
Instituto Superior de Engenharia do Porto

Departamento de Engenharia Electrotécnica

Rua Dr. António Bernardino de Almeida, 431, P-4200-072 Porto

Environmental/Regatta Buoy:

Telemetry and Configuration

Erasmus Project/Internship Thesis

MSc. in Electrical Engineering and Computers

Laurens Allart

Supervisors: Mrs Benedita Malheiro

Mr Paulo Ferreira

Mr Manuel Silva

Mr Pedro Guedes

Academic Year: 2013-2014

Resumo

A monitorização ambiental é essencial para a tomada de decisões tanto na ciên-

cia como na indústria. Em particular, uma vez que a água é essencial à vida e

a superf́ıcie da Terra é composta principalmente por água, a monitorização do

clima e dos parâmetros relacionados com a água em ecossistemas senśıveis, tais

como oceanos, lagoas, rios e lagos, é de extrema importância.

Um dos métodos mais comuns para monitorar a água é implantar boias. O

presente trabalho está integrado num projeto mais amplo, com o objetivo de pro-

jetar e desenvolver uma boia autónoma para a investigação cient́ıfica com dois

modos de funcionamento: (i) monitorização ambiental ; e (ii) baliza ativa de re-

gata. Assim, a boia tem duas aplicações principais: a coleta e armazenamento

de dados e a assistência a regatas de veleiros autónomos.

O projeto arrancou há dois anos com um grupo de quatro estudantes interna-

cionais. Eles projetaram e constrúıram a estrutura f́ısica, compraram e montaram

o sistema de ancoragem da boia e escolherem a maioria dos componentes eletróni-

cos para o sistema geral de controlo e medição. Este ano, durante o primeiro

semestre, dois estudantes belgas - Jeroen Vervenne e Hendrick Verschelde - tra-

balharam nos subsistemas de recolha e armazenamento de dados (unidade de

controlo escrava) e de telemetria e configuração (unidade de controlo mestre) as-

sim como definiram o protocolo de comunicação da aplicação. O trabalho desta

tese continua o desenvolvimento do subsistema de telemetria e configuração. Este

subsistema é responsável pela configuração do modo de funcionamento e dos sen-

sores assim como pela comunicação com a estação de base (controlo ambiental),

barcos (baliza ativa de regata) e com o subsistema de recolha e armazenamento

de dados. O desenvolvimento do subsistema de recolha e armazenamento de da-

dos, que coleta e armazena num cartão SD os dados dos sensores selecionados,

prossegue com outro estudante belga - Mathias van Flieberge.

iii

O objetivo desta tese é, por um lado, implementar o subsistema de teleme-

tria e de configuração na unidade de controle mestre e, por outro lado, refinar e

implementar, conjuntamente com Mathias van Flieberge, o protocolo de ńıvel de

aplicação projetado. Em particular, a unidade de controlo mestre deve processar

e atribuir prioridades às mensagens recebidas da estação base, solicitar dados à

unidade de controlo escrava e difundir mensagens com informação de posição e

condições de vento e água no modo de regata. Enquanto que a comunicação entre

a unidade de controlo mestre e a estação base e a unidade de controlo mestre e os

barcos é sem fios, a unidade de controlo mestre e a unidade de controlo escrava

comunicam através de uma ligação série.

A boia tem atualmente duas limitações: (i) a carga máxima é de 40 kg; e

(ii) apenas pode ser utilizada em rios ou próximo da costa dada à limitação de

distância imposta pela técnica de comunicação sem fios escolhida.

Abstract

Environmental monitoring is essential for decision-making both in science and

industry. In particular, since water is essential to life and the Earth’s surface

consists mostly of water, monitoring the weather and water-related parameters

in sensitive ecosystems such as oceans, lagoons, rivers and lakes is of the greatest

importance.

One of the most commons methods to monitor water is to deploy buoys. The

current work is part of a larger project with the aim to design and develop a

dual mode autonomous buoy for scientific research: (i) environmental monitor-

ing; and (ii) regatta beacon. As a result, the buoy has two major applications:

collection and storage of data and assistance in autonomous sailing boat regattas.

The project started two years ago with a group of four international students.

They designed and built the physical structure and selected and assembled the

anchoring system of the buoy. They also chose the majority of the components

for the overall control and sensing system. This year, during the first semester,

two Belgian students - Jeroen Vervenne and Hendrick Verschelde - worked on the

data logging (slave control unit) as well as on the telemetry and configuration

(master control unit) subsystems and designed the application level communica-

tion protocol. The current thesis continues the development of the telemetry and

configuration subsystem. This subsystem is responsible for the configuration of

the operation mode and selection of sensors, as well as for the communication

with the base station (environmental monitoring), boats (regatta beacon) and

with the data logging subsystem. The development of the data logging subsys-

tem, which collects and stores in a SD card the selected sensor data, proceeds

with another Belgian student - Mathias van Flieberge.

The goal of this thesis is to implement the telemetry and configuration sub-

system in the master control unit and to refine and implement, together with

v

Mathias van Flieberge, the designed application level protocol. In particular the

master control unit must handle and assign priorities to the incoming messages

from the base station, request data from the slave control unit and broadcast

messages holding water, wind and position real time data in the regatta mode.

Whereas the master control unit and base station communication and the master

control unit and boat communication is wireless, the master and the slave units

communicate over a serial connection. The buoy has currently two limitations: (i)

the maximum payload is 40 kg; and (ii) it can only be used in rivers or near shore

due to the distance limitation of the chosen wireless communication technique.

Samenvatting

Het monitoren van de geografische omgeving is essentieel om belangrijke beslissin-

gen te nemen in zowel wetenschappelijke middens als in de industrie. Omdat

water in het bijzonder noodzakelijk is voor de mogelijkheid tot leven en omdat

het grootst deel van het aardoppervlak bestaat uit water, is het van groot belang

weersomstandigheden en water gerelateerde parameters te bestuderen in gevoelige

ecosystemen zoals oceanen, lagunes, meren en rivieren.

In van de meest voorkomend methodes om water te bestuderen is het gebruik

van boeien. Dit werk zal dan ook voort bouwen op een deel van een groter project

dat tot doel heeft om een autonome boei te ontwikkelen voor wetenschappelijk

onderzoek die 2 verschillende modes kan hanteren. Een mode die zorgt voor het

monitoren van de omgeving en een mode die zich gedraagt als een regatta beacon.

Als gevolg hiervan heeft de boei twee belangrijke toepassingen: Het verzamelen

en opslaan van data en het bieden van assistentie in een autonome boten race.

Het project werd twee jaar geleden gestart met een groep van vier interna-

tionale studenten. Zij hebben de fysische structuur ontworpen en gebouwd en ze

hebben ook het bevestigingssysteem van de boei geselecteerd en samen gesteld.

Verder hebben deze studenten ook de meerderheid van de componenten gekozen

voor de algemene controle en het sensor systeem. Dit jaar tijdens het eerste

semester hebben twee Belgische studenten, Jeroen Vervenne en Hendrick Ver-

schelde, verder gewerkt aan dit project. De ene aan het data logging gedeelte

(slave module), de andere aan het telemetrie en configuratie gedeelte (master

module). Zij definieerden ook het application level communication protocol. Deze

thesis bouwt verder op de ontwikkeling van het telemetrie en configuratie sub-

systeem. Dit subsysteem is verantwoordelijk voor de configuratie van de operatie

mode en het selecteren van sensoren, maar ook voor de communicatie tussen het

base station (environmental monitoring), de boten (regatta beacon) en het data

logging subsysteem. Het uitwerken van het data logging subsysteem, dat sensor

vii

data vergaart en op slaat op een SD kaart, wordt gedaan door een andere Belgis-

che student, Mathias Van Flieberge.

Het doel van deze thesis is het implementeren van het telemetry en config-

uratie subsysteem in een master control unit en om verder uitwerken en imple-

menteren van het ontworpen application level protocol, samen met Mathias Van

Flieberge. In het bijzonder moet de master module in staat zijn om inkomende

berichten van het base station te behandelen en een prioriteit toe te kennen. Hij

moet informatie kunnen vragen aan de slave module en in regatta mode moet

hij real-time data kunnen broadcasten naar andere modules. De communicatie

tussen de master unit en het base station en de master unit en een autonome

boot moet gebeuren aan de hand van een draadloze verbinding, de communicatie

tussen de master module en de slave module gebeurt aan de hand van een seriële

connectie.

De boei heeft momenteel twee beperkingen: (i) de maximale lading bedraagt

veertig kilogram en (ii) ze kan enkel gebruikt worden in rivieren of dicht bij de

