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Abstract— The deregulation of electricity markets has 

diversified the range of financial transaction modes between 

independent system operator (ISO), generation companies 

(GENCO) and load-serving entities (LSE) as the main 

interacting players of a day-ahead market (DAM). LSEs sell 

electricity to end-users and retail customers. The LSE that owns 

distributed generation (DG) or energy storage units can supply 

part of its serving loads when the nodal price of electricity rises. 

This opportunity stimulates them to have storage or generation 

facilities at the buses with higher locational marginal prices 

(LMP). The short-term advantage of this model is reducing the 

risk of financial losses for LSEs in DAMs and its long-term 

benefit for the LSEs and the whole system is market power 

mitigation by virtually increasing the price elasticity of demand. 

This model also enables the LSEs to manage the financial risks 

with a stochastic programming framework.  

Index Terms— Demand-side, load-serving entities, locational 

marginal price, market power , stochastic programming. 

I. NOMENCLATURE 

Indices: 

j  LSEs. 

t  Hours. 

s  Scenarios. 

b  Buses. 

c  Consumers. 

i  DG units. 

k  Storage units. 

Parameters: 

bLMP  
Locational marginal price at bus b (€/MWh). 

cR  
Utility rate that the consumer c is charged by the 

LSE for electrical energy consumption (€/MWh). 

sN  Number of scenarios. 

s  
Weight of scenario s. 

F

iC  Fixed cost of DG i (€/h).  

P

iC  Production cost of DG i (€/MWh). 

start

iC  Start-up cost of DG i (€). 

Max/Min

kE  Maximum/minimum storage level of storage unit 

k (MWh). 
Max/Min

iG  Maximum/minimum power generation of DG i 

(MW). 
IN/OUT

k  Charging/discharging efficiency of storage unit k. 

IN/OUT

kR  Charging/discharging rate of storage unit k 

(MW/h). 

cl  Real energy consumption forecast for consumer c 

(MWh). 

T  Number of time periods. 

Variables: 
1D

jP   Expected payoff of LSE j in the DAM (€). 

ig  Real power generation of DG i (MWh). 

IN/OUT

kp  Charging/discharging power of storage unit k 

(MW/h). 
stored

kE  Energy storage level of storage unit k at the end 

of each time period (MWh). 

bd  Amount of energy that is bought from the 

wholesale market by the LSE (MWh). 

iu  Binary decision variable showing the 

commitment status of DG unit i (1 if the unit is 

online and 0 otherwise). 

iv  Binary decision variable for start-up status of DG 

i (1 if the unit starts up at the beginning of period 

t and 0 otherwise). 

iw  Binary decision variable for shut-down status of 

DG i (1 if the unit shuts down at the beginning of 

period t and 0 otherwise). 

kx  Binary decision variable for discharging status of 

storage unit k (1 if it is discharging and 0 

otherwise). 

ky  Binary decision variable for charging status of 

storage unit k (1 if it is charging and 0 

otherwise). 
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Sets: 

j  Buses that the LSE j is serving loads in them or 

possesses DGs or storage units in them. 
b c

j

  Consumers served by LSE j at bus b. 

b DG

j

  DGs owned by LSE j at bus b. 

b ESS

j

  storage units owned by LSE j at bus b. 

II. INTRODUCTION 

The welfare of LSEs is the profit achieved from reselling 
the purchased power at wholesale markets to retail customers 
[1]. Retail end-users do not receive signals from the changes 
in the electricity price, and almost never react to the short-term 
price rises. Although the two-sided auction structure of 
wholesale markets provides the potentials for electricity 
buyers to neutralize the market power [2], the willingness of 
retail customers in paying regulated electricity rates without 
being influenced by hourly wholesale LMPs is a barrier for 
this purpose. 

The LSEs buy bulk power from DAM at volatile market 
prices and sell at fixed prices. They face uncertainty and risky 
operation like other players of electricity markets, but their 
risk for financial losses is higher than other participants. In 
this paper, we aim to model a framework that limits the 
potential for market power and assists the LSEs in financial 
risk management during DAM. 

