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A B S TR A CT

We study a mathematical model for the human immunodeficiency virus (HIV) and hepatites C virus (HCV) coinfection. The model predicts four distinct equilibria: the 

disease free, the HIV endemic, the HCV endemic, and the full endemic equilibria. The local and global stability of the disease free equilibrium was calculated for the full 

model and the HIV and HCV submodels. We present numerical simulations of the full model where the distinct equilibria can be observed. We show simulations of the 

qualitative changes of the dynamical behavior of the full model for variation of relevant parameters. From the results of the model, we infer possible measures that could 

be implemented in order to reduce the number of infected individuals. 
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1. Introduction 

 
HIV appears frequently associated with other diseases, such as 

tuberculosis (Naresh and Tripath, 2005) or hepatitis viruses 

(Maidana et al., 2005). 

Throughout the world, 34–46 million people are infected with HIV, 

of which 4–5 millions are coinfected with HCV (Wolff et al., 2008). In 

the USA, 360,000 people are coinfected with HIV and HCV. Additionaly, 

1.2 million are solely infected with HIV and more than 4 million are solely 

infected with HCV (Franciscus,   2012). 

Worldwide, there are 150 million cases of chronic HCV carri- ers, 

and it is known that 85% of those with HCV exposure develop chronic 

infection (Hoofnagle, 1997; National, 1997). Chronic infec- tion results 

in a large number of deaths annualy due to cirrhosis and hepatocellular 

carcinoma. Moreover, liver transplants, for HCV induced liver disease 

patients, are a major part of health care costs (EASL, 1999). 

HIV and HCV share the same transmission routes, namely by 

injection drug use, sexual contact, mother to child transmission during 

pregnancy or birth, blood and blood products transfusion, organs 

transplantation from infected donors, exposure to blood by health care 

professionals (Alter, 2006; Sulkowski, 2008). 

Coinfection adds more severity for the two diseases involved. HIV 

accelerates the progression of HCV in dually infected patients. 

 

 
 

Having a count of CD4+ T cells below 200 cells/mm3 increases the 

risk of severe liver disease (GAT, 2009). Moreover, there is a higher 

risk of cirrhosis, end-stage liver disease, hepatocarci- noma, and 

hepatic-related death (Thein et al., 2008; Departamento, 2011). 

The current international consensus, to control the HIV epi- demic, 

focuses on the need for clear leadership on policies and programs for 

prevention, early diagnosis, treatment that respects human rights, and 

quality of health care, effective and accessible to everyone. In what 

concerns coinfection, some successful treat- ments for HCV using drug 

combination in individuals coinfected with HIV have been reported. 

Furthermore, most people with HCV can be treated successfully for 

HIV (Franciscus, 2012). However, more studies are needed to show the 

efficacy of new antiviral drugs for HCV in people coinfected with HIV. 

In the last few decades, mathematical models have been applied in the 

literature to the modeling of infectious diseases. HIV and known 

coinfections epidemiologies are the research topic of some of those 

models. In Vickerman et al. (2008), the authors proposed a transmission 

model for HCV/HIV coinfection, aimed at evaluating the cost-

effectiveness of needle and syringe programs for injecting drug users 

(IDUs). They concluded that although the needle/syringe sharing events 

were defined as low risk in Rawalpindi, the preva- lence of HIV/HCV in 

IDUs would increase. They emphasized the importance of intervention 

measures in that low prevalence set- ting, in order to prevent the 

HIV/HCV prevalence. Recently, in Vickerman et al. (2012), the 

authors used a mathematical model to understand the trends in the 

prevalence of HIV and HCV. They determined the different 

epidemiological profiles and how these 
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Fig. 1. Flow chart of the model. 

 

profiles affect intervention impact. They concluded that there were 

threshold levels of HCV prevalence below which HIV risk was negli- gible. 

Nevetheless, these thresholds varied by setting. The authors infered that 

HIV and HCV prevalence settings could provide new insights into IDU 

risk behaviour and intervention  impact.  In de Vos et al. (2012), the 

authors proved that HCV prevalence could be used as an indicator of risk 

for successful HIV infection, in an IDU population. In Waziri et al. 

