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Abstract: Since the discovery of the first penicillin bacterial resistance to β-lactam antibiotics has spread and evolved promoting new 
resistances to pathogens. The most common mechanism of resistance is the production of β-lactamases that have spread thorough nature 
and evolve to complex phenotypes like CMT  type enzymes. New antibiotics have been introduced  in clinical practice, and therefore it 
becomes necessary a concise summary about their molecular targets, specific use and other properties. β-lactamases are still a major 
medical concern and they have been extensively studied and described in the scientific literature. Several authors agree that Glu166 
should be the general base and Ser70 should perform the nucleophilic attack to the carbon of the carbonyl group of the β-lactam  ring. 
Nevertheless there still  is controversy on their catalytic mechanism. TEMs  evolve at incredible pace presenting more complex phenotypes 
due to their tolerance to mutations. These mutations lead to an increasing  need of novel, stronger and more specific and stable antibiotics. 
The present review summarizes key structural, molecular and functional aspects of ESBL, IRT and CMT TEM β-lactamases properties and 
up to date diagrams of the TEM  variants with defined phenotype.  
The activity and structural characteristics of several available TEMs in the NCBI-PDB are presented, as well as the relation of the various 
mutated residues and their specific properties and some previously proposed catalytic mechanisms. 
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1. EVOLUTION OF RESISTANCES - β-LACTAMASES 

AND β-LACTAM ANTIBIOTICS 
 

Currently, infectious diseases are accepted as one of the 
most important  and relevant clinical conditions and, many 
times, fatal. With the inclusion of antibiotics in the clinical 
practice, mankind has taken this problem as a ceased problem 
in the history of human diseases. The first β-lactam antibiotic 
to be used in  clinical  practice was penicillin which was 
discovered and described by Alexander Fleming in 1928 and 
was used with success in medical practice in 1941, after the 
work of Howard Walter Florey and Ernst Chain [1]. β-lactams 
target the PBPs with success as this type of antibiotics mimics 
the D-Ala-D-Ala dipeptide in the peptidoglycan and form a 
very stable acyl-enzyme complex inhibiting PBPs  from 
synthesizing peptidoglycan [2].  These  antibiotics always 
feature a very reactive cyclic amid – β-lactam ring - which is 
a part of the bicyclic structure that forms the “core” of the 
antibiotic. A  few  common ring rearrangements  can be 
appointed: penam, penem, carbapenem, cefem and 
monobactam. 

 

Even though several β-lactams have been developed for 
use in clinical practice, the infectious agents have the ability 
to acqu i re  and development mechanisms to  resist  the 
antibiotics action and the majority of the hospitals isolates 
are microorganisms highly resistant to antibiotics [3,  4]. 
Among such mechanisms the emergence of resistances can 
be associated with multiple causes, being the genetic 
mutations that lead to the production of a mutated protein, 
one of the most common. 

 
 

 Some of these mutant proteins may act as enzymes that 
increase the catalytic activity towards antibiotics or increase 
the resistance to the binding of specific inhibitors. 
Additionally, membrane  transporters that export antibiotics 
prior to their binding to the target may be also mutated.  The 
microorganisms  that do not develop any mutation 
conferring resistance to the antibiotics may obtain these 
types of genes through the acquisition of mobile genetic 
elements such  as  integrons and  transposons in plasmids 
(conjugation), in naked DNA from the environment 
(transformation)  and in phage DNA (transfection) [3, 5, 6]. 
These mechanisms are considered as primary mechanisms of 
resistance (resistance occur at the primary level of metabolism). 
Mechanisms of resistance affecting secondary metabolism 
have also been described (biosynthesis of modified β-lactams 
that are antagonist to the modified proteins) [7]. 
 

Specific primary mechanisms of resistance to β-lactams 
can be associated with Gram-positive and Gram- negative 
bacteria. In Gram-positive bacteria, acquisition of resistance 
is achieved through the production of β-lactamases (inactivation 
of the antibiotic) and production of mutated PBPs [7,  8]. 