kust door de beperkingen die de keuze van de gebruikt draadloze communicatie

technologie oplegt.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

Acknowledgments xi

1 Introduction 1

1.1 Presentation . 1

1.2 Motivation . 1

1.3 General Information . 1

1.4 Project Description . 2

1.4.1 General Objective . 3

1.4.2 Environmental Mode . 4

1.4.3 Regatta Mode . 4

1.4.4 Objectives Regarding The Master Module 4

2 State of The Art 5

2.1 Introduction . 5

2.2 Communication . 6

2.3 Sensors . 7

2.3.1 Surface Sensors . 8

2.3.1.1 Wind . 8

2.3.1.2 Temperature . 8

2.3.1.3 Air Pressure . 9

2.3.1.4 Precipitation . 9

2.3.1.5 Relative Humidity 10

2.3.1.6 Solar Radiation 10

i

ii CONTENTS

2.3.2 Oceanographic Sensors . 10

2.3.2.1 CTD . 10

2.3.2.2 Chemical Substance Detectors 10

2.3.2.3 Water Velocity . 10

2.3.2.4 Water Turbidity 10

2.3.2.5 Water pH . 11

2.3.2.6 Algae and Plankton 11

2.4 Related Work . 11

2.4.1 Autonomous Meteorological Buoy 11

2.4.2 Technology, Design, and Operation of an Autonomous Buoy

System in the Western English Channel 11

2.4.3 Implementation of Embedded System for Autonomous Buoy 12

2.5 Conclusion . 13

3 Available Equipment 15

3.1 Hull and Steel Structure . 15

3.2 Raspberry Pi . 16

3.2.1 Specifications . 16

3.2.2 Controlling the Raspberry Pi 17

3.2.3 Setting up the Raspberry Pi 18

3.3 STM32F3 Discovery . 19

3.4 Serial Communication . 22

3.5 Sensors . 24

3.5.1 CTD . 24

3.5.1.1 Conductivity . 25

3.5.1.2 Temperature . 25

3.5.1.3 Pressure . 26

3.5.2 Anemometer . 26

3.5.3 GNSS . 26

3.6 Conclusion . 27

4 Project Development Tools 29

4.1 Operating Systems . 29

4.1.1 Raspbian . 29

4.1.2 ChibiOS . 30

4.2 Programming Languages . 30

4.2.1 Python . 30

4.3 Software . 31

4.3.1 X11 . 31

4.3.2 SSH . 32

4.3.3 CoolTerm . 33

4.3.4 CheckSum and ModeOn Applications 34

CONTENTS iii

4.4 Protocols . 35

4.4.1 TCP/IP Network Protocol 35

4.5 Conclusion . 36

5 Application Protocol 37

5.1 Command Package . 37

5.2 Data Package . 40

5.3 Priorities . 40

5.4 CRC32 Checksum . 41

5.5 Overview . 42

5.6 Use Cases . 42

5.6.1 Error Free Communication 42

5.6.2 Master to Slave: Broken Communication 45

5.6.3 Slave to Master: Wrong Message 45

5.6.4 Slave to Master: Error Message 48

5.6.5 Master to Slave: Wrong Data Package Message 48

5.7 Conclusion . 48

6 Raspberry Pi Implementation 51

6.1 Introduction . 51

6.2 General Architecture . 51

6.3 States . 52

6.4 Global Variables . 54

6.5 Serial Connection . 57

6.6 Server Client Connection . 58

6.6.1 Base Station Connection Initialization 58

6.6.2 Multicast Initialization . 59

6.7 Sending to the STM32F3 Discovery 59

6.8 Receiving from the STM32F3 Discovery 63

6.9 Receiving from the Base Station 63

6.10 Sending to the Base Station . 65

6.11 Control Thread . 65

6.12 Default Setup . 69

6.13 Complementary Classes . 71

6.13.1 Class Command . 71

6.13.2 Class Data . 72

6.13.3 Queues . 72

6.13.4 Starting Threads . 72

6.13.5 startControl . 73

6.13.6 initBaseStation . 73

6.13.7 startBaseStationReceiving 74

6.13.8 startBaseStationSending . 74

iv CONTENTS

6.13.9 initSTM32F3 . 74

6.13.10 startSTM32F3Sending . 74

6.13.11 startSTM32F3Receiving . 75

6.13.12 sendCommandWithData . 75

6.13.13 sendCommandWithoutData 75

6.13.14 dataHandling . 75

6.13.15 commandHandling . 76

6.13.16 makeData . 76

6.13.17 makeCommand . 76

6.13.18 interruptData . 76

6.13.19 onescomp . 77

6.13.20 twoscomp . 77

6.13.21 makeChecksum . 77

6.13.22 putInRightQueue . 78

6.13.23 interruptedQueueHigherPriority 78

6.13.24 main . 78

6.14 Simulation of the STM32F3 Discovery 78

6.15 Conclusion . 79

7 Base Station Implementation 81

7.1 TCP/IP Connection . 81

7.2 Multicast Initialization . 82

7.3 Sending to the Raspberry Pi . 83

7.4 Receiving from the Raspberry Pi 83

7.5 Receiving Multicast Messages . 86

7.6 Conclusion . 87

8 Results 89

8.1 Introduction . 89

8.2 Use Cases . 90

8.2.1 Error Free Communication 90

8.2.2 Master to Slave: Broken Communication 93

8.3 Conclusion . 95

9 Conclusions 97

9.1 Achievements . 97

9.2 Future Developments . 98

Bibliography 99

List of Figures

1.1 Picture of myself . 2

1.2 Buoy [1] . 3

2.1 General architecture of an autonomous buoy [2] 7

2.2 CTD package sensor . 9

2.3 Anemometer [3] . 9

3.1 Buoy hull [4] . 16

3.2 LSA buoy . 17

3.3 How to connect the Raspberry Pi . 19

3.4 LED indicating the network activity 20

3.5 Ifconfig command . 20

3.6 Raspi config menu 1 . 21

3.7 Raspi config menu 2 . 21

3.8 Raspi config menu 3 . 21

3.9 The STM32F3 Discovery board [5] . 22

3.10 USB to USB cable . 23

3.11 Crossed cable layout [4] . 23

3.12 USB to mini-USB cable [6] . 24

3.13 CTD sensor . 25

3.14 Wind sensor [4] . 27

3.15 SUPERSTAR II [7] . 27

4.1 Raspbian Logo [8] . 29

4.2 Python logo [9] . 31

4.3 Setup ssh in terminal . 32

4.4 Desktop of Raspbian . 33

4.5 Printscreen of the coolTerm setup . 34

5.1 Basic command package . 37

v

vi LIST OF FIGURES

5.2 basic data package . 40

5.3 Overview of the protocol between the master and the slave units . . . 43

5.4 Normal working mode . 44

5.5 Broken master-slave communication 46

5.6 Slave gets a wrong message . 47

5.7 Slave reports an error to master . 49

5.8 Master gets a wrong data package message 50

6.1 General architecture of the buoy . 52

6.2 Architecture of the master module . 53

6.3 State machine of the STM32F3 Discovery communication 55

6.4 Flowchart for sending to the STM32F3 Discovery 61

6.5 Flowchart for sending to a command that requests data from the

STM32F3 Discovery . 62

6.6 Flowchart for receiving from the STM32F3 Discovery 64

6.7 Flowchart for receiving from the base station 66

6.8 Flowchart for sending data to the base station 67

6.9 Flowchart for the control thread . 68

6.10 Flowchart for the interrupt data function 70

7.1 Sending messages to the Raspberry Pi 84

7.2 Receiving messages from the Raspberry Pi 85

7.3 Receiving broadcast messages . 86

List of Tables

2.1 Communication technologies [2] . 8

3.1 Specification of the Raspberry Pi [10] 18

3.2 Conductivity of common solutions . 25

5.1 All the possible commands . 38

5.2 Data specifications of the ’mode on’ command 39

5.3 Priorities of the different messages . 41

6.1 Global variables of the program . 56

6.2 Default setup parameters . 71

6.3 Properties of class command . 72

6.4 Properties of class data . 72

6.5 Implemented queues . 72

6.6 Info startControl function . 73

6.7 Info initBaseStation function . 73

6.8 Info startBaseStationReceiving function 74

6.9 Info startBaseStationSending function 74

6.10 Info initSTM32F3 function . 74

6.11 Info startSTM32F3Sending function 74

6.12 Info startSTM32F3Receiving function 75

6.13 Info sendCommandWithData function 75

6.14 Info sendCommandWithoutData function 75

6.15 Info dataHandling function . 75

6.16 Info commandHandling function . 76

6.17 Info makeData function . 76

6.18 Info makeCommand function . 76

6.19 Info interruptData function . 76

6.20 Info onescomp function . 77

6.21 Info twoscomp function . 77

vii

viii LIST OF TABLES

6.22 Info makeChecksum function . 77

6.23 Info putInRightQueue function . 78

6.24 Info interruptedQueueHigherPriority function 78

6.25 Info main function . 78

Glossary

Abbreviation Description

ARM Acorn RISC Machine (semiconductor company)

ASCII American Standard Code for Information Inter-

change

CDOM Coulored Dissolved Organic Matter

CPU Central Processing Unit

CRC32 32-bit Cyclic Redundancy Check

CSI Camera Interface

CSMA Carrier Sense Multiple Access

CTD Conductivity, Temperature, and Depth

DDR Double Data Rate

DDR RAM Random Access Memory

DSI Display Serial Interface

DSP Digital Signal Processor

e.g. Exempli gratia

EOH End Of Header

etc. Et cetera

FDMA Frequency Division Multiple Access

FIFO First In, First Out

FOM Figure Of Merit

FPGA Field-Programmable Gate Array

FTU Formazin Turbidity Unit

GPIO General-Purpose Input/Output

GPRS General Packet Radio Service

GPS Global Positioning System

GPU Graphics Processing Unit

GSM Global System for Mobile Communications

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

ID Identity

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ix

x GLOSSARY

Abbreviation Description

ISEP Instituto Superior de Engenharia do Porto

ISP Image Signal Processing

ISUS Type of nitrate sensor

JTU Jackson Turbidity Unit

Kaho Katholieke hogeschool

KU Leuven Katholieke Universiteit Leuven ‘

LCD Liquid-Crystal Display

LNA Low Noise Amplification

LSA Laboratório de Sistemas Autonómos

MMC MultiMediaCard

MPEG Moving Picture Experts Group

NMEA National Marine Electronics Association

NTSC National Television System Committee

NTU Nephelometric Turbidity Units

OPC Optical Particle Counter

ORBCOMM Orbital Communications Corporation

PAL Phase Alternating Line

PC Personal Computer

RCA Radio Corporation of America

RENESAS Renaissance Semiconductor for Advanced Solu-

tions

RF Radio Frequency

RPF Raspberry Pi Foundation

RS232 Recommended Standard 232

SD Secure Digital

SDIO Secure Digital Input Output

SDRAM Synchronous Dynamic Random-Access Memory

SoC System on a Chip

SSH Secure Shell

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

USB Universal Serial Bus

Wifi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WPAN Wireless Personal Area Network

WQM Water Quality Management

WSN Wireless Sensor Network

Acknowledgements

I would like to take this opportunity to thank all the people and institutions

that were involved in this project. I am very glad I got the chance to get this

amazing opportunity. It really was an experience that I will remember for the

rest of my life. First of all I would like to thank the Kaho Sint-Lieven institution,

the KU Leuven and the Instituto Superior de Engenharia do Porto. These three

institutions made it possible to fulfil my thesis in well organized, encouraging

atmosphere. I would especially like to thank the Laboratório de Sistemas Au-

tonómos (LSA) of the Instituto Superior de Engenharia do Porto (ISEP) for the

project I could work on. I really liked working in their environment and I had a

great time working there.

A special thank should be offered to Mrs Benedita Malheiro, Mr Paulo Fer-

reira, Mr Manuel Silva and Mr Pedro Guedes for holding the weekly meetings,

giving me tons of advice and helping me a lot in the progress of making my

project. Without these people and their knowledge it would have been much

harder to make this project into a success. They always answered immediately

on my questions and the weekly meeting were a good drive to start fresh when-

ever I was stuck.

I especially want to mention Mrs Benedita Malheiro for her involvement and

enthusiasm in the project. She always made me feel comfortable here without

letting me lose my focus on the project. Last of all, I would like to thank her for

the help she gave me with making the wiki and the Latex report.

I also want to show my appreciation for Mr Paulo Ferreira for helping me out

with all kind of technical questions about python, networks or serial communica-

tion. He always had a good answer ready for me. I want to thank him also for

learning me more about Portugal and their food traditions.

xi

xii GLOSSARY

I thank Mr Manuel Silva to lend me his USB-hub.

Last of all, I want to thank Mr Pedro Rocha from the LSA department for

helping and providing me with components and for helping me with all sorts of

problems.

Chapter 1

Introduction

1.1 Presentation

My name is Laurens Allart and I am in the final year of the Master of Science

in Electronics Engineering from KU Leuven Campus Gent in Belgium. In the

middle of February 2014 I arrived at the Instituto Superior de Engenharia do

Porto to do an Erasmus exchange program to finish my studies. I did this by

doing my Master Thesis in the form of an Erasmus project. I am here to do this

project and also to follow two additional courses. I chose Porto because of their

interest in robotics. I didn’t know a lot about Portugal and I wanted to get to

know the country some more.

1.2 Motivation

I chose the Instituto Superior de Engenharia do Porto because of the existing

thesis proposals, which were focussed on autonomous systems. This is a topic

that interested me - to get to know how to make objects more autonomous.

This is the main reason why I chose the autonomous buoy as subject for my

thesis. The reason I did the Erasmus exchange project is because I think it was

a unique opportunity. I learned a lot in my time here in Portugal, school related

things but also non-school related think. I liked exploring more of the world than

my home country and opening my view on how other cultures live.

1.3 General Information

A buoy is a partially submerged floating device used in water that can have many

purposes. It can be anchored (stationary) or allowed to drift with the sea current.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Picture of myself

Buoys can be found on open sea, rivers, lakes, bays or other bodies of water. A

buoy can be used for many purposes which divides them into different types: col-

lecting data for weather agencies, marking navigation channels, providing useful

measurements/information about their location or signalling dangerous areas or

spots. Depending on the purpose, a buoy can have different chaps and sizes. The

smallest buoys do not contain any electronic equipment and are used to mark

the location of shallow water or an underwater mountain for instance. The larger

buoys have more equipment on board to give passers or a control station at a

certain range specific measurements on that location as exemplified in Figure 1.2.

They are mostly equipped with a multitude of electronics such as sensors, solar

panels and batteries [4].

1.4 Project Description

This project is in development since two years. It was started as an EPS project

and two students who did this project as their master thesis then further devel-

oped it. The EPS students were responsible for the design and construction of

the hull and the stainless steel structure. A picture of this hull plus the steel

structure can be found in Figure 3.2. The structure was made for stabilization,

to attach sensors, as an antenna and to make the buoy higher and more visible.

The two students who worked on the project from September 2013 till the

beginning of 2014 were mostly working on the research of the electronics that

1.4. PROJECT DESCRIPTION 3

Figure 1.2: Buoy [1]

had to be in the buoy. There were also some sensors already available in the

LSA laboratory. They divided the electronics part into two different things: A

master component that would handle all the communication parts, like taking

in requests, handle these request, manage data that was received... The other

component is a slave module that is responsible for collecting and saving data on

a SD card. These students defined which hardware components will be used for

these different modules and which communication technologies. They were also

responsible for the design of a new protocol that could be used to communicate

between the different hardware modules, like the master, the slave and the base

station.

This paper will go deeper into the communication part of the project and

especially on the implementation in the master hardware module. Also a pro-

gram for the base station was implemented and will be discussed in this report.

Where the previous students were mostly focussed on the research of different

techniques to do this, this report will be more about the actual implementation

and the methods that were used to do this.

1.4.1 General Objective

The general objective of the autonomous buoy is to monitor his environment. This

should be done by collecting data from the sensors, storing this data and sending

it to a base station or, when it is in a broadcast mode, to anyone who is interested.

One of the objectives is that the buoy should have two main operating modes,

which can run simultaneously, an environmental mode and a regatta mode.

4 CHAPTER 1. INTRODUCTION

1.4.2 Environmental Mode

This mode is a mode that is used to collect data over larger periods of time to

monitor the environment. When the base station arrives in range of the Wi-Fi

module of the buoy, specific data can be requested from the buoy. The buoy only

sends information to one point, the base station.

1.4.3 Regatta Mode

The regatta mode is a mode that was created so the buoy can assist an au-

tonomous sailing boat that will be constructed at LSA in the future. The pur-

pose of this mode is to broadcast necessary information for everybody that is

interested. The time intervals between two measurements are smaller and the

information can only be gathered at the moment it is being send. The boats

can’t request any information about the past. Once the data is send, the boats

have to capture it or otherwise it is lost.

1.4.4 Objectives Regarding The Master Module

The master module should be able to send and receive messages to the base

station over a wireless connection. It should also be possible to send broadcast

messages to everyone who is interested in those messages and who is connected

in the same network.

The master should also be able to send and receive messages and data from

the slave module. It should be able to analyse those messages and data and apply

some kind of priorities in such a way that more important messages are handled

first.

Chapter 2

State of The Art

In this section there will be an overview of which technologies are being used at

the moment, in other researches or in actual buoys that are on the market.

2.1 Introduction

At the moment, a lot of research is done on smart, autonomous buoys, which

communicate with a base station or with each other. Monitoring of the marine

environment has come to be a field of scientific interest in the last fifteen years.

The instruments used in this work have ranged from small-scale sensor networks

to complex observation systems. Wireless sensor networks have become cheaper

and they are easy to deploy. Autonomous buoys are mostly used to monitor

coastal marine ecosystems in real time. They measure the effects human activity

attendant on industrial, tourist and urban development. New information and

communication technologies offer new perspectives and new solutions for mon-

itoring such ecosystems. Research on oceanographic environments offers new

challenges different than those on land. Some important differences are:

• The marine environment is an aggressive one, which requires greater levels

of device protection.

• Allowance must be made for movement of buoys caused by tides, waves,

vessels, etc.

• Energy consumption is high since it is generally necessary to cover large

distances, while communications signals are attenuated due to the fact that

the sea is an environment in constant motion.

5

6 CHAPTER 2. STATE OF THE ART

• The price of the instrumentation is significantly higher than in the case of

a land-sited wireless sensor networks.

• There are added problems in deployment of and access to motes and the

need for flotation and mooring devices.

In Figure 2.1 a general overview of a sensor node can be seen. In the center

there is the CPU, which is a microprocessor, which processes all the data from

the sensors and takes care of the communication between the base station or

with other buoys. The rest of the system includes a module for RF transmis-

sions, a power supply regulation and management system, a set of interfaces for

accessing the sensors, a module for amplification, conversion (analogue to digital)

and multiplexing of the data read from the sensors (surface and underwater), a

FLASH-type permanent read/write memory and a clock to act as a timer and

scientific instruments (e.g., improved meteorological packages, acoustic recording

packages, biological samplers, etc.).

Part of most buoys is above the surface of the water. This out-of-the-water part

always includes an antenna for RF transmission, optionally a harvesting system

(solar panel, Eolic generator, etc.) to supplement the power source, and in some

cases one or more external sensors essentially to monitor meteorological data

(wind speed, air temperature, atmospheric humidity, etc.). Figure 2.1 illustrates

the generic architecture of an autonomous buoy [2].