(2012), the authors formulated a mathe- matical model for HIV/AIDS 

treatment, where vertical transmission from mother to child was 

included. It is shown that highly active antiretroviral therapy (HAART) 

and control of vertical transmission rate were associated with a reduction 

of the HIV transmission. In Bhunu and Mushayabasa (2013), the authors 

studied a mathemat- ical model for HIV and HCV coinfection, that 

includes treatment for boh diseases. The model predicted that HCV had 

an ongoing prolonged negative effect on the population health, 

irrespective of their HIV status. The authors infered that specific measures 

to con- trol HCV should be taken/reinforced in resource limited settings. 

In 2013, Corson et al. (2013) proposed a mathematical model to 

explore the risk of HCV infection through the sharing of injecting 

paraphernalia (including filters, cookers and water). Namely, the 

sharing of injecting paraphernalia among IDUs is common, thus, HCV 

transmission through this route could contribute to the grow- ing burden 

in healthcare systems associated with it. The authors infered that more 

work was needed to detail the contribution of the paraphernalia 

sharing to the spread of HCV, and that health care providers should 

distribute sterile paraphernalia to prevent HCV infection. 

In this paper, we study a mathematical model for HIV and HCV 

coinfection. The novelty of the model is in the inclusion of treat- ment 

for both diseases and of vertical transmission from mother to child, in 

the case of HIV, in one model. We are aware of HIV and HCV sharing 

several transmission routes, nevertheless, here we only consider sexual 

transmission for HIV and HCV and vertical transmission for HIV. 

Bearing this in mind, the paper is organized as follows. The 

model is studied in Section 2. In Sections 2.2–2.3, we compute the 

reproduction numbers and the local and global stability of the dis- ease 

free equilibria. In Section 2.4, we present several bifurcation diagrams 

that reveal the dynamical behavior of the model for vari- ation of 

relevant parameters. Simulation results of the full model are presented 

in Section 3. Section 4 concludes this study and sheds some light on 

possible future research directions. 

 

 

 
2. The HIV and HCV coinfection model 

 
In this section, we describe the HIV and HCV coinfection model. We 

compute the reproduction numbers of the full model, and of the two 

submodels (HIV only and HCV only models). We study the local stability 

of the disease free equilibria for the full model and the global. We 

compute the sensitivity indices of the reproduction number to relevant 

parameters of the model. We present bifurca- tion diagrams, built with 

the help of XPPAUT, to better understand the dynamics of the proposed  

model. 



 

 

2.1. Description of the model 

 
The population of the model includes nine classes, namely, the 

susceptible individuals, S, the individuals infected with HIV, Ia, the 

individuals showing symptoms of AIDS, Aa, the individuals infected with 

HCV, Ic, the individuals infected with chronic HCV, Cc, the 

individuals coinfected with HIV and HCV, IaIc, the individuals coin- fected 

with HIV and with chronic HCV, IaCc, the individuals showing symptoms 

of AIDS and coinfected with HCV, AaIc, and the individ- uals showing 

symptoms of AIDS and with chronic HCV coinfection, AaCc. 

In Fig. 1, it is presented the flow chart of the model. It repre- sents 

schematically the epidemiology of HIV and HCV coinfection. The 

different disease stages are reproduced by the different com- partments 

(rectangles) and the arrows indicate the way individuals progress from 

one stage to the other. 

At time t, the population of size N(t), has constant inflow of 

susceptible individuals, S, at a rate A. For all classes, the natural 

mortality rate is µ. Susceptible individuals, S, exposed to HIV, move to 

class Ia, at a rate AH, given by: 

 
 

 

Parameter bh is the effective sexual contact rate for HIV infection to 

occur, and c is the average number of sexual partners per unit of time. 

On the other hand, when in contact with HCV patients, susceptible 

individuals, S, move to class Ic, at a rate: 

  

Table 1 

Description of the variables and the parameters of model (1). 