Several mechanisms of resistance can be obtained with the 

mutation of these targets. It is possible that a less sensitive 

PBP   is p rodu ced  either by mutat ion of an endogenous 

protein or by acquisition of a new PBP. It is also possible to 

up regulate the production of PBPs allowing the pathogen to 

produce peptidoglycan [9].
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The most common mechanism in Gram-negative bacteria is the 
production of β-lactamases but these organisms can also 
present mutation of outer membrane proteins such as porins. 
This allows them to avoid one of the mechanisms  for the 
crossing of the antibiotic through the outer membrane  to 
reach the active site (PBPs)  and the production of efflux 
pumps capable of remove the antibiotics from  the 
periplasma and transporting them out of  the bacteria [7, 
8]. 

 

Nowadays, it is accepted that the increase of antibiotic 
resistance is due to the negligent  use of antibiotics or the 
lack of these to perform a proper medical treatment – World 
Health Organization (WHO). However, the emergent resistance 
of  β-lactams  was  detected even before penicillin  was 
ever used in medical practice [3, 4]. The first β-lactamase 
was described, in 1940, by Chain, E.  et al.  in E. coli, as a 
penicillinase but soon this  resistance appeared in  others 
species, particularly in staphylococci [3, 10]. It is believed 
that β-lactamases have PBPs as their ancestors and that, by 
the acquisition of  new mutations, evolved and gain the 
capability to acylate and deacylate β-lactams [11]. Therefore, 
it becomes clear why PBPs and β-lactamases are both active- 
serine enzymes with similar active sites – in both exists a 
lysine near the catalytic serine. However, in PBPs the lysine 
is the initial base while in β-lactamases  its role is not yet 
fully  understood.  Another major dissimilarity between  the 
active site of these two types of proteins is the presence of a 
new glutamate  residue in the Q-loop in  the β-lactamases 
[12]. 

 

The most common isolated  β-lactamases  are TEMs  and 
SHVs, as well as ESBL. Other examples are OXAs and SHO 
[3, 13, 14]. β-lactamases are primarily divided in four molecular 
classes, from A to D. ESBLs represent a major concert for 
public health [15]  due to their ability to hydrolyze up to 
fourth generation  cephalosporins,  penicillins and azetreonam. 
Carbapenamases are  another group  of   β-lactamases 
representing an emergent clinical concern [16, 17]. The main 
β-lactamases with these phenotypes are TEM,  SHV  CTX-M 
and VEB as ESBL representatives  and KPC  and GES  as 
carbapenemases representatives [18-21]. After the discovery 
of TEM-1(1963),  its prevalence increased and, in a 20 year 
times spawn, various variants of TEM-1 were detected with 
altered kinetic properties  such as the ability to hydrolyze 
extended spectrum β-lactam antibiotics- ESBL and to resist 
inhibition- IRT   [4].  Even thought , the first CTX-M   was 
discovered in 1989, the wide dissemination and fast evolution 
of these β-lactamases only occurred after the year 2000 when 
these were isolated in very important and prevalent pathogens 
[15, 22]. The alignment of the enzymes amino acidic sequences 
determined that unlike other ESBLs, these enzymes formed 
heterogeneous groups [18]. According with the alignment it 
was possible to classify them within five different clusters 
which names correspond to the first enzyme isolated from 
each group: CTX-M-1 [23], CTX-M-2 [24], CTX-M-8 [25], 
CTX-M-9 [26] and CTX-M-25 [27]. New CTX-M c l u s t e r s  
have been reported [28, 29] showing that the number of 
clusters might increase in the future. The fast evolution and 
worldwide spread has been referred to as “CTX-M pandemic” 
[22]. 