2.2 Communication

Network physical topology and density are entirely application-dependant. You

need to know the environment in which the buoy will be active. There are differ-

ent possibilities to interact with the base station or with other sensor node in a

wireless sensor network (WSN). There are a lot of different communication tech-

nologies you can use. Every topology has its own characteristics, which determine

whether or not it is more suitable than others in terms of attributes of network

functionality such as fault tolerance, connectivity, etc. For communication it is

possible either to develop communications protocols on the data-linking layer us-

ing different medium access mechanisms (such as TDMA, FDMA and CSMA),

or else to use different wireless communication standards and technologies. The

most important ones are summed up in Table 2.1.

For wireless communication, the sensor node incorporates a radio module,

which is chosen to suit the desired range. Sometimes, in order to increase the

range, range extenders for RF transceivers are incorporated, thus providing am-

plification to improve both output power and LNA (Low Noise Amplification).

2.3. SENSORS 7

Figure 2.1: General architecture of an autonomous buoy [2]

Another option, where such devices are insufficient to cover the distance, is to

include a GSM/GPRS module. Table 2.1 displays existing communication tech-

nologies [2].

2.3 Sensors

There are many types of sensors for monitoring oceanographic parameters. The

sensors you need depend on the project. We will discuss the most important

ones here and we will divide the sensors in two groups: the ones that must be

mounted above the surface of the water and the ones that must be in the water.

in Figure 3.13 and Figure 2.3, you can see a picture of the CTD sensor we use

and an example of the anemometer.

8 CHAPTER 2. STATE OF THE ART

Table 2.1: Communication technologies [2]

2.3.1 Surface Sensors

2.3.1.1 Wind

The Davis Anemometer is the device that the previous students have chosen to

use as the wind sensor for our project. It can measure wind speeds and wind

direction. It can withstand very strong winds but it can also detect little breezes.

2.3.1.2 Temperature

These sensors measure the temperature of the air in ◦C or in ◦F.

2.3. SENSORS 9

Figure 2.2: CTD package sensor

Figure 2.3: Anemometer [3]

2.3.1.3 Air Pressure

These sensors measure the air pressure in mb.

2.3.1.4 Precipitation

Precipitation is any product of the condensation of atmospheric water vapour

that falls under gravity. It is measured in millimetre.

10 CHAPTER 2. STATE OF THE ART

2.3.1.5 Relative Humidity

Relative humidity is the ratio of the partial pressure of water vapour in an air-

water mixture to the saturated vapour pressure of water at a prescribed temper-

ature. The relative humidity of air depends on temperature and the pressure of

the system of interest. It is displayed in %RH.

2.3.1.6 Solar Radiation

These sensors measure the amount of electromagnetic radiation produced by the

sun that is perceived by the buoy. It measures the amount of energy on a certain

surface and is displayed in W/m2.

2.3.2 Oceanographic Sensors

2.3.2.1 CTD

The CTD is a sensor that measures three important state values of the water:

conductivity, temperature and depth. It is also a sensor we use in our project.

2.3.2.2 Chemical Substance Detectors

There are a lot of sensors available that measure one type of substance. For exam-

ple, you have devices that detect oxygen [mg/L], CO2 [ppm], chlorophyll [µg/L],

chloride [mg/L], Rhodamine [µg/L], Hydrocarbons [ppm], Ammonium/ammonia

[mg/l-N] or nitrate [mg/L].

2.3.2.3 Water Velocity

This sensor measures the velocity of the water near to the buoy. The water speed

is given in units of [m/s].

2.3.2.4 Water Turbidity

Turbidity is the cloudiness or haziness of a fluid caused by individual particles

(total suspended or dissolved solids) that are generally invisible to the naked eye,

similar to smoke in air. The measurement of turbidity is a key test of water

quality. There are different units to express the turbidity of water:

• FTU (Formazin Turbidity Unit)

• NTU (Nephelometric Turbidity Units)

• JTU (Jackson Turbidity Unit)

2.4. RELATED WORK 11

2.3.2.5 Water pH

pH is a measure of the acidity or basicity of a fluid. Solutions with a pH less

than seven are said to be acidic and solutions with a pH greater than seven are

basic or alkaline. Pure water has a pH very close to seven. It is also important

to know that pH has a logarithmic scale.

2.3.2.6 Algae and Plankton

These sensors measure the amount of algae or plankton particles in the water.

2.4 Related Work

There are a lot of projects in other universities that have similar capabilities as

the buoy project we are working on. We will discuss them briefly here.

2.4.1 Autonomous Meteorological Buoy

This is a project from the Escola Politècnica Superior d’Enginyeria de Vilanova

i la Geltrú and the Universitat Politècnica de Catalunya.

The project is developed to collect weather and sea related data in the Mediter-

ranean Sea. From the buoy, the data is send to a base station where it can be

processed and the information can be further analysed. A smart sensor network

is set up based on the IEEE 1451.4 standard and build with a RENESAS 16-bit

microcontroller. For the communication the Short Burst Data Service of IRID-

IUM is used. The power supply is realized through an autonomous photovoltaic

system with storage unit and converters to achieve the required voltage levels.

The battery provides power for five days without sunlight. The user interface is

designed to work on a personal computer with LabView. Data is extracted and

sent by email through a communication system. Parameters such as wind speed

and direction, temperature, etc. are displayed. Further data can be saved and

monitored in diagrams to carry out long-term research of parameters [11].

2.4.2 Technology, Design, and Operation of an Autonomous Buoy

System in the Western English Channel

This project is located in Plymouth Marine Laboratory in the United Kingdom.

Its purpose is to continually monitor the operationally demanding coastal and

open- shelf environment of the western English Channel. A Satlantic Stor-X data

acquisition and logging system controls the scheduling and data management for

the core sensors (WQM, ISUS, CDOM fluorometer, above-water radiometer, and

12 CHAPTER 2. STATE OF THE ART

the AirMar meteorologi- cal station). The Stor-X also has three digital and four

analog ports available for future expansion with commercially available oceano-

graphic instrumentation. To facilitate greater flexibility the Stor-X is con- nected,

using RS232, to an on-board PC, who effectively forms the control centre of the

buoy.

The on-board PC has the following specifications: a Geode LX800 CPU run-

ning at 500 MHz; 256 MB DDR RAM; an 8 GB solid-state disk; and Wolvix

Linux operating system. Linux scripts control the monitoring of the battery

supply voltages, an on-board camera, the Stor-X data acquisition and download

schedules, and the connection to the outside world via the radio modems.

To provide power there is a solar panel and a Rutland 913 wind generator.

The shore-to-buoy communication uses a pair of RM9600 radio modems manu-

factured by Radio Data Technology, Ltd., producing 500 mW of radio frequency

(RF) power and connected to a 3-dB 50-V collinear aerial [12].

2.4.3 Implementation of Embedded System for Autonomous Buoy

This project was done in the Department of Electronics Engineering, Korea Uni-

versity in Seoul. They developed a Autonomous Buoy, which is composed of

an embedded system, OPC (Optical Particle Counter) and CTD (Conductiv-

ity, Temperature, Depth) sensors, to observe underwater environment. The au-

tonomous buoy is controlled by an embedded system composed of field-programmable

gate array (FPGA) and high performance CPU, which is designated to perform

image signal processing, data compression, power management and satellite com-

munication. So like in our project there is also a master-slave configuration

between the CPU and the FPGA. The autonomous buoy has vertical movements

in the water. There are three types of movements:

• Sinking motion for collecting data.

• Stay at a certain undersea level and drift without up and down motion.

• Move up to collect data from sensors, and transmit data to satellites at the

sea level.

The data flows from the FPGA through FIFO to the CPU, which performs the

data correction and ISP (Image Signal Processing). When the buoy comes up the

sea surface, it transmits the saved sensor data with the GPS position information

of the buoy to users by ORBCOMM satellite communication. Satellite data com-

munication is realized by ORBCOMM, and satellite communication modem used

2.5. CONCLUSION 13

Q4000 of QUAKE GLOBAL transmitted GPS positional information with other

collected data to users, and is controlled and communicated by using RS-232 of

main controller.

To save power consumption, this system uses sleep mode of the main controller

when the buoy is drifting in the sea [13].

2.5 Conclusion

When we look at the other projects, we see a lot of similarities between them and

our autonomous buoy project. Most of them also use a master CPU, who controls

and manages the system and the communication, and then a controller that takes

care of the sensors. The sensors that are used depend on the application. The

two modes of our buoy are unique since we didn’t find any project that has the

same possibilities to switch the mode.

Chapter 3

Available Equipment

In this section the different hardware we had at our disposal will be discussed.

They will be explained one by one.

3.1 Hull and Steel Structure

The design and execution of the hull was one of the assignments of the first group

that worked on the project. In Figure 3.1 you can see a picture of the hull without

the steel structure. The main characteristics of the hull are:

• Relatively small

• Light weight because it is made of fiberglass

• Six bolts need to be unscrewed to open the top

• The nuts have been replaced and covered with a layer of glass reinforced

plastic

• Rubber washers for the bolts to seal the threaded connection

• Ethyleen - Propyleen - Dieen Monomeer (EPDM) rubber tape (3 mm x 25

mm x 10 000 mm) is attached to the hull

• A waterproof box is inside the hull to put the electrical components in for

extra protection against the water.

The steel structure was added later and is necessary for the following reasons:

15

16 CHAPTER 3. AVAILABLE EQUIPMENT

Figure 3.1: Buoy hull [4]

• Onto the steel structure, the sensors will be attached. So there has to be

enough space on the steel structure to mount the sensors on.

• It acts as reinforcement for the hull. It must provide some extra strength

to the buoy.

• They also made sure the steel structure is resistant against wind and waves.

• It makes the buoy taller, so it will be more visible from further distances.

Especially when there is a light source attached to the top, the buoy will

be much more visible from a larger distance.

In Figure 3.2 a picture of the hull plus the steel structure can be seen.

3.2 Raspberry Pi

Because the Beaglebone black was not available at LSA we got the Raspberry

Pi instead. The Raspberry Pi is mini Linux computer that has approximately

the same features as the Beaglebone Black. The Raspberry Pi has a Broadcom

BCM2835 system on a chip (SoC), which includes an ARM1176JZF-S 700 MHz

processor, VideoCore IV GPU, and is shipped with 512 MB of RAM. It does not

include a built-in hard disk or solid-state drive, but uses an SD card for booting

and persistent storage. There are 2 USB 2.0 ports and HDMI (rev 1.3 and 1.4)

and RCA are included for video output. An audio jack, Ethernet port and a

microUSB power port are also included on the board.

3.2.1 Specifications

in Table 3.1, the specifications of the two Raspberry Pi models can be seen. The

one that was in our disposal is model B. These specifications are definitely good

enough for the application we intend to make. The Raspberry Pi also has a lot

3.2. RASPBERRY PI 17

Figure 3.2: LSA buoy

of in- and outputs. The most important one for us is the USB-connection and

the Ethernet adapter for testing purposes. When the user wants to connect a

mouse and a keyboard to the Raspberry Pi, he will also need a USB hub because

the two USB ports are already used for the Wi-Fi network adapter and for the

connection between the Raspberry Pi and the STM32F3 Discovery.

3.2.2 Controlling the Raspberry Pi

Because there was no external monitor available all the time, there was decided

to control the Raspberry Pi from a personal laptop. The computer that was

used is a Macintosh, so the approach is a little bit different than on Windows or

Linux computers. But generally, the method that is used is about the same. The

Raspberry Pi will be controlled through SSH to get the terminal environment.

In the software section this topic will be discussed further. There was also a

program called X11 used to display the graphical user interface on the computer.

More information about this application can be found in the project development

tools.

18 CHAPTER 3. AVAILABLE EQUIPMENT

Table 3.1: Specification of the Raspberry Pi [10]

3.2.3 Setting up the Raspberry Pi

The user first needs to plug an Ethernet cable in the Raspberry Pi and the laptop

and supply power by connecting the micro-USB on the Raspberry Pi to one of

the USB-ports on the computer or to the nearest outlet. This can be seen in

Figure 3.3.

After the Raspberry Pi was powered on, the user has to wait a couple of

seconds. When the LED indicating the Internet goes out and then goes back on

again, the connection protocol between the computer and the raspberry is done

and if there were no problems, the two are now connected. The light emitting

3.3. STM32F3 DISCOVERY 19

Figure 3.3: How to connect the Raspberry Pi

diodes that are responsible for the Internet can be seen in Figure 3.4.

Before the controlling of the Raspberry Pi can start, the user needs to know

the IP-address of the Raspberry Pi. For this part you need an external monitor

and keyboard. In the terminal of the Raspberry Pi, you type the command

’ipconfig’ for more information about the network. When the IP address is known,

the user can start. In this case, the IP-address is 192.168.1.10. An example of

this can be seen in Figure 3.5.

The last thing that needs to be done is make sure the SSH option is enabled

in the Raspberry Pi. When you are in the command line of the raspberry, type

in the command ’raspi-config’. This will open up a screen with lots of features of

the Raspberry Pi. Go to ’Advanced Options’ and select it. You will get another

screen were you will have to select ’SSH’. Now you can choose enable or disable.

We want to choose the enable option of course. These steps can be seen in Figure

3.6, 3.7 and 3.8.

The next thing that is done, is start the terminal utility on the laptop and

type the command ssh -X pi@192.168.1.10. Further steps will be explained in the

SSH topic of this report.

3.3 STM32F3 Discovery

On the slave side of our project, the previous student who worked on the project

chose the STM32F3 Discovery board to act as a tool that collects and saves data

onto a SD card. The STM32 F3 series combines a 32-bit ARM Cortex-M4 core

(DSP, FPU) running at 72 MHz with a high number of integrated analogue pe-

20 CHAPTER 3. AVAILABLE EQUIPMENT

Figure 3.4: LED indicating the network activity

Figure 3.5: Ifconfig command

3.3. STM32F3 DISCOVERY 21

Figure 3.6: Raspi config menu 1

Figure 3.7: Raspi config menu 2

Figure 3.8: Raspi config menu 3

22 CHAPTER 3. AVAILABLE EQUIPMENT

ripherals leading to cost reduction at application level and simplifying application

design, including [14]:

• Fast- and ultra-fast comparators (<30 ns)

• Op-Amp with programmable gain (PGA)

• 12-bit DAC

• Ultra-fast 12-bit ADCs with five MSPS per channel (up to 18 MSPS in

interleaved mode)

• Precise 16-bit sigma-delta ADCs (21 channels)

• Fast 144 MHz motor control timers (resolution < 7 ns)

• CCM (Core Coupled Memory), a specific memory architecture for RAM

execution of time-critical routines, accelerating the performance by 43

In Figure 3.9 a picture of the STM32F3 Discovery board can be seen.

