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The production of bioactive compounds either toxic or with pharmacological applications by 

cyanobacteria is well established. However, picoplanktonic forms within this group of organisms 

have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria 

from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using 

different biological models. First, strains were identified by applying morphological and molecular 

approaches and cultured under lab conditions. A crude extract and three fractions reflecting a 

preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga 

Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized 

eggs of the sea urchin Paracentrotus lividus. 

No significant apparent adverse effects were noted against Artemia salina. However, significant 

adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and 

Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results 

obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive 

compounds and emphasize the importance of also studying smaller picoplanktonic fractions of 

marine cyanobacteria. 

 

The photosynthetic prokaryotes cyanobacteria are important components and primary producers 

of marine, estuarine, and freshwater ecosystems. Among several characteristics that make this 

group of organisms attractive for scientific studies, the capability to produce unique secondary 

metabolites is one that is most explored (Nunnery et al., 2010; Tan, 

2010). Among those metabolites, toxins were extensively explored due to the deleterious effects 

they induce on ecosystem equilibrium and human health (Codd et al., 2005; Zurawell et al., 2005; 

Martins and Vasconcelos, 2009). 

Nevertheless, and owing to their ecological and biochemical diversity, cyanobacteria were found 

to be a prolific source of compounds with potential biotechnological applications, namely in the 

field of pharmacological agents. In fact, a wide range of secondary metabolites exhibiting 

pharmacodynamic properties such as antibacterial, antiviral, antifungal, and anticancer has been 

reported (Berry et al., 2008; Costa et al., 2014). 

With respect to marine cyanobacteria, filamentous non-heterocystous genera such as Lyngbya, 

Moorea, Microcoleus, Schizothrix, Symploca, and Trichodesmium were considered for drug 

development and identified as promising taxa from which new biologically active compounds can 

be isolated (Tan, 2007; Engene et al., 2012). However, other picocyanobacteria genera such as 

Cyanobium, Prochlorococcus, Synechococcus, and Synechocystis have been overlooked, 

probably because these forms do not usually reach sufficiently high densities in environmental 

conditions and thus successful biomass production is limited to isolation and culturing. 

These morphologically simple taxa are well known to occur in open ocean and coastal waters 

globally (Scanlan et al., 2009; Huang et al., 2012), some of which are major contributors to 

primary production (Waterbury et al., 1986; Chisholm et al., 1988; Liu et al., 1997). 

However, taxonomic classification, and thus identification, is difficult to correctly establish as (1) 

there are few taxonomic characters present in these small coccoid cyanobacteria (Komarek et al., 

1999), (2) there are morphological resemblances that exist between these and other taxa, and (3) 

there is a lack of experimental support derived from molecular-based approaches to identify 

picocyanobacteria. 



In fact, a number of lineages are recognized to exist among picocyanobacteria genera, which 

indicates that their taxonomy needs to be revised (Honda et al., 1999; Huang et al., 

2012). The biological activity displayed by marine and estuarine picocyanobacteria strains has 

been previously studied in our lab (Martins et al., 2007, 2008; Frazao et al., 2010; 

Lopes et al., 2011; Costa et al., 2014) and by other investigators (Hamilton et al., 

2014). Since bioactivity effects were predominantly reported for strains of the Synechocystis and 

Synechococcus genera, the aim of this study was to assess the potential of novel marine 

Cyanobium strains as producers of bioactive compounds. To achieve this, five isolates were 

identified by a morphological and genomic approach, complemented with a phylogenetic 

analysis, and extensively cultured. 

The bioactivity of the isolates, which are herein recognized to belong to the same phylotypes, was 

assessed by a battery of bioassays. Considering the ability of cyanobacteria to produce compounds 

toxic to coexisting organisms, assays with microalga Nannochloropsis sp., brine shrimp Artemia 

salina, and embryos of the sea urchin Paracentrotus lividus were performed. Bioassays with the 

bacteria Pseudomonas putida were also conducted in order to determine antibacterial potential. 

 

MATERIALS AND METHODS 

 

Cyanobacteria Isolation, Characterization, and Culture 

 

Five marine cyanobacteria strains belonging to the genus Cyanobium were included in this study 

(Table 1). Strains were obtained from water samples and substrate collected on beaches from the 

Portuguese coast. For isolation purposes, raw biological materials were inoculated in liquid Z8 

medium (Kotai, 1972) supplemented with 25 g/L NaCl and 10 μg/ml vitamin B12, for enrichment. 

When visible growth was detected in the media, aliquots were transferred and streaked onto solid 

Z8 medium plates containing 1.2% agar, and supplemented as already described. Single colonies 

were then selected and two subsamples were made: One was inspected under a microscope, while 

the other was aseptically streaked onto fresh Z8 medium agar plates. 