 At the moment no clinical isolates presenting inhibitor 
resistant  CTX-M  enzymes have been reported but mutants 
obtained in  laboratory experiments capable of  resist  to 
treatment with  β-lactam   antibiotics/clavulanic   acid  were 
reported [30, 31]. With the increasing capability of microbes 
to resist antimicrobial chemotherapy, carbapenems are often 
used  as  last  option to  treat Gram-negative organisms’ 
infections [32-34]. Unfortunately, enzymes capable of 
hydrolyzing these compounds have emerged –  KPC   β- 
lactamases [35, 36]. These serine carbapenemases belong to 
group 2f (Bush classification scheme [37, 38]) and belong to 
the Ambler molecular class A  [39] as the EBLSs that 
evolved from TEM-1. The first KPC (KPC-1) was isolated in 
North Carolina in 1996 [40] but rapidly spread worldwide 
[41-45] leading to the current existence of nine different 
KPC enzymes (KPC-1 to KPC-10) [35] since a correction of 
blaKPC-1  shows that KPC-1  and KPC-2  are the same 
enzyme [40]. KPC β-lactamases present a broad spectrum of 
activity  and are capable of hydrolyzing most β-lactam 
antibiotics [21].  An  additional concern on the resistances 
conferred by KPC  β-lactamases  is their capability to resist 
inhibition by β-lactamase inhibitors such as clavulanic acid 
and Tazobactam [40].  This  family  of enzymes is plasmid 
mediated and often isolated from K. pneumoniae, which has 
been identified as the responsible organism for  multiple 
epidemics [46-51] due to the ability of these microorganisms 
to present multiple resistance  mechanisms  as well as their 
ability to transfer these. As a result, the mortality rates of 
infections with K. pneumoniae are very high [50]. 
 

1.1. TEM-1  Characterization 
 

Upon antibiotics binding to the TEM-1,  the small 
molecules hydrolyze  the amide group of the β-lactam ring by a 
serine residue in the active binding site, which allows the 
classification of this enzyme as class A  β-lactamase  [52]. 
Although the classification is still used, it does not allow to 
clearly and efficiently differentiating some β-lactamases with 
distinct properties. To o v e r c o m e  this  situation a  
more complex system of classification was developed  by 
Bush [37]. This system is based on several characteristics of 
the enzyme such as molecular structure, biochemical 
properties and genetic sequence [37]. 
 

1.1.1. TEM-1 Structure 
 

β-lactamase TEM-1 (Fig. 1) is organized in three domains 
Sandwich-like (a-Helices/β-sheets/a-Helices) and the binding 
site is located between the β-sheets domain and the domain 
that includes the a2-Helix [52, 53]. The protein backbone is 
highly  ordained and stable and the variability  is  only 
observed in  the loops due to the lack  of a well-defined 
secondary structure [54]. The high variability of the position 
of loop Q, may influence the proximity of water molecules 
near the active site, more precisely near the Glu166 residue. 
Fig. (1) illustrates the proximity of the residues that do not 
catalyze the reaction (highlighted in orange) to the catalytic 
residues. Their proximity may influence the ability of this 
enzyme to hydrolyze substrates (leading to a  different 
orientation of  the catalytic residues, enlargement  of  the 



 
 

 
Fig. (1). Structural representation of TEM-1 (PDB  ID: 1ZG4[60]) with the catalytic residues in a white stick representation and the residues 

near the catalytic pocket (the ones that can affect the enzymatic catalyzes) highlighted in blue. Some key secondary structures are identified. 
 
 

catalytic  pocket or  displacement of  water molecules in 
the catalytic pocket). However,  there is  a  tradeoff:  the 
destabilization of  the  enzymatic structure. The  Ser130 
residue has an important role in the catalysis, mainly due to 
its proximity to the residue Ser70. As this residue is irreversibly 
inhibited, it is  crucial for the reaction with  inhibitors of 
β-lactamases [3, 52, 54-58]. Kollman et al. [59] have shown 

that Ser130 can be responsible for the β-lactam ring opening 
due to the donation of an hydrogen, after the nucleophilic 
attack by Ser70. 