Figure 3.9: The STM32F3 Discovery board [5]

3.4 Serial Communication

For the serial communication, two kind of cables were used. For testing purposes,

a serial connection between the Raspberry Pi and the computer was needed. This

3.4. SERIAL COMMUNICATION 23

Figure 3.10: USB to USB cable

Figure 3.11: Crossed cable layout [4]

was done by a male USB to male USB crossed cable. This cable, also called ”Null

Modem”, was needed in order to test the code. It was already provided by LSA

and can be seen in Figure 3.10.

In Figure 3.11, the build-up of this kind of cable can be seen. The word

”crossed” refers to the crossing of the two connections as can be seen in the Fig-

ure.

Because the STM32F3 Discovery doesn’t have a normal USB entrance, the

mini-USB entrance was used for the serial communication. A normal cable with

a USB and a mini-USB exit was used. This type of cable is widely used in all

types of application. An example can be seen in Figure 3.12.

24 CHAPTER 3. AVAILABLE EQUIPMENT

Figure 3.12: USB to mini-USB cable [6]

3.5 Sensors

Sensors are necessary to know different parameters from the environment around

the buoy. A sensor is a converter that measures a physical quantity and converts

it into a signal which can be read by an observer or by an (today mostly elec-

tronic) instrument [15].

There were three main sensors at our disposal. A CTD sensor, which measures

the parameters of the water, an anemometer, which measures the characteristics

of the wind and a GNSS, which determines the global position and keeps track

of the time. These sensors where also chosen by the previous students and they

were already available when this project started.

3.5.1 CTD

This sensor package was developed in LSA. The CTD sensor measures three

variables:

• Conductivity

• Temperature

• Depth

3.5. SENSORS 25

Figure 3.13: CTD sensor

A picture of the CTD, used in the LSA laboratory, can be seen in Figure 3.13.

3.5.1.1 Conductivity

The conductivity of an electrolyte solution is a measure of its ability to con-

duct electricity. This is done by applying an alternating current to the outer

pair of some electrodes. The potential between the inner pair is then measured.

Conductivity could, in principle, be determined using the distance between the

electrodes and their surface area using the Ohm’s law but generally, for accuracy,

a calibration is employed using electrolytes of well-known conductivity. Table 3.2

shows the conductivity of common solutions [16].

Table 3.2: Conductivity of common solutions

Solution Conductivity

Absolute pure water 0.055 µS/cm

Good city water 50 µS/cm

Ocean water 63 mS/cm

3.5.1.2 Temperature

A PT100 is used to measure the temperature. This is a Resistance Temperature

Detector (RTD). The PT100 has a resistance of 100 Ω at 0 ◦C. The material has a

predictable change in resistance as the temperature changes; it is this predictable

change that is used to determine temperature. They have a higher accuracy and

repeatability than thermocouples. There are two sorts:

• Wire wound elements: consist of a length of fine Platinum wire coiled

26 CHAPTER 3. AVAILABLE EQUIPMENT

around a ceramic or glass core. The ceramic or glass core can make them

fragile and susceptible to vibration so they are normally protected inside a

probe sheath for practical use [17].

• Thin film elements: manufactured using materials and processes similar

to those employed in the manufacture of integrated circuits. A platinum

film is deposited onto a ceramic substrate, which is then encapsulated.

This method allows for the production of small, fast response, accurate

sensors [17].

3.5.1.3 Pressure

Load sensors are used to measure this value. A load cell is a transducer that is

used to convert a force into an electrical signal. This conversion is indirect and

happens in two stages. Through a mechanical arrangement, the force being sensed

deforms a strain gauge. The strain gauge measures the deformation (strain) as

an electrical signal, because the strain changes the effective electrical resistance

of the wire. A load cell usually consists of four strain gauges in a Wheatstone

bridge configuration. Load cells of one strain gauge (quarter bridge) or two strain

gauges (half bridge) are also available. The electrical signal output is typically in

the order of a few mV and requires amplification by an instrumentation amplifier

before it can be used. The output of the transducer can be scaled to calculate

the force applied to the transducer [18].

3.5.2 Anemometer

The chosen wind sensor in this project is a Mechanical one, seen in Figure 3.14.

It consists of a sort of propeller and a vane. The wind speed is determined by

counting the number of rotations per time unit. We count the pulses. A preci-

sion potentiometer is used to check the wind direction. If the wind turns, so will

the vane change position. This change changes the value of the potentiometer.

But this wont be sufficient to determine the wind direction. The buoy can turn,

and because the wind sensor is mounted to the steel structure the zero position

changes. For an accurate wind direction, a combination of a compass and the

wind sensor is used.

3.5.3 GNSS

GNSS is an abbreviation for Global Navigation Satellite system, and it is a type

of GPS card. This sensor is a board that sends data and position information

over his pins. The sensor that is available for this project is a SUPERSTAR II.

For more information on which pins send you the information, you can follow the

3.6. CONCLUSION 27

Figure 3.14: Wind sensor [4]

Figure 3.15: SUPERSTAR II [7]

instructions in the user manual or read the report of Mathias on the data logging

part of the project. The SUPERSTAR II, seen in Figure 3.15, is a quality GPS

receiver used for a variety of embedded applications. It has robust signal tracking

capability under difficult signal conditions. The SUPERSTAR II is a complete

GPS OEM sensor that provides 3D navigation on a single compact board with

full differential capability. It is a 12-channel GPS receiver that tracks all in-

view satellites and it is fully autonomous such that once power is applied, the

SUPERSTAR II automatically searches, acquires and tracks GPS satellites. SU-

PERSTAR II receivers also have a Satellite Based Augmentation System (SBAS)

option, for example WAAS and EGNOS. When a sufficient number of satellites

are tracked with valid measurements, the SUPERSTAR II produces a 3-D posi-

tion and velocity output with an associated Figure of Merit (FOM) [7].

3.6 Conclusion

In this section the different hardware module that were in our disposal, were

discussed. The master and slave boards were presented, the Raspberry Pi and

28 CHAPTER 3. AVAILABLE EQUIPMENT

the STM32F3 Discovery, and the different sensors that are in our disposal, the

CTD sensor, the anemometer and the GNSS. The characteristics of the existing

hull, available at the LSA laboratory, were discussed and with which tools the

serial connection is achieved.

Chapter 4

Project Development Tools

In this section the different software development tools that were used will be

explained. There will be demonstrated which operating systems that were used,

programs to test the serial connection, used programming languages and methods

to connect with the Raspberry Pi.

4.1 Operating Systems

4.1.1 Raspbian

The operating system running on our Raspberry Pi is Raspbian. Raspbian is a

free operating system based on Debian optimized for the Raspberry Pi hardware.

An operating system is the set of basic programs and utilities that make the

Raspberry Pi run [19].

Raspbian is the recommended operating system for the Raspberry Pi and it

also has python installed by default. Raspbian also allows to be controlled over

SHH. These are the biggest reasons there was chosen to stick with this operating

system.

Figure 4.1: Raspbian Logo [8]

29

30 CHAPTER 4. PROJECT DEVELOPMENT TOOLS

4.1.2 ChibiOS

ChibiOS is the operating system that is used on the STM32F3 Discovery board.

This was also decided by the previous students. ChibiOS is a complete, portable,

fast, compact, open source Real-time operating system (RTOS). The advantage

of ChibiOS is that it provides:

• Start-up and the board initialization

• Integration of other open source projects

• Support for common device drivers

A lot of information about ChibiOS will not be displayed here because of the

fact that it has more to do with the data logging part of the project. ChibiOS

is not used in the communication part. For more information you can go to the

ChibiOS website or on the report on data logging [20].

4.2 Programming Languages

4.2.1 Python

Python is a widely used, general-purpose, high-level programming object-oriented

language. Its design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than would be possible in

languages such as C. The language provides constructs intended to enable clear

programs on both a small and large scale. Python is often used as a scripting

language, but is also used in a wide range of non-scripting contexts [21].

The simplicity, cross-platform support and the big user community are the

biggest reasons there was decided to use this programming language for the

project. Python is also included with the Raspbian operation system.

There must also be noted that the 2.7.X version of python was used. This is

important to know because python 2.X and python 3.X are not compatible with

each other. In Figure 4.2 the official python logo can be seen.

4.3. SOFTWARE 31

Figure 4.2: Python logo [9]

4.3 Software

4.3.1 X11

X11 or also referred to as X Window System is a windowing system for bitmap

displays, common on UNIX-like operating systems.

X11 provides the basic framework for a GUI environment: drawing and mov-

ing windows on the display device and interacting with a mouse and keyboard. X

does not mandate the user interface - individual programs handle this. As such,

the visual styling of X-based environments varies greatly; different programs may

present radically different interfaces.

Unlike most earlier display protocols, X was specifically designed to be used

over network connections rather than on an integral or attached display device.

X features network transparency: the machine where an application program

(the client application) runs can differ from the user’s local machine (the dis-

play server). X’s network protocol is based on X command primitives. This

approach allows both 2D and 3D operations to be fully accelerated on the remote

X server [22].

The program used is the XQuartz application, the Apple Inc. version of the

X server, a component of the X Window System for Mac OS X [23].

32 CHAPTER 4. PROJECT DEVELOPMENT TOOLS

Figure 4.3: Setup ssh in terminal

4.3.2 SSH

SSH is a TCP/IP protocol that stands for Secure Shell. SSH makes it possible

to login on another computer in a save way, because it is encrypted it is almost

impossible to figure out passwords and other information. SSH uses public-key

cryptography to authenticate the remote computer and allow it to authenticate

the user, if necessary [24].

SSH is used to control the Raspberry Pi from another computer. The screen,

the keyboard and the mouse from the laptop will act as those from the Raspberry.

The command that is used in the terminal is ’ssh -X pi@192.168.1.10’.

The IP address 192.168.1.10 is the IP address of the Raspberry Pi. In the

hardware section of the Raspberry Pi, you can find the explanation of how this

IP address was found.

The X variable is necessary to start the X11 program, to start the user in-

terface over the Ethernet connection. The Raspberry Pi will now ask for the

password. When the password is given, the command shell of the Raspberry Pi

will be displayed in the terminal window. To start the user interface on the mac,

the command ’lxsession’ can be used. All these steps can be seen in Figure 4.3.

after ’lxsession’ was typed in the terminal of the Raspberry Pi, the user in-

terface starts in a X11 window and the desktop of the Raspbian interface can

be seen. The desktop of Raspbian can be seen in Figure 4.4. There can also be

noticed that the terminal says there are some faults but there hasn’t been no-

ticed any effect of these faults. Everything there can be seen is send through the

Ethernet connection between the laptop and the Raspberry Pi. There can now

4.3. SOFTWARE 33

Figure 4.4: Desktop of Raspbian

be worked directly onto the Raspberry Pi. There must be noted that on windows

computers you can also use the application ’Putty’ to connect to the Raspberry

Pi over SSH [25].

4.3.3 CoolTerm

CoolTerm is a simple serial port terminal application (no terminal emulation)

that is geared towards hobbyists and professionals with a need to exchange data

with hardware connected to serial ports such as servo controllers, robotic kits,

GPS receivers, microcontrollers, etc. Roger Meier created it and it is available

for most common operating systems.

This little program was used to test serial communication between the Rasp-

berry Pi and the laptop. It is possible to view received message from the Rasp-

berry Pi in ASCII code characters or as hexadecimal numbers. You can also

send messages back to the Raspberry Pi in ASCII code or give in the numbers

hexadecimal.

A screenshot of the program can be seen in Figure 4.5.

34 CHAPTER 4. PROJECT DEVELOPMENT TOOLS

Figure 4.5: Printscreen of the coolTerm setup

4.3.4 CheckSum and ModeOn Applications

In order to make testing easier, we made two little python programs that would

make testing more easy. The first one is makeChecksum.

makeChecksum is a little program that will ask for a hexadecimal string and

it will display the CRC32 checksum of that string. This program can also be

found in the appendix. An example of this program can be found in the output

window below.

Another little python program that was made by me is makeModeOn. This

program was also created to make testing more easy, but it can also be used

to add a default mode in the defaultsetup file. It is used to make a ’mode on’

command package out of some parameters you give in. An example is given in

the output window below.

4.4. PROTOCOLS 35

4.4 Protocols

4.4.1 TCP/IP Network Protocol

The TCP/IP protocol is the networking model and a group of communications

protocols used for the Internet and similar networks. It consists of the Trans-

mission Control Protocol (TCP) and the Internet Protocol (IP), which were the

first networking protocols that were defined. It is occasionally known as the DoD

model, because the development of the networking model was funded by DARPA,

an agency of the United States Department of Defence.

TCP/IP provides end-to-end connectivity specifying how data should be for-

matted, addressed, transmitted, routed and received at the destination. This

functionality has been organized into four abstraction layers, which are used to

sort all related protocols according to the scope of networking involved. From

lowest to highest, the layers are the link layer, containing communication tech-

nologies for a single network segment (link), the internet layer, connecting hosts

36 CHAPTER 4. PROJECT DEVELOPMENT TOOLS

across independent networks, thus establishing internet working, the transport

layer handling host-to-host communication, and the application layer, which pro-

vides process-to-process application data exchange [26].

The TCP/IP protocol will be used in the program to connect the Raspberry

Pi with the base station. A multicast will be used for sending a data packet

in regatta mode to everybody that is interested. More information on how to

implement this in Python will follow further on in this report.

4.5 Conclusion

In this section, the different software tools that are used in order to implement

the desired goals were presented. We now have a basic idea of which programs,

operating systems and programming languages are used and how they are used.