This procedure was repeated until isolation was achieved and reconfirmed after transferring to 

liquid medium. The unicyanobacterial isolates obtained were kept in our collection (LEGE 

Culture Collection), at 19◦C and under a 12:12-h light (approximately 25 μmol/m2/s photon 

irradiance): dark cycle, while isolation was carried out at 25◦C under a 14:10-hr light 

(30–40 μmol/m2/s photon irradiance): dark cycle. 

The morphology of the strains was examined using a BX41 light microscope coupled to a DP72 

digital camera (Olympus, Hamburg, Germany), and morphometric measures were performed 

using image analysis software Cell B (Olympus). The identification of the cyanobacteria was 

performed according to the traditional classification system of Komárek and  

 

 

 

Anagnostidis (1999) and compared with criteria of Bergey’s Manual of Systematic Bacteriology 



(Boone et al., 2001). Information for the strains used in this study is shown and summarized in 

Table 1. For biomass production, strains were grown in Z8 medium supplemented with NaCl at 

a concentration of 20 g/L (Martins et al. 2005). Cultures were maintained at 25◦C, under a 

light:dark cycle of 14:10 h, provided by cool white fluorescent tubes. Cells were harvested after 

one month of growth by centrifugation, frozen, and freeze-dried. 

 

DNA Extraction, PCR, Cloning, and Sequencing 

 

Strains were characterized by molecular analysis of the 16S rRNA gene. Total genomic DNA was 

extracted from frozen samples using the Purelink Genomic DNA Mini Kit (Invitrogen, Carlsbad, 

CA) following the protocol described for gram-negative bacteria. The primers CYA359F and 

1494R (Neilan et al., 1997) were used for amplifying and sequencing the 16S rRNA gene. The 

polymerase chain reaction (PCR) conditions were as follows: initial denaturation at 94◦C for 4 

min, followed by 35 cycles of denaturation at 94◦C for 30 s, annealing at 52◦C for 30 s, and 

extension at 72◦C for 80 s, and a final extension step at 72◦C for 5 min. All PCR reactions were 

prepared in a volume of 20 μl containing 1× PCR buffer, 2.5 mM MgCl2, 250 mM of each 

deoxynucleotide triphosphate, 10 pmol of each of the primers, 0.5 U of Taq DNA polymerase 

(Bioline, Luckenwalde, Germany) and 10 ng of template DNA. PCR products were separated by 

electrophoresis on a 1.5% (w:v) agarose gel. Gels were stained with ethidium bromide and 

photographed under ultraviolet (UV) transillumination. 

Amplicons were purified using Cut&Spin DNA Gel Extraction Columns (Grisp, Portugal), 

according to the manufacturer’s instructions. Purified PCR products were then cloned into 

pGEM-T Easy vector (Promega, Madison, WI), and transformed into OneShot TOP10 chemically 

competent Escherichia coli cells (Invitrogen, Carlsbad, CA) using standard procedures following 

the manufacturer’s instructions (Sambrook and Russell, 2001). Plasmid DNA was isolated using 

GenElute Plasmid Miniprep Kit (Sigma-Aldrich, St. Louis, MO) and sequenced (Macrogen, Inc., 

Seoul, Korea) using M13 primers. The sequences obtained in the present study were assessed for 

the existence of chimeras using the DECIPHER program (Wright et al., 2012) and deposited in 

GenBank under the accession numbers KC469572–KC469576 (see Table 1 for correspondence 

with strains). 

 

Phylogenetic Analysis 

 

The 16S rRNA gene sequences obtained were aligned with sequences from the best BLASTn hits 

in GenBank and with available sequences from picocyanobacterial reference strains according to 

Bergey’s Manual of Systematic Bacteriology (Boone et al., 2001). 

The multiple sequence alignment (using the clustal W algorithm) and phylogenetic analyses were 

performed using the MEGA 5 software package (Tamura et al., 2011). Following the 

Bayesian Information Criterion (Tamura et al., 2011), the T92 + G + I model of nucleotide 

substitution was selected as the best-fitting model for the datasets. Phylogenetic trees were 

reconstructed using the maximum likelihood (ML) and maximum parsimony (MP) methods, and, 

as an indication of nodal support, bootstrap analyses were performed (1000 replicates for each 

method). Ambiguously aligned regions were omitted (“complete deletion” option) from the 

analyses. The topologies retrieved from the two methods were then evaluated using TreePuzzle 

5.2 (Schmidt et al., 2002), and the best topology was selected according to the results of the test 

comparisons (one- and two-sided Kishino–Hasegawa test, Shimodaira–Hasegawa test, expected 

likelihood weights). The branch support values derived from the two analyses were then 

compared using TreeGraph 2 (Stover and Muller, 2010). 