 

1.1.2. TEM-1’s Activity 
 

Resistance to β-lactam antibiotics by TEMs  can be 
explained by two main processes: acylation and deacylation 
[52]. In the acylation process, the Ser70 residue is deprotonated 
in order to perform the nucleophilic attack to the carbon of 
the carbonyl group in the β-lactam ring. The deprotonation 
process is  achieved through the interaction of  a  water 
molecule with Glu166, the general base of the reaction [55, 
61].  After  accessing the importance  of the Lys73  in  the 
process, other theories refer the possibility of this residue 
acting as a base in the enzymatic process. However, it can 

also be important  to stabilize the ligand in the hydrolysis 

both Glu166 and Ser70. Consequently, Ser70 performs the 
nucleophilic attack of the carbon atom of the carbonyl group 
of the β-lactam  ring. In  Scheme 1-B  Glu166 abstracts a 
hydrogen atom from Ser70 through a hydrogen transport 
network involving Lys73.  It allows Ser70 to perform the 
nucleophilic attack as in Scheme 1-A. In both mechanisms 
Ser130 acts as a catalytic acid donating a hydrogen atom that 
helps with the ring opening. The deacylation process of the 
formed intermediary is  similar  in  both mechanisms and 
occurs with an activated water molecule bound by hydrogen 
bridges to Glul66, which releases Ser70 from the -lactamic 
ring in its protonated form [52]. 
 

1.1.3. TEM Extended  Spectrum M-lactamases – TEM ESBL 
 

For decades new antibiotics were developed for clinical 
use. The usage of new antibiotics induced a selective pressure 
over microorganisms, which led to a co-development of the 
latter with  production of  enzymes capable of  antibiotic 
degradation [5, 14]. 
 

TEM-1 degrades efficiently some penicillins but, despite 
its poorly filled out active site, it does not possess the needed 
space to accommodate  big lateral chains like the ones in 

rd 

reaction. Thus, even now the mechanism is not yet fully ceftazidine and cefotaxime (3 generation  cephalosporins) 

understood and many theories have been described (Scheme 1 

demonstrates the most prevalent proposed mechanisms in the 
literature) [52, 55, 59, 61]. The main difference between the 
hypotheses presented in Scheme 1 is the activation of Ser70 
to perform the nucleophilic attack. In Scheme 1-A Glu166 
abstracts a  hydrogen atom from Ser70  through a  water 
molecule that is hold in place by hydrogen  bonding  with 

[4, 14, 62]. With the introduction of this type of compounds, 
these enzymes have evolved. Up to 2001 [3] mutations were 
observed only on a small number of residues. After Bradford 
et al. compile the mutations on the existent ESBLs, not only 
several new enzymes have been identified but mutations on 
several different residues can now be observed. TEM  ESBL 
started to be identified and isolated since  the 70s,  and 
nowadays more than 100 are known [3, 63]. 



 

 

 
  



 

 

The unusual mutations observed  in this phenotype  (even 
not  in the  active  site)  increased  the plasticity  of the  active 

site, which allowed  its enlargement. This enlargement  made 

them to be able to acylate larger  β-lactam antibiotics, 

inactivating them. ESBL have shown to degrade extended 

spectrum  β-lactams (around  100  times  more  efficient)  but 



 

 

with decreased catalytic activity for penicillins (100 fold less 
efficient) [64]. The enlargement and increase of plasticity of 
the active site do occur but with  a decreased  enzymatic 
stability [65]. The enlargement of the active site can be the 
result of the loss of H-bonds upon mutation that may lead to 
the loss of a defined secondary structures near the mutated 
residue as  described for  TEM-69   [14].  Having  this  in 
consideration, it is understandable that enzymes  that present 
an additional factor that leads to higher enzymatic stability 
are naturally  selected. This  is  mainly  accomplished by 
evolutionary pressure, by the use of antibiotics with bigger 
lateral chains [4, 62]. In several ESBL, one factor was 
identified: the Met182Thr mutation. This mutation does not 
lead to any effect on the catalytic activity of the enzyme. 
Therefore, by itself does not bring any evolutionary 
advantage, which might be the reason why this mutation is 
not present by itself in any known enzyme [4, 5, 56, 66]. 
Wang X. et al. have demonstrated that bacteria that produce 

enzymes with the referred mutation are less susceptible to 3
rd

 

A  small amount of amino acids mutations with a high 
importance for the yield of extended spectrum enzymes have 
been described. Regarding such amino acid mutations 
Leu21Phe, Gln39Lys, Glu104Lys, Arg164His or Arg164Ser, 
Gly238Ser and Glu240Lys  are among the most commonly 
described [3,  4, 63, 67].  Fig.  (2)  illustrates the various 
mutations, concerning TEM-1  sequence,  of the ESBLs  β- 
lactamases with sequence available in reference [63] at the 
time of this review. 