Some of them will be explained a little bit more in other sections of the report.

Chapter 5

Application Protocol

In this section the protocol that is used for the communications between the Rasp-

berry Pi and other modules will be explained.

A new protocol was needed for the communication between the master (Beagle-

bone Black or Raspberry Pi) and the slave (the STM32F3 Discovery), and also

for the communication between the master and the base station. The students

who worked on the project in the previous semester designed a new protocol but

because we made a lot of changes on this protocol, all the possible commands and

data packages will be presented here again. There are some messages that were

added and others were deleted or modified.

5.1 Command Package

In this section the command package will be described. In Figure 5.1 the general

structure of a command package can be seen.

In Table 5.1 you can see all the possible commands that were defined by now.

Figure 5.1: Basic command package

37

38 CHAPTER 5. APPLICATION PROTOCOL

Table 5.1: All the possible commands

5.1. COMMAND PACKAGE 39

Table 5.2: Data specifications of the ’mode on’ command

Mathias Van Flieberge and I added some new functions and some new com-

mands. First of all, we changed the original commands ”regatta mode” and

”environmental mode”. These commands were changed to a ”mode on” and a

”mode off” command. The protocol will now be much more flexible to add and

remove different modes beside the environmental mode and the regatta. It is also

more obvious to run multiple modes at the same time. The ”regatta mode” and

the ”environmental mode” commands insinuated that there was only one mode

running at the same time. The data length of the ”mode on” command represents

the number of bytes in the data part of the message.

In Table 5.2, there can be seen what kind of parameters that be can found in

the data part of the ’mode on’ command. First of all there is a mode ID number,

this is just a unique number that represents the mode. After this there is the total

number of sensors that this mode will use, followed by the id of these sensors.

The next parameter represent whether the mode will broadcast data or not. If

this parameter is 01, the data will broadcast. If it is 00, the data that will be col-

lected by the STM32F3 Discovery, will not be broadcasted and the base station

will have to specifically ask for the data. The following four bytes represent the

time interval. This time interval is the time between 2 measurements of a sensor.

The time interval is presented as hh:mm:ss.ss, where hh are the hours, mm are

the minutes and ss.ss are the seconds and hundreds of seconds. Every part that

was just described represents one byte. The last byte of the data part is 00 for

now, but later on this byte can be used to select a different protocol than the one

that is ours, like for example the NMEA protocol.

The ’mode off’ command has a data length of 03. This was necessary for

Mathias Van Flieberge because otherwise it would be too complicated with the

01 and 02 options for one or two dates that are implemented in some other com-

mands. The parameter that is given is the ID number of the mode that we want

to close.

40 CHAPTER 5. APPLICATION PROTOCOL

Figure 5.2: basic data package

Another new command is the ’data finished’ command. When the Raspberry

Pi asks data he will also receive a ’data finished’ command when all the data was

received. This was necessary to implement because the master must know when

the data is finished in order to know when he can send the next command.

The original checksum was too simple, not sophisticated enough, so there was

decided to change this to the CRC32 checksum. This means the length of the

checksum was doubled from two bytes to four bytes. The CRC32 checksum will

be discussed further in this report.

5.2 Data Package

The data package differs slightly from the command package. The SOH is again

the dollar sign. The ID stands for the ID number of the data package. There are

two different ID values, one for the broadcast data message (”0B”) and one for

the normal data message (”07”). This is followed by the time and date of the data

package. After the time and the date, data of different sensors can be added. The

EOH is again the ”*” sign. To secure the message, a CRC32 checksum is added

in the end.

The different data ID values that are added are the same as the ID numbers

of the similar command packages. For example, when you want to add the wind

direction in a data package, the ID number you add to the data package is 36.

5.3 Priorities

When different commands come in at the same time, there need to be some pri-

orities. With priorities, the processor knows which command he should handle

first. All the commands used by the protocol are divided into similar groups and

given all a certain priority. They can be seen in Table 5.3. The stop command

has the highest priority and will always be handled first. The second most impor-

5.4. CRC32 CHECKSUM 41

Table 5.3: Priorities of the different messages

tant command is the error command, followed by the change modes (the ’mode

on’ or the ’mode off’ command). The lowest priorities are the different sensor

commands where the combination of sensors has the highest priority, followed by

the GPS, Wind sensor and CTD respectively.

There should noted that in the actual program these priorities are customiz-

able. The implementation will make sure you can add or remove commands from

a certain priority. This was done in the defaultsetup file.

5.4 CRC32 Checksum

CRC32 is a 32-bit Cyclic Redundancy Check code, used mainly as an error de-

tection method during data transmission. If the computed CRC bits are different

from the original (transmitted) CRC bits, then there has been an error in the

transmission. If they are identical, there can be assumed that no error occurred

(there is a chance 1 in four billion that two different bit streams have the same

CRC32). The idea is that the data bits are treated as a data polynomial and

the CRC bits represent the remainder of the division of the data polynomial by

42 CHAPTER 5. APPLICATION PROTOCOL

a fixed, known polynomial (called the CRC polynomial) [27].

The CRC32 polynomial is c(x) = 1 + x + x2 + x4 + x5 + x7 + x8 + x10 + x11 +

x12 + x16 + x22 + x23 + x26 + x32.

A b(x) needs to be found so that d(x) = a(x)c(x) + b(x). d(x) is our data,

b(x) is our CRC32 and we don’t care about a(x). Or, in other words, b(x) = d(x)

mod c(x).

The CRC32 is widely used checksum (for example zip files use this checksum)

and it is included in the binascii library in python. Because the result has actually

33 bits, one bit says whether the checksum is positive or negative, the checksum

needs to be modified a bit so it is only 32 b (4 B). When the checksum is negative,

the function takes the two’s complement of the checksum. This way the checksum

Mathias Van Flieberge had implemented in the data logging part of this project

is equal to our checksum.

5.5 Overview

When we look at Figure 5.3, the different messages that can be send between the

Raspberry Pi and the STM32F3 Discovery can be seen. The messages on the

left side are the message that can be send from the STM32F3 Discovery to the

Raspberry Pi, the messages on the right side are messages that are send the other

way around. There can be noticed that the messages are divided in groups. On

the left side there is the error group, the data messages, the message ok and the

data finished. These groups exist because the messages in the same group are

treated the same. Messages from different groups require a different action when

the Raspberry Pi receives them. On the right side there is the error group, mode

group, data group (this is not the data message but the commands that request

data) and the ’message ok’.

5.6 Use Cases

5.6.1 Error Free Communication

Figure 5.4 represents the normal working mode, where there are no errors or

unexpected behaviours. Now let us explain the Figure a little bit more in detail.

• First the base station sends a command to request data to the master

(Raspberry Pi).

5.6. USE CASES 43

Figure 5.3: Overview of the protocol between the master and the slave units

• The master (Raspberry Pi) sends a ’message ok’ back to the base station,

if the command is valid.

• If there are no other commands that are being handled at that specific

moment. The Raspberry Pi forwards the command to the STM32F3 Dis-

covery.

• If the communication is ok, the STM32F3 Discovery sends a message ok

back to the Raspberry Pi.

• The STM32F3 Discovery can now send data packages to the Raspberry Pi

44 CHAPTER 5. APPLICATION PROTOCOL

Figure 5.4: Normal working mode

5.6. USE CASES 45

• The Raspberry Pi answers with a ’message ok’ to every data package and

sends the data package to the base station.

• If the Raspberry Pi get a ’message ok’ from the base station, it can send

the next data package.

• If there is no more data to send, the STM32F3 Discovery sends a ’data

finished’ package.

• The Raspberry Pi answers once more with a ’message ok’.

5.6.2 Master to Slave: Broken Communication

Figure 5.5 displays the situation when the communication between the Raspberry

Pi and the STM32F3 Discovery is broken. We will explain now what happens in

this situation on the basis of the Figure.

• The base station sends a message to the Raspberry Pi to ask for data.

• The Raspberry Pi replies with a ’message ok’ back to the base station.

• The Raspberry Pi sends the command to the STM32F3 Discovery.

• If the Raspberry Pi doesn’t get an answer from the STM32F3 Discovery

in a predefined time value, called the STMtimeout, The Raspberry Pi will

send the command again to the STM32F3 Discovery.

• The program tries this three times. If by then the Raspberry Pi didn’t get

a message back from the STM32F3 Discovery, it will stop trying and send

a ’STM32F3 not connected’ message back to the base station.

• The Raspberry Pi also get another ’message ok’ back from the base station.

5.6.3 Slave to Master: Wrong Message

Figure 5.6 illustrates the situation when the STM23F3 receives a wrong message

for the first time.

• First the base station sends a command to request data to the master

(Raspberry Pi).

• The master (Raspberry Pi) sends a ’message ok’ back to the base station,

if the command is valid.

• If there are no other commands that are being handled at that specific mo-

ment, the Raspberry Pi forwards the command to the STM32F3 Discovery.

46 CHAPTER 5. APPLICATION PROTOCOL

Figure 5.5: Broken master-slave communication

5.6. USE CASES 47

Figure 5.6: Slave gets a wrong message

48 CHAPTER 5. APPLICATION PROTOCOL

• The message that arrives at the STM32F3 Discovery is incorrect and the

STM32F3 Discovery sends a ’wrong command’ message back

• The Raspberry Pi sends a ’message ok’ back to the STM32F3 Discovery.

• The Raspberry Pi sends the command back to the STM32F3 Discovery.

• If the command is now ok, The Raspberry Pi gets a ’message ok’ back.

• The rest of this situation is the same as the first situation.

5.6.4 Slave to Master: Error Message

Figure 5.7 represents when an error message is send from the STM32F3 Discovery

to the Raspberry Pi. As can be seen in the Figure, when the program gets an

error between two data packages, a ’message ok’ is send back to the STM32F3

Discovery. The error message is than send to the base station, so this base

station immediately knows there is an error. The rest is almost the same as the

first situation.

5.6.5 Master to Slave: Wrong Data Package Message

In Figure 5.8 represents the arrival of a wrong data package. If a data package is

received in the Raspberry Pi from the STM32F3 Discovery, but the data package

is not correct, the program sends a wrong data message back from the Raspberry

Pi to the STM32F3 Discovery. The STM32F3 Discovery sends the data back

again then. The rest is the same again as situation 1.

5.7 Conclusion

In the this section, the protocol that was designed by the previous students, was

discussed. The section handled the evolution of the protocol in order to overcome

some obstacles we had with the old declaration of the protocol, changes that were

made to improve the protocol, like additions or removals of some functions. On

the basis of some examples the protocol should be clear now for everyone who

read this section. The next chapter will talk more about the implementation of

the protocol in a multi threaded environment.

5.7. CONCLUSION 49

Figure 5.7: Slave reports an error to master

50 CHAPTER 5. APPLICATION PROTOCOL

Figure 5.8: Master gets a wrong data package message

Chapter 6

Raspberry Pi Implementation

In this section the implementation of the protocol and the functionalities in the

Raspberry Pi and in the base station are going to be discussed. The programming

language that was used is python. This scripting language was discussed earlier

in the report.

6.1 Introduction

To implement the protocol in the Raspberry Pi, there will be 5 main threads:

• 1 thread to receive commands or data from the STM32F3 Discovery

• 1 thread to send commands or data to the STM32F3 Discovery

• 1 thread to receive commands from the base station

• 1 thread to send commands or data to the base station

• 1 main control thread

6.2 General Architecture

A general representation of the buoy’s architecture can be found in Figure 6.1.

We can see the master-slave configuration of the buoy and the connections over

Wi-Fi to the base station and the regatta boats.

In Figure 6.2, a more detailed architecture of the master module can be seen.

We see the connections to a Wi-Fi module, which is a Wi-Fi dongle connected

through USB to the Raspberry Pi. And the serial connection to the STM32F3

51

52 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.1: General architecture of the buoy

Discovery is done by the USB port of the Raspberry Pi. Inside the master module,

we have five threads. 2 threads for the serial communication (one for listening

and one for sending) and 2 for the wireless communication over Wi-Fi. The last

thread is a main control thread.

6.3 States

We will start here with a theoretical analysis of the communication between the

master and the slave. This includes the receiving and sending from and to the

6.3. STATES 53

Figure 6.2: Architecture of the master module

STM32F3 Discovery. It also includes a part of the main control thread.

The first thing here are the states of the protocol. Because threads run simul-

taneously, parallel with each other, there needs to be some kind of state machine

in order to keep the sequential order of the protocol. With this state machine, all

the threads know in which state the protocol is located. This will be discussed

first and there will be some examples afterwards. A visual representation of the

state machine can be seen in Figure 6.3.

When nothing is pending, the state is 0. In this state the program is just

waiting until there is a command coming in from the base station. When this is

happening, there are two choices after the command is analysed:

• When it is a command that needs information or data from the STM32F3

Discovery, like for example ’wind speed’, ’water temperature’ or ’coordi-

nates’, the new state will become 1.

• When it is a command that doesn’t need data from the STM32F3 Discovery,

like for example ’mode on’ or ’mode off’, the new state will become 2.

54 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

After the command was actually send over the serial connection the states

will become respectively 3 or 7, as can be seen in Figure 6.3. In both states the

program will wait until there is a ’message ok’ coming back from the STM32F3

Discovery. If this is the case, state 7 will go back to state 0. State 3 will become

state 4 and will wait for data. When a data package is received while the state is

equal to 4, the state will become 5. But when a ’message ok’ is send back to the

STM32F3 Discovery to let him know the data package was received, the state

will go back to state 4. When the program receives a dataFinished command

instead of a data package, the state will turn into 6. This means all the data was

received. After the program sends a ’message ok’ back the state will return to

zero again and the program can wait for the next command. There are also some

special cases where there wasn’t received what was expected.

• When the program receives an error from the STM32F3 Discovery, it will

look if there is a message that is currently processing. If there is one, this

message will be saved in the interrupted Queue, and the state will be set

back to zero after a message ok was send back to the STM32F3 Discovery.

