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Abstract 

The intensification of agricultural productivity is an important challenge worldwide. However, 

environmental stressors can provide challenges to this intensification. The progressive occurrence of the 

cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of 

eutrophication and climate change is of increasing concern in the agricultural sector because it has been 

reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been 

shown to be a suitable tool for the detection and identification of the primary responses of organisms 

exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants 

exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants 

were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce 

leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially 

abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass 

spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented 

in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins 

involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN 

experiment. Although distinct protein abundance patterns were observed in both experiments, the effects 

appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of 

CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 

100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a 

significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the 

increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in 

abundance or were absent in the gels of the simultaneous exposure to 10 and 100 μg/l MC-LR/CYN. In the 

latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide 

important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and 

may contribute to the identification of potential protein markers of exposure and proteins that may confer 

tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this 

study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., 

presence of allergenic proteins). 
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Graphical abstract 

Although the effects of the mixture were stronger than those of CYN alone, in both experiments they seem 

to have been concentration-dependent and proteins involved in photosynthesis/carbon metabolism and 

stress/defense response were the most differentially changed in abundance. 
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1. Introduction 

The progressive occurrence and global expansion of harmful cyanobacteria blooms have been forecasted 

as consequences of eutrophication and climate change (Elliott, 2012 and O’Neil et al., 2012). Among 

freshwater cyanobacteria, Microcystis aeruginosa is the most common bloom former (O’Neil et al., 2012). 

However, the invasive species Cylindrospermopsis raciborskii has shown a substantial widespread 

distribution, including into temperate zones (Kinnear, 2010 and Poniedziałek et al., 2012). The use of 

irrigation water from sources that contain toxic cyanobacterial blooms of C. raciborskii and M. aeruginosa 

may pose a threat on the agricultural sector because their cyanotoxins (CYN and MC-LR, respectively) 

appear to generate phytotoxic effects on crop plants. CYN is a tricyclic alkaloid, and although the molecular 

mechanism of its toxicity has not yet been established, it is known that CYN inhibits eukaryotic protein 

synthesis with similar intensity in plant and mammalian cell extracts (Froscio et al., 2008). The few studies 

that have analyzed the toxic effects of CYN indicate that it results in the reduction of pollen germination 

(Metcalf et al., 2004), inhibition of plant growth (Vasas et al., 2002), induction of abnormal mitosis, 

alteration of microtubule organization, inhibition of root and shoot elongation (Beyer et al., 2009), and 

increase in oxidative stress (Prieto et al., 2011). MC-LR, the most studied structural variant of microcystins, 

is a cyclic heptapeptide that irreversibly inhibits, by covalent binding, serine/threonine protein phosphatases 

(PP; PP1 and PP2A), and this is the main mechanism of its toxicity in both animals and higher plants 

(Mackintosh et al., 1990). The induction of oxidative stress by the production of reactive oxygen species 

(ROS) appears to be another important biochemical mechanism of MC-LR toxicity that may cause serious 



oxidative damage (Pflugmacher, 2004 and Stüven and Pflugmacher, 2007). The toxic effects of MC-LR on 

plants have also been characterized. It has been reported that MC-LR results in the inhibition of 

germination, growth and development ( McElhiney et al., 2001, Pflugmacher, 2002, Gehringer et al., 2003, 

Chen et al., 2004, Mitrovic et al., 2005, Pflugmacher et al., 2006, Pflugmacher et al., 2007 and El Khalloufi 

et al., 2011), alteration of microtubule organization ( Máthé et al., 2009), and induction of changes in 

photosynthesis ( Pietsch et al., 2001, Pflugmacher, 2002 and El Khalloufi et al., 2011), chlorophyll content 

( McElhiney et al., 2001 and Pflugmacher, 2002), and antioxidative response ( Pflugmacher et al., 1999, 

Pflugmacher et al., 2001, Stüven and Pflugmacher, 2007, Pflugmacher et al., 2007, Gehringer et al., 2003, 

Pflugmacher, 2004, Pflugmacher et al., 2006, Saqrane et al., 2009, El Khalloufi et al., 2011 and Pichardo 

and Pflugmacher, 2011). Nevertheless, the effects of these cyanotoxins on plants seem to vary depending 

on the (1) use of purified toxins or crude extracts, (2) the plant species, (3) the stage of plant development, 

(4) the time of exposure, and (5) the range of concentrations studied. Therefore, it is important to note the 

ecological relevancy of these studies because few have confirmed the effects at environmentally relevant 

concentrations (Gehringer et al., 2003, Pflugmacher, 2002, Pflugmacher et al., 2007 and Pichardo and 

Pflugmacher, 2011). The concentrations required to exhibit effects in a wider range of species appear to be 

non-environmentally realistic because these are 10–1000-fold higher than those usually found in 

ecosystems ( McElhiney et al., 2001, Mitrovic et al., 2005, Beyer et al., 2009 and Saqrane et al., 2009). It 

has been reported that exposure concentrations of pure CYN below 100 μg/l appear to have no significant 

harmful effects on a wide range of species (e.g., floating macrophytes and green algae) (Kinnear, 2010), 

leading to the hypothesis that plants have developed appropriate protective mechanisms to tolerate CYN. 

Otherwise, it can be questioned whether the traditional endpoints used to assess toxicity exhibit sufficient 

sensitivity to evaluate understated biochemical alterations. Recently, Azevedo et al. (2014) reported the 

lack of sensitivity of the conventional parameters for the analysis of the toxicity of M. aeruginosa extract 

on rice (Oryza sativa) plants (MC-LR concentrations of 0.26–78 μg/l); however, significant alterations were 

observed through proteomic analyses. The inhibition of protein synthesis by CYN and the inhibition of 

PP1/PP2A activities by MC-LR appear to interfere with a wide range of molecular processes in plants 

(Máthé et al., 2013). Although the conventional biochemical biomarkers of stress induced by CYN and 

MC-LR (antioxidative enzymes and nonenzymatic substances) appear to be suitable, because proteins are 

the main targets of these cyanotoxins, it is particularly important to investigate how these operate in plant 

systems at the protein level. Proteomics is a field of growing interest in the agricultural sector because it 

has contributed to a better understanding of the specific functions of the proteins involved in plant responses 

to environmental stresses (Afroz et al., 2011, Kosová et al., 2011 and Abreu et al., 2013). A proteomic 

approach may enable the identification of protein biomarkers of the plant stress response and the discovery 

of the biological processes underlying stress tolerance, which may be used to enhance agricultural 

productivity (Kosová et al., 2011 and Abreu et al., 2013). Moreover, some secreted proteins with defensive 

or protective functions on stress factors are recognized to also have allergenic potential (Abreu et al., 2013). 