1.1.4. TEM Inhibitors Resistant β-Lactamases – TEM IRT 
 

The β-lactamases with the ability to resist the inhibition 
by clavulanic acid were discovered in the early 90s [64]. 
They were identified mainly from samples of E. coli but also 
from samples of other lineages, like  K. mirabilis  and C. 

freundii [3]. 
 

These types of enzymes confer resistance  to clavulanic 
acid and sulbactam. Hence, microorganisms  that produces 

generation  cephalosporins,  when compared with  the wild them are resistant to  Clavamox treatment (amoxicillin- 

type. Effect  that is  observed in a higher degree with the 
increase of the temperature [14]. The TEM  ESBL producing 
bacteria are capable of  resisting the action of  β-lactam 
antibiotics due to its degradation before they reach the target 
(PBP).  These observations may be explained by the increase 
of the protein stability but it is still possible that it promotes 
the correct folding of the TEM variants [62]. 

clavulanic  acid),  ampicillin-sulbactam and other inhibitor 
combinations  [4,  13,  67-69]. IRTs remain susceptible to 
Tazobactam, and  this  treatment may  be  performed in 
combination with piperacillin [69]. Mutations in the residues 
Met69, Ser130, Trp165, Arg244, Arg275 and Arg276 appear 
to be relevant in promoting this phenotype and its identification 
is  more common in  clinical  isolates [3,  4,  58,  64,  70]. 
Substitutions in the Met69, Ser130, Arg244 and Arg276 

 

 
 

Fig. (3). Diagram of the mutations of the TEM IRT  enzymes, compared to the TEM-1 sequence. Scheme based on available sequences and 

phenotype in Jacoby database [63]. 



 

 

residues were identified as resistance promoters ampicillin - 
clavulanic acid combinations and other studies have shown 
that mutations in  Met69,  Trp165  and Arg276  promote 
resistance to ceftazidine-clavulanic acid treatment  [3,  57, 
70, 71]. Mutations  on the Arg275 residue do not promote 
considerable resistance  to  clavulanic  acid  inhibition. 
Nevertheless, mutations for Leu and Gln have been identified to 
increase  cefotaxime  resistance, suggesting that  Arg275 
mutations may promote resistance to inhibitors and β-lactam 
antibiotics [4, 62]. Fig. (3) illustrates the known mutations, 
relative to TEM-1,  of the IRTs β-lactamases with sequence 
available in reference [63] at the time of this review. 

 

The inherent mechanism of the inhibition is identical for 

all  inhibitors and, unlike the mechanism of β-lactam 

hydrolysis, is already well known [64]. It comprehends 8-10 

different intermediates in  the  inactivation pathway and 

derives of conventional  hydrolysis intermediates  [57]. The 

inhibitors form a covalent bond between residues Ser70 and 

Ser130 leading to the irreversible inactivation of the enzyme 

due to deprotonation of the Ser130 residue [58, 64]. Despite 

the hydrolytic pathway being 100 times faster than the 

inactivation pathway, the latter is irreversible, which leads to 

the inhibition of all the enzymes in the microorganism and 

loss of their activity [58]. Clearly, Ser130 is essential to the 

inactivation via  and its  role  is  very  important for  the 

formation of the IRT phenotype. 
 

Other described mutations do not present direct interaction 

with the inhibitor nor with the proteic neighborhood  of the 
active site. However, it is possible that these mutations cause 

torsion of Ser130 side chain, deflecting it from the active 
site, which leads to resistance to inhibitors [4,  64].  IRT 

TEMs  are less capable of hydrolyzing β-lactam antibiotics. 

