
Minimization of Open Orders Using Interval
Graphs

Isabel Cristina Lopes∗ J.M. Valério de Carvalho†

Abstract—In this paper we address an order pro-
cessing optimization problem known as the Minimiza-
tion of Open Stacks Problem (MOSP). This problem
consists in finding the best sequence for manufactur-
ing the different products required by costumers, in a
setting where only one product can be made at a time.
The objective is to minimize the maximum number
of incomplete orders from costumers that are being
processed simultaneously. We present an integer pro-
gramming model, based on the existence of a perfect
elimination order in interval graphs, which finds an
optimal sequence for the costumers orders. Among
other economic advantages, manufacturing the prod-
ucts in this optimal sequence reduces the amount of
space needed to store incomplete orders.

Keywords: Integer programming, Interval graphs,

Open orders minimization, MOSP, Pathwidth.

1 Introduction

In this paper we address a problem in production plan-
ning, where the objective is to rapidly fulfill the cos-
tumers’ orders. Each order may require several different
products, but the manufacturer can only produce one
product at a time. The problem is to know in which
sequence the different products should be made, to min-
imize the maximum number of simultaneously open or-
ders. This is also known in literature as the Minimization
of Open Stacks Problem or MOSP.

Previous research on the MOSP demonstrates that any
instance of the problem can be put in a graph with a ver-
tex for each costumer [15] and a solution can be obtained
by traversing the arcs of that graph, giving an ordering of
the vertices and consequently of the products [3]. In our
work, we also give an ordering of the vertices of the cos-
tumers’ graph, not as a consequence of any arc traversing
heuristics, but as a consequence of a modification of the
costumers’ graph by adding edges to obtain an interval
graph that fits to the set of intervals of time in which the
costumers’ orders will be processed.

∗Supported by FCT grant SFRH/BD/32151/2006 and IPP
grant SFRH/BD/49914/2009. ESEIG - Polytechnic Institute of
Porto: Rua D. Sancho I - 981, 4480-876 Vila do Conde, Portugal.
Email: cristinalopes@eu.ipp.pt

†Department of Production and Systems - University of Minho,
Portugal. Email: vc@dps.uminho.pt

Section 2 gives more explanations on the order process-
ing optimization problem considered in this paper, along
with a summary of previous results. Section 3 recalls
some properties of interval graphs and the characteriza-
tion that will be used. Section 4 presents an IP model
for this problem based on interval graph completion and
some computational results are discussed in section 5.
This paper is an extended and revised work of the corre-
sponding conference paper that appeared in [11].

2 Minimization of the maximum number
of open orders

Consider the case of a manufacturer who has a number
of orders from costumers to fulfill. Each order requires
the making of different products, but only one product
can be made at a time. A virtual stack is opened for
each costumer when the first product of that order is
processed. The stack is closed as soon as all products
of that order have been manufactured, so the order is
completed and ready to be sent to the costumer.

The setting costs usually prevent from switching be-
tween manufacturing different products, and transporta-
tion costs dissent from partial order deliveries to cos-
tumers. Also it is not advisable to have delays on deliver-
ies, because, besides having resources tied up to stock and
requiring more storage space for the incomplete orders,
it will cause delays on the costumers’ payments. The ob-
jective is to find an optimal sequence to manufacture the
products in order to minimize the maximum number of
simultaneously open orders.

2.1 Previous research

The MOSP has been proved by Linhares and Yanasse to
be a NP-hard problem [10] that is equivalent to problems
arising in cutting industries (like steel tubes, paper, flat
glass, wooden panels), also in other fields such as VLSI
Circuit Design (Gate Matrix Layout Problem and PLA
Folding), and in classical problems from Graph Theory
such as Pathwidth, Modified Cutwidth and Vertex Sepa-
ration.

There have been several approaches to this problem.
Yuen [19, 20] introduced the minimization of open stacks

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47140538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

problem and presented six heuristics for it. Because of
their good practical behavior in processing time and sim-
plicity, these heuristics were for a long time considered a
classic reference.

Other meta-heuristic methods for the MOSP include tabu
search and simulated annealing by Fink and Voss [7] and
a 2-opt constructive genetic algorithm by Oliveira and
Lorena [13].

As we are interested in using integer programming mod-
els, we may refer the reader to the work of Yanasse [18],
who is the researcher that has published more papers
concerning this problem. Using a graph representation
of the problem, he has proved that there are polynomial
algorithms that solve some special cases of the MOSP,
he has presented some very good heuristics based on the
properties of the corresponding graphs and furthermore
he has developed integer programming models.

The polynomial algorithms that solve the problem work
for the cases of the MOSP where the items being pro-
duced belong to at most two different costumers and the
corresponding graph is a tree, a 1-tree, or a 0-1 common
vertex polygon, which is a graph with no limitation on
the number of polygons it contains but with the condi-
tion that any two polygons in the graph have at most one
vertex in common [15].

Becceneri, Yanasse and Soma [3] have presented a com-
bined method of heuristics and branch-and-bound for the
MOSP. First, an heuristic of minimal cost node finds an
order for the products by traversing the arcs of the graph
using the least quantity of arcs to close a node. In this
heuristic, all vertices are first ordered by non-decreasing
order of the number of arcs needed to close that node
and a search is made for adjacent nodes that have arcs
not yet traversed. This heuristic generates a sequence
of arcs and a maximum number of open stacks. Then
an arc contraction heuristic is applied, which finds nodes
with the same neighborhood and performs a contraction
of the arcs with vertices which have the smallest indexes,
calculating a lower bound for MOSP. Finally, an exact
method executes a branch-and-bound approach to reach
for the optimal solution.

In [16], Yanasse demonstrates two propositions that
make the IP models originally proposed by Tang and
Denardo [14] for a similar problem, known as Minimiza-
tion of Tool Switches Problem (MTSP), suitable for mod-
eling the MOSP. Although these two problems are not
equivalent in the general case, they are equivalent when
the number of tool slots in the machine is equal to the op-
timal solution value of MOSP. Later, Yanasse and Lam-
osa [17] adapted for the MOSP another MTSP integer
model formulated previously by Laporte [9].

Baptiste [2] submitted to the Constraint Modeling Chal-
lenge in 2005 a MIP formulation for MOSP that uses

binary variables to assign each product to a sequence
position and to indicate if each costumer’s order starts
before, ends after, or is in process at a given position in
the sequence. The constraints of the model refer to the
start and end variables, while linking the products and
the costumers.

Among other methods that came out from the Constraint
Modeling Challenge, we highlight a very successful ap-
proach to the MOSP using dynamic programming by
Banda and Stuckey [1] that was the winning paper.

2.2 The MOSP in a graph

An instance of this problem can be put in a graph where
each costumer’s order is represented by a vertex, and two
vertices are adjacent iff the corresponding orders have
common products.

A product that is required by k different costumers will
correspond to a clique of size k in the MOSP graph, be-
cause the k vertices must be connected to each other.

As an example, we will see an instance of the MOSP with
five costumers and eight products taken from [6, p.322].

Table 1: An instance of the MOSP

Products: 1 2 3 4 5 6 7 8

Costumer 1 X X X X

Costumer 2 X X

Costumer 3 X X

Costumer 4 X X X

Costumer 5 X X X

This instance originates a graph with 5 vertices, one cor-
responding to each costumer, and with edges between the
vertices/costumers that have ordered the same product.

5 1

42

3

Figure 1: Graph of the instance in Table 1

Notice that, for example, costumer 2 ordered only prod-
ucts 4 and 5, so vertices 2 and 4 are connected because
product 4 is required by costumers 2 and 4, and 2 and 5
are connected because of product 5.

To optimize the processing of the costumers orders, it is
convenient to find the best sequence to manufacture the
products. Considering that the products do not appear

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

explicitly in the graph, how will we find that sequence for
products? We will focus on finding a sequence to process
the costumers’ orders, and the sequence for the products
will come out as a consequence.

A feasible solution of this problem corresponds to a se-
quence of arcs in the graph. Traversing that sequence
of arcs, a stack for costumer j is open when it is the
first time that an arc with an end in j is traversed and
the stack is closed when all arcs with an end in j have
been traversed. Going along the sequence of arcs, and
the corresponding ordering of the opening of the stacks,
we sequence a product Pi of the original problem when
all nodes corresponding to all costumers that required Pi

have been opened.

There are some situations that, because of their simplic-
ity, can be removed from the original problem while solv-
ing it and inserted later in the solution. Costumers who
ordered just one product will appear in the graph as iso-
lated vertices if that product is not required by any other
costumer. In this case, that product can be the first or
last in the sequence, and it will open and close a stack
without any other stacks open at that same time, so it
does not increase the maximum number of simultaneously
open stacks.

If a product is required by only one costumer, who has
also ordered other products, then that product should be
manufactured just before the first of the products of that
costumer’s order, and the number of simultaneously open
stacks will not increase [16].

In this example this happens with products 1 and 8. This
instance can be reduced to only six relevant products (2,
3, 4, 5, 6 and 7) generating the same graph. Product
1 can be sequenced in the solution just before the first
of the products 2,6,7, and product 8 just before the first
of the products 2 and 4, without increasing the MOSP
number.

Table 2: Solution of the instance in Table 1

Products: 1 6 3 7 8 2 4 5

Costumer 1 X X X X

Costumer 2 X X

Costumer 3 X X

Costumer 4 X X X

Costumer 5 X X X

For the example above, a possible solution is the sequence
of vertices 1-5-3-4-2 that corresponds to the opening of
the costumers’ orders and consequently the sequence to
manufacture the products would be 1-6-3-7-8-2-4-5.

As there are some orders that are not simultaneously
open at any time, like 3 and 4, or 1 and 2, those stacks can
use the same stack space, hence this sequence of products

gives a maximum of three simultaneously open stacks,
that is the optimum for this instance.

1

5

3

4

2

1

5

3 4

2

K �
Figure 2: Non simultaneous orders can share stack space

This means that it is natural to associate the lifetime of
a costumers’ order in the solution with intervals of time
measured not in minutes or hours but measured in terms
of the number of different products in the manufactur-
ing sequence. We have seen that we can start solving a
MOSP problem with a graph, and that in the solution of
the problem we can consider an interval for the time that
each stack is open. We will see that an interval graph can
be associated to the set of intervals in the solution and
we will also use some properties of interval graphs to find
the solution of MOSP instances.

3 Interval Graphs

In this section we recall Golumbic’s [8] definition of an in-
terval graph and some other concepts and theorems that
will be used in our model.

Definition 3.1. An undirected graph G is called an in-
terval graph if its vertices can be put into a one-to-one
correspondence with a set of intervals I of a linearly or-
dered set (like the real line) such that two vertices are
connected by an edge of G if and only if their correspond-
ing intervals have non-empty intersection. I is called an
interval representation for G.

This definition is useful, because by associating each open
stack of our MOSP problem to an interval in the real line
(the interval of time that the stack stays open), we can
associate a solution of the MOSP to an interval represen-
tation of an interval graph.

Definition 3.2. A chordal graph (sometimes called tri-
angulated graph) is a graph where every simple k-cycle,
with k > 3, has a chord.

Definition 3.3. A comparability graph is an undirected
graph which is transitively orientable, i.e., each edge can
be assigned a one-way direction in such a way that the
resulting oriented graph (V, F) satisfies:

[ab] ∈ F ∧ [bc] ∈ F ⇒ [ac] ∈ F ∀a, b, c ∈ V

One theorem that characterizes interval graphs is the fol-
lowing (Gilmore and Hoffman, 1964):

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

Theorem 3.4. Let G be an undirected graph. The fol-
lowing are equivalent:

• G is an interval graph

• G is chordal and its complement is a comparability
graph

• The maximal cliques of G can be linearly ordered
such that, for every vertex x of G, the maximal
cliques containing x occur consecutively.

This ordering of the maximal cliques in the interval graph
will allow us to set an ordering of the vertices, helped by
the following theorems from [4].

Theorem 3.5. An interval graph G has an interval rep-
resentation such that all endpoints of intervals are dis-
tinct integers.

By using the left endpoints of the intervals, we can define
a natural ordering of the vertices of an interval graph
with a bijective function ϕ : V → {1, ..., N}.
Definitions 3.6. In an interval graph G = (V,E), we
say that vertex i precedes vertex j and denote by i ≺ j
if ϕ(i) < ϕ(j), i.e. if the left endpoint of the interval
correspondent to vertex i is before the left endpoint of
the interval correspondent to vertex j.

We denote the set of predecessors of a vertex by
Pred(i) = {j ∈ Adj(i) : ϕ(j) < ϕ(i)} and the set of
successors by Succ(i) = {j ∈ Adj(i) : ϕ(j) > ϕ(i)}.

This ordering of the vertices can also lead to edge direc-
tions, directing the edge [ij] if i ≺ j.

Definition 3.7. A vertex vi of a graph G = (V,E) is a
simplicial vertex if its adjacency set Adj(vi) = {vj ∈ V :
[vivj] ∈ E} is a clique.

It is known that simplicial vertices appear in all chordal
graphs (Dirac, 1961):

Theorem 3.8. Every chordal graph has a simplicial ver-
tex. If it is not a complete graph, then it has two simpli-
cial vertices that are not adjacent.

In a chordal graph, any simplicial vertex can start a per-
fect elimination order:

Definition 3.9. A perfect vertex elimination order is a
sequence σ = [v1, v2, ..., vn] of the vertices of the graph in
which each set of predecessors Pred(vi) is a clique.

In an interval graph, for any vertex vi represented by
an interval that starts at si, Pred(vi) is the set of all

vertices with intervals that start before si and end after
si; as these intervals overlap at si, Pred(vi) is a clique.
This vertex order is a perfect elimination order.

This conjugates the vertex order defined by the left end-
points of the intervals with the sequence of cliques that
will appear in the interval graph of the solution of a
MOSP problem.

We are interested in defining an ordering of the vertices
that corresponds to a perfect elimination order. It is
known that an interval graph H is chordal and it has at
least two simplicial vertices where a perfect vertex elimi-
nation order can be started. Locating a simplicial vertex
and eliminating it will create another simplicial vertex
and its subsequent elimination and so on. Also because
H is an interval graph, its maximal cliques can be linearly
ordered in such a way that, for every vertex vi in H, the
maximal cliques containing vi occur consecutively. The
perfect elimination order sets the order of the intervals,
because if we follow the order of the eliminated vertices
we have the order in which intervals must start.

An alternative characterization of interval graphs given
by Olariu [12] uses this linear ordering of the vertices as
well.

Theorem 3.10. G = (V,E) is an interval graph if and
only if there exists a linear ordering ϕ : V → {1, ..., N}
such that ∀i, j, k ∈ V : ϕ(i) < ϕ(j) < ϕ(k) we have
[ik] ∈ E ⇒ [ij] ∈ E.

We will use in our model inequalities derived from this
characterization to guarantee that the graph obtained in
the solution of the problem is an interval graph.

4 An IP model

Given an instance of the problem, we first build a graph
G = (V,E), associating each order to a vertex and creat-
ing an arc joining vertex i and j if and only if order i has a
product in common with order j. This graph may not be
an interval graph at the start, but we will add some arcs
to it in such a way that it will become one. We need this
graph to become an interval graph because, if we asso-
ciate each order to the interval of time in which the order
is being processed, we can use the graph to model what
intervals should occur simultaneously and what intervals
should precede others.

According to the sequence in which the products are
made, there may be more or less open orders simulta-
neously. Each arc of the future interval graph means
that, for a period of time, the two orders (the respective
vertices of the arc) will remain both open. The initial
graph contains only the arcs that must be there, in any
possible sequence in which the products can be made.

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

The rest of the arcs that are added later to the graph
will differ according to the sequence of the products. It
is the choice of these arcs that defines which are the other
simultaneously open orders. Our model consists in find-
ing out which edges F should be added to the original
MOSP graph G = (V,E) in order to get an interval graph
H = (V,E ∪ F) that minimizes the maximum number of
simultaneously open orders.

4.1 The decision variables

We set an ordering for starting the costumers’ orders by
assigning a number to each one of them, with a bijective
function ϕ : V → {1, ..., N}. This linear ordering of the
vertices is set by the decision variables xij :

xij =
{

1 if ϕ(i) < ϕ(j)
0 otherwise

∀i, j ∈ V

Notice that xii = 0 for any i ∈ V and also that we have

xij = 1 ⇔ xji = 0

These variables are setting an orientation into the arcs,
for us to keep track of the sequence of the orders in the
current instance. If xij = 1 then the order i starts being
processed before the order j opens, even though they may
overlap or not, i.e., in spite of having an arc between the
two vertices or not.

The other decision variables that will be used are con-
cerned to the arcs that are necessary to add to the original
graph G = (V,E) to get an interval graph H = (V,E∪F)
and, together with variables x, determine which intervals
will overlap in the desired interval graph. To decide which
of these additional arcs are to be added, we define a vari-
able yij for each arc ij that didn’t exist before in the
graph:

yij =
{

1 if [ij] /∈ F and ϕ(i) < ϕ(j)

0 if [ij] ∈ F or ϕ(i) ≥ ϕ(j)
∀i, j ∈ V : [ij] /∈ E

Variables y depend on the linear ordering of vertices, so
it follows that there is an anti-reflexive relation:

yij = 1 ⇒ yji = 0

When yij = 1, the arc [ij] is not needed in the interval
graph, so, by definition of interval graph, if there is not
an arc [ij], then the intervals i and j do not intersect.
Consequently, one of the intervals should finish before
the other one starts. As i ≺ j, the interval i opens and
finishes before the interval j starts. It means that the
orders from costumers i and j will never be processed at
the same time, so they can share the same stack space,
as seen in Figure 3.

Costumer i Costumer j

Figure 3: Interval i opens and closes before j starts

To explain the relations between the intervals horizon-
tally, we will also use a set of variables s, based on
the asymmetric representatives formulation for the vertex
coloring problem by Campelo et al [5].

Definition 4.1. Given a graph G = (V,E), a linear or-
dering of V , and a coloring of V such that adjacent ver-
tices have different colors, we say that a vertex i ∈ V is
a representative if i precedes all other vertices with the
same color of i. We say that vertex i ∈ V represents
vertex j ∈ V if i and j have the same color and if i is a
representative.

In the graph correspondent to Figure 3, vertex i would
represent vertex j. If we assign colors to the vertices
of the desired interval graph, such that no two adjacent
vertices have the same color, we can count the maximum
number of simultaneously open orders by counting the
minimum number of different colors needed, because si-
multaneously open orders will get different colors, and
orders that do not overlap can have the same color. The
variables that we will use are:

sij =
{

1 if vertex i represents vertex j

0 otherwise
∀i, j ∈ V : [ij] /∈ E

Note that if i ∈ V is a representative then sii = 1.

We will use the variable K ∈ N to denote the maximum
number of simultaneously open orders.

4.2 The main restrictions of the model

We will now study the relations between the binary in-
teger variables x, y, s and the integer variable K to build
the restrictions for our model.

4.2.1 Linear ordering of the vertices

The linear ordering of the vertices brings two basic in-
equalities. The first one states that either vertex i pre-
cedes vertex j or vice-versa. This is expressed by:

xji + xij = 1 ∀i, j ∈ V, i �= j (1)

The second one prevents directed 3-cycles, by stating that
if vertex i precedes vertex j and vertex j precedes vertex
k, than vertex i should precede vertex k. This transitivity
property of the linear ordering can be expressed by:

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V, i �= j �= k (2)

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

An important remark upon the variables yij is that they
establish the precedences between the closing and open-
ing of the intervals. As one of the conditions for the vari-
able yij to be equal to 1 is that vertex i precedes vertex
j, equal to say that xij = 1, then we must have:

yij ≤ xij ∀i, j ∈ V, i �= j, [ij] /∈ E (3)

4.2.2 Obtaining an interval graph

To guarantee that the graph H = (V,E∪F) is an interval
graph, we use in the model the characterization given in
Theorem 3.10. We will consider three different vertices
i, j, k ∈ V and analyze in what circumstances the arcs
[ik] and [ij] exist or have to be added. Let us separate in
two cases: the arc [ik] ∈ E and [ik] /∈ E.

For the first case, the arc [ik] ∈ E, let us suppose that
arc [ij] /∈ E, otherwise H is already an interval graph. If
i ≺ j ≺ k then as [ik] ∈ E then for H to be an interval
graph it must be [ij] ∈ F , i.e., xkj = 0 ⇒ yij = 0 which
can be stated by the linear inequality

yij ≤ xkj ∀i, j, k ∈ V, [ij] /∈ E, [ik] ∈ E (4)

This is valid too if i ≺ j but k ≺ j, because we have
xkj = 1. If j ≺ i then xij = 0 and by (3) we have yij = 0
and the inequality is also valid.

In the example shown in Figure 1, vertices 5, 4 and 2
fall in this case, so the formulation of the problem will
contain the inequality:

y54 ≤ x24

The ordering of the vertices in the solution 1-5-3-4-2
makes x24 = 0 and this inequality forces y54 = 0, mean-
ing that the arc [54] is added to the graph, indicating that
intervals 4 and 5 overlap in the solution, i.e., the orders
from costumers 4 and 5 will be processed simultaneously
at some point.

5 1

42

3

Figure 4: Interval graph of the solution in Table 2

Now let us consider the second case where [ik] /∈ E and
also consider [ij] /∈ E, because otherwise the result was
guaranteed. Start by supposing that i ≺ j ≺ k. This
means that xjk = 1 or equivalently xkj = 0. If we decide
to add the arc [ik], then we must also add the arc [ij],
for the graph to be an interval graph, as in Figure 5.

i j k

⇑

Figure 5: Olariu’s characterization of interval graphs

Using the correspondent variables y this is to say that

xkj = 0 ∧ yik = 0 ⇒ yij = 0

and this can be represented by the inequality

yij ≤ xkj + yik ∀i, j, k ∈ V, [ij], [ik] /∈ E (5)

This inequality is also true if the arc [ik] is not added be-
cause then yik = 1 and yij would be free. This inequality
is also valid in all other possible orderings of the vertices
i, j, k. If k ≺ j, the adding of the arc [ik] to the graph
does not force to add the arc [ij]. In the remaining three
cases, j ≺ i forces yij = 0 because of (3).

Again, in the example of Figure 1, vertices 3, 4 and 2 fall
in this second case, so the formulation of the problem will
contain the inequality:

y34 ≤ x24 + y32

As x24 = 0 because 4 ≺ 2, if the arc [32] were added,
we would have y32 = 0, and this inequality would set
y34 = 0. As 3 ≺ 4, it would say that the arc [34] would
be added to the graph. In the optimal solution 1-5-3-4-2
the arc [32] is not added, and therefore the variable is
y32 = 1, leaving the variable y34 free to be 0 or 1.

The model can also be strengthened with the following
three inequalities that can be proved simply by observing
that in an interval graph both variables on the left are
not allowed to be simultaneously equal to one without
contradicting Theorem 3.10.

yij + yki ≤ 1 ∀i, j, k ∈ V with [ij], [ik] /∈ E, [jk] ∈ E (6)
yij + yjk ≤ 1 ∀i, j, k ∈ V with [ij], [jk] /∈ E, [ik] ∈ E (7)
yij + ylk ≤ 1 ∀i, j, k, l ∈ V with [ij], [kl] /∈ E, [jl], [ik] ∈ E (8)

4.3 A lower bound

By Theorem 3.4, at each node of interval graph H, except
at the first K ones, there is an interval that begins and
one that ends, so that all the cliques in the sequence of the
perfect elimination order are maximal, except the first K
ones. And because every appearance of a vertex in these
cliques must be consecutive and there must be N cliques
in the sequence, at each instant only one vertex changes
in the cliques. This change corresponds to the closing of
an interval and the beginning of another.

The precedences of the opening and closing of the inter-
vals are declared by the variables yij . For every vertex

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

j, the sum
N∑

i=1

yij counts how many intervals must finish

before interval j starts and the sum
N∑

j=1

yij counts how

many intervals will start after i finishes. The vertex that

finishes first is the one that has the greatest
N∑

j=1

yij .

If we sum up the variables xij we will find the position of
each vertex in the sequence of vertices. For every vertex

j, the sum
N∑

i=1

xij counts how many vertices precede j,

i.e., the number of intervals that start before i starts. The

beginning of an interval j happens at instant
N∑

i=1

xij + 1.

It is the number of intervals that have started before j
plus the interval j itself. So the number of intervals that

are open at that instant is
N∑

i=1

xij + 1 −
N∑

i=1

yij because

we need to subtract the number of intervals that have
already been closed before that instant. This leads to
the main lower bound for the MOSP:

N∑
i=1
i�=j

xij −
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (9)

If one puts each interval in a line, as in Figure 2, the
number of lines that we have open when an interval starts
is a lower bound for the maximum number of open stacks.

In the example presented before, when interval 5 starts
there are two open stacks,

j = 5 :
∑

xij −
∑

yij + 1 = 1 − 0 + 1 = 2 ≤ 3

which is a lower bound for the MOSP (which is three).
The same inequality correspondent to the moment that
interval 2 starts gives a better lower bound:

j = 2 :
∑

xij −
∑

yij + 1 = 4 − 2 + 1 = 3 ≤ 3

4.4 Strengthening the model

The inequalities that we have seen so far are sufficient to
have a valid model and to guarantee that the solution will
be an interval graph. But we can reinforce our model by
adding some constraints related to additional properties
of interval graphs.

For the solution graph H = (V,E ∪ F) to be an interval
graph, its complement H must be a comparability graph.
The ordering of the vertices must respect transitivity in
the complement graph and must not have direct cycles.
If the arcs [ij] and [jk] exist in the complement graph,

i j k

⇓ ⇓H

Figure 6: H must be transitively orientable

with an orientation i ≺ j and j ≺ k , then if the arc [ik]
exists, it must be oriented as in i ≺ k.

The transitivity of the relation between the variables y
comes from the comparability graph property and forces
an ordering of the vertices. If a direction is defined in
an arc of a graph, that will determine the flow of all
the other ones. The variables y define the complement
graph, because yij equals 1 when the arc [ij] /∈ F , hence
it exists in the complement graph H and the orientation
of the vertices is i ≺ j. The transitivity in H is expressed
by

yij = yjk = 1 ⇒ yik = 1

This can be assured by the following statement for every
i
= j
= k such as the arcs [ij], [ik], [jk] did not exist in
the initial graph:

yij + yjk − 1 ≤ yik ∀i, j, k ∈ V, [ij], [jk], [ik] /∈ E (10)

4.4.1 Chords in k-cycles

Another way to reinforce the model is to reduce the num-
ber of arcs that are added to the original graph. If the
graph G is completed to become an interval graph, it
has to be chordal, so in every k-cycle for k ≥ 4 sufficient
chords must be added. In a 4-cycle defined by the ordered
vertices ijkl, we need to add at least one of the arcs in the
diagonal. In the complement graph there will remain the

i j

kl

Figure 7: A 4-cycle must have a chord

other diagonal arc, or none, whose existence is flagged by
the variables y. The need to add one of the arcs [ik], [ki],
[jl] or [lj] can be expressed by the restriction:

yik + yki + yjl + ylj ≤ 1
∀[ik], [jl] /∈ E, [ij], [jk], [kl], [li] ∈ E

(11)

A 5-cycle needs at least two chords, but not any chord
will do, because the two chords must share a vertex, as
in Figure 8 (a).

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

(a) (b)

i

j

k

l

m

i

j

k

l

m

Figure 8: 5-cycles with two chords: (a) is chordal, (b) is
not chordal

In a 5-cycle defined by the ordered vertices ijklm, the
restriction should be:

yil + yli + yik + yki + yjl + ylj + yjm + ymj + ymk + ykm ≤ 3

∀[ik], [il], [jl], [jm], [km] /∈ E, [ij], [jk], [kl], [lm], [mi] ∈ E

(12)
The number 3 comes from the fact that we need at least
2 chords from the possible 5 chords, so there must be at
most 3 chords left in the complement graph, causing the
defined variables y to sum at most 3.

4.5 Coloring the vertices

The value of the optimum of the MOSP is equal to the
size of the biggest clique in the solution graph ω(H) and,
because interval graphs are perfect graphs, it is equal to
the chromatic number of the graph χ(H), which is the
number of colors needed to assign to the vertices of the
graph such that there are no two adjacent vertices of the
same color.

In the representatives formulation for the vertex coloring
problem [5], the number of different colors is counted by
the number of representatives vertices, i.e. sii = 1. Hence

N∑
i=1

sii = K (13)

All N vertices must have representatives

N∑
i=1

[ij]/∈E

N∑
j=1

[ij]/∈E

sij = N (14)

but each vertex has only one representative:

N∑
i=1

[ij]/∈E

sij = 1 ∀j = 1, ..., N (15)

A vertex i represents a vertex j (sij = 1) only if i and j
share the same stack (yij = 1):

sij ≤ yij ∀i, j = 1, ..., N with [ij] /∈ E (16)

and only if i is a representative

sij ≤ sii ∀i, j = 1, ..., N with [ij] /∈ E (17)

In the previous example (Figure 4), vertex 3 can only rep-
resent vertices 2 or 4, which is stated by these inequalities

because variables y32 and y34 are the only non-null vari-
ables of type y3j , and only when s33 = 1, which means
that interval 3 is the “leader”of a new stack.

Definition 4.2. For a graph G = (V,E), the anti-
neighborhood of a set of vertices U ⊆ V is the set of
vertices that are not adjacent to any vertex in U :

N(U) = {v ∈ V : [uv] /∈ E ∀u ∈ U}

A vertex in the anti-neighborhood of each clique can rep-
resent only one vertex of the clique.

For a vertex i in the anti-neighborhood of a 2-clique {jk}
we have the inequality

sij + sik ≤ sii

∀i, j, k = 1, ..., N with j < k, [ij], [ik] /∈ E, [jk] ∈ E
(18)

and for a 3-clique {jkl}

sij + sik + sil ≤ sii

∀i, j, k, l = 1, ..., N with j < k < l,

[ij], [ik], [il] /∈ E, [jk], [kl], [lj] ∈ E

(19)

and for a 4-clique {jklm}

sij + sik + sil + sim ≤ sii

∀i, j, k, l, m = 1, ..., N with j < k, j < l, k < m,

[ij], [ik], [il], [im] /∈ E, [jk], [jl], [jm], [kl], [km], [lm] ∈ E

(20)

In our example, the 2-clique {2, 4} originates the inequal-
ity

s32 + s34 ≤ s33

which means that the vertex 3, which is in the anti-
neighborhood of that clique, can only represent vertex
2 or vertex 4 and only if 3 is a representative, i.e., order
from costumer 3 can use the same stack space than order
from costumer 2 or costumer 4 but not both, and only if
costumer 3 is the “leader”of that stack (see Figure 2).

4.6 The formulation of the model

Given an instance of a MOSP problem, let the graph G =
(V ; E) be the associated graph and |V | = N . Considering
the variables and the inequalities explained previously,
our new mathematical formulation for the MOSP is:

Minimize K
Subject to: (1) to (20) and

xij ∈ {0, 1} ∀i, j = 1, ..., N with i �= j (21)
yij ∈ {0, 1} ∀i, j = 1, ..., N with i �= j, [ij] /∈ E (22)
sij ∈ {0, 1} ∀i, j = 1, ..., N with [ij] /∈ E (23)
K ∈ N (24)

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

5 Computational tests

The model was tested on some instances of the Constraint
Modeling Challenge 2005, available at:

http://www.cs.st-andrews.ac.uk/∼ipg/challenge/instances.html

Computational tests were performed with ILOG OPL
Development Studio 5.5 on an Intel�Core2 Duo
T7200@2.00GHz 0.99GB RAM. For each instance, the
best objective value found by the model, the best lower
bound, the gap, the number of nodes of the search tree
and the runtime are recorded in Table 3.

In small instances we found the optimal solution in just
a few seconds, in larger instances we found the optimal
solution in a few seconds as well, but it takes too long to
prove that it is optimal, especially in instances with many
symmetries. In really large instances the model could
not be started because there was not enough memory to
handle so many variables and inequalities.

Table 3: Computational results of the IP model for the
minimization of open orders

Instance
No.

clients
(Nodes)

Best
Objective

value

Best
LB Gap Runtime

(s)
Nodes in

search tree

Harvey wbo_10_10_1 10 3 3 0% 11,06 0
Harvey wbo_10_20_1 10 5 5 0% 5,50 209
Harvey wbop_10_20_10 10 5 5 0% 3,26 44
Simonis Problem 10_20_150 10 9 9 0% 0,75 0
Wilson nwrsSmaller4_1 10 3 3 0% 0,75 0
Wilson nwrsSmaller4_2 10 4 4 0% 0,54 0
Harvey wbo_15_15_1 15 3 3 0% 17,07 10
Harvey wbo_15_30_1 15 4 4 0% 3,65 0
Harvey wbop_15_30_15 15 11 11 0% 997,04 21433
Harvey wbp_15_15_35 15 14 14 0% 1,53 0
Simonis Problem 15_15_100 15 11 11 0% 177,17 5056
Wilson nwrsSmaller4_3 15 7 7 0% 1,25 0
Miller 20 13 13 0% 18731,73 14245
Shaw Instance_1 20 14 14 0% 45323,62 167846
Shaw Instance_15 20 14 13 7% 57173,01 319000
Shaw Instance_2 20 12 12 0% 10066,76 19741
Simonis Problem 20_10_1 20 9 7 22% 7993,87 8.097
Simonis Problem 20_20_100 20 19 19 0% 3,50 0
Wilson nrwsLarger4_2 20 12 12 0% 14,29 5
Wilson SP_1 25 9 8 11% 378,10 2934
Harvey wbo_30_10_1 30 10 7 30% 32536,84 631
Harvey wbo_30_30_1 30 4 3 25% 1907,06 0
Harvey wbop_30_10_1 30 18 10 44% 900,79 0
Simonis Problem 30_30_1 30 21 13 38% 2990,03 54

References

[1] M. G. Banda and P. J. Stuckey, “Dynamic program-
ming to minimize the maximum number of open
stacks,” Informs Journal On Computing, vol. 19, pp.
607–617, 2007.

[2] P. Baptiste, “Simple MIP formulations to minimize
the maximum number of open stacks,” in Constraint

Modeling Challenge. Edinburgh, Scotland: IJCAI
2005, 31 July 2005, pp. 9–13.

[3] J. C. Becceneri, H. H. Yanasse, and N. Y. Soma,
“A method for solving the minimization of the max-
imum number of open stacks problem within a cut-
ting process,” Computers & Operations Research,
vol. 31, no. 14, pp. 2315–2332, 2004.

[4] T. Biedl, CS 762: Graph-theoretic algorithms – Lec-
ture notes of a graduate course, University of Water-
loo, Sep 2005.

[5] M. Campêlo, V. A. Campos, and R. C. Corrêa, “On
the asymmetric representatives formulation for the
vertex coloring problem,” Discrete Applied Mathe-
matics, vol. 156, no. 7, pp. 1097–1111, 2008.

[6] J. Dı́az, J. Petit, and M. Serna, “A survey of graph
layout problems,” ACM Computing Surveys, vol. 34,
no. 3, pp. 313–356, Sep 2002.

[7] A. Fink and S. Voss, “Applications of modern heuris-
tic search methods to pattern sequencing problems,”
Computers & Operations Research, vol. 26, no. 1, pp.
17–34, 1999.

[8] M. C. Golumbic, Algorithmic graph theory and per-
fect graphs. New York: Academic Press, 1980.

[9] G. Laporte, J. J. S. Gonzalez, and F. Semet, “Exact
algorithms for the job sequencing and tool switching
problem,” IIE Transactions, vol. 36, pp. 37–45, 2004.

[10] A. Linhares and H. H. Yanasse, “Connections be-
tween cutting-pattern sequencing, VLSI design, and
flexible machines,” Computers & Operations Re-
search, vol. 29, no. 12, pp. 1759–1772, 2002.

[11] I. C. Lopes and J. M. V. Carvalho, “Using inter-
val graphs in an order processing optimization prob-
lem,” in Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on En-
gineering 2010. London, UK: WCE2010, 30 June -
2 July 2010, pp. 1722–1728.

[12] S. Olariu, “An optimal greedy heuristic to color
interval graphs,” Information Processing Letters,
vol. 37, no. 1, pp. 21–25, 1991.

[13] A. C. Oliveira and L. A. Lorena, 2-Opt Popula-
tion Training for Minimization of Open Stack Prob-
lem, ser. Lecture Notes in Artificial Intelligence.
Springer, 2002, vol. 2507, ch. Advances in Artificial
Intelligence, pp. 313–323.

[14] S. C. Tang and E. V. Denardo, “Models arising from
a flexible manufacturing machine, part I: Minimiza-
tion of the number of tool switches,” Operations Re-
search, vol. 36, no. 5, pp. 767–777, Sep-Oct 1988.

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

[15] H. Yanasse, “Minimization of open orders - poly-
nomial algorithms for some special cases,” Pesquisa
Operacional, vol. 16, no. 1, pp. 1–26, Jun 1996.

[16] H. H. Yanasse, “On a pattern sequencing problem
to minimize the maximum number of open stacks,”
European Journal of Operational Research, vol. 100,
pp. 454–463, 1997.

[17] H. H. Yanasse and M. J. P. Lamosa, “An integrated
cutting stock and sequencing problem,” European
Journal of Operational Research, vol. 183, no. 3, pp.
1353–1370, 2007.

[18] H. H. Yanasse and E. L. F. Senne, “The minimiza-
tion of open stacks problem: A review of some prop-
erties and their use in pre-processing operations,”
European Journal of Operational Research, vol. 203,
no. 3, pp. 559 – 567, 2010.

[19] B. J. Yuen, “Heuristics for sequencing cutting pat-
terns,” European Journal of Operations Research,
vol. 55, no. 2, pp. 183–190, Nov 1991.

[20] B. J. Yuen and K. V. Richardson, “Establishing
the optimality of sequencing heuristics for cutting
stock problems,” European Journal of Operations
Research, vol. 84, pp. 590–598, 1995.

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_11

(Advance online publication: 23 November 2010)

__