From the health risk point of view, proteomics data associated with allergen identification may provide new 

insights into the protein composition, quality, and safety of edible plants exposed to environmentally 
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relevant concentrations of cyanotoxins. Nevertheless, in aquatic ecosystems, single species of 

cyanobacteria are almost never found; hence, the existence of mixtures of cyanotoxins in the water column 

is likely and it was already reported for MC-LR and CYN (Brient et al., 2008). Simultaneous exposure to 

CYN and MC-LR may lead to changes in the response capability of crop plants, triggering potential 

synergistic or antagonistic effects. Recently, Prieto et al. (2011) suggested a synergistic effect on the 

oxidative stress response of rice plants due to its exposure to cyanobacterial extracts containing low 

concentrations of both CYN (0.13 μg/l) and MC-LR (50 μg/l). Proteomics studies investigating the effects 

of CYN and MC-LR have been mainly performed on bivalves, including mixtures with other environmental 

pollutants (e.g., herbicides) (Martins et al., 2009, Puerto et al., 2011 and Malécot et al., 2013). As above 

mentioned, more recently, Azevedo et al. (2014) successfully applied a proteomic approach to assess the 

early physiological and biochemical responses of rice seedlings to environmentally relevant concentrations 

of MC-LR. 

This work aimed to use a 2-DE proteomic approach and MALDI-TOF/TOF MS to investigate the leaf-

proteome profiles of lettuce (Lactuca sativa L.) plants exposed to environmentally relevant concentrations 

(1, 10, and 100 μg/l) of a CYN and MC-LR/CYN mixture. 

2. Results and discussion 

In the present study, well-defined differences were observed in the leaf-proteome profiles of lettuce plants 

exposed for five days to ecologically relevant concentrations (1, 10 and 100 μg/l) of CYN and MC-

LR/CYN. The proteomics approach was found to be a suitable tool that is sufficiently sensitive to recognize 

changes in the plant physiological responses that are not perceptible at the morphological level. Overall, 

the treatments applied in this study did not affect lettuce plants at the morphological level, with the 

exception of the leaf fr. wt of plants exposed to 1 μg/l and 100 μg/l MC-LR/CYN, which was significantly 

higher and lower than that of the control group (p < 0.05), respectively ( Fig. 1). Although there is scarce 

information on the lettuce genome, a high rate of proteins was successfully identified by the combination 

of 2-DE, MALDI-TOF/TOF MS, and lettuce expressed sequence tag (EST) databases (NCBI). A functional 

characterization of the differentially abundant leaf-lettuce proteins was performed to better understand the 

physiological response of this important crop plant to CYN and MC-LR/CYN exposure.  

http://www.sciencedirect.com/science/article/pii/S0031942214005366#f0005


 
 

Fig. 1. Fr. wt (g) of leaves of lettuce plants exposed to CYN and MC-LR/CYN. The values are expressed as the means ± 
standard deviation (SD) (n = 10). The asterisk (∗) indicates significant differences (P < 0.05) between the control and 
exposed groups. C1: 1 μ 

 

2.1. Differential leaf-proteome profiles related to CYN and MC-LR/CYN exposure 

The analysis of the leaf-proteome profiles of lettuce plants exposed to CYN and MC-LR/CYN revealed a 

total of 68 and 286 protein spots with significant abundance variations, respectively (p < 0.05, spot intensity 

variation of at least two-fold). The comparisons were made between the control group (C) and the groups 

with different exposure concentrations (C1, C10, and C100), as follows: C/C1, C/C10, and C/C100 (Fig. 

2A and B). Although some differentially abundant protein spots were common in the groups exposed to 

different concentrations, each group (C1, C10, and C100) exhibited a specific response pattern. The 

multivariate principal component analysis (PCA) (Fig. 3 and Fig. 4) allowed an accurate classification of 

the different experimental groups (p < 0.05, ANOSIM test) ( Supporting information Figs. 2 and 3). In the 

CYN experiment, the first component explains 40% of the variation and separates groups C and C1 from 

groups C10 and C100. The second and third components explain 14% and 9% of the proteome variation, 

respectively, and these separate group C from groups C1, C10, and C100. In the MC-LR/CYN experiment, 

the experimental groups were also well separated by the first three components. PC1 explains 33% of the 

proteome variation and separates groups C, C10, and C100 from group C1. Groups C10 and C100 are in 

the same component. PC2 explains 25% of the variation and separates groups C and C100 from groups C1 

and C10, whereas the third component, which explains 11% of the variation, clearly separates group C from 

group C100. 



 

 

Fig. 2. Venn diagram of the protein spots that exhibit differential abundance on leaf-lettuce plants exposed to CYN (A) 
and MC-LR/CYN (B) compared with the control group. The intersections also show the number of common proteins 
spots between different groups. 

 

 

 

 

Fig. 3. PCA diagrams representing the first and second components and the second and third components of the 
differential protein abundance (spot intensity) on the 2-DE gel of leaf-lettuce plants exposed to CYN. C1: 1 μg/l; C10: 
10 μg/l; and C100: 100 μg/l. 

 



 

 

Fig. 4. PCA diagrams representing the first and second components and the second and third components of the 
differential protein abundance (spot intensity) on the 2-DE gel of leaf-lettuce plants exposed to MC-LR/CYN. C1: 1 μg/l; 
C10: 10 μg/l; and C100: 100 μg 

The number of protein spots with significant abundance variation appears to be concentration-

dependent in the CYN exposure experiment (Table 1). A low number of significantly different protein 

spots (6) were found in group C1, and almost all of these proteins decreased in abundance (5) compared 

with that observed in group C. In contrast, exposure to 10 and 100 μg/l CYN resulted in 11 and 39 

differentially protein spots, respectively, that increased in abundance (Table 1). The number of 

differentially abundant protein spots in the MC-LR/CYN experiment also appears to be concentration-

dependent but following a reverse trend, i.e., a high number of proteins increased in abundance in 

group C1 (150), and 61 and 17 protein spots absent in the gels of groups C10 and C100, respectively 

(Table 1). 

 

Table 1. Quantitative description of the differentially abundant protein spots of the lettuce leaf-proteome profile 
obtained after treatment with ecologically relevant concentrations of CYN and the MC-LR/CYN mixture. 

 

 



For a broader visualization of these extensive results, individual heat maps were generated for the CYN 

and MC-LR/CYN experiments. Associated with each heat map, two hierarchical clusterings were 

performed to display the similarities between the experimental groups and to determine the 

distribution pattern of the differentially abundant proteins (Fig. 5 and Fig. 6). In both the CYN and MC-

LR/CYN exposure experiments, the clusters above the plots show two major groups (C1 and C10/C100). 

These clusters are corroborated by PCA (first component in the CYN experiment and first and second 

components in the MC-LR/CYN experiment) and suggest that the concentration of 1 μg/l in both 

experiments produced distinctive effects relative to the concentrations of 10 and 100 μg/l. The 

clustering of proteins by their abundance variation also generated two major groups. The first small 

group encloses the proteins that displayed major differences in abundance comparatively to group C 

(absence of spots in the gels or high-fold variation). In the CYN experiment, the color gradient shows a 

common pattern of the proteins that decreased in abundance in group C1 (dark blue/grey pattern). 

Group C100 is adjacent to group C10 and is clustered away from group C1 because all of the protein 

spots increased in abundance (light blue/grey pattern). With respect to the MC-LR/CYN experiment, the 

trend is reversed, and the majority of proteins identified in group C1 exhibited an increase in abundance 

(light blue/grey pattern), whereas the proteins in groups C10 and C100 decreased in abundance or were 

absent in the gels (dark blue/grey pattern). 

 

Figura 5. Heat map of the proteins identified from the differentially abundant protein spots of leaf-lettuce plants 
exposed to CYN. The values shown were normalized and standardized using the control group as the reference. Two 
hierarchical clusterings were ma.  



 

Fig 6. Heat map of the proteins identified from the differentially abundant protein spots of leaf-lettuce plants exposed 
to MC-LR/CYN. The values shown were normalized and standardized using the control group as the reference. Two 
hierarchical clusterings wer 

2.2. Identification and functional classification of differentially abundant leaf-proteins 

Six (100%), 12 (75%), and 38 (83%) proteins from the C1, C10, and C100 groups in the CYN experiment, 

respectively, and 127 (85%), 74 (73%), and 25 (74%) proteins from the C1, C10, and C100 groups of the 

MC-LR/CYN experiment, respectively, were successfully identified (Table 1). In both experiments, there 

were multiple spots corresponding to the same protein, such as ATP synthase CF1 β subunit (spots 4706, 

5603, and 5707) in the CYN experiment and chloroplastic-like thiamine thiazole synthase chloroplastic-

like (spots 3309 and 4308) in the MC-LR/CYN experiment. Furthermore, some of the identified proteins 

exhibited an unexpected molecular mass relative to its position in the 2-DE gels (Supporting information 

Figs. 4 and 8). Similar results have been reported in other proteomics studies, and this variability may be 

related to the identification of proteins from other plant species, the identification of multiple isoforms of 

the same protein, and post-translational modifications (Sheoran et al., 2007 and Pinheiro et al., 2013). 

The identified proteins were classified based on their putative designated functions, which were mainly 

gathered from Gene Ontology (UniProt/Swiss-Prot) (details of the identification and changes in abundance 



are presented in the Supplementary data; Tables 1 and 2). The identified proteins from the CYN and MC-

LR/CYN experiments were classified into 10 (Fig. 7) and 18 functional categories (Fig. 8), respectively. A 

large number of identified proteins in both experiments are mostly involved in photosynthesis and carbon 

metabolism, ATP synthesis, and stress/defense response and protein folding (Fig. 7 and Fig. 8). Proteins 

related to protein synthesis and signal transduction were also well represented in the MC-LR/CYN 

experiment. To summarize, groups of more comprehensive functions were created to discuss the potential 

effects of environmentally relevant concentrations of CYN and MC-LR/CYN on leaf-lettuce plants. 

 

 

 

Fig 7. Functional categorization of the proteins identified from the differentially abundant protein spots of leaf-lettuce 
plants exposed to CYN. C1: 1 μg/l; C10: 10 μg/l; and C100: 100 μg/l. 

 

 

Fig 8. Functional categorization of the proteins identified from the differentially abundant protein spots of leaf-lettuce 
plants exposed to MC-LR/CYN. C1: 1 μg/l; C10: 10 μg/l; and C100: 100 μg/l. 



2.2.1. Energy-related metabolism (photosynthesis/carbon metabolism; ATP synthesis) 

The impact of the cyanotoxins on photosynthesis is of major interest because plant productivity and hence 

crop yield depend strongly of the efficiency of this process. 

In the C1 group of the CYN experiment, although only six proteins showed differential abundance, three 

(50%) were related to energy production, and these decreased in abundance (plastocyanin, ATP synthase 

CF1 β subunit, and NADP-dependent malate dehydrogenase (pyruvate metabolism)). In contrast, energy 

production appears to be enhanced in the leaves of the plants in groups C10 and C100, the latter of which 

presented the highest number of proteins involved in this process. The abundance of chlorophyll a-b-

binding proteins, which gather and transfer light energy to photosynthetic reaction centers, was increased; 

in particular, chlorophyll a-b-binding protein 8 exhibited a 50.7-fold increase in abundance in the C10 

group. Oxygen-evolving enhancer proteins, which are responsible for water oxidation in photosystem II 

(PS II), are also increased in abundance in groups C10 and C100; and the same results were obtained with 

quinone oxidoreductase-like protein At1g23740, ATP synthase CF1 α (C10 and C100) and β subunits 

(C100), and ATPase epsilon chain (C100). In addition to proteins associated with primary photosynthesis 

reactions (light reactions), proteins involved in the Calvin cycle (carbon fixation reactions) exhibit an 

increase in abundance in group C100: ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RuBP 

activase), ribulose bisphosphate carboxylase/oxygenase activase 1 (RuBisCO activase 1), 

phosphoribulokinase (PRK), and sedoheptulose-1,7-bisphosphatase (SBPase). 

The effects of MC-LR/CYN were much more complex and appear to have been stronger in groups C10 and 

C100, the gels of which showed several absent proteins. The combined MC-LR/CYN exposure affected 

not only photosynthesis but also cellular respiration. Interestingly, in group C1, several proteins involved 

in energy production are increased in abundance. In detail, these proteins are associated with the light 

reactions of photosynthesis (chlorophyll a-b-binding proteins, oxygen-evolving enhancer proteins, 

chloroplast PsbO4 precursor, cytochromeb6/f heme-binding protein 2-like, ATP synthase α subunit, PS I 

reaction center subunit II, PS II stability/assembly factor HCF136, quinone oxidoreductase-like protein 

At1g23740 chloroplastic-like, and ferredoxin-NADP reductase), photorespiration (gamma carbonic 

anhydrase-like 2), the Calvin cycle (RuBP activase and large subunit, RuBisCO activase 1, and PRK), 

glycolysis and pentose phosphate pathway (β-xylosidase/α-L-arabinofuranosidase 2-like, fructan 1-

exohydrolase IIa, triosephosphate isomerase, 2,3-bisphosphoglycerate-independent phosphoglycerate 

mutase, phosphoglycerate kinase 3, ribose-5-phosphate transaldolase), tricarboxylic acid (TCA) cycle 

(mitochondrial dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate 

dehydrogenase complex 2), and oxidative and photo phosphorylation (mitochondrial ATP synthase subunit 

delta′ and chloroplastic soluble inorganic pyrophosphatase 1). In contrast, few proteins related to 

photosynthesis and cellular respiration were increased in abundance in groups C10 and C100 (chloroplast 

light-harvesting chlorophyll a/b-binding protein, RuBP activase (C100), pyruvate dehydrogenase E1 

component subunit β-like, transaldolase-like, and chloroplastic soluble inorganic pyrophosphatase 1). 



Furthermore, there were proteins that were absent in the gels or exhibited decreases in abundance in groups 

C10 and C100, and these proteins are associated with the light reactions of photosynthesis (oxygen-

evolving enhancer protein 1, ATP synthase α subunit, ATP synthase gamma chain, and chloroplastic-like 

isoform 1) and the Calvin cycle (RuBP activase, transketolase, putative), which is dependent on the ATP 

and NADPH generated by the light reactions. Additionally, proteins involved in glycolysis (pyrophosphate-

-fructose 6-phosphate 1-phosphotransferase β subunit, and glyceraldehye-3-phosphate dehydrogenase 

(C100)) and the TCA cycle (putative cytosolic NADP-malic enzyme, α-isopropylmalate synthase, succinate 

dehydrogenase, isocitrate dehydrogenase (NAD+) (C100), and malate dehydrogenase (C100)) were absent 

in the gels or presented decreases in abundance in groups C10 and C100. Several studies have proposed 

that photosynthesis-related proteins are differentially regulated under abiotic stress. In general, 

photosynthesis is impaired in sensitive plants and enhanced in tolerant plants (Kosová et al., 

2011 and Abreu et al., 2013). Nothing definite is known regarding how CYN interferes in plant 

photosynthesis. However, negative effects of MC-LR in the photosynthesis activity of plants have been 

reported (Abe et al., 1996, Pflugmacher, 2002 and El Khalloufi et al., 2011). Our results show that MC-

LR/CYN concentrations of 10 and 100 μg/l may produce harmful effects on the energy production of lettuce 

leaves. Nevertheless, the highest number of proteins that decreased in abundance was found in group C10, 

which may suggest that the effects are produced through different mechanisms. The roots exposed to 

100 μg/l MC-LR/CYN had a high amount of exudates (data not shown). It could be hypothesized that this 

accumulation could prevent the uptake of the toxins, thereby mitigating their negative effects, but can also 

impair the uptake of water and nutrients, which can be related to the significant reduction in the fr. wt of 

these lettuce leaves (p < 0.05) ( Fig. 1). In contrast, the fr. wt of the lettuce leaves of group C1 was 

significantly increased (p < 0.05), likely due to the enhancement of photosynthesis and carbon metabolism. 

As mentioned above, no differences were found in the fr. wt of lettuce leaves in the CYN experiment ( Fig. 

1); thus, it is likely that the increase in abundance of proteins related to photosynthesis and carbon 

metabolism in group C100 may contribute to the maintenance of cellular homeostasis and an active 

adaptation to the stress promoted by CYN. Plant productivity and hence crop yield depend strongly on the 

prevailing photosynthetic rates. The Calvin cycle is autocatalytic and can thus be enhanced by increases in 

the concentrations of its biochemical intermediates ( Taiz and Zeiger, 2002). Some of the identified proteins 

belonging to the Calvin cycle, such as SBPase (which exhibits a 11.8-fold increase in abundance in group 

C100 of the CYN exposure experiment), have been reported to be effective for the improvement of abiotic 

stress tolerance ( Abreu et al., 2013) and have also been studied to determine whether their use may increase 

crop production ( Lefebvre et al., 2005). Lefebvre et al. (2005) reported that an increase in SBPase activity 

in tobacco plants (Nicotiana tabacum) leads to improvements in the photosynthesis rate, levels of sucrose 

and starch, leaf area, and biomass, which may be associated with an increase in the RuBP regenerative 

capacity. Because photosynthesis and carbon metabolism seem to have been the main biological processes 

affected by CYN and MC-LR/CYN, it is hypothesized that some of these identified proteins could be 

investigated as potential biomarkers of these cyanotoxins. 



2.2.2. Stress and defense response (stress response/protein folding; glutathione metabolism; 

proteolysis; defense response/allergens) 

In the stress/defense response, plants need to regulate a variety of processes that require energy. In fact, the 

profile of abundance of proteins involved in the stress/defense response followed the same pattern observed 

in the analysis of energy-related proteins: group C100 of the CYN experiment and group C1 of the MC-

LR/CYN experiment stand out due to their high number of proteins that exhibited an increase in abundance. 

Although it is well recognized that ROS are generated during normal plant metabolism (e.g., in 

chloroplasts), it has also been stated that the cyanotoxins CYN and MC-LR induce oxidative stress in plants 

(Pflugmacher et al., 2006, Pflugmacher et al., 2007, Stüven and Pflugmacher, 2007, Saqrane et al., 

2009 and Prieto et al., 2011). A protein involved in glutathione (GSH) metabolism (S-formylglutathione 

hydrolase), specifically in GSH synthesis, was only present in the C group of the MC-LR/CYN experiment. 

However, protein IN2-1 homolog B-like (glutathione-S-transferase (GST) superfamily) increased in 

abundance in group C100 (3.3-fold). Runnegar et al. (1995) showed that CYN inhibits GSH synthesis in 

cultured rat hepatocytes. It is interesting to note that in this study this effect was not observed in lettuce 

leaves exposed to CYN even at a concentration of 100 μg/l. Nevertheless, it is well recognized that MC-

LR is detoxified by conjugation with GSH via GST (Pflugmacher et al., 1998). It can be hypothesized that 

the simultaneous exposure to MC-LR/CYN may lead to a reduction of GSH pool in cells due to MC-LR 

detoxification (via GST), which may have resulted in a higher requirement of GSH biosynthesis. Because 

CYN is an inhibitor of GSH synthesis, it can impair the capacity of plants to detoxify MC-LR. On the other 

hand, the weakened response of lettuce plants to MC-LR may contribute to oxidative stress and may 

enhance its toxic effects in a concentration-dependent manner, leading to an inefficient response of plants 

to CYN and consequently the inhibition of a higher number of proteins. In contrast, at low concentrations, 

lettuce plants appear to be able to cope with oxidative stress by inducing the production of other antioxidant 

enzymes. Chloroplastic Cu/Zn superoxide dismutase (SOD), ascorbate peroxidase (APX), other 

peroxidases, and ferritin, which is reported to be responsive to stress, were identified in leaf-lettuce plants 

exposed to 1 μg/l MC-LR/CYN (chloroplastic 2-Cys peroxiredoxin BAS1, peroxiredoxin 2, thioredoxin-

dependent peroxidase, oxidoreductase, chloroplastic SOD [Cu–Zn], aldo-ketoreductase 2-like, and 

chloroplastic peroxiredoxin-2E (also in the group C10)). The coordinated action of these enzymes prevents 

the oxidative damage of cells generated by ROS. SOD catalyzes the dismutation of superoxide radical to 

hydrogen peroxide and oxygen. The resulting hydrogen peroxide is reduced by APX and other peroxidases 

to yield water (Pflugmacher et al., 2006). However, if the detoxification enzymes produced are not 

sufficient, proteins damaged by ROS may accumulate in plant cells under stress conditions. Some of the 

strategies developed by plants to overcome this accumulation are to refold misfolded proteins using helper 

proteins, such as chaperones, and to remove these by protease activity. Heat shock protein (HSP) 70, which 

is one of the most important HSPs involved in the plant response to abiotic stresses (Abreu et al., 2013), 

was decreased in abundance in the C1 group of the CYN exposure experiment. However, in group C100, 

putative thioredoxin-dependent peroxidase and RuBisCO large subunit-binding protein subunit α, which 

has chaperone and refolding activity, exhibited increases in abundance. In addition, the chloroplastic protein 



peptidyl-prolyl cis–trans isomerase (PPIase) FKBP16-3, which is a folding catalyst, exhibited a 107-fold 

increase in abundance in group C100 (CYN exposure). With respect to the MC-LR/CYN experiment, 

several proteins involved in redox homeostasis and some proteins with chaperone functions (chloroplastic 

PPIase CYP38, RuBisCO subunit binding-protein α subunit precursor, 60-kDa chaperonin α subunit, 

chloroplastic20-kDa chaperonin, protein disulfide isomerase-like 2-3-like, calreticulin (C10), protein 

disulfide isomerase (C10), and HSP90 (C10)) were increased in abundance in groups C1 and C10 (exhibited 

less fold-variation in group C10). The late embryogenesis abundant protein (LEA), Lea14-A, is well 

recognized for its role in stress tolerance (Abreu et al., 2013); however, this protein was absent in the gels 

of groups C1 and C10 of the MC-LR/CYN experiment. Additionally, some proteins involved in redox 

homeostasis and some proteins with chaperone activity were either decreased in abundance or absent in the 

gels of groups C10 and C100 of the MC-LR/CYN experiment (chloroplastic chaperone protein ClpC (C10), 

glutaredoxin S16 (C10), thylakoid-bound ascorbate peroxidase (C10), thioredoxin reductase 2-like (C10), 

PITH domain-containing protein At3g04780 (C100), and chloroplastic chaperone protein ClpB3). The 

latter protein was also decreased in abundance in the C1 group. Almost all of the chaperones and 

peroxidases are chloroplastic, which suggests that photosynthetic complexes are the most affected by CYN 

and MC-LR/CYN. In addition to detoxification and chaperone proteins, an increase in the abundance of 

proteases and proteasomes was observed in group C1 of the MC-LR/CYN experiment. Probable 26S 

proteasome non-ATPase regulatory subunit 7, which belongs to the proteolytic complex that regulates 

cytosolic protein turnover by the ubiquitin pathway (Taiz and Zeiger, 2002) and plays an essential role in 

removing regulatory proteins and abnormal polypeptides in plants during stress, exhibited a 4-fold increase 

in abundance. The putative zinc-dependent protease was increased in abundance in group C100 of the CYN 

exposure experiment. 

Proteins related to the bacterium defense response also presented changes in abundance in the CYN and 

MC-LR/CYN experiments. Eugenol synthase 1, which catalyzes the synthesis of the phenylpropene 

eugenol, a defense compound with antimicrobial properties, exhibited an increase in abundance in group 

C10 of the CYN experiment and in group C1 of the MC-LR/CYN experiment. In the latter experiment, 

harpin binding protein 1 also presented increases in abundance. The increase in abundance of pathogenesis-

related (PR) proteins may be promising for the improvement of the response to abiotic stress; however, it 

may also constitute a threat to food safety because most of these proteins have allergenic potential. 

Thaumatin-like protein-like, which appears to have allergenic properties (Palacín et al., 2010), was 

increased in abundance in group C100 of the CYN experiment (2.7-fold) and in group C1 of the MC-

LR/CYN experiment (2.2-fold). 

2.2.3. Protein synthesis and signal transduction (transcription, RNA processing and translocation, 

and translation) 

Several proteins involved in protein synthesis and signal transduction were found in almost all of the groups 

of the MC-LR/CYN experiment. The C1 group presented a high number of these proteins that were 



increased in abundance. Although to a lower extent, groups C10 and C100 also showed proteins associated 

with: mRNA processing (chloroplast putative ribonucleoprotein (C1, C10, and C100), chloroplast 31-kDa 

ribonucleoprotein (C1 and C100)), transcription factors containing DNA-binding motifs and regulators of 

transcription (transcription factor Pur-alpha 1-like, U2 small nuclear ribonucleoprotein A, zinc finger 

protein, proliferating cell nuclear antigen, minor allergen Alt a, nascent polypeptide-associated complex 

subunit alpha-like), and mRNA transport and translation (eukaryotic translation initiation factor 3 subunit 

D-like, elongation factor 1-beta, eukaryotic translation initiation factor 3 subunit F-like, eukaryotic 

translation initiation factor 3 subunit J-like (C10), chloroplast 30S ribosomal protein S1 (C1 and C10), 60S 

acidic ribosomal protein P0, and chloroplast 50S ribosomal protein L12 (C10)) that presented increases in 

abundance. The mRNA processing and translational apparatus may indicate a rapid protein synthesis, which 

could be related to the increase and maintenance of the fr. wt of lettuce leaves in groups C1 and C10, 

respectively. Nevertheless, some proteins associated with RNA recognition motifs and regulators of 

ribonuclease activity (poly (A)-binding protein (C10), and regulator of ribonuclease activity A (C10)) and 

translation (eukaryotic translation initiation factor 5A (C10), 40S ribosomal protein (C10), eukaryotic 

translation initiation factor 3 subunit K-like (C10), and elongation factor 2 (C100)) decreased in abundance 

or were absent in the gels of groups C10 and C100. In this study, the changes in abundance of proteins 

related to protein synthesis suggest that this activity may be of particular importance in the lettuce response 

to MC-LR/CYN. The little that is known regarding how CYN inhibits protein synthesis in plants is that the 

soluble proteins associated with the eukaryotic translation system appear to be the target of the toxin ( 

Froscio et al., 2008). Additionally, this toxin appears to interfere with the elongation step, which indicates 

that elongation factors may also be a target ( Froscio et al., 2008). In fact, in group C100 of the MC-

LR/CYN experiment, elongation factor 2 was the unique protein that exhibited a decrease in abundance. 

The potential decrease of energy-related enzymes (e.g., Calvin cycle enzymes), likely as a result of protein 

synthesis inhibition, may lead to reduced synthesis of carbohydrates, which are essential for the support of 

cell division and elongation ( Taiz and Zeiger, 2002). This decrease may also have contributed to the 

reduction in the fr. wt of lettuce leaves; however, this hypothesis should be further studied. Exposure to 

CYN results only in an increased abundance of histone H4 in the C100 group. This protein is a core 

component of the nucleosome and plays a central role in transcription regulation, DNA repair, DNA 

replication, and chromosomal stability. It could be hypothesized that CYN at a concentration up to 100 μg/l 

is not sufficient to cause cessation of protein synthesis; however, MC-LR may potentiate this effect. 

Furthermore, phosphorylation and dephosphorylation play important roles in signal transduction, and in the 

MC-LR/CYN experiment, proteins involved in signal transduction pathways (14-3-3-like protein D-like 

(C1), 14-3-3 protein 1-like, and 14-3-3 protein (C10)) present increases in abundance in groups C1 and 

C10. The plant 14-3-3 isoforms regulate a diverse range of proteins, including kinases, transcription factors, 

structural proteins, ion channels, and pathogen defense-related proteins ( Denison et al., 2011). The 

differential accumulation of these proteins appears to be implicated in the response to abiotic stress ( Abreu 

et al., 2013). 

2.2.4. Transport activity 



Proteins and lipoproteins involved in the transport of macromolecules, small molecules, and ions, mainly 

in the chloroplast, exhibited changes in abundance in both experiments. In groups C10 and C100 of the 

CYN experiment, temperature-induced lipocalin exhibited 4.4- and 2.5-fold increases in abundance, 

respectively. This protein as well as chloroplast processing peptidase-like, protein TIC 62 chloroplastic-

like, and apolipoprotein d, also increased in abundance in group C1 of the MC-LR/CYN experiment. 

However, in groups C10 and C100, chloroplastic protein TIC 62 was decreased in abundance, and GTP-

binding nuclear protein Ran1A was absent in the gels of the C10 group. 

2.2.5. Structural activity (cytoskeleton formation; cell wall biogenesis/degradation) 

It is well recognized that MC-LR alters the cytoskeletal structure of animal cells (Toivola and Eriksson, 

1999). Phosphorylation/dephosphorylation and the synthesis of certain regulatory proteins are key 

mechanisms in cytoskeletal regulation (Máthé et al., 2013). Similarly, CYN induces the reorganization of 

the cytoskeleton in animal cells (CHO K1 cells) (Fessard and Bernard, 2003). In this study, exposure to 

CYN promoted a decrease in the abundance of actin in the C10 group. In contrast, plastid-dividing ring 

protein, which is related to microtubule-based process and protein polymerization, increased in abundance 

in group C100 of the CYN experiment and in group C1 of the MC-LR/CYN experiment. Additionally, 

fibrillin, a glycoprotein that contributes to the structural integrity and assembly within or outside cells, 

increased in abundance in groups C1 and C10 of the MC-LR/CYN experiment. UDP-arabinopyranose 

mutase 1, which is involved in the biosynthesis of the cell wall, exhibited an increase in abundance in group 

C1 of the MC-LR/CYN exposure experiment. However, xyloglucan endotransglucosylase/hydrolase, an 

enzyme involved in wall assembly, decreased in abundance in groups C1 and C100 of the MC-LR/CYN 

exposure experiment. Exposure to these cyanotoxins appears to lead to the reorganization of cytoskeletal 

components in lettuce leaves, and it could be hypothesized that the differential abundance of proteins 

involved in cytoskeleton assembly and cell wall biosynthesis played a role in the changes of the observed 

fr. wt of lettuce leaves. 

2.2.6. Other metabolisms (amino acid metabolism; pigment metabolism; lipid metabolism; ascorbic 

acid biosynthesis; vitamin B1 biosynthesis; inositol biosynthesis; hormone regulator) 

Overall, proteins involved in the metabolism of amino acids, pigments, lipids, ascorbic acid, vitamin B1, 

inositol, and hormone regulation exhibited increases in abundance in group C1 and decreases in abundance 

in groups C10 and C100 of the MC-LR/CYN experiment. 

Ketol-acid reductoisomerase, which promotes the formation of amino acids containing a branched carbon 

skeleton, increased in abundance in the C1 group. In contrast, other proteins that have been identified to be 

involved in amino acid metabolism, such as acetohydroxyacid synthase 1, diaminopimelate decarboxylase 

2 chloroplastic isoform 1, vitamin-b12 independent methionine synthase 5-

methyltetrahydropteroyltriglutamate-homocysteine, and putative thiosulfate sulfurtransferase (C100) 



decreased in abundance or were absent in the gels of groups C10 and C100. Chloroplastic 

coproporphyrinogen-III oxidase, which is involved in porphyrin and chlorophyll metabolism and 

biosynthesis, increased in abundance in the C1 group, and chloroplastic uroporphyrinogen decarboxylase 

was absent in the gels of the C10 group. The polyphenol oxidase precursor, which is involved in the pigment 

biosynthetic process, was absent in the gels of the group C100. A diverse family of lipases and esterases 

(GDSL esterase/lipase At5g45670, GDSL esterase/lipase LTL1-like, and bifunctional epoxide hydrolase 

2-like) and a key enzyme of the type II fatty acid synthesis (FAS) system (enoyl-ACP reductase 1) presented 

increases in abundance in the C1 group. However, the protein 2-hydroxyacyl-CoA lyase-like, which plays 

a key role in redox signaling and lipid homeostasis, and the protein acetyl-CoA C-acetyltransferase, which 

is involved in the beta oxidation pathway of fatty acid degradation, were absent in the gels of the C10 group. 

Phosphomannomutase, which is involved in ascorbic acid biosynthesis, was absent in all gels of the groups 

of the MC-LR/CYN experiment. Chloroplastic-like thiamine thiazole synthase and L-myo-inositol-1-

phosphate synthase, which are involved in vitamin B1 and inositol biosynthesis, respectively, increased in 

abundance in the C1 group. Auxin-binding protein ABP20-like, a probable receptor for the plant growth-

promoting hormone auxin, exhibited an increase in abundance in groups C1 and C10 (to a higher extent in 

group C1), whereas abscisic acid receptor PYR1-like, a plant hormone associated with signal transduction, 

was absent in the gels of the group C10. The simultaneous exposure to low concentrations of MC-LR and 

CYN (1 μg/l) appears to stimulate the synthesis of different constituents in lettuce leaves that are 

concomitantly involved in plant growth and development and also in the response to stress, such as 

hormones, amino acids, lipids, important membrane components, and vitamins. Exposure to environmental 

stress induces several physiological changes in plants that can alter the chemical composition and thus the 

quality of crops (Wang and Frei, 2011). Dependent on numerous factors, such as the time of exposure and 

the crop species, the overall plant stress response appears to result in increasing the concentrations of some 

constituents, such as proteins and antioxidants (Wang and Frei, 2011). At low concentrations of MC-

LR/CYN exposure, positive changes in the nutritional quality of lettuce leaves may be attained. However, 

this issue should be further studied through the quantification of the respective constituents in plants 

exposed to these cyanotoxins. 

2.2.7. Unknown/miscellaneous 

Proteins with no well-defined function (several functions or unknown function) were identified as 

unknown/miscellaneous. 

3. Conclusions 

In this study, we applied a differential-expression proteomics approach to understand the mechanisms 

underlying the response of leaf-lettuce plants to environmentally relevant concentrations of CYN and MC-

LR/CYN. The abundance of proteins was affected in a concentration-dependent manner by the 

simultaneous activation of several metabolic pathways, which are mainly related to photosynthesis, 



response/defense to stress, and protein synthesis and transduction. The activation of these pathways appears 

to confer tolerance to lettuce plants against CYN at concentrations up to 100 μg/l. The simultaneous 

exposure to MC-LR and CYN resulted in a ‘dualistic response’, and exposure to a concentration of 1 μg/l 

promoted an increase in the abundance of proteins associated with general biological processes and a 

significant increase in the fr. wt of leaves. In contrast, the concentrations of 10 and 100 μg/l appeared to be 

deleterious to lettuce because a high number of proteins associated with general biological processes 

exhibited decreases in abundance or were absent in the gels. The latter concentration also promoted a 

reduction in the fr. wt of the leaves. This effect is of major concern because the occurrence of mixtures of 

cyanotoxins is expected to become increasingly recurrent. This study also provides new insights into 

potential protein markers of exposure to cyanotoxins and of novel proteins that may confer tolerance to 

CYN and MC-LR/CYN, although these need to be functionally characterized and validated. Furthermore, 

the proteomics analysis was found to be suitable for the discovery of some traits associated with the quality 

and safety of edible tissues of lettuce exposed to environmentally relevant concentrations of CYN and MC-

LR/CYN, such as the presence of allergenic proteins. 

4. Experimental 

4.1. General experimental procedures 

The lettuce plants (L.sativa L. var. ‘Susybel’) were exposed to environmentally relevant concentrations (1, 

10, and 100 μg/l) of a CYN and MC-LR/CYN mixture in a hydroponic system. The CYN and MC-LR were 

purified and quantified by high-performance liquid chromatography (HPLC) and then diluted in the culture 

medium to the desired concentrations of exposure. All of the HPLC solvents were of high-purity 

chromatography grade and were filtered (Pall GH Polypro 47 mm, 0.2 μm) and degassed with an ultrasound 

bath. After exposure, to investigate the leaf-proteome profiles, the proteins of lettuce leaves were separated 

by 2-DE, and those that were differentially abundant were then identified by MALDI-TOF/TOF MS. 

4.2. Cyanobacterial culture and toxin purification and quantification 

4.2.1. Cultures of M. aeruginosa and C. raciborskii 

M. aeruginosa (LEGE 91094) and C. raciborskii (LEGE 97047) were grown to exponential phase in Z8 

medium ( Kotai, 1972) (6-l flasks) under fluorescent light with a light/dark cycle of 14/10 h and a 

temperature of 25 ± 1 °C. The cultured cells were gathered by centrifugation (20 min, 4 °C, 4495g), frozen 

at −80 °C, and then freeze-dried. Due to the high hydrophilicity of CYN, the culture medium from C. 

raciborskii was also frozen at −80 °C and freeze-dried. The lyophilized material was stored at room 

temperature in the dark until toxin extraction and purification. In this study, purified toxins were chosen for 

the experiments to address the specific effects of CYN and MC-LR/CYN on the lettuce leaf-proteome and 

to avoid interference from other potentially toxic metabolites of cyanobacteria crude extracts (e.g., 

lipopolysaccharides) ( Pietsch et al., 2001). 



4.2.2. CYN extraction, purification, and quantification by HPLC–PDA 

CYN was extracted from C. raciborskii cells and culture medium following a modified version of the 

method described by Welker et al. (2002). Briefly, the freeze-dried cells and medium (0.7 g) were first 

sonicated in a bath for 15 min in 5 ml of 0.1% (v/v) trifluoroacetic acid (TFA) (spectrophotometric grade) 

and then subjected to five cycles ultrasonication with Vibra-Cell at 60 Hz for 1 min. The homogenate was 

stirred for 1 h at room temperature and centrifuged (20,000g, 4 °C, 20 min), and the supernatant was 

collected. The cell pellet was subjected to a second extraction. The supernatants were pooled and stored at 

−20 °C. CYN was thereafter purified using a Waters Alliance e2695 HPLC system coupled with a 

photoelectric diode array (PDA) 2998 on a semi-preparative Gemini C18 column (250 mm x 10 mm i.d., 

5 μm) from Phenomenex that was maintained at 40 °C. The isocratic elution utilized a 5% methanol 

(MeOH) solution containing 2 mM sodium 1-heptanesulfonate monohydrate (99%) with a flow rate of 

2.5 ml/min and an injection volume of 1000 μl. Working solutions of CYN (0.08-5.0 μg/ml) were prepared 

in water. Standard CYN was supplied by Alexis (San Diego, CA, USA). The purified CYN fractions were 

then quantified in an HPLC system on an Atlantis® HILIC phase column (250 mm × 4.6 mm i.d., 5 μm) 

from Waters maintained at 40 °C. The PDA range was 210–400 nm with a fixed wavelength of 262 nm. 

The isocratic elution was also a 5% MeOH solution containing 2 mM sodium 1-heptanesulfonate 

monohydrate (99%) with a flow rate of 0.9 ml/min and an injection volume of 10 μl. The system was 

calibrated using a set of seven dilutions of the CYN standard (25, 20, 10, 5, 2, 1, and 0.5 μg/ml) in ultrapure 

water. Each vial was injected in duplicate, and every HPLC run series of ten samples included a blank and 

two different standard concentrations. The chromatographic purity of CYN was of 98%. The Empower 2 

Chromatography Data Software was used for the calculation and reporting the peak information. The 

retention time of the CYN peak was 7.35 min (data from method validation not published). 

4.2.3. MC-LR extraction, purification, and quantification by HPLC–PDA 

MC-LR was extracted from M. aeruginosa cells according to Ramanan et al. (2000) with some 

modifications. Briefly, the lyophilized M. aeruginosa biomass was extracted with 75% (v/v) MeOH (Fisher 

Scientific, UK) by continuous stirring for 20 min at room temperature. The sample was then ultrasonicated 

five times on ice at 60 Hz for 1 min (Vibra-Cell 50-sonics & Material Inc. Danbury, CT, USA). The 

homogenate was centrifuged at 10,000g for 15 min to remove the cell debris. The resulting supernatant was 

then collected and stored at 4 °C. The pellet was re-extracted with an equal volume of solvent, and the 

pooled supernatants were subjected at a flow rate of at 1 ml/min to solid-phase extraction with a Water Sep-

Pak® Vac 6-ml C18 cartridge preconditioned with 100% MeOH and distilled water. The loaded column 

was washed with 20% (v/v) MeOH, and the MC-LR was then eluted using 80% (v/v) MeOH. The MC-LR 

fraction was evaporated by rotary evaporation at 35 °C to remove the entire MeOH portion. The 

concentrated MC-LR extract was thereafter purified and quantified by HPLC–PDA. The MC-LR semi-

preparative assay was performed using a reversed-phase column Phenomenex Luna RP-18 

(250 mm × 10 mm, 10 μm) maintained at 35 °C. The gradient elution was performed with MeOH and water, 



both of which were acidified with 0.1% (v/v) TFA, with a flow rate of 2.5 ml/min. The injection volume 

was 500 μl. The peak purity and percentage of purified MC-LR were calculated at 214 nm and 238 nm. 

The fraction with purified MC-LR was then evaporated with nitrogen air for 1 day until all of the solvent 

was removed. The residue was resuspended in distilled water to the desired concentration. The 

chromatographic purity of MC-LR was of 97%. The purified fractions of MC-LR were then quantified in 

the same HPLC system on a Merck Lichrospher RP-18 endcapped column (250 mm × 4.6 mm i.d., 5 μm) 

equipped with a guard column (4 × 4 mm, 5 μm), both of which were maintained at 45 °C. The PDA range 

was 210–400 nm with a fixed wavelength of 238 nm. The linear gradient elution consisted of (A) 

MeOH + 0.1% TFA and (B) H2O + 0.1% TFA (55% A at 0 min, 65% A at 5 min, 80% A at 10 min, 100% 

A at 15 min, and 55% A at 15.1 and 20 min) with a flow rate of 0.9 ml/min. The injected volume was 20 μl. 

The MC-LR was identified by a comparison of its spectra and retention time with that of the MC-LR 

standard (batch no. 018K1209, 10.025 μg/ml in MeOH, 98% purity, Cyano Biotech GmbH, Berlin, and 

Germany). The system was calibrated using a set of seven dilutions of the MC-LR standard (0.5–20 μg/ml) 

in 50% (v/v) MeOH. Each vial was injected in duplicate, and every HPLC run series of ten samples included 

a blank and two different standard concentrations. The Empower 2 Chromatography Data Software was 

used for calculating and reporting the peak information. The retention time of the MC-LR peak was 

10.44 min (data from method validation not published). 

4.3. Plant exposure to CYN and MC-LR/CYN mixture 

Lettuce is an important leafy vegetable worldwide that contains substantial amounts of health-promoting 

phytochemicals (including polyphenols, carotenoids, and vitamin C). Lettuce has been shown to be an 

excellent experimental system for the assessment of the effects of MC-LR (Crush et al., 2008 and Pereira 

et al., 2009), and although its genome has not been sequenced, lettuce has been the object of genomics and 

proteomics studies (Choi et al., 2008 and Cho et al., 2009). The lettuce plants used in the experiments were 

purchased at four to five weeks’ maturity after sowing in a commercial soil substrate. The roots were 

carefully washed with tap water until complete soil removal was achieved, and twenty lettuce plants were 

then transferred to the holes of plastic boards (PVC), which were placed on black glass trays (35 × 25 × 5 cm 

deep) in a hydroponic system that was continuously aerated. The roots were completely immersed in 3 l of 

culture medium (Jensen and Malter, 1995), pH 6.5. The lettuce plants were acclimated for 1 week with 

fluorescent white light (light/dark cycle of 14/10 h) and a temperature of 21 ± 1 °C. After the acclimation 

period, the culture medium was renewed, and the plants were exposed to CYN and the MC-LR/CYN 

mixture at ecologically relevant concentrations of 1, 10, and 100 μg/l for five days. After the exposure time, 

the plants were harvested. The roots and leaf tissues were separated, weighed (fr. wt) and stored at −80 °C 

for proteomic analysis. Three biological replicates for each experimental group (control (C), C1, C10, and 

C100) were prepared in a total of 12 trays. 

4.4. Proteomics analysis 



A proteomics analysis of the lettuce roots was attempted; however, likely due to salt interference, a slow 

progression of the first-dimensional isoelectric focusing (IEF) and the heat produced on the immobilized 

pH gradient (IPG) gel strips may the analysis impracticable. 

4.4.1. Protein extraction from lettuce leaves 

The leaf tissues from one lettuce plant exposed for five days to the above-mentioned concentrations of CYN 

and MC-LR/CYN were ground in liquid nitrogen to a powder with a pestle and mortar. The protein 

extraction was performed immediately with acetone containing 10% trichloroacetic acid and 0.07% β-

mercaptoethanol for 1 h at −20 °C. After centrifugation at 4495g and 0 °C for 45 min, the pellet was washed 

with acetone containing 0.07% β-mercaptoethanol for 1 h at −20 °C and centrifuged at 4495g and 0 °C for 

50 min. The pellet was dried with nitrogen gas, and the proteins were then solubilized in solubilization 

buffer (SB) composed of urea (7 M), thiourea (2 M), 3-[(3-cholamidopropyl)dimethylamonio]-1-

propanesulfonate (CHAPS) (4%, w/v), dithiothreitol (65 mM), ampholytes, pH 4–7 (0.8%, v/v), and 

polyvinylpolypyrrolidone (0.025 g/mL) for 1 h. The homogenate was centrifuged at 16,000g and 4 °C for 

20 min. The supernatant was collected, and the proteins were quantified according to the method described 

by Bradford (1976) using bovine serum albumin as the standard. The protein samples were stored at −80 °C 

until further analysis. 

4.4.2. IEF and 2-DE 

IEF and 2-DE were performed according to Puerto et al. (2011). Briefly, 300 μl of SB with 400 μg of 

proteins were loaded in 17-cm pH 4–7 IPG gel strips (Bio-Rad, Hercules, CA, USA). The proteins were 

separated by IEF in a Protean IEF Cell (Bio-Rad, Hercules, CA, USA) using the following program: 16 h 

at 50 V (strip rehydration); step 1, 15 min at 250 V; step 2, linear voltage increase to 10,000 V over 3 h; 

step 3, linear increase from 10,000 V to 90,000 V/h; and step 4: 500 V/h. After rehydration, wet paper 

wicks were placed between the IPG gel strip and electrode to remove the excess salts from the samples. 

The IPG gel strips were frozen at −20 °C prior to 2-DE. The IPG gel strips were equilibrated with 10 mg/ml 

dithiothreitol in buffer containing urea (6 M), SDS (2%, w/v), glycerol (30%, v/v), and Tris (50 mM), pH 

8.8, for 15 min and then with 25 mg/ml iodoacetamide in the same buffer for 15 min. The equilibrated IPG 

gel strips were placed on top of 12% (w/v) acrylamide SDS-PAGE slab gels (20 cm × 20 cm) and sealed 

with 0.5% agarose. The proteins were separated by SDS-PAGE in a Protean Xi Cell (Bio-Rad, Hercules, 

CA, USA) at 18 mA per gel for 30 min and then at 24 mA per gel until the dye reached the bottom of the 

gel. One 2-DE gel was run for each experimental replicate for a total of 24 gels. The gels were stained 

overnight at room temperature with Colloidal Coomassie Blue as described by Neuhoff et al. (1988). 

4.4.3. Gel image acquisition and protein abundance variation analysis 

The image acquisition and analysis of the protein abundance from the 2-DE gels were performed as 

described previously by Puerto et al. (2011). Briefly, the gel images were acquired using a calibrated 



scanner (GS-800, Bio-Rad, Hercules, CA, USA), and the protein spots were detected automatically with 

the PDQuest 2-D Analysis Software (Bio-Rad, Hercules, CA, USA). The spot intensities were normalized 

based on the total density in the gel image, and manual spot corrections, including re-matching, were also 

made using the software. The protein spots were considered differentially abundant when the intensity 

levels exhibited at least a two-fold difference that was statistically significant at a level of p < 0.05 

(univariate approach, t-test). 

4.4.4. Protein identification by MALDI-TOF/TOF MS and peptide mass fingerprinting 

A selection list of the spots of interest was generated based on the differentially abundant protein spots 

(p < 0.05) between the C group and the C1, C10, and C100 groups of the CYN and MC-LR/CYN exposure 

experiments. The spots were excised from the gels and automatically digested with trypsin and spotted on 

MALDI targets as previously described by Printz et al. (2013). The identification of proteins was performed 

through mass spectrometry (MALDI-TOF/TOF). For each spot 1 MS spectrum was acquired and the 10 

highest peaks selected for MS/MS analysis, excluding known contaminants and trypsin autocleavage 

products. All of the searches were conducted allowing for a peptide mass tolerance of 100 ppm and a 

fragment mass tolerance of 0.5 Da within NCBInr Viridiplantae (Green Plants) (downloaded 2013.01.18; 

1,162,105 sequences) and EST_Lettuce databases (downloaded on 2013.04.19; 1,763,496 sequences; 

357736570 residues) using MASCOT (Matrix Science, www.matrixscience.com, London, UK). Variable 

modifications [Dioxidation (W), Oxidation (HW), Oxidation (M), Trp → Kynurenine (W)] and fixed 

modifications [Carbamidomethyl (C)] have been allowed for the database search. In general, a protein was 

considered identified when the protein scores were greater than 73 and were significant (p < 0.05). When a 

protein or peptide was identified based on an EST sequence or a protein with a trivial name, the protein 

sequence was used in a Blast alignment. Proteins were considered as being significantly identified when 

two individual non-identical peptides surpassed the threshold for identification or when one peptide resulted 

in a protein e-value of <0.005. All identifications were manually validated and extra data was acquired 

when insignificant identifications were obtained. The manual validations were done as previously described 

by Printz et al. (2013). For some spots, manual sequence determinations were performed and the sequences 

found used for cross-species identification with FASTS and MSBlast. 

4.5. Statistical analysis 

The statistical analysis of the fr. wt of the lettuce plants (n = 10) was conducted using the Mann-Whitney 

U test (p < 0.05) (IBM® SPSS® Statistics version 21.0 for Mac OS X). The remaining statistical analyses 

and plots were performed using R software 2.15.1 (R Core Team, 2012). A multivariate analysis using PCA 

was performed after the data were pre-processed through missing value imputation (sequential KNN 

method, R Environment) and logarithm transformation. Significant differences between the groups in each 

PCA dataset were tested by ANOSIM test (p < 0.05). The heatmap.2 function in the gplots package was 

used to generate the heat map. The clustering method that was used with this function was the default 



method, which consists of hierarchical clustering using the complete linkage method operated with a matrix 

of dissimilarities calculated as Euclidean distances. 
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