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A B S T R A C T  
 

 

The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion 

equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved 

analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally 

fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology 

proposed in this work and to explain the diffusion process  in  fractally  fractured systems. 
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1. Introduction 

 
It is well known that the flow distribution and propagation within naturally fractured reservoirs (double porosity systems) is 

controlled mostly by the distribution of fractures [1]. The presence of fractures at different scales represents an element of 

uncertainty and heterogeneity in the construction of a reservoir model [1,2]. Due to this reason, classical Euclidean models 

cannot describe the complexities of such systems. Alternatively, fractal theory provides a powerful method to describe the 

complex network of fractures   [1–4]. 

Chang and Yortsos [5] were the first authors adopting a fractal model to describe the response of a double porosity system 

(naturally fractured reservoir). Acuña et al. [6] applied this model to naturally fractured reservoirs and found that the 

wellbore pressure is a power-law function of time. Flamenco-Lopez and Camacho-Velazquez [7] discussed two approaches to 

describe and analyze a naturally fractured reservoir with fractal geometry: (1) analysis of both transient and pseudo- steady-

state flow periods of well pressure tests, (2) determination of fractal-model parameters from porosity well logs or from another 

source [1,8]. 

From another point of view, fractional calculus (FC) as the generalization of the ordinary calculus, attracted the attention of 

scientists from many disciplines. Capturing the memory of a dynamical phenomenon via integer-order calculus poses dif- ficulties, 

while FC by introducing a kernel considers inherently the hereditary of complex processes. Specifically, in the last two decade 

petroleum engineering has been impressed by FC. Several authors used the concept of FC to describe the complexity of 

diffusion process in porous media [9–11]. These researchers developed a mathematical model to define the response of oil 

reservoirs. 
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It is generally accepted that the diffusion process is history-dependent in fractal systems. In fractally fractured reservoirs, 

history of flow and nonlocality are pivotal in all stages of production. Metzler et al. [9] applied a fractional derivative ap- 

proach to fractal model to incorporate the   memory. 

To characterize a naturally fractured reservoir, it is required the estimation of the fractal and fractional parameters 

(dimensionless parameters) of the mathematical model. In spite of all the  work  done  on  fractally  fractional  diffusion (FFD), an 

appropriate analytical solution has not been addressed in the literature to calculate the fractal and fractional parameters and to 

analyze the effects of these parameters upon reservoir behavior. This work presents an analytical solution for the pressure 

response of naturally fractured reservoirs during transient and boundary-dominated flow periods, in the light of FC. In 

particular, the response of fractured systems is investigated on the basis of fractional derivative. The analytical solutions are 

discussed by several synthetic  examples. 

This paper is organized as follows. Section 2 introduces the fundamentals of fractional calculus. Sections 3 and 4 develop and 

introduce the FFD model and some synthetic examples, respectively. Finally, the concluding remarks are discussed in Section 5. 
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wellbore area, ft3  (L3) 
fractal parameter related to the porosity of the  fracture network,  L3-d

 mf 

oil formation volume factor, RB/STB (L3/L3) 
compressibility,  psi-1  (L t2/m) 

wellbore storage coefficient, bbl/psi (L4  t2/m) 
dimensionless wellbore storage coefficient 
Euclidean  dimension 
mass fractal dimension 
acceleration  of gravity, ft/s2  (L/t2) 

gravitational units conversion factor, 32.17 (lbm/ft)/(lbf  s
2) 

formation thickness, ft (L) 
modified Bessel function of the first kind 
permeability, md (L2) 
modified Bessel function of the second kind 
Laplace transform of 
fracture-network parameter,  L2þh

 

pressure,  psi (m/(Lt2)) 

dimensionless wellbore pressure  for the constant-rate  case  without  wellbore storage and skin  effects 
dimensionless wellbore pressure  with wellbore storage and skin effects 
wellbore flowing pressure, psi  (m/(Lt2)) 

production  oil rate,  STB/D (L3/t) 
dimensionless rate 
radial distance, ft (L) 
dimensionless radial distance 
total skin factor 
time, hours (t) 
dimensionless time 
Laplace transform variable 
fractional derivative order 
gamma function 
conductivity index 
interporosity flow  parameter 
oil viscosity, cp (m/(Lt)) 

density of liquid in the  wellbore, lbm/ft3  (m/L3) 
matrix/fracture interaction index 

porosity 
storativity ratio 

Subscripts 
D dimensionless 
e external 
f fracture (fissure) 
m matrix 
w wellbore 
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For this type of fractional derivative the Laplace transform needs integer order derivatives in the initial times for the func- tion. 