The proposed stochastic framework gives LSEs the 
possibility of managing the financial risks by considering the 
impact of uncertain loads and market prices. It is also assumed 
that these LSEs possess several DGs and storage units to limit 
the potential for market power by submitting more price 
elastic demand bids. The suppliers cannot significantly 
increase the price above their actual costs, and by repeatedly 
playing in this market, they will learn over time to compete 
less aggressively [3]. 

Demand biding of LSEs in a DAM with a non-profit ISO 
and price-sensitive demand-side is studied in [1]. It has been 
proved that in absence of active demand-side bidding, the 
suppliers have the potential for market power and can push up 
the prices [2]. Simulation results in [3] show how the 
GENCOs facilitated by Q-learning can exploit the market 
flaws and achieve higher profits relative to the competitive 
benchmark in the absence of market power mitigation 
strategies. The problem of energy trading for a LSE that owns 
generating units and coordinates the vehicle-to-grid services is 
formulated as a mixed-integer stochastic linear program in [4]. 
The LSE in this model also acts as an electric vehicle 
aggregator. Bilateral contracts between the GENCOs and the 
LSEs have been investigated in [5-7] as a means to manage 
and limit the financial risks of both sides. Strategic bidding of 
GENCOs, facing an inelastic load in a DAM with a single-
sided uniform price auction is modeled in [8]. 

We have made the following contributions in our proposed 
model compared to the state of the art: (i) The LSEs manage 
their financial risks with a stochastic programming model. (ii) 
K-means clustering is used to partition the scenarios and 
reduce the size of the stochastic problem. (iii) The expected 

increase in the payoff of LSEs when they use DGs or the 
storage units to supply their loads and submit more price 
elastic demand bids is analyzed through a case study. 

The DAM operations and the market power experience in 
this environment are introduced in section III. In section IV, 
the reasons for LSEs’ financial risks are described. The 
stochastic programming model in section V is applied on a test 
system in section VI. The final section is assigned to the 
conclusions and the future works. 

III. DAY-AHEAD MARKET OPERATIONS 

The LSE obtain the electrical energy needs of the end 
users from forward market, day-ahead market, real-time 
market and the bilateral contracts with GENCOs [7, 9]. It sells 
electricity and other ancillary services that are provided from 
the wholesale market to the end-users in a retail market [10, 
11]. Although in real-world markets a large part of electricity 
consumption is traded through long-term contracts, DAM 
keeps gaining importance because of its role in determining 
the long-run electricity costs [12]. In a DAM the LMPs are 
determined based on a security-constrained optimal power 
flow, considering the limitations of the generation sector and 
the load specifications. 

The LSEs procure the day-ahead capacity on wholesale 
markets, even so the consumptions of the retail customers 
should be adapted in real time [10]. The ISO/Market Operator 
of a deregulated electricity market matches sellers’ quantity-
price supply offers and buyers’ demand bids for day-ahead 
power exchange with an auction based mechanism [8]. The 
bidding strategies are affected with the auction rules, protocols 
and the electricity market structure [8]. The bidders submit the 
bids to the ISO/Market Operator without knowledge of the 
submitted bids of other market participants. The auction also 
runs in one round and the participants do not have the 
opportunity of receiving any feedback on their agents’ bidding 
behavior [12]. 

Fig. 1 shows the procedure of bidding and market 
clearance in a DAM. One day prior to the start of a DAM, 
load prediction data is gathered from LSEs and the ISO 
publishes the forecasted zonal load data for the following day 
[3]. The hourly demand bid of LSEs includes an inverse 
demand function, showing the willingness to pay for each 
MWh based on anticipations of the energy consumption of the 
end-users with variable-price retail contracts and a fixed load 
level for customers with fixed-price retail contracts [1, 5]. The 
demand functions are obtained after curve-fitting different 
prices for each year and the corresponding optimal energy 
usages. Once the demand function of each individual 
consumer is determined, the LSE can aggregate them to obtain 
the demand bid [13]. The ISO builds the demand and supply 
function after aggregating the submitted curves of market 
players [12].  