 

Cyanobacteria Extracts 

 

Freeze-dried cyanobacterial biomass was extracted repeatedly, twice at room temperature and 

then at 40◦C, with a methanol: dichloromethane (1:2) solution. 

After extraction, the solvents were evaporated in vacuo. A portion of the resulting crude extract 

was fractionated by normal-phase column chromatography in disposable silica (2-g) cartridges 



(Phenomenex), using a solvent gradient of increasing polarity. Starting with 100% hexane, to 

100% ethyl acetate, to 100% methanol, three fractions (A, B, and C) were obtained. The crude 

extract and respective fractions were then dissolved in dimethyl sulfoxide (DMSO) at different 

concentrations (0.1, 1, and 10 mg/ml). 

 

Bioassays 

 

Crude cyanobacterial extract and fractions were tested at final concentrations of 1, 10, and 100 

μg/ml, using 96-well plates, except for the sea urchin assay, which was performed in 24- well 

plates and where concentrations were 0.1, 1, or 10 μg/ml. All assays were run in triplicate and 

averaged. 

 

Nannochloropsis Growth Inhibition Assay 

 

The marine microalga Nannochloropsis sp. LEGE Z-004 was cultured under the same conditions 

as described for cyanobacterial biomass production. Microalgal cells were inoculated in 200 μl 

test solution at a 0.1 optical density (OD) (750 nm). Potassium dichromate (4 μg/ml) was used as 

positive control. After 72 h of incubation, cell growth was estimated by measuring the OD at 750 

nm in a microplate reader (Synergy HT, Biotek, Winooski, VT). 

 

Bacterial Growth Inhibition Assay 

 

The bacterial strain Pseudomonas putida NB3L (Lage and Bondoso, 2011) was grown in liquid 

M607 medium in the dark at 25◦C with shaking, until the exponential growth phase was reached, 

and then was diluted to 0.1 OD (750 nm). A mixture of penicillin (50 U/ml), streptomycin (50 

μg/ml), and neomycin (100 μg/ml) was used as positive control. OD at 

750 nm was measured after 24 h of incubation. 

 

Artemia salina acute toxicity assay 

 

Acute toxicity to the brine shrimp was screened using Artemia salina nauplii, freshly hatched (24 

h) from dried cysts in artificial seawater. Aliquots (10 μl) of nauplii solution containing about 15–

20 organisms were pipetted into microplate wells containing 200 μl test solutions. Potassium 

dichromate was used as a positive control as described for the Nannochloropsis assay. Plates were 

incubated at 25◦C, in darkness. After 24 and 48 h, the numbers of dead larvae and total numbers 

of shrimps per well were determined. Results were expressed as percent mortality. 

 

Paracentrotus lividus Embryo–Larval Acute Toxicity Assay 

 

Sea urchins were collected from rocky beach at Valadares (Porto, North Portugal, (N 41◦

05_30.37__; W 8◦39_28.40__). Bioassays were performed according to the methods described by 

Fernandez and Beiras (2001). Briefly, sea urchins were dissected and sperm and eggs pipetted 

from the gonads. A volume of 10 μl undiluted sperm from one male was added to the egg 

suspension and carefully stirred to allow fertilization. Twenty fertilized eggs/ml were exposed to 

3000 μl test solutions prepared in artificial seawater. After 48 h of incubation at 20◦C in the dark, 

solutions were fixed in 36–38% formaldehyde. Embryogenesis success was evaluated by 

formation of plutei larvae and larvae length. 

 

Statistical Analysis 

 

Data were analyzed using general linear models or generalized linear models. The dependent 

variables were those used to estimate growth (percent viability, OD, larva size). 

Treatment, time, and cyanobacterial strain were used as fixed factor. For the analysis of sea urchin 

assay, a mixed-effects model was employed with nested block design. Normality was tested in 

the model residuals with the Shapiro–Wilks test. Nonnormal data were transformed using the 



Box–Cox function. Then, if the normality test was still negative, a generalized linear model with 

gamma distribution was employed. In these cases, fit to gamma distribution was tested as the 

dependent variable (sometimes also transformed with the Box–Cox function). In some of the 

analyses, clear outliers were omitted from the data set. Post hoc pairwise comparisons were 

performed with the Tukey’s or Dunnett’s test. Whenever usingTukey’s test, homogeneous subsets 

of treatment levels were obtained based on significance levels. 