In addition, the Caputo derivative of a constant is zero, which is consistent to the ordinary calculus. For more informa- tion about 

FC, one can refer to  [15,16]. 

 
3. Analysis of FFD model 

 
In this section the basis of FFD model and its analytical solution are presented. Firstly, the properties and concepts of nat- urally 

fractured reservoirs are analyzed in a mathematical model (FFD model). The required dimensionless parameters are defined. Then 

the analytical solution of the FFD model is given in Laplace space for three different outer boundary conditions. 

 
3.1. Mathematical model 

 
Two distinct porous media are interacting in a fractured reservoir: the matrix blocks, with high storativity and low per- 

meability, and the fractures (fissures) system, with low storativity and high permeability. When a well is opened in a frac- tured 

reservoir, a rapid pressure response occurs in the fracture network due to its high diffusivity. A pressure difference is created 

between matrix and fracture, and the matrix blocks start to flow into the fractures. The pressure of the matrix blocks pm  decreases 

as flow progresses and, finally, tends to equalize with the pressure of the surrounding fractures pf  (Figs. 1   and 
2). Before discussing the mathematical model of such systems, the related dimensionless variables are defined in Table 1. 

The storativity ratio defines the contribution of the fissure system to the total storativity. aVs for a cylindrical symmetry is given 

by: 

 

 

 

By setting dmf  ¼ d ¼ 2, the typical Warren and Root [17] storativity ratio can be    obtained. 



 

 

 
   

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Schematic diagram of naturally fracture reservoir   (Euclidean). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic diagram of naturally fracture reservoir with fractal behavior (Park et al. [10]). 

 
 

 

 
 

 

 

 

 

 

 

The interporosity flow coefficient is used to describe the ability of the matrix blocks to flow into the fissures. The coef- 

ficient e is a parameter for distance from matrix to fracture. The parameter m is the local structural property of the fractal 

network, similar to the conventional Euclidean permeability that is defined as follows: 
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where Awb  is the wellbore area, q (lbm/ft3) denotes the density of the liquid (oil) in the wellbore and g=g 
= lbf/lbm. 

Chang and Yortsos [5] presented a generalization of the Warren and Root [14] model to describe a double porosity fractal system 

(dimensionless form): 
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Applying the same approach used by Metzler et al. [9], based on the concepts of fractal geometry and FC, the dimension- less 

FFD model in naturally fractured reservoirs can be written   as: 

 

 

 

where b = dmf - h - 1, c ¼ 1=ð2 þ hÞ and @ pD  is defined by Eq. (3) [9]. The parameter d denotes the traditional Euclidean 
D 

dimension. The parameter dmf is the fractal topological dimension of the system; and the index h is the anomalous diffusion 

exponent (or the dynamic fractal dimension), which is greater than zero in general (so 0 < c 6 1). Equation (5) reduces to the 

traditional Euclidean diffusivity equation when dmf ¼ d ¼ 2, h ¼ 0 and c ¼ 1. Therefore Eq. (5) can be considered as a gener- 
alization of the classical diffusion equation with respect to the first order time derivative. 

According to Chang and Yortsos [5], the mathematical representation of the transfer of fluid from matrix to fracture is: 
 

 
 

 

 
  

where r is the matrix/fracture interaction index. 

The initial and boundary conditions are presented in Table  2. 

The sensitivity of pressure response to fractal dimension is weak [18]. So, it can be assumed that dmf = d. Then Eq. (5) 
reduces to the following  relation: 

 
 

Based on the same approach given by Metzler et al. [9], the fractional form of differential equation for the transfer of fluid from 

matrix to fracture under restricted flow condition (the matrix response is slower) can be written as: 

 

 

When c ¼ 1, Eq. (8) reduces to the corresponding Warren and Root [14]  equation. 

 
3.2. Analytical solution 

 
Using the initial conditions, Eqs. (7) and (8) can be written in Laplace space as: 

 ð9Þ 
 

  

 
 

 

 



 
 

 
 



 

 

 

 

 

 

 

 

 

 

Eq. (11) can be simplified to the following   formula: 

 
 
 
  

 

 

Expression (11) can be reduced to Bessel’s equation with the following    substitutions: 
         

 ð14Þ 

 

 

 

 

After substituting, the final form of Eq. (11) can be written as: 
 
 

 
 
 
 
 
 

 ð15Þ 
The general solution of Eq. (15) can be obtained based on the theory of modified Bessel functions: 
 

 

  

where  Im   and  Km  are  the  modified  Bessel  functions  of  the  first  and  second  kind  of  order  m 2 R. 

By setting Eqs. (13) and (14) into Eq. (16), the dimensionless pressure drop in Laplace space can be obtained by the 

following formula: 

 
 
 

 
 
  

Equation (17) can be abbreviated to the following   relation: 

 
 

 

where the function g is defined   as: 
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By making use of the van Everdingen and Hurst [19] method, the solution in Laplace space to a variable flowing   bottom- 

hole pressure at a constant rate is p Dw ðuÞ ¼    1
 ; where qD  is the variable rate at constant flowing bottom-hole   pressure. 

For a constant bottom-hole pressure, the inner boundary condition in Laplace space can be written as: 
 
 

 

 

 

The particular solutions of Eq. (17) are obtained under one inner boundary condition and three outer boundary conditions 

assuming the well is producing at a constant rate. Firstly, the boundary conditions of infinite reservoirs are applied to obtain the 

dimensionless wellbore pressure response. Then the bounded circular reservoirs are analyzed under boundary conditions to find the 

dimensionless wellbore pressure response. Finally, the boundary conditions of constant pressure outer boundary reservoirs are 

used to compute the dimensionless wellbore pressure  response. 

 
3.2.1. Infinite reservoir case 

Applying the boundary conditions of infinite reservoirs to Eq. (17)   yields 

 
 

And the dimensionless variable rate is obtained   by: 
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Dimensionless wellbore pressure with wellbore storage and skin effects can be obtained by means of the superposition 

principle (Duhamel’s principle) that is presented by van Everdingen and Hurst [16] and Agarwal et al. [20]: 

 
 

 
where 

  
 

 

 

Applying the Laplace transformation to Eq. (21)  yields 

 

 

 

 
 

 

The inverse transform of Eqs. (22) and (23) can be obtained by the Stehfest [21] numerical algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
4. Illustrative examples 

 
We introduce the following dimensionless groups to plot the analytical solutions in a log–log coordinate system: 
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where a ¼ 1=Ch=2 , and p0
 ¼ dp =dtD . When h ¼ 0 (Euclidean case), these expressions reduce to the traditional Gringarten 

D wD wD 

et al. [22] definitions. 

The examples are analyzed for dimensionless wellbore storage coefficient CD ¼ 100 and skin factor S ¼ 1:5. The solid curves 

represent the pressure responses, and logarithmic derivatives of pressures are shown by dotted curves. The parameters h and c 
are shown by theta and gamma in the charts, respectively. Fig. 3 shows the dimensionless wellbore pres- sure drop, Eqs. (20) and 

(23), and its logarithmic derivative for a reservoir with infinite acting behavior. The effects of con- ductivity index on pressure 

response, Eqs. (23) and (25), and its logarithmic derivative for bounded circular reservoir are shown in Fig. 4. Fig. 5 presents 

the response, Eqs. (23) and (27), of dual porosity reservoirs with constant pressure outer boundary  condition.  These  examples  

are  analyzed  with  three  different  values  of  conductivity  index  h ¼ f0; 0:05; 0:1g 

ðfc ¼ 1; 0:9756; 0:9524gÞ. The results of Figs. 3–5 show that the pressure value and its logarithmic derivative in log–log 
scale increase with the increase of h. The infinite reservoirs (Fig. 3) and finite reservoirs (Figs. 4 and 5) have the same behav- ior 

before the start of outer boundary effects in finite reservoirs. The main difference between bounded circular reservoir case 

(Fig. 4) and constant pressure outer boundary case (Fig. 5) is in the effects of outer boundaries. Fig. 4 shows that when the sealing 

boundary is reached both the pressure and the derivative curve follow a unit slope straight line. Fig. 5 shows that if the side acts as 

a constant pressure boundary, due to water drive support, the log–log pressure curve tends to stabilize and the derivative drops. 

The major difference between the fractional and integer order responses indicates that diffusion is slower in reservoirs 

included memory (considered the history of  flow). 

Under restricted flow condition, the pressure response of a naturally fractured reservoir in an Euclidean model indicates three 

different regimes: 

 
(1) At early times only the fissures flow into the well. The contribution of the matrix is negligible. This corresponds to the 

homogeneous behavior of the fissure system. 

(2) At intermediate times the matrix starts to produce into the fissures until the pressure tends to stabilize. This corre- 

sponds to a transition flow regime. 

(3) Later, the matrix pressure equalizes the pressure of the surrounding fissures. This corresponds to the homogeneous 

behavior of the total system (matrix and fissures). Then the effect of outer boundaries may be reached. 

 

It should be noted that the depth of the characteristic valley is a function of the transition duration. For small values of  x, long 

transition regimes correspond to deep valleys on derivative. The interporosity flow coefficient determines the end of transition 

period, and the start of the equivalent homogeneous total system flow regime. For smaller k values, the total sys- tem flow starts 

later. In Figs. 3–5, three curves are generated for h ¼ f0; 0:05; 0:1g. In the pressure curves and their deriva- tives, the pressure 

values of larger h and their derivative occurs at higher amplitudes. Furthermore, the smaller the h, the deeper the depth of the 

valley, and the later the start of total system flow (Figs. 3–5), and subsequently the later the effect of outer boundaries in finite 

reservoirs (Figs. 4 and 5). Fig. 3 reveals that the behavior of total system flow may not be con- sidered as homogeneous in 

fractally fractured reservoirs, because the derivative slope for larger values of h is not constant 
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Fig. 3.  Solutions  of  FFD  model  for  fractured  reservoirs  in  an  infinite  radial  system  where  x ¼ 0:01; k ¼ 10
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Fig. 4.  Solutions  of  FFD  model  for  fractured  reservoirs  under  no-flow  outer  boundary  condition  where  x ¼ 0:01; k ¼ 10-7 . 
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Fig. 5.  Solutions  of  FFD  model  for  fractured  reservoirs  under  constant  pressure  outer  boundary  condition  where  x ¼ 0:01; k ¼ 10-7 . 

 

 
during the times after transition flow regime. As can be seen, the pressure and its logarithmic derivative are parallel straight lines in 

the times after transition period, which implies that the wellbore pressure is a power law function of time. 

In conclusion, we cannot use the conventional methods (semi-log approach and log–log type curves analysis) to interpret 

transient-pressure data with fractal behavior. Thus, it allows interpreting transient pressure data more accurately with the new 

dynamical responses. 

 

 
5. Concluding remarks 

 
We synthesized the theory of Bessel’s equation and techniques of Laplace transformation to obtain the analytical solution of 

FFD model assuming the well is flowing at a constant rate. The results of presented examples, based on the analytical solu- tions, 

reveal that the different values of conductivity index causes some changes in reservoir pressure response. This shows that the 

traditional Euclidean model cannot be used to analyze fractured reservoirs when oil production exhibits anomalous behavior. The 

fractional calculus thus provides a powerful tool to improve pressure-transient-test    interpretation. 
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