The specific features of deregulated electricity markets, 
i.e., open competition; unbundling electricity services and 
open access to the network allow the GENCOs to experience 
market power by tendering optimal offers [8]. Market power 
causes price rise in DAM when the few firms that own most of 
the generation capacity unilaterally alter the prices away from 



the competitive levels [14]. More elastic demand bids in a 
DAM can limit the risk of market power. A great proportion 
of ongoing debates on electricity market design are focused on 
designing the market power mitigation rules [6]. 

 

Figure 1.  Bidding and clearnace procedure in a DAM [1]. 

IV. FINANCIAL RISKS OF LSES 

Financial risks often indicate downside risks in a market, 
meaning the uncertainty of a payoff and the potential for 
financial loss [15]. The LSEs sell the electricity at fixed 
prices, but their return is uncertain in DAM [16]. The LSEs 
participating in the electricity markets face risks due to 
volatility of the pool prices and the loads energy consumption 
[6]. In DAMs the MCP can be estimated with a high 
uncertainty and the LSEs are directed to base their planning on 
the estimated MCPs in order to achieve higher incomes. The 
LSE also faces the volume risk for the optimal resource and 
load scheduling, because the amount that each customer will 
use in a day-ahead cannot be forecasted with high accuracy. 

The contracts of retail customers with the LSEs shield 
them from even the smallest price fluctuations in short-term 
perspective, and the LSE has to face the financial risks of 
wholesale market [7]. However, the profit-seeking LSEs of 
competitive electricity markets should accordingly react to 
system conditions to gain more financial payoff or avoid the 
financial loss. 

Buying electricity at a fixed price through forward 
contracts allows LSEs to hedge against the risks of price 
variability [6]. Involving in hedge contracts with the producers 
is an option for LSEs to overcome the high risk of attending 
the auction for the loads that buy electricity at a regulated rate. 

The uncertainty of parameters plays an important role 
when the financial scheduling is based on future events [16]. 
The stochastic programming is used in this model to manage 
the financial risks of LSEs in DAMs by allowing the 
uncertainty to be taken into account [16]. It is implemented in 
this model to characterize the strategies of a risk-averse LSE 
to avoid financial losses. A big assumption in stochastic 
programming is that the probability distributions of random 
parameters are known [16]. The main challenge in stochastic 
programming is the size of the model that will be dealt with by 
reducing the number of scenarios. 

V. PROBLEM FORMULATION 

A. Stochastic model 

The goal of this model is to precisely characterize how the 
LSEs that own DGs/storage units obtain the optimal demand 
bid. During day D, the LSEs submit their demand bids that 
include a 24-hour load profile at the buses that they serve 
loads. The retail customers will pay LSEs a regulated rate 
(€/MWh) for each hour. But at the end of day D, the LSEs are 
charged the market clearing price for each bus at time period t 

( ( )bLMP t ). The deviation between cleared demand and actual 

demand is resolved in the real-time balancing markets. The 
market operator or the ISO determines the market clearing 
price at each bus through running optimal power flow [5]. 

The objective of the LSE is to obtain the optimal demand 
bid that ensures the maximum payoff for them. The LSE 
controls the output of the storage units/DGs to gain higher 
profit. The optimal demand bids are determined with regard to 
the optimal schedules of the commitment and generation of 
the DGS/storage units owned by the LSEs. Suppliers and 
customers submit hourly supply and demand bids to the ISO. 
The hourly market clearing price and the cleared energy 
volume of each participant is determined for the following day 
by the ISO after intersecting the aggregated supply and 
demand bids [4]. 

Several plausible scenarios with their assigned 
probabilities represent the stochastic processes and the 
uncertain variables in the stochastic programming model. The 
uncertainty of LMPs is a notable determinant for the LSEs’ 
scheduling procedure, due to its significant influence on the 
total payoff. LMPs at each bus depend on the price elasticity 
of the loads being supplied at that node. The objective of the 
LSE is to maximize its expected payoff (1) in the DAM.  
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(1) 

 

LSE j procures the loads with the energy bought in the 

wholesale market and uses the storage units/DGs that are 

owned or managed by it (2) [17]. It needs the schedules of its 



storage units/DGs to determine the optimal demand bid to 

submit to the ISO. 
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(2) 

The generation of each DG should be within the range of 
minimum power generation and the capacity of the DG (3). 
The logic between the start-up, shut-down and the 
commitment of the DG units is shown in (4) and (5), and DG 
starts up or shuts down once during each time period (6).  