• When there is data coming in when it wasn’t expected, the Raspberry Pi

will still give it to the base station. It could be that there is still data coming

in after an error or there could be a broadcast data message coming in. So

the state will not be changed when there was unexpected data received.

Only a message ok is send back.

• When there is data coming in but the data message is not correct, the

program sends a ’wrong data’ message back to the STM32F3 Discovery.

The state matching just stays in the same state.

• The same thing counts when an error was received but there is a mistake in

the command package, the program stays in the same state but immediately

a ’wrong command’ message is send back.

6.4 Global Variables

In order to make the flowcharts, which will be discussed later on more clear,

some variables that are used in the program will be explained here. There must

be noted that these variables are global variables. This means that these variables

can be read and modified by all the threads. They represent the communication

between the different threads. All the global variables plus some information can

be found in Table 6.1. In this Table you can also find in which functions these

variables will be used in the program.

6.4. GLOBAL VARIABLES 55

Figure 6.3: State machine of the STM32F3 Discovery communication

56 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Table 6.1: Global variables of the program

6.5. SERIAL CONNECTION 57

6.5 Serial Connection

For the initialization we are going to look at the python code that is used to

initialize the serial connection.

The initialization is situated inside a loop in the main thread to make sure

the initialization will only stop if there is an actual connection. If the connection

succeeds, a one value is returned, if the connection fails, a zero is returned. A

lock is also applied to make sure no other thread will access the variables that are

used. For connecting to the serial port, the library serial needs to be imported.

A serial connection can be started now by giving in the command:

Where the ser variable will represent the serial connection object. default-

setup.PATH USB DRIVER represents the path on the Raspberry Pi that locates

the USB driver. This is different for different USB connections. There must be

noted that every constant is located in the default setup.py file and can be mod-

ified. Also the baud rate of the serial connection and the timeout are specified

in this command. They can also be found in the default setup.py file. Normally

9600 b/s is used as a standard baud rate. The timeout is equal to three seconds

by default.

openSer is the variable that is one if the serial connection is successfully made

and its purpose is to let other threads know the serial connection is established.

58 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

6.6 Server Client Connection

In this section the establishment of the TCP point-to-point connection with the

base station and the setup of the UDP point-to-multipoint message multicasting

will be discussed.

6.6.1 Base Station Connection Initialization

In the code beneath the actual implementation in python of the TCP/IP connec-

tion setup can be seen.

In the code the sequential order of setting up a TCP/IP connection can be

seen. The first thing the program tries to do is setting up a socket. This socket

is called ’s’ and this is a global variable, which means that other threads and

functions can also use this variable. For a normal point to point connection like

this one, the parameters socket.AF INET and socket.SOCK STREAM are given

along with the function socket.socket(). The next thing that is done is binding

the socket to our host address and a port. The host address is the IP address

of the Raspberry Pi, because the Raspberry Pi will be the server. If these ac-

tions succeed, the timeout for the connection will be defined. This timeout can

also be defined in the defaultsetup.py file. If one of these actions that were just

described fails, there will be displayed that the connection has failed and waited

a predefined amount of time. If it didn’t fail the function will go to the second

part of setting up the connection [28].

Once the socket is setup correctly, the program will listen to incoming con-

nection requests by other users. The base station now has to send a request.

6.7. SENDING TO THE STM32F3 DISCOVERY 59

There will be only listened to one request. If the request came in from the base

station, the program saves the clients name and his address. The connection is

now complete and there can be messages received from this client.

The variable openTCP will be one if the connection is complete. This also is

a global variable so other threads can check if the connection is established.

6.6.2 Multicast Initialization

For the regatta mode, the possibility is needed to send data messages to everybody

that is interested. This is done by multicasting the message. To do this, building

a new socket that can handle multicasting is needed. The code that does all this

can be found below.

There was a new socket object made and it was called sBroadcast this time.

In the function socket.socket(), other parameters are given along now to create

a multicast socket. The parameters that are given along with this function are

socket.AF INET and socket.SOCK DGRAM. There must be noticed that the

second parameter is different than the one in the socket for the point-to-point

TCP/IP connection. The next thing that is done is setting the time-to-live for

messages to 1. This is to make sure the messages stay in the local network and do

not go further. If there is no error doing all the things that were just described,

the connection is established and the function can return one. If there is an error,

the program sleeps for a while and returns zero. By returning zero the program

knows it needs to try again to establish a connection [29].

6.7 Sending to the STM32F3 Discovery

Now the actual thread that handles the sending part to the STM32F3 Discovery

will be discussed. In the flowchart in Figure 6.4 you can see the approach that

60 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

was taken. The first thing that is done, is making the state zero and look if there

is a command in one of the queues. The thread looks at the queues with the low-

est priority number first and than to the queues with a higher priority number.

For example, the first priority queue we check is the queue1. Then a comparison

whether there is a command in the interrupted queue that has a higher priority

or not is done. The command with the highest priority is taken out of his queue.

There is an analysis of the command and the program looks if this particular

command needs data from the STM32F3 Discovery or not. If this is the case the

subroutine send command with data is launched, otherwise the subroutine ’send

command without data’ is started.

Only the ’send command with data’ subroutine will be discussed here, since

the ’send command without data’ is the same as the other one but it returns back

to the main thread when it receives a message ok.

You can see the flowchart for the ’send command with data’ subroutine in

Figure 6.5. The first thing that is done is the actual sending over the serial link

and change the state accordingly. In the ’send Command With Data’ subrou-

tine, the state will become 3. In the ’send Command Without Data’ the state

will become 7. If the message reaches the STM32F3 Discovery, it will send a

’message ok’ back. So the program waits until a ’message ok’ is received. The

waiting is of course limited in time. If this timeout is reached, the thread will

send the message again and wait again. This is done three times, if there is still

no ’message ok’ from the STM32F3 Discovery, a message is send back to the base

station that the STM32F3 Discovery is not connected. The message, we were

trying to send, is being saved in the interrupted queue and the thread sleeps a

predefined number of time before the program will try again.

When the program does receive a ’message ok’, the thread goes in a waiting

state to receive data. If a data package has arrived, a ’message ok’ is send back. If

a ’datafinished’ message is received, a ’message ok’ is send back and the program

returns to the main thread.

There must noted that this thread does not do the receiving of the packages

but you can know there was for example a ’message ok’ or a data package received

by looking at the current state of the state machine.

6.7. SENDING TO THE STM32F3 DISCOVERY 61

Figure 6.4: Flowchart for sending to the STM32F3 Discovery

62 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.5: Flowchart for sending a command to request data from the STM32F3
Discovery

6.8. RECEIVING FROM THE STM32F3 DISCOVERY 63

6.8 Receiving from the STM32F3 Discovery

The receiving part of the STM32F3 Discovery communication is not very diffi-

cult. The flowchart can be seen in Figure 6.6. The first thing that is done is

again looking at the quit variable. If this is one, the thread will be terminated.

The next thing that is done is checking if there is something coming in from the

STM32F3 Discovery. It will be checked if it is a message, a good message. If this

is the case, the function ’command handling’ is called. The function ’command

handling’ checks the command that has arrived and changes the state accord-

ingly. It also takes the current state into account.

If it is not a command but a data package the thread does the same, except

this time, the function data handling is called.

6.9 Receiving from the Base Station

The base station communication threads are different than the STM32F3 Dis-

covery communication threads. First of all there is no state machine, but there

is a shared variable waitingMessageOk. This parameter is equal to one when

the thread is waiting for a message ok message from the base station. Another

important difference is that the receiving part also sends messages back to the

base station. The sending part is only responsible for the sending of packages in

the data queue. The data queue is the queue where all the data packages and

errors the program gets from the STM32F3 Discovery are collected. All the other

control messages that are send to the base station are send by the receiving thread.

When looking at the receiving thread flowchart, seen in Figure 6.7, the thread

checks first if there is something coming in from the base station. If this is the

case, the programs checks if this message is equal to quit. If it is, the quit variable

will be equal to one. The next thing is making a command object out of the in-

coming string. If the command object is equal to the zeroCommand (This means

something went wrong in making the command object), a ’wrong command’ is

send back. If the return message is a ’message ok’, the receiving thread checks if

the variable waitingMessageOk is equal to 1. This means that the sending thread

is waiting for a ’message ok’. If a ’message ok’ was received, we make this variable

zero again. If this is not the case, the thread checks if it is a wrong data message.

If this is the case, the variable wrongData is changed to one. This way the send

thread will now it has to send the data package again. If the incoming package is

not a message ok, not quit, not a wrong data or not a wrong command, it must

be a normal command. If openSer=1, this means the STM32F3 Discovery is

64 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.6: Flowchart for receiving from the STM32F3 Discovery

6.10. SENDING TO THE BASE STATION 65

connected, the command is put in the incomingQueue. The control thread reads

this queue and from there the command is put into the right priority queue. The

control thread also determines whether a busy command has to be interrupted

or not, but this feature will be discussed more later on in the report.

If openSer is not one, the STM32F3 Discovery is not connected and the pro-

gram sends immediately a ’STM32F3 not connected’ message back to the base

station.

6.10 Sending to the Base Station

The sending part from the base station communication is basically checking if

there is something in the data queue, send it and then wait until the receive

thread receives a message ok. This is done with the variable waitingMessageOk.

This thread also checks if wrongData is one, because when this happens, it means

that the Raspberry Pi received a wrong data message from the base station and

the data package should be send again. The flowchart of this can be found in

Figure 6.8.

6.11 Control Thread

The last thread is the control thread. This thread deals with the messages the

Raspberry Pi got from the base station. The control thread determines in which

priority queue the messages needs to be in and whether or not a command, that

has just been send to the STM32F3 Discovery and where The Raspberry Pi is

receiving data from, should be interrupted for this new command. In Figure 6.9

the flowchart for the control thread can be seen. This thread first checks if there

are new commands in the incomingQueue. This is the queue where the receiving

part of the base station communication puts the new commands in. The thread

checks again if this message is a valid message. Next the command is put in

the correct priority queue. This means we look at the ID of the command and

from that ID the priority is determined. The priorities of the different ID can be

modified in the default setup file.

The next thing the program checks is the state of the STM32F3 Discovery

communication. If the state says it is receiving data, we check if the priority of

the incoming message is smaller than the priority of this busy command. If this

is the case, the control thread calls the function interruptData. The flowchart of

this method can be found in Figure 6.10.

66 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.7: Flowchart for receiving from the base station

6.11. CONTROL THREAD 67

Figure 6.8: Flowchart for sending data to the base station

68 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.9: Flowchart for the control thread

6.12. DEFAULT SETUP 69

The interruptData function starts with sending a Stop message to the STM32F3

Discovery. The STM32F3 Discovery will now stop with sending data. Only the

current data package will be finished. The state is changed to 7. This means

the STM32F3 Discovery communication threads will wait for a message ok from

the STM32F3 Discovery without waiting for data after this. The next thing is

analysing the last data package. The thread will look at the time and date of this

last data package, and remember this. It takes this data and time and changes

the beginning date of the message that was being processed. After the message

has been modified, it is put in the interrupted queue.

The reason the program changes the date of the message is because it could

already have a lot of data received from the STM32F3 Discovery for this com-

mand. So when the program now takes the message again out of the interrupted

queue it will only ask for the data that comes after the last data package it al-

ready received.

6.12 Default Setup

The default setup is a python file where all the default parameters are defined.

Table 6.2 contains an overview about the different parameters.

70 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Figure 6.10: Flowchart for the interrupt data function

6.13. COMPLEMENTARY CLASSES 71

Table 6.2: Default setup parameters

6.13 Complementary Classes

6.13.1 Class Command

The class Command is a class that can make a command object out of a string.

Table 6.3 displays the different properties of this class.

72 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

Table 6.3: Properties of class command

6.13.2 Class Data

The class Data is a class that can make a data object out of a string. Table 6.4

shows the different properties this class .

Table 6.4: Properties of class data

6.13.3 Queues

In our program there are a lot of queues, in order to maintain the priorities and

to put data in. A list with all the queues is given in Table 6.5.

Table 6.5: Implemented queues

6.13.4 Starting Threads

There has been given an example here on how to start a thread in python. If we

look at for example the code below, the start up of the thread baseStationSending

6.13. COMPLEMENTARY CLASSES 73

can be seen. The first thing the program does is making a thread object. After

this, there has to be made sure the daemon option is true. This means that all

threads will be terminated when the main thread terminates. The daemon option

is actually not necessary but it makes testing a lot easier. Otherwise you have to

quit the terminal window every time to stop the threads when there is an error.

To start the thread you type baseStationSending.start().

6.13.5 startControl

Table 6.6: Info startControl function

In the next sections of the report, each function that is present in the program

is summed up. Information about these functions and in) and outputs can be

found in the tables that come along with the subsections.

6.13.6 initBaseStation

Table 6.7: Info initBaseStation function

74 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

6.13.7 startBaseStationReceiving

Table 6.8: Info startBaseStationReceiving function

6.13.8 startBaseStationSending

Table 6.9: Info startBaseStationSending function

6.13.9 initSTM32F3

Table 6.10: Info initSTM32F3 function

6.13.10 startSTM32F3Sending

Table 6.11: Info startSTM32F3Sending function

6.13. COMPLEMENTARY CLASSES 75

6.13.11 startSTM32F3Receiving

Table 6.12: Info startSTM32F3Receiving function

6.13.12 sendCommandWithData

Table 6.13: Info sendCommandWithData function

6.13.13 sendCommandWithoutData

Table 6.14: Info sendCommandWithoutData function

6.13.14 dataHandling

Table 6.15: Info dataHandling function

76 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

6.13.15 commandHandling

Table 6.16: Info commandHandling function

6.13.16 makeData

Table 6.17: Info makeData function

6.13.17 makeCommand

Table 6.18: Info makeCommand function

6.13.18 interruptData

Table 6.19: Info interruptData function

6.13. COMPLEMENTARY CLASSES 77

6.13.19 onescomp

Table 6.20: Info onescomp function

6.13.20 twoscomp

Table 6.21: Info twoscomp function

6.13.21 makeChecksum

Table 6.22: Info makeChecksum function

In the code beneath, the actual function can be found. There can be seen that

the binascii.crc32() function is used to calculate the CRC32 checksum [30]. If

the result of this function is negative, the minus sign is deleted and the two’s

complement of the result is taken.