Those levels that did not differ significantly among them were classified into the same subset. 

Homogeneous subsets were not calculated for those factors with low number of levels or few 

significantly different pairwise comparisons. The criterion for significance was set at p < .05. As 

a measure of standardized effect size, the value of Dunnett’s t statistic was calculated for each 

treatment level, averaged over comparisons against all other levels. The software employed was 

R version 2.15.2 with functions from base, stats, car, multcomp, and nlme packages. 

 

RESULTS 

 

Identification and Phylogeny of the Isolates 

 

The morphological characterization of the picocyanobacterial isolates showed that cells were 

mainly spherical with some also being shortly rod-shaped (Figure S1; see Supplementary 

Material). Following botanical taxonomy (Komárek and Anagnostidis, 1998; Komarek et al., 

1999), morphological and ecological features of the organisms enabled us to identify the strains 

as Cyanobium sp. This identificationis also in accordance with the criteria of Bergey’s 

classification (Boone et al., 2001). Taking into account the 16S rRNA gene sequences, the best 

BLASTn match for all strains was Cyanobium sp. NS01 (99% similarity). This strain was 

previously isolated from central North Sea waters (Fuller et al., 2003). 

Regarding their phylogenetic placement among the picocyanobacterial diversity, data 

demonstrated (Figure 1) that the strains were placedtogether in a major clade that comprised two 

well-defined subclades: the first containing Synechococcus spp. along with a reference strain (WH 

8103, cluster 5.1), and the second, Prochlorococcus marinus strains. In addition, two small 

subclades emerged, supported byboth ML and MP methodologies; one of the subclades included 

other Cyanobium sp. strainsfrom our culture collection, and the other comprised three freshwater 

isolates, including the reference strain PCC 6307 (cluster 1), which is also the holotype for the 

genus Cyanobium (Rippka and Cohen-Bazire, 1983). The other sequences from this large clade 

belong to strains indistinctly assigned to Synechococcus and Cyanobium (some of which are 

reference strains). 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioactivity of Isolates 

 

For the assay with Nannochloropsis, a generalized linear model was fitted with treatment (crude 

extract and fractions) and cyanobacterial strains as fixed factors. The analysis of deviance found 

all factors significant (treatment, time and strain) (Figure 2). The homogeneous subsets for 

“treatment” showed level Fraction B at 1μg/ml as the lower viability group. For “strain,” no 

significant differences were found (Figure 2). 

In the bacteria assay, a general linear model was fitted with the same formulation as for 

Nannochloropsis. An analysis of variance found all factors significant. A post hoc analysis was 

performed with Dunnett’s test (reference level: 

 



 

 

negative control). This test demonstrated significant differences with the following levels: 

Crude 1 μg/ml, Crude 10 μg/ml, Fr C 1 μg/ml, and Fr C 10 μg/ml. For “strain,” no significant 

differences were found. 

In the Artemia salina acute toxicological assay, no significant percent mortality was detected and 

thus no bioactivity was considered expressed (data not shown). 

In the P. lividus bioassay, a general mixedeffects linear model was fitted using treatments and 

cyanobacterial strains as fixed factors. 

Block (location of replicate groups in the chamber) was used as a random factor. An analysis of 

variance of this model found all factors significant, treatment and strain (Figure 3). A post hoc 

Dunnett’s test (reference level: negative control) showed significant difference with level Fr 

B 10 μg/ml. For “strain” no significant differences were found. 

 

Bioactivity Pattern Among Phylotypes 

 

To better visualize the bioactivity of extracts from diverse picocyanobacteria, a summary next to 

the phylogenetic tree is provided (Figure 1), with bioassay results obtained in this study compared 

to those from previous studies (Frazao et al., 2010; Semary and Naby, 

2010; Lopes et al., 2011).The same bioactivity pattern was observed for isolates used in our study. 

Nevertheless, unlike that observed for other LEGE strains that represent closely related 

phylotypes, no apparent bioactivity was detected for the A. salina assay. Among these, only the 

previously studied Cyanobium sp. LEGE 06011 (Frazao et al., 2010) was also not active for this 

particular assay. 

 

DISCUSSION 

The morphological identification attempted here could not be carried out more stringently since 

the attributes of the strains were not assignable to any species with validly published names 

(Komárek and Anagnostidis, 1998). Thus, the strains were only identified at the genus level. The 

picocyanobacteria are recognized as having few characters, and as a result, their classification 

based on cytomorphological features is difficult (Komarek et al., 1999). Similarly, the 16S rRNA 

gene sequencing did not enable us to reach a  

 

 



 

higher taxonomic resolution. The best hits retrieved from GenBank were sequences from 

Cyanobium spp. and Synechococcus spp. that, along with the sequences from our strains, resulted 

in closely related phylotypes (Figure 1). 

