72h and 96h), and flow cytometry for a concentration of 1000 µM of PEI-MP (24h). Radiochemical purity of ¹⁸⁸Re-PEI-MP and ^{99m}Tc-PEI-MP was achieved using ascending microchromatography. Cellular uptake studies were performed using the complexes ¹⁸⁸Re-PEI-MP, ^{99m}Tc-PEI-MP, Na¹⁸⁸ReO₄ and Na^{99m}TcO₄. Cell samples were collected during four hours, centrifuged to separate supernatant and pellet. Subsequently, the radioactivity of each portion was counted to determine percentage of uptake. The *in vivo* studies were performed using eight groups of Balb/c nu/nu mice: four normal groups injected with Na¹⁸⁸ReO₄. ¹⁸⁸Re-PEI-MP, Na^{99m}TcO₄ and ^{99m}Tc-PEI-MP and four with bladder carcinoma xenotransplants injected with the same complexes. When tumour reached the appropriate volume, radiopharmaceuticals were administered by an intravenous injection in the tail vein (22-37MBq), with the animal anesthetized and previously placed on the gamma camera detector. After injection of the radiopharmaceuticals, were acquired dynamic and static images for 2 and 4 hours. For biodistribution proposes, mice were euthanized 2 and 4 hours after injection and organ samples where weighted and counted in a well-counter to obtain percentage injected activity per gram of organ (%ID/g).

Results: The MTT assay and flow cytometry tests showed that PEI-MP is not cytotoxic. The radiochemical purity of ¹⁸⁸Re-PEI-MP and ^{99m}Tc-PEI-MP was \geq 85%. The uptake studies demonstrated that the uptake was higher for ¹⁸⁸Re-PEI-MP and ^{99m}Tc-PEI-MP in relation to their controls, and higher for ¹⁸⁸Re-PEI-MP e relation to ^{99m}Tc-PEI-MP. Biodistribution results, with Na¹⁸⁸ReO₄ and Na^{99m}TcO₄, showed a higher uptake by the thyroid, bladder and stomach, following a normal biodistribution. The biodistribution with ¹⁸⁸Re-PEI-MP and ^{99m}Tc-PEI-MP showed that the excretion of these complexes occurs primarily through the renal system, with a small fraction being eliminated by the hepatobilliary system. Tumour/muscle ratio for ¹⁸⁸Re-PEI-MP was greater than 1.5.

Conclusions: Considering the results, ¹⁸⁸Re-PEI-MP seems to be promising in the treatment of bladder cancer. Following the same biodistribution as ¹⁸⁸Re-PEI-MP, ^{99m}Tc-PEI-MP seems to be optimal for diagnosis and follow up of therapy.

It has been decided that it would not be shown the entire version

of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicinanuclear@gmail.com