78 CHAPTER 6. RASPBERRY PI IMPLEMENTATION

6.13.22 putInRightQueue

Table 6.23: Info putInRightQueue function

6.13.23 interruptedQueueHigherPriority

Table 6.24: Info interruptedQueueHigherPriority function

6.13.24 main

Table 6.25: Info main function

The actual python code is given in the appendix. In this report, there is only

given an overview of which functions there are, what they do and how they do it.

If you want to see the real implementation in python you can look at the actual

code of the program. Every function in the code is also commented to make it

as understandable as possible for everybody that reads it.

6.14 Simulation of the STM32F3 Discovery

In order to test the code of the Raspberry Pi, there had to be made a python

file that simulates in a simplified way the behaviour of the STM32F3 Discovery.

This is a simple program that can also be found together with the other python

files.

6.15. CONCLUSION 79

6.15 Conclusion

The analysis of the implementation of the project inside the master module, the

Raspberry Pi, was presented in this chapter.

Chapter 7

Base Station Implementation

In the previous section, there was discussed a lot about how the functionalities

were implemented inside the Raspberry Pi. Of course, the mission is to make a

buoy where you can communicate with. To achieve this there is also need for an

implementation of the base station. In the program of the base station it has to

be possible to choose a command that has to be send to the base station. The

base station has to send proper acknowledgment messages to the Raspberry Pi

conform to the protocol. In this section there will also be explained how to receive

broadcast messages. The base station can use this and it can also be implemented

in other vehicles that are interested in these messages. In the regatta boat races

for example, this can be implemented in the boats.

7.1 TCP/IP Connection

In this section the initialization of the TCP/IP connection between the Raspberry

Pi and the base station will be discussed. The initialization will be different than

on the Raspberry Pi side because the base station acts as the client and not the

server. The code can be found beneath.

81

82 CHAPTER 7. BASE STATION IMPLEMENTATION

The first thing that is done is again making a socket. This socket has the

same parameters as on the Raspberry Pi side, namely socket.AF INET and

socket.SOCK STREAM. This will create a socket for a point-to-point connection

with the Raspberry Pi. The next action is to set the timeout of the connection.

This timeout, TCP TIMEOUT, is defined in the defaultsetup.py file and is set

at the moment to three seconds. After this there will be tried to connect to the

host with the connect() function. The host is defined in the defaultsetup file, as

well as the port number. The host is equal to the IP address of the Raspberry Pi.

If this succeeds there will be a one returned, otherwise a zero is returned back

to the main thread and the program will sleep for 5 s until it will try again to

connect [28].

7.2 Multicast Initialization

The code for the initialization of the multicast mode is provided below. This code

will start up a new socket so the base station can receive multicast messages.

There must also be noted that this initialization can also be used to implement

in other devices that are interested in these multicast messages [29].

The code starts again with the creation of a new socket. This socket is

again the same as the socket in the Raspberry Pi for the multicast messages.

The two parameters that are given along with the socket.socket() function are:

socket.AF INET and socket.SOCK DGRAL.

The socket has to bind to the server address as well now. This server address

is again declared in the defaultsetup.py file. There must be a side note that says

that this server address is empty for multicast messages. The next thing that is

done is the adding of the socket to the multicast group on all interfaces. If this

all terminates without errors, this function sends a one back to the main thread.

7.3. SENDING TO THE RASPBERRY PI 83

If not, the program will sleep for 5 s and it will return a zero message.

7.3 Sending to the Raspberry Pi

In the next three sections of the report, the general approach of the three main

threads of the base station program will be examined more. There is one thread

that is responsible for sending commands to the Raspberry Pi, and along with

that waiting for an acknowledgment. Another thread will handle the point to

point receiving, where messages, data or errors will be handled properly. And

the last thread will take care of the receiving multicast messages. In this first

section, the sending part will be explained a little bit more. A general flowchart

can be found in Figure 7.1.

The flowchart starts with a block that will print all the different options.

This block will take care of knowing which commands can be send by the base

station to the Raspberry Pi and it will let the user choose which command he

wants to send. The user will now give in a suitable option. The program will

then decide whether it need more information regarding the choice of the user.

Some command require some extra parameters that need to be given in. If all

the information has been gathered, the program will make the right command

package and it will send this command to the Raspberry Pi. After this, this

thread will wait until it gets a signal from the receiving thread that a message ok

was delivered by the Raspberry Pi. If this is the case, another message can be

send.

7.4 Receiving from the Raspberry Pi

In this section the receiving thread will be discussed. A general overview can be

found in Figure 7.2. This receiving thread handles only the messages that were

send directly to the base station, the receiving of multicast messages are handles

by another thread.

The first thing that is done is checking if there is a incoming message from

the Raspberry Pi. If this is the case, the program will check if it is a message

ok that was received. If the message was indeed a message ok, the thread has

to check if the variable waitingMessageOk is equal to one. If this parameter is

equal to one, this means that the sending thread is waiting for a message ok.

The receiving thread lets the sending thread now the message ok has arrived by

making waitingMessageOk zero. If waitingMessageOk was already zero instead

84 CHAPTER 7. BASE STATION IMPLEMENTATION

Figure 7.1: Sending messages to the Raspberry Pi

7.4. RECEIVING FROM THE RASPBERRY PI 85

Figure 7.2: Receiving messages from the Raspberry Pi

86 CHAPTER 7. BASE STATION IMPLEMENTATION

Figure 7.3: Receiving broadcast messages

of one, this was probably a lost message ok and the program doesn’t do anything

with it. The thread just goes back to waiting for a new message.

If the incoming message wasn’t a message ok, the program checks if it was

a wrong command message. If this is the case, the program sends the current

message that the program was handling to the Raspberry Pi again. If the in-

coming message was neither of the previous messages, the program checks if the

message is valid and it prints its properties on the screen. After this, a message

ok is send back to the Raspberry Pi. The thread can now listen again to new

incoming information.

7.5 Receiving Multicast Messages

The receiving of multicast message is also an important part of this report because

this can also be implemented in future hardware modules that require informa-

tion from the buoy. This method is especially important in the regatta mode. A

general approach can be found in Figure 7.3.

7.6. CONCLUSION 87

In Figure 7.3 can be seen that this thread is the easiest so far because these

multicast messages do not need acknowledgement. When the program receives

multicast data it just checks if the message is valid or not. If the message is valid,

the program prints it on the screen. If not, these messages are just thrown away.

There are no message ok, wrong command orwrong data messages send back.

7.6 Conclusion

In this chapter, the implementation was clarified with some important flowchart

of the operation of the different threads. The different python functions were

summed up with some information of what they do and which inputs and outputs

they use. The initialization of both the serial and the TCP/IP connection was

explained and provided with some python code. We didn’t include the whole

code in here because it would make this report too extensive. The code is also

provided and heavily commented if something should be not that clear of how we

did it in actual python code. In the next chapter there will be some test results

of the final program.

Chapter 8

Results

8.1 Introduction

The different results of our program will be explained here. The outputs of the

different threats will tell more about the flow of the program. Because there are

multiple threads running in the same application on the Raspberry Pi, the output

in the terminal window can become a little bit messy. All the threads are print-

ing information in the command window at the same time. That is why there

was decided to make a log file of the threads that deals with the communica-

tion between the Raspberry Pi and the STM32F3 Discovery, and another log file

for the threads that deal with the communication between the Raspberry Pi and

the base station. The output of the control thread is also added to the first log file.

These log files are cleared every time the program starts up again. This means

that in these log files, you can only find information about the last session.

In the base station there are also two files. One that saves the data we re-

quested and one that collects the broadcast data. We can also follow the data on

the output screen of the application, but for larger data packages it is useful to

put them into a file. The broadcast data file will also be cleared on the beginning

of a new session.

Now let’s start with some situations.

89

90 CHAPTER 8. RESULTS

8.2 Use Cases

8.2.1 Error Free Communication

This is a very normal situation. We start the Raspberry Pi and the base station

program. When the Raspberry Pi starts up, it will check if there is a default mode

that needs to start up. If there is, the Raspberry will send a mode on command

to the STM32F3 Discovery. From the base station we then send a request for

wind speed data on the 24th of may 2014 at 12 o’clock (1200000024052014). The

Raspberry Pi will now ask these data on the STM32F3 Discovery and when it

receives this data it will forward it to the base station. First of all let’s take a

look at the outputs of the Raspberry Pi for the base station communication. The

output can be seen below.

Listing 8.1: output base station communication

−−−− Sta r t i ng baseStat ion communication −−−−

L i s t en ing f o r connect ions from a base s t a t i o n . .

connect ion with c l i e n t :

<socket . s o c k e t ob j e c t ob j e c t at 0xb69838b8>

at address :

(’ 1 9 2 . 1 6 8 . 1 . 1 2 ’ , 56685)

r e c e i v ed a command from the base s t a t i o n :

Command= 2431 ce0112000000240520142aa3d33aa0

message ok send back to the base s t a t i o n

command in queue6

datapackage or e r r o r send to the base s t a t i on

r e c e i v ed a command from the base s t a t i o n :

Command= 249966002 aa5caaeb3

r e c e i v ed a message ok from the base s t a t i o n

The output starts with the initialization of the connection. After this, the

Raspberry Pi received a command from the base station, followed by the hex-

adecimal code of the command. The Raspberry Pi sends a message ok back to

base station and puts the message in queue6, according to the message priority.

Once data is obtained by the Raspberry Pi from the STM32F3 Discovery and

put in the dataQueue. The Raspberry Pi can send it to the base station. After

the sending of the data package, the thread will wait for a message ok command

from the base station. Since we only asked one data package, this is the end of

our first situation .

Now let’s look to the output of the STM32F3 communication threads for this

situation. The output can be found below.

Listing 8.2: output STM32F3 communication

−−−− Sta r t i ng STM32F3 communication −−−−
−−−− Sta r t i ng con t r o l thread −−−−

8.2. USE CASES 91

the s e r i a l connect ion ob j e c t i s equal to :

S e r i a l<id=0xb6989790 , open=True>(port=’/dev/ttyACM0 ’ , baudrate=9600 , by t e s i z e =8,

pa r i t y=’N’ , s t opb i t s =1, timeout=3, xonxof f=False , r t s c t s=False , d s rdt r=False)

send de f au l t mode message to the STM32F3

r e c e i v ed a message from the STM32F3 : 249966002 aa5caaeb3

message ok r e c e i v ed from the STM32F3

got command out o f queue6

sending the command

text send to the STM32F3 , wai t ing f o r a response

r e c e i v ed a message from the STM32F3 : 249966002 aa5caaeb3

message ok r e c e i v ed from the STM32F3

r e c e i v ed data from the STM32F3 :

240712000000240520143153656 e736f723a20576953702c204d45532031002ac7fe9c11

not−broadcast data r e c e i v ed

message ok send to the STM32F3

r e c e i v ed a message from the STM32F3 : 24906 f002ad713dab6

da t a f i n i s h ed r e c e i v ed from the STM32F3

Al l data was r e c e i v ed s u c c e s f u l l y

The output of these threads starts with the initialization of the serial connec-

tion. The next thing is sending the default mode on message. If the STM32F3

Discovery receives this message, it will send a message ok back. This can be seen

in the output. Once this initialization work is all done the Raspberry Pi can get

the message we put earlier in the queue6 out of the queue and send it to the

STM32F3 Discovery. The program then waits again for a message ok. When we

get the message ok from the STM32F3 Discovery, the Raspberry Pi can wait for

the requested data. Once it receives a data package, the Raspberry Pi will also

check if it isn’t a broadcast message. The program will put the data package

in the dataQueue and it will send a message ok to the STM32F3 Discovery to

confirm it received the data package. Since there was only one data package re-

quested the next message we get from the STM32F3 is a data finished message.

The program now knows every data that was requested has been delivered and

it can wait for new incoming messages.

The last thing that needs to be looked at is the output of the base station.

This output can be found in the box below.

Listing 8.3: output base station program

MacBook−Pro−van−Laurens−Al l a r t : v e r s i e 17 l a u r e n s a l l a r t $ python baseStat ion v10 . py

created a socket

S ta r t i ng Sending thread

Sta r t i ng Rece iv ing thread

Sta r t i ng Rece iv ing Broadcast messages

choose one o f the f o l l ow ing commands and g ive in the number :

92 CHAPTER 8. RESULTS

10 : MODE ON

14 : MODE OFF

23 : COORDINATES

31 : WIND SPEED

36 : WIND DIRECTION

41 : WATER DEPTH

45 : WATER CONDUCTIVITY

49 : WATER TEMPERATURE

62 : COMBINATION

67 : STOP

0 : qu i t program

31

the command you chose i s : WIND SPEED

Do you want data from :

1 : one date ?

2 : between two dates ?

1

g ive the date : (hhmmssssDDMMYYYY)

1200000024052014

the command in Hexadecimal numbers i s : 2431CE0112000000240520142Aa3d33aa0

s t a r t ana lyz ing s t r i n g

command i s va l i d

message has been send to the raspber ry p i

we got a message ok

choose one o f the f o l l ow ing commands and g ive in the number :

10 : MODE ON

14 : MODE OFF

23 : COORDINATES

31 : WIND SPEED

36 : WIND DIRECTION

41 : WATER DEPTH

45 : WATER CONDUCTIVITY

49 : WATER TEMPERATURE

62 : COMBINATION

67 : STOP

0 : qu i t program

we r e c e i v ed data

s t a r t ana lyz ing data

time= 12 : 0 0 : 0 0 : 0 0

date= 24/05/2014

ID [0]= 31

data [0]= 53656 e736f723a20576953702c204d4553203100

send message ok back

After the initialization, the base station program will display the different

possibilities to send to the Raspberry Pi. To choose a wind speed request, you

have to give in the number 31, as can be seen in the output window. There can be

8.2. USE CASES 93

chosen to give along with the parameters one date or two dates. In this example,

one is chosen. After this the date has to be given in in the form hhmmssssDDM-

MYYYY. This represents the hours, minutes, seconds, hundreds of seconds, day

of the month, the month and the year. The command will then be checked if it is

a valid command. If this is the case, the base station will send the message to the

Raspberry Pi and wait for a message ok. Once we received the message ok, the

user can choose a new request. Once the data if the first message arrives, it will

be displayed on the screen and a message ok will be send back to the Raspberry Pi.