Variable/Parameter Description 

S Susceptible individuals 

Ia Individuals infected with HIV 

Aa Individuals showing symptoms of AIDS 

Ic Individuals infected with HCV 

Cc Individuals infected with chronic  HCV 

Ia Ic Individuals coinfected with HIV and HCV 

Ia Cc Individuals coinfected with HIV and chronic HCV 

Aa Ic Individuals showing symptoms of AIDS and with HCV 

coinfection 

Aa Cc Individuals showing symptoms of AIDS and  with 

chronic HCV coinfection 

A Recruitment rate 

µ Natural mortality rate 

c Average number of sexual partners 

bh Effective sexual contact rate for HIV transmission to 

occur 

bc Effective sexual contact rate for HCV transmission to 

occur 

a3 Modification parameter 

77i , = 1, 2 Modification parameter 

ri i = 1, 2, 3 HCV treatment rates 

pi , i = 1, 2, 3 Proportion of infected individuals who are chronic 

carries 

dc Mortality due to HCV 

E Fraction of newborns infected with HIV that   die 

immediately  after  birth 

e Rate of newborns infected with HIV 

p Rate of progression to AIDS 

vi , i = 1, 2, 3 HIV treatment rate 

da Mortality due to HIV 

a Modification parameter 

ı Modification parameter 

where  parameter  bc   is  the  effective  contact  rate  for  HCV  infec- tion 

to occur. Parameters 771, 772, a3 > 1 model the fact that dually infected 

individuals are more infectious than their corresponding 

  1   

aC 
Average time that an individual infected with HCV 

remains in a state of acute    infection 

counterparts. 

A fraction of newborns are infected with HIV during birth and hence 

are directly recruited into the infectious class, Ia, at a rate (1 − E)e. 

Other children die at birth (0 ≤ E ≤ 1), where E is the frac- tion of 

newborns infected with HIV that die immediately after birth, and e is the 
rate of newborns infected with HIV. The individuals infected with HIV, 
Ia, move at a rate p to the AIDS class, Aa. Indi- viduals showing 

symptoms of AIDS are treated at a rate v1, and die because of AIDS at a 

rate da. 

The individuals infected with HCV, Ic move to the susceptible 

class, S, after treatment at a rate r1. They can progress to a chronic 

stage, Cc, at a rate p1aC, where p1 is the proportion of infected indi- 

viduals who are chronic carriers and 1/aC is the average time that 
an individual infected with HCV remains in a state of acute infec- 

Individuals showing symptoms of AIDS, Aa, are infected with HCV 

at a rate aAC and move to class AaIc. The individuals in class AaIc are 

treated and recover from HCV infection at a rate r3 and move to class Aa or 

are treated and recover from AIDS stage at a rate v2 and move to class 

IaIc. The individuals in class AaIc become HCV chronic carriers at a 

rate p3aC and move to class AaCc. Parameter p3 is the proportion of 

individuals in AaIc class who are chronic carriers. Individuals showing 

symptoms of AIDS and with chronic HCV coinfection, AaCc, are treated 

for HIV at a rate v3, and move to IaCc. 

The following nonlinear system of ordinary differential equa- tions 

summarizes the description of the model: 

tion. The individuals with chronic HCV infection, Cc, die because of 

HCV at a rate dc. 

 
 

We now define the dynamics of the coinfection. The individ- uals 

infected with HIV, Ia, are infected with HCV at a rate aAC and move to 

class IaIc. Modification parameter a > 1 accounts for the fact that there is 

an increased risk of getting HCV for someone already infected with 

HIV, due to the vulnerability of the immune system. Reciprocally, the 

individuals infected with HCV, Ic are infected with HIV at a rate ıAH and 

move to the class IaIc. Parameter ı > 1 accounts for the increased 

susceptibility to HIV infection for HCV infected people, since HCV 

accelerates the decline of the immune function. Dually infected 

individuals, IaIc, recover from HCV infection at a rate r2 and move to 

class Ia. On the other hand, they can progress to AIDS at a rate p and 

move to class AaIc. Moreover, IaIc individ- 
uals may become HCV chronic carriers, at a rate p2aC, and move to 

 

 
 

 

 
 

 
 

class IaCc. Parameter p2 is the proportion of dually infected individ-  

uals who are chronic carriers. Dually HIV and chronic HCV infected  

individuals, IaCc, may progress to AIDS at a rate p and move to class 

AaCc. 