As they are resistant  to inhibitors, they can overcome this 

aspect and therefore, be resistant  to the various treatments 

[58].  Mutants that present mutations in  residues that are 

typically  responsible for  the EBSL and IRT   phenotype, 

normally present just one of the phenotypes. However, some 

mutants (i.e.  TEM-50  or  CMT-1)  confer resistance to 

clavulanic acid and present the ability to hydrolyze large 

spectrum cephalosporins  [13, 63]. Several others have also 

been described as CMT  or CMT-type enzymes. Although 

CMT  variants present resistance to β-lactamase  inhibitors, 

some can still be inhibited by the clavulanic acid at a higher 

rate than IRT variants. These are fundamental evidences that 

β-lactamases with more complex phenotypes  and higher 

potential  to promote  resistance to treatments  are evolving 

[72]. Fig. (4) is a diagram of the mutations described until 

now regarding the CMT/CMT-type phenotypes in comparison 

with the TEM-1 sequence [63]. 
 

1.1.5. Previously Described TEM Variants 
 

For several years, researchers have study this family of 
enzymes. Such searching for knowledge concerning TEM 
enzymes, include the comprehension of their enzymatic 
mechanisms and sh ed light into the way they are evolving 
for better predicting their biological effect (antibiotic 
resistance). In the medical context, the comprehension of the 
genetics and biochemistry of the various β-lactamases  will 
allow  the development of  better therapeutic approaches 
towards the infection control caused by pathogens that produce 
TEM  enzymes. Table 1  lists some of the most important 
and well described variants. It becomes clear the relevance 
of some residues for their structure and activity. 

 

 

 
 

Fig. (4). Diagram of the mutations of the TEM CMT/CMT-type enzymes, compared to the TEM-1 sequence. Scheme based on available 

sequences and phenotype in Jacoby database [63]. 



 

 
Table  1.  Biological and structural effect of the mutation of key residues of several  TEM  enzymes. 

 
 
Variant 

 
Mutation 

 
Biological Effect 

 
Structural Characteristics 

 
PDB ID 

 
Wild Type 

(WT) 

 

 
- 

Responsible for β-lactam antibiotics resistance 

(cephalosporins are moderate resistant). They open 

the β-lactam ring deactivating the molecule. 

 

 
- 

 

 
1ZG4 [52] 

 

 
 
- 

 

 
 
S70G 

Less active than WT deactivating β- lactam 

antibiotics. It can still be active as Ser130 might 

perform the nucleophilic  attack to the β-lactam ring 

or due the presence of an additional water molecule 

close to Gly70. 

 
Lack of nucleophilic  properties at residue 70 side- 

chain. The overall structure is very similar to WT 

except conformation of Ser130 and backbone near 

this residue. 

 
 
1ZG6 

[52, 58] 

 

 
 
TEM-76 

 

 
 
S130G 

 
Less active than WT deactivating β- lactam 

antibiotics. Less prone to inhibition by clavulanate 

and tazobactam (K1>K1WT for pre- acylation 

complexes) More stable at Tm than WT. 

Distance between Ser70 and Gly130 is greater than 

in WT (7,3Å and 6,7Å in WT). Rotation of Lys234 

(N shifts 1,5Å). H-Bond between Lys73 and Ser70 

does not exist (N of Lys73 moves 0,5Å). New water 

molecule near Ser130 is responsible for its activity. 

 

 
 
1YT4 [58] 

 
Frequent in 

many TEM 

mutants 

 
 
M182T 

Similar activity than WT. Increased stability 

(stabilizes ESBL). Differences between TEM with 

Met182Thr increases with the increase of the 

temperature. 

 
Met182 is 14,5Å from the active site and therefore, 

it does not affect β-lactamase activity. 

 
1JWP/ 1M40 

[14, 55] 

 
 
TEM-69 

 
E104K R164S 

M182T 

 
 
ESBL 

Loss of H-Bond between Arg164 and Asp179 and 

between Arg164 and Glu171. Loss of secondary 

structure near residue 170 (a-Helix) increases the 

catalytic pocket. 

 
 
1JWP [14] 

 

 
 
TEM-32 

 

 
 
M69I M182T 

 
More stable than TEM-40 (Met69Ile) and less 

stable than Met182Thr  mutants. Resistance against 

β-lactamase inhibitors – IRT (Ser130 moves). 

Catalytic activity is reduced. 

RMSD Ca= 0,41Å Ser70 distortion causes a 64° x1 

of Ser130 (no longer makes H-Bonds with Ser70 

and Lys73) Ser130 Oy - Ser70 Oy = 5,5Å (3,2Å in 

WT) Ser130 Oy - Lys73 NÇ = 5,4Å (3,8Å in WT). 

New water molecule near Ser130 

 

 
 
1LI0 [64] 

 
 
 
 
TEM-34 

 
 
 
 
M69V 

 
 
 
More stable than WT. Resistant to inhibition (new 

H-Bond Ser130- Lys234: reduced ability to 

perform a nucleophilic attack) 

RMSD Ca= 0,30Å Ser70 distortion causes a 27° x1 

of Ser130. H-Bonds between Ser130 with Ser70, 

Lys73 and Lys234 (Ser130 Oy - Lys234 NÇ = 2,8Å; 

Ser130 Oy - Lys73 NÇ = 3,2Å). Two lone pairs are 

used to bond with the two Lys when in WT only 

one of these was verified. The rate of cross-linking 

between the two Ser is reduced, which leads to a 

lower inactivation. 

 
 
 
 
1LI9 [64] 

 

 
 
 
TEM-64 

 

 
 
 
N276D 

 

 
 
IRT phenotype Kinact 35% inferior than in WT 

with clavulanic acid. Small or nonexistent 

inhibition with Tazobactam and Sulbactam. 

Overall structure similar to WT. Residues 272-290 

(β-Sheet surface/a- Helix H11), 26-40 (N-Terminal 

a- Helix H1) and 219-224 (a-Helix H10) move. 

RMSD=0,52Å RMSD (Asp276)=0,75Å. New 

interaction with Arg244 (Asp276 Oõ2 - Arg244 

NY2=3,3Å). Nonexistent water molecule in the 

active site (less prone to inhibition). 

 

 
 
 
1CK3 [70] 

 
TEM-30 

 
R244S 

 
IRT phenotype due to water displacement. 

Water displacement leads to lower affinity to 

inhibitor (Schiff’s Base from inhibitor goes away 

from Ser130). 

 
1LHY [64] 

Legend: WT: Wild Type. 

 

1.1.6. Relevant Amino Acids 
 

Table 1 stresses out the importance of some residues for 
the structure and activity of the various TEM  variants. Their 

importance is related to their position in the protein as well 
as  to  specific  pair  interactions with  residues in  their 
microenvironment. Here we will characterize them: 



 

 

1)  Met69 
 

The side chain of Met69 lies behind P3 forming a wall of 
the oxyanion pocket. By  means of  steric interactions it 
influences the position of Ala237 and Gly238.  Due to the 
proximity with Ser70, it has an important role influencing the 
structural position of this residue and also of Ser130 (Fig. 5) 
[3, 64, 73]. 

 

2)  Glu104 
 

This glutamic acid residue is located in a conserved loop, 
highlighted in blue (101-111) and its hydrophilic side chain 
is exposed at the entrance  of the binding site. Due to its 
direct contact with Asn132 (part of the conserved  SDN loop, 

highlighted  in green (130-132)), if mutated  it might affect 
the entry of bulky ligands (Fig. 5-A) [3, 67]. 
 

3)  Ser130 
 

Serine 130 is part of a complex hydrogen bounding network 
that contributes  for the stability of the active site and the 
deprotonation  process of Ser70. This  residue is  highly 
conserved. However, even tough with consequences in the 
enzyme activity mutations or displacement of the side chain 
are tolerated (Fig. 5-A) [3, 57, 58, 69]. 
 

4)  Arg164 

This arginine residue is underneath the binding site in the 
Q-loop (162-179). The side chain is linked with Glu171 and 

 

 
 

Fig. (5). Structural representation of key residues of TEM-1 (PDB ID: 1ZG4 [60]) and their main interactions. 



 

 

Asp179 by salt bridge interactions and hydrogen bonds. An 
alteration in this residue might lead to an altered stability and 
conformation of  the loop, and therefore, changes in  the 
active site and the position of the catalytic residues (Fig. 5-A) 
[3, 67, 74]. 

 

5)  Met182 
 

Methionine 182 is distant from the active site but it has 
contact with  the secondary structure in  which  Met69 is 
located. Mutations in  this residue have been detected  on 
clinical isolates but its role is not fully understood (Fig. 5-B) 
[3, 64, 66, 67]. 

 

6)  Ala237 

The side chain of alanine 237 is on the exposed side of 

β3, which faces the catalytic pocket. Therefore, the position 
of this residue influences the stability of β-lactam antibiotics 
binding by hydrogen bonding with them (groups NH and CO 
of the backbone) (Fig. 5-B) [3, 56, 67, 75]. 

 

7)  Gly238 
 

The side chain of glycine 238 is on the internal and more 
protected side of β3, close to the residue Met69. It has been 
demonstrated  the importance  of this residue both for the 
position of the β3,  as well  as the position of the Q-loop 
(steric conflict model). This  affects the active site volume 
(Fig. 5-B) [56, 63, 67, 76]. 

 

8)  Glu240 
 

This residue is located at the end of β3 and its side chain 
can  interact with  the  substituents of  bulky  β-   lactam 
antibiotics (i.e.  cephalosporins). Mutations in  this residue 
alone would not modify significantly the catalytic properties 
of the enzyme but it might compensate the destabilization of 
other mutations (i.e. Arg164Ser or Gly238Ser) (Fig. 5-B) [3, 
4, 77-79]. 

 

9)  Arg244 
 

Arg244 is  located in  the β4  and its  long side chain 
reaches over to the adjacent β-strand (β3) to the edge of the 
binding site. It is kept in place by two hydrogen bonds with 
Asn276. Arg244 together with Val216 can be responsible for 
holding a water molecule in place, which is thought to be 
important for the enzyme inactivation  process (Fig. 5-B) [3, 
67, 74, 80]. 

 

10) Asn276 
 

This residue is located on the C-terminal a-helix (H11) 
and its carbonyl group interacts with Arg244 by two 
hydrogen  bonds (Asn276 carbonyl group with guanidinium 
group of Arg244). A mutation in residue 276 will not affect 
the position of  the  surrounding residues (i.e.  Arg244). 
However, the rotamer of the mutant will  be substantially 
different for TEM—1  and consequently, a1 and a10 can be 
displaced (Fig. 5-B) [3, 67, 68, 70, 74]. 

 

2. CONCLUSIONS 
 

With the introduction  of antibiotics, selective pressure 
led to the survival of the fittest pathogens (with one or more 
mechanism to resist antibiotics). β-lactamases  are the most 
common enzymes identified in clinical isolates of resistant 

pathogens.  Class A β-lactamases  can present many distinct 
phenotypes (i.e. ESBL, IRT  and CMT).  TEMs  evolved, by 
point mutations, from simple phenotypes (i.e. TEM-1) to highly 
complex ones (CMT/CMT-type). In this work we characterized 
in detail the structure of TEM-1 in order to better understand 
the possible effects of mutations  as shown in Table 1. The 
effect of mutations supersedes the microenvironment of the 
mutated residues, which justifies the effect on the enzymatic 
catalysis of residues that are not near the catalytic pocket 
(i.e. Glu104Lys and Arg244Ser can affect protein stability in 
the Met182Thr mutant). The structure and activity of TEM 
β-lactamases is maintained by a very complex network of H- 

bridges between residues and between residues and specific 
water molecules. Examples  are:  (i)   the water  molecule 
stabilized by Glu166 and Ser70, which is the catalytic water 
and (ii) the water molecule stabilized by Arg244 and Val216 
(proposed as an intervenient in the enzyme inhibition). With 
the current knowledge of  the structural aspects of  these 
enzymes and the relation between  molecular structure and 
activity spectrum, the understanding of newly isolated TEM 
variants gains new insights. 
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