8.2.2 Master to Slave: Broken Communication

The second situation is one where the STM32F3 Discovery doesn’t respond to

requests. The output for the base station communication threads can be found

below.

Listing 8.4: output base station communication
−−−− Sta r t i ng baseStat ion communication −−−−

L i s t en ing f o r connect ions from a base s t a t i on . .

−−−− Can ’ t make contact with the base s t a t i on . We w i l l t ry again in 10 seconds

L i s t en ing f o r connect ions from a base s t a t i on . .

connect ion with c l i e n t :

<socket . s o c k e t ob j e c t ob j e c t at 0xb695d8b8>

at address :

(’ 1 9 2 . 1 6 8 . 1 . 1 2 ’ , 56741)

r e c e i v ed a command from the base s t a t i o n :

Command= 2431 ce0112000000240520142aa3d33aa0

message ok send back to the base s t a t i o n

command in queue6

datapackage or e r r o r send to the base s t a t i on

r e c e i v ed a command from the base s t a t i o n :

Command= 249966002 aa5caaeb3

r e c e i v ed a message ok from the base s t a t i o n

This is actually the same as in the previous situation, except that this time

the Raspberry Pi doesn’t send data package to the base station but an error

package.

The other output file is much more interesting to look at. It can be found

under this line.

Listing 8.5: output STM32F3 communication
−−−− Sta r t i ng STM32F3 communication −−−−
−−−− Sta r t i ng con t r o l thread −−−−

the s e r i a l connect ion ob j e c t i s equal to :

S e r i a l<id=0xb69647b0 , open=True>(port=’/dev/ttyUSB0 ’ , baudrate=9600 , by t e s i z e =8,

pa r i t y=’N’ , s t opb i t s =1, timeout=3, xonxof f=False , r t s c t s=False , d s rdt r=False)

94 CHAPTER 8. RESULTS

send de f au l t mode message to the STM32F3

can ’ t make contact with the STM32F3

we sended 2410EF090001230000010000002A76611B52 again to the STM32F3

times we t r i e d to reach the STM32F3= 1

can ’ t make contact with the STM32F3

we sended 2410EF090001230000010000002A76611B52 again to the STM32F3

times we t r i e d to reach the STM32F3= 2

can ’ t make contact with the STM32F3

we sended 2410EF090001230000010000002A76611B52 again to the STM32F3

times we t r i e d to reach the STM32F3= 3

Didn ’ t r e c e i v e a message back from the STM32F3 . Defau l t mode f a i l e d

got command out o f queue6

sending the command

text send to the STM32F3 , wai t ing f o r a response

can ’ t make contact with the STM32F3

we sended 2431CE0112000000240520142AA3D33AA0 again to the STM32F3

times we t r i e d to reach the STM32F3= 1

can ’ t make contact with the STM32F3

we sended 2431CE0112000000240520142AA3D33AA0 again to the STM32F3

times we t r i e d to reach the STM32F3= 2

can ’ t make contact with the STM32F3

we sended 2431CE0112000000240520142AA3D33AA0 again to the STM32F3

couldn ’ t a c c e s s the STM32F3 f o r three times , s l e ep f o r 5 seconds

In this output file can be seen that the STM32F3 Discovery doesn’t respond.

When the Raspberry Pi tries to send the default mode on command there is

no reply. We try to re-send this message three times before we give up. The

same happens with the message the Raspberry Pi got from the base station. The

Raspberry Pi still tries three times to send the message again but then we put a

STM Not connected message inside the dataQueue to send to the base station.

In the output below, the base station program can be seen.

Listing 8.6: output base station program
MacBook−Pro−van−Laurens−Al l a r t : v e r s i e 17 l a u r e n s a l l a r t $ python baseStat ion v10 . py

created a socket

connected

−−−− Sta r t i ng Sending thread −−−−

−−−− Sta r t i ng Rece iv ing thread −−−−

−−−− Sta r t i ng Rece iv ing Broadcast messages −−−−

==== choose one o f the f o l l ow ing commands and g ive in the number : ====

10 : MODE ON

14 : MODE OFF

23 : COORDINATES

31 : WIND SPEED

36 : WIND DIRECTION

41 : WATER DEPTH

45 : WATER CONDUCTIVITY

49 : WATER TEMPERATURE

62 : COMBINATION

67 : STOP

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 : qu i t program

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8.3. CONCLUSION 95

31

the command you chose i s : WIND SPEED

Do you want data from :

1 : one date ?

2 : between two dates ?

1

g ive the date : (hhmmssssDDMMYYYY)

1200000024052014

the command in Hexadecimal numbers i s : 2431CE0112000000240520142Aa3d33aa0

−−−− s t a r t ana lyz ing s t r i n g −−−−
date1=1200000024052014

command i s va l i d

message has been send to the raspber ry p i

we got a message ok

==== choose one o f the f o l l ow ing commands and g ive in the number : ====

10 : MODE ON

14 : MODE OFF

23 : COORDINATES

31 : WIND SPEED

36 : WIND DIRECTION

41 : WATER DEPTH

45 : WATER CONDUCTIVITY

49 : WATER TEMPERATURE

62 : COMBINATION

67 : STOP

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 : qu i t program

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We rec e i v ed an e r r o r from the raspber ry p i

−−−− s t a r t ana lyz ing s t r i n g −−−−
command i s va l i d

e r r o r ID= 80

e r r o r message= 24807F002A9B2C2E59

0

8.3 Conclusion

There can be concluded that the different programs and threads work well to-

gether and the different situations in this section represent what the buoy can

and can’t do.

Chapter 9

Conclusions

9.1 Achievements

After four months of work, the main objectives have been achieved. The master

control unit handles the communication with a base station and with the slave

control unit. The program is able to manage different incoming messages with

different priority levels at the same time. TCP unicast and UDP multicast are

supported to transmit data point-to-point and point-to-multipoint (to an un-

known number of listeners located in the vicinity of the buoy). The code that is

used in the base station program to receive multicast data can also be used in

other hardware components in the future.

There was also a base station module created that can successfully commu-

nicate with the buoy and that can display and store data information from the

buoy. From the base station, the user can start and stop different kinds of modes,

depending on his needs.

A default setup file was created so that users can add different sensors. This is

useful for the future when different sensors than the ones we have now are added.

As long as the message request packages have the same structure as defined in

the protocol, they will be handled correctly. This file allows configuring other

parameters such as different types communication (the serial connection or the

TCP/IP connection). A default mode can also be defined that will run at start-up.

97

98 CHAPTER 9. CONCLUSIONS

9.2 Future Developments

Due to problems with the data logging subsystem and to the lack of time, there

was no time left to really test the buoy in the field.

Since the Beaglebone Black was unavailable, the telemetry and configuration

subsystem was implemented on a Raspberry Pi. This should not pose problems

since the BeagleBone also supports python. This migration should only require

changing some parameters in the default setup file.

There is still room for further improvements to the telemetry and configura-

tion subsystem:

• Currently every program is executed in a terminal window and it would be

interesting to have a graphical user interface for the base station program.

• Due to the absence of a HDMI screen, it was not easy to test the Raspberry

Pi Wi-Fi connection. It should be identical to connecting over the Ethernet

as long as the Raspberry Pi IP-address is known.

• The program should be tested more so that errors or bugs that were overseen

can be fixed as well.

• Specific tests need to be conducted to determine the power consumption of

the master and slave modules.

• The program should be implemented in the Beaglebone Black instead of the

Raspberry Pi because the Beaglebone Black was the chosen master module.

Bibliography

[1] wikimedia commons. Horswell rock east cardinal buoy, 16 September 2008.

[cited at p. v, 3]

[2] Albaladejo, C. and Sanchez, P. and Iborra, A. and Soto, F. and, Lopez, J.

A. and Torres, R. A low-cost sensor buoy system for monitoring shallow

marine environments, 2014. [cited at p. v, vii, 6, 7, 8]

[3] Davisnet. Picture anemometer, 2014. [cited at p. v, 9]

[4] Hendrick Verschelde. report Environmental/Regatta Buoy: Telemetry and

Configuration, 2013. [cited at p. v, 2, 16, 23, 27]

[5] ST. STM32F3DISCOVERY, 2013. [cited at p. v, 22]

[6] Trekstor. mini USB cable, 2013. [cited at p. v, 24]

[7] NovAtel. Superstar II User Manual, 2005. [cited at p. v, 27]

[8] Raspbian. Raspbian logo, 2013. [cited at p. v, 29]

[9] python-tutorial. Python logo, 2013. [cited at p. v, 31]

[10] Harish Kotra. Raspberry Pi - World’s Cheapest Computer Sold Over 1.5

Million Units, 2013. [cited at p. vii, 18]

[11] Carrilo Garcier M., Popp H. J., Toma D. M., Stützle M. Autonomous Me-

teorological Buoy, 2009. [cited at p. 11]

[12] T. J. Smyth, R. Fishwick, C. P. Gallienne, J. A. Stephens, A. J. Bale. Tech-

nology, Design and Operation of an Autonomous Buoy System in the West-

ern English Channel, 2010. [cited at p. 12]

[13] Kyung Woon Lee, Ui-seok Jeong, Joon Young Yang, Ho Kyung Jun, Jung

Ho Park. Implementation of embedded system for autonomous buoy, 2011.

[cited at p. 13]

99

100 BIBLIOGRAPHY

[14] ST. STM32F3 Series, 2014. [cited at p. 22]

[15] Wikipedia. Sensor, 2014. [cited at p. 24]

[16] Wikipedia. Electrical conductivity meter, 2013. [cited at p. 25]

[17] Omega. What Are Pt100, Pt500 and Pt1000 Temperature Sensors?, 2003-

2014. [cited at p. 26]

[18] Wikipedia. Load cell, 2014. [cited at p. 26]

[19] Raspbian. Raspbian, 2013. [cited at p. 29]

[20] ChibiOS. ChibiOS/RT Homepage, 2014. [cited at p. 30]

[21] Wikipedia. Python (programming language), 2014. [cited at p. 30]

[22] Wikipedia. X Window System, 2014. [cited at p. 31]

[23] MacOSForge. XQuartz, 05-2014. [cited at p. 31]

[24] Wikipedia. Secure Shell, 2014. [cited at p. 32]

[25] chiark.greenend. PuTTY: A Free Telnet/SSH Client, 2014. [cited at p. 33]

[26] Wikipedia. Internet protocol suite, 2014. [cited at p. 36]

[27] hibaman@hotmail.com. CRC32: Maths and programming, 2003. [cited at p. 42]

[28] Python.org. TCP Communication, 2012. [cited at p. 58, 82]

[29] PyMOTW. Multicast- Python Module of the Week, 2014. [cited at p. 59, 82]

[30] Python.org. binascii - Convert between binary and ASCII, 2014. [cited at p. 77]

	Contents
	List of Figures
	List of Tables
	Glossary
	Acknowledgments
	Introduction
	Presentation
	Motivation
	General Information
	Project Description
	General Objective
	Environmental Mode
	Regatta Mode
	Objectives Regarding The Master Module

	State of The Art
	Introduction
	Communication
	Sensors
	Surface Sensors
	Wind
	Temperature
	Air Pressure
	Precipitation
	Relative Humidity
	Solar Radiation

	Oceanographic Sensors
	CTD
	Chemical Substance Detectors
	Water Velocity
	Water Turbidity
	Water pH
	Algae and Plankton

	Related Work
	Autonomous Meteorological Buoy
	Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel
	Implementation of Embedded System for Autonomous Buoy

	Conclusion

	Available Equipment
	Hull and Steel Structure
	Raspberry Pi
	Specifications
	Controlling the Raspberry Pi
	Setting up the Raspberry Pi

	STM32F3 Discovery
	Serial Communication
	Sensors
	CTD
	Conductivity
	Temperature
	Pressure

	Anemometer
	GNSS

	Conclusion

	Project Development Tools
	Operating Systems
	Raspbian
	ChibiOS

	Programming Languages
	Python

	Software
	X11
	SSH
	CoolTerm
	CheckSum and ModeOn Applications

	Protocols
	TCP/IP Network Protocol

	Conclusion

	Application Protocol
	Command Package
	Data Package
	Priorities
	CRC32 Checksum
	Overview
	Use Cases
	Error Free Communication
	Master to Slave: Broken Communication
	Slave to Master: Wrong Message
	Slave to Master: Error Message
	Master to Slave: Wrong Data Package Message

	Conclusion

	Raspberry Pi Implementation
	Introduction
	General Architecture
	States
	Global Variables
	Serial Connection
	Server Client Connection
	Base Station Connection Initialization
	Multicast Initialization

	Sending to the STM32F3 Discovery
	Receiving from the STM32F3 Discovery
	Receiving from the Base Station
	Sending to the Base Station
	Control Thread
	Default Setup
	Complementary Classes
	Class Command
	Class Data
	Queues
	Starting Threads
	startControl
	initBaseStation
	startBaseStationReceiving
	startBaseStationSending
	initSTM32F3
	startSTM32F3Sending
	startSTM32F3Receiving
	sendCommandWithData
	sendCommandWithoutData
	dataHandling
	commandHandling
	makeData
	makeCommand
	interruptData
	onescomp
	twoscomp
	makeChecksum
	putInRightQueue
	interruptedQueueHigherPriority
	main

	Simulation of the STM32F3 Discovery
	Conclusion

	Base Station Implementation
	TCP/IP Connection
	Multicast Initialization
	Sending to the Raspberry Pi
	Receiving from the Raspberry Pi
	Receiving Multicast Messages
	Conclusion

	Results
	Introduction
	Use Cases
	Error Free Communication
	Master to Slave: Broken Communication

	Conclusion

	Conclusions
	Achievements
	Future Developments

	Bibliography