  



 

 

 

 

 

Fig. 2. Sketch of the bifurcation diagram of model (1), for different values of bh , the 

effective sexual contact rate for a HIV infection to occur. Remaining parameter values are 

given in Table 2. Green: stable disease free equilibrium, red: stable HIV endemic 

equilibrium. For more information, see text. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 
Fig. 3. Schematic bifurcation diagram of model (1), for different values of bc , the 

effective contact rate for HCV infection to occur. Remaining parameter values are given 

in Table 2. Green: stable disease free equilibrium, orange: stable HCV endemic equilibrium. 

For more information, see text. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 
Fig. 4. Sketch of the bifurcation diagram of model (1), for different values of c, the average 

number of sexual partners. Remaining parameter values are given in Table 2. Green: stable 

disease free equilibrium, red: stable HIV endemic equilibrium, black: stable full endemic 

equilibrium. For more information, see text. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

Fig. 5. Sketch of the bifurcation diagram of model (1), for different values of e, the fraction 

of newborns infected with HIV during birth. Remaining parameter values are given in 

Table 2. Red: stable HIV endemic equilibrium, green: stable disease free equilibrium. For 

more information, see text. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 
Fig. 6. Bifurcation diagram of model (1), for different values of r1 , the treatment rate for 

individuals solely infected with HCV. Remaining parameter values are given in Table 2, 

except for bc = 0.5. Orange: stable HCV endemic equilibrium, green: stable disease free 

equilibrium. For more information, see text. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 
Fig. 7. Sketch of the bifurcation diagram of model (1), for different values of r2 , the 

treatment rate for HCV of individuals dually infected with HIV and HCV. Remaining 

parameter values are given in Table 2, except for bh = 0.15, bc = 0.5 and aC = 0.43. 

Black: stable two disease endemic equilibrium, red: stable HIV endemic equilibrium. For 

more information, see text. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 8. Disease free equilibrium of system (1) for parameter values given in Table 2 and initial conditions (RHIV = 0.1813, RHCV = 0.7895, R0 = 0.7895). Remaining variables tend asymptotically 

to zero. 

 

  

We start by computing the reproduction number of the sys- tem (2), 

RHIV. We use the next generation method (Driessche and Watmough, 

2002). 

 

 

 
In Table 1, we summarize the parameters and the variables of 

  

model (1). 

 
2.2. Reproduction numbers and stability of disease free equilibria 

 

 

 

In this subsection, we compute the reproduction number of model 

(1), R0. The basic reproduction number is defined as the num- ber of 

secondary infections due to a single infection in a completely susceptible 

population (Driessche and Watmough, 2002). 

We begin by considering two sub-models of model (1). Model 

(2) is obtained from model (1) by setting the variables concerning HCV 

dynamics (Ic, Cc, IaIc, IaCc, AaIc and AaCc) to zero, and model 

(4) follows from model (1) by setting the variables concerning HIV 

dynamics (Ia, Aa, IaIc, IaCc, AaIc and AaCc) to zero. 

 

The disease free equilibrium of model (2) is given by: 
    
 

 

 
Using the notation in Driessche and Watmough (2002) on sys- tem (2), 

matrices for the new infection terms, F, and the otherterms, 
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Fig. 9. Stable endemic HIV equilibrium of system (1) for given parameter values in Table 2, except bh = 0.1, and initial conditions (RHIV = 2.1930, RHCV = 0.1813, R0 = 2.1930). Remaining 

variables go asymptotically to zero. 

 
 

V, are given by: 
We proceed with the computation of the reproduction number of 

submodel (4) below, RHCV. 

   
 

 

The associative basic reproduction number is given by: The disease free equilibrium state P2 of model (4) is given by: 

 

 
  

where p indicates the spectral radius of FV−1. By Theorem 2 in 

Driessche and Watmough (2002), we obtain the following lemma. 

Using the notation in Driessche and Watmough (2002) on sys- tem 

(4), matrices for the new infection terms, F, and the other terms, V, are 

given by: 

 
Lemma 1.   The disease free equilibrium P1  is locally   asymptotically  
stable if RHIV <1 and unstable if RHIV > 1. 
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Fig. 10. Stable HCV endemic equilibrium of system (1) for parameter values given in Table 2, except bc = 0.5, and initial conditions (RHIV = 0.7895, RHCV = 1.8129, R0 = 1.8129). Remaining 

variables tend asymptotically to zero. 