Min Max( ) (t) ( )               , , .s s s

i i i i iG u t g G u t s i t      (3) 

  

( ) ( ) ( ) ( 1)              , , 2,..., .s s s s

i i i iv t w t u t u t s i t T       (4) 

  

initial( ) ( ) ( )               , , 1.s s s

i i i iv t w t u t u s i t      (5) 

  

( ) ( ) 1                , , .s s

i iv t w t s i t    (6) 

 

The energy storage level at the end of each time period 
depends on the storage level of the beginning of the time 
period in addition to the charging and discharging hourly 
power (7) [18]. The effect of initial energy storage level of 
storage units for the first time period is characterized in (8). 
The level of storage in each storage unit is within a certain 
range represented by its minimum allowed storage and the 
capacity (9). 
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The storage units are scheduled to just charge or discharge 
during each period (10). The constraints (11) and (12) 
establish an additional limitation on the operation of storage 
units that the charge and discharge rate should also be within 
the nominal rates. 
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OUT
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B. Scenarios 

The uncertainty of the input data in a stochastic 
programming model is introduced with a set of scenarios. The 
selection of these scenarios is an important task that 

profoundly impacts the procedure of decision making. If the 
number of scenarios is large and the input data is not 
processed before implementation, the size of the problem and 
the time needed for the execution of the optimization problem 
can be a great challenge for decision-makers.  

In this paper, scenarios are generated from the historical 
data and the K-means clustering technique is used to reduce 
the data set by grouping similar scenarios. The number of 
observations in each group gives the probability of occurrence 
for these scenarios [19]. 

Historical data have been used for the price and load data. 
In order to achieve a tractable data set from the original 
information, the K-means clustering algorithm iteratively 
computes the distance between each scenario and the cluster 
centroid [20]. The number of clusters should be firstly set for 
the algorithm. 

VI. NUMERICAL RESULTS 

The proposed model is tested on the modified IEEE 24-bus 
test system (Figure 2) [21] to assess its applicability and 
performance in financial risk management of LSEs. As shown 
in the test system, 5 LSEs are participating in the DAM as 
load aggregators. There are also a few loads that directly enter 
the market independent of the LSEs. The LSEs own several 
storage units/DGs at the nodes that they are serving the retail 
customers (Tables I and II). The LSEs use these sources to 
reduce the risk of financial loss and submit more price elastic 
demand bids to the ISO/market operator. 

Each LSE supply one or more customer groups at each 
node. The LSEs have offered specified fixed or hourly 
variable tariffs for electricity consumption to the retail 
customers. The tariffs of the customer groups depend on the 
type of the contracts signed with the LSEs. The electricity 
consumption tariffs for each customer group are shown in 
Figure 3. The red lines in this figure show the maximum and 
minimum amount of the regulated rates. 

It is assumed that the LSEs have considered 100 different 
hourly LMP realizations for each bus with equal probability of 
occurrence. The number of scenarios is then reduced to 10 
clusters for each LSE with the K-means clustering technique. 
The hourly average of LMPs in each cluster represents the 
LMP profile for that scenario, and the number of scenarios 
assigned to each cluster relative to the number of total 
scenarios gives the weight for that scenario. 

All the mixed integer optimization problems of LSEs are 
implemented in GAMS [22] and solved with the CPLEX 
11.2.0 solver . The expected profits of LSEs in both cases 
show how the LSEs are expecting more payoffs by using their 
own DGs or storage units (Table III).  

LSE 2 expects 1274.8 € of profit instead of expecting 
714.5 € of financial loss in the DAM by considering its DGs 
or storage units and changing the demand bids that it is 
submitting for the DAM. Other LSEs also expect more 
payoffs by using their DGs or storage units. In Figure 4 the 
difference between the forecasted demand and the demand 
bids that the LSEs are submitting to the DAM is illustrated. 



TABLE I.  SPECIFICATION OF THE STORAGE UNITS OWNED BY LSES. 

Storage 

Units 
Charging 

Efficiency 

Discharging 

Efficiency 

Capacity 

(MWh) 

Minimum Energy 

Level (MWh) 

Charging Rate 

(MW/h) 

Discharging 

Rate (MW/h) 
LSE Bus 

1 0.95 0.88 19.80 4.00 3.50 7.00 1 4 

2 1.00 0.92 16.50 0.85 4.00 5.50 1 4 

3 0.79 0.91 9.00 2.50 2.00 3.50 1 15 

4 0.89 0.65 14.00 5.00 6.00 6.30 1 24 

5 0.87 0.93 32.00 3.70 6.25 9.50 2 20 

6 0.85 0.90 11.00 2.00 2.50 3.00 3 3 

7 0.75 0.85 6.50 4.00 4.30 1.90 3 11 

8 0.90 0.78 5.00 0.50 2.00 3.25 3 24 

9 0.85 0.90 11.00 2.00 2.50 3.00 4 20 

10 0.80 0.96 13.00 2.00 2.90 3.65 5 7 

TABLE II.  SPECIFICATION OF THE DGS OWNED BY LSES. 

DGs 
Fixed Cost 

(€/h) 

Production Cost 

(€/MWh) 

Start-up Cost 

(€) 
Capacity (MW) 

Minimum 

Power (MW) 
LSE Bus 

1 113.00 43.00 7.00 11.00 2.00 1 3 

2 87.00 51.00 11.00 17.00 2.00 1 5 

3 139.00 38.00 9.00 28.00 3.00 1 15 

4 93.45 62.00 24.00 12.00 2.50 2 14 

5 101.00 53.50 43.50 30.85 6.00 2 20 

6 93.00 39.00 12.00 5.00 0.60 3 3 

7 182.00 51.00 21.00 3.00 0.45 3 3 

8 60.00 36.00 45.00 3.30 0.25 3 11 

9 85.00 47.00 12.60 6.20 0.30 3 24 

10 93.00 45.00 36.00 4.00 0.60 4 22 

11 96.60 39.50 16.00 0.80 0.00 5 6 

12 103.00 56.00 21.00 2.63 0.45 5 6 

13 88.00 51.00 45.00 6.00 1.50 5 7 

14 111.00 43.90 39.00 2.20 0.30 5 7 

 

 

Figure 2.  IEEE 24-bus test system. 

 

Figure 3.  Regulated electricity rates for the customer groups. 



TABLE III.  EXPECTED PAYOFF OF LSES. 

 Without DGs/storage 

units (€) 

With DGs/storage 

units (€) 

LSE 1 2852.0 3790.2 

LSE 2 -714.5 1274.8 

LSE 3 4340.7 4866.5 

LSE 4 187.5 282.5 

LSE 5 777.9 1078.2 

 

 
Figure 4.  The forecasted demand and the demand bids of LSEs in DAM. 

VII. CONCLUSION 

The LSEs at any level of participation in the electricity 
market are encouraged to supply their loads with their storage 
units or DG units when prices rise. Through this mechanism, 
they can increase the price elasticity of the demand that they 
are submitting to the ISO for the DAM and reduce the risk of 
market power for GENCOs. The advantage of this mechanism 
in reducing the risk of financial loss in a short-term horizon is 
analyzed in this paper. If the LSEs expect higher LMPs during 
peak load periods, they will partially supply their loads with 
their own sources and consequently the total peak 
consumption reduces. 

In our proposed model, the LSE owns several storage 
units/DGs and the scheduling of these sources for the optimal 
operation is its main issue before entering the DAM. Besides 
this, we are going one step forward in our future works by 
shifting the problem to calculating the storage units/DGs 
optimal rating in order to reduce the financial risks of LSEs in 
a long-term horizon. 
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