This seemingly incongruent phylogeny is actually the well-recognized polyphyly of some 

morphotypes that are presumed to belong to the same cyanobacterial taxon, which is specifically 

true for several picocyanobacterial taxa (Honda et al., 1999; Robertson et al., 2001). 

Consequently, if a comparison of the presence or absence of particular aspects (e.g., bioactivity 

potential of extracts) in different morphologically identified taxa is to be made, this unresolved 

taxonomy might yield misleading conclusions. For this reason, it is preferred to compare 

phylotypes. Hence, in this investigation, marine Cyanobium strains shown to belong to the same 

subclade (Figure 1) were used, and their potential as producers of bioactive compounds was 

tested. The results obtained demonstrated that these Cyanobium strains, in general, inhibited 

microalgae and bacterial growth and induced a decrease in P. lividus larvae. When comparing 

these data with available results from less related phylotypes (Martins et al., 2005, 2007; Frazao 

et al., 2010) (Figure 1), it becomes evident that the limited number of picocyanobacteria studied 

to date exhibited activity in the majority of assays in which extracts were tested. The exceptions 

were two Synechocystis sp. strains (LEGE 06083 and LEGE 07073), which did not demonstrate 

toxicity for A. salina assay. Prior to this study, activity toward members of the Pseudomonas 

genus was tested only once for a picocyanobacterium with available 16S rRNA gene sequence. 

The strain in question is Synechocystis sp. Helwan1 and its lipophilic extract also inhibited growth 

of this bacterium (Semary and Naby, 2010). The outcome noted from Figure 1 is somewhat 

biased, since the results presented are just for picocyanobacteria with available 16S rRNA gene 

sequences. There are other studies on the bioactivity of extracts from picocyanobacteria (Martins 

et al., 2007, 2008), but the isolates used therein were not characterized by molecular markers 

(particularly, the 16S rRNA gene sequence). Thus, even if they are assigned to the same taxa as 

those present on the phylogenetic tree, their placement remains uncertain. Therefore, it should be 

noted that some of the picocyanobacterial diversity known to show bioactivity is not covered in 

this presented phylogenetic tree. 

With a crude extract and three fractions of different polarity, a preliminary segregation of the 

lipophilic metabolites in the cells was achieved. Among crude extract and fractions, in general, 

fraction B was found to be the one with a most pronounced adverse effect. 

Fraction B corresponds to the extraction eluted from the silica column with a higher proportion 

of ethyl acetate corresponding to compounds with an intermediate polarity, which are known to 

include cyclic lipopeptides or depsipeptides (Luesch et al., 2002; Han et al., 2006). 

The diversity of marine cyanobacteria bioactive compounds already identified belongs to such 

chemical classes of compounds. To cite only a few, the cyclic depsipeptides aurilides, isolated 

from Lyngbya majuscule probably Moorea producens (Engene et al., 2012), were shown to be 

inhibitors of different cancer cell lines (Han et al., 2006) and the cyclic hexapeptides venturamides 

A and B, isolated from a marine Oscillatoria sp., displayed antimalarial activity (Linington et al., 

2007). Interestingly, evidence indicated that the crude extract did not produce similar inhibitory 

effects as faction B. This may be attributed to concentration of the toxic compound. Although the 

tested concentrations were the same, the compound inducing the effect is, in principle, more 

concentrated in fraction B than in crude extract. Alternatively, in the crude extract, an interaction 

of the toxic compound with others may have altered toxicity, consequently resulting in differences 

between crude extracts and fractions B. 

Our results, along with the findings from previous studies, emphasize the importance to also 

explore smaller forms of cyanobacteria for bioactive and toxicological purposes. The genus 

Cyanobium then presents itself as a source of bioactive compounds with effects on other 

organisms, namely coexisting organisms. Since this bioactivity is reflected in terms of toxicity, 

the occurrence of these picocyanobacteria might thus be seen as a threat to ecosystem equilibrium. 

Inhibition of bacterial growth is, however, a promising result with respect to the pharmacological 

and biotechnological applications of compounds. 



Identifying new sources of bioactive compounds represents the initial step in the process of 

discovering natural drugs. In this sense, this study represents a contribution to broaden the range 

of cyanobacteria from which new compounds with relevant bioactivity profiles might be isolated. 

According to our results, fraction B is promising for the isolation of compounds in the studied 

strains. Future investigations need to focus on the isolation and identification of compounds, as 

well as on the evaluation of their bioactive profile. 
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