 

 

  

Using the notation in Driessche and Watmough (2002) on sys- tem 

(1), matrices for the new infection terms, F, and thee other terms, V, 

are given by: 

The associative basic reproduction number is given by:  

 

 

 

 

where p indicates the spectral radius of FV−1. By Theorem 2 in 

Driessche and Watmough (2002), we obtain the following result.  
Lemma 2.   The disease free equilibrium P2  is locally   asymptotically  

⎜ ⎟
 

stable if RHCV  <1 and unstable if RHCV  > 1.⎜  
We now continue with the calculation of the reproduction num- 

ber  of  the  full  model (1),  R0. The  disease  free  equilibrium  state, P0, 
 

 
of model (1) is given  by:  

⎜⎟
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Fig. 11. Stable two disease endemic equilibrium of system (1) for given parameter values in Table 2, except for bh = 0.15, aC = 0.43 and bc = 0.5, and initial conditions (RHIV = 3.2895, 

RHCV = 1.7764, R0 = 3.2895). 
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Fig. 12. Dynamics of the relevant variables of system (1) for different values of bh , the effective sexual contact rate for HIV transmission to occur, for given parameter values in Table 2 and 

initial conditions. For more information, see text. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

The associative basic reproduction number is computed to be: 

 
  

 
whe

re p indicates the spectral radius of FV−1. By Theorem 2 Driessche and 

Watmough (2002), we derive the following lemma. 
 

Lemma 3. The disease free equilibrium P0 is locally asymptotically 

stable if R0 <1 and unstable if R0 > 1. 

 
2.3. Global stability of the disease free equilibria 

 
In this section, we compute the global stability of the disease free 

equilibrium of the full model (1). We begin by calculating the stability 

of the disease free equilibria of the two submodels (2) and (4). 

Lemma 4. For model (2), the disease free equilibrium P1 is globally 

asymptotically stable if RHIV  <  1. 
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Fig. 13. Dynamics of the relevant variables of system (1) for different values of bc , the effective contact rate for HCV infection to occur. Parameter values are in Table 2 and initial conditions in 

the text. For more information, see text. 

 

Proof.  We use the comparison theorem to prove the global sta- 0) as t→∞ for RHIV < 1, so that P1 is globally asymptotically stable 

bility of the disease free equilibrium of submodel (2). The rate of 

change of the variables (Ia, Aa) of system (2) can be rewritten as 

follows. 

if RHIV < 1. D 

We now repeat the same procedure for the computation of the global 

stability of the disease free equilibrium of submodel (4). 
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 Lemma 5.   For the submodel (4), the disease free equilibrium P2 is 

   globally asymptotically stable if RHCV < 1. 

where F and V are as defined above for system (2). Since S ≤ N 

for all t ≥ 0, then: 

Proof. We use a comparison theorem to prove the global sta- bility of 

the disease free equilibrium of submodel (4). The rate of change of 

the variables (Ic, Cc) of system (4) can be rewritten 
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If RHIV < 1, then p(FV−1) < 1, which is equivalent to say that the 

matrix F − V  has all eigenvalues in the left-half plane (Driessche 

 

 

 

and Watmough, 2002). It follows that the linear system given by 

equality (9) is stable whenever RHIV  < 1, and hence (Ia(t), Aa(t)) → (0, 

where F and V are as defined above for system (4). Since S ≤ N 

for all t ≥ 0, then: 

0) as t→∞ for this linear ordinary differential equation (ODE) 

system. Consequently, after using a standard  comparison  theo- rem 
(Lakshmikantham et al., 1989; Smith and Waltman, 1995), we obtain 

(Ia(t), Aa(t)) → (0, 0), for the nonlinear system given by the 

 
 

last two equations of system (2). Returning now to the first equation of model (2) and substituting Ia = Aa = 0 in this equation, we obtain a linear 
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system with S(t) → A/µ. Thus, (S(t), Ia(t), Aa(t)) → (A/µ, 0, If RHCV < 1, then p(FV−1) < 1, which is equivalent to say that the 

matrix F − V has all eigenvalues in the left-half plane (Driessche and  
Watmough,  2002).  It  follows  that  the  linear  system    given 
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Fig. 14. Dynamics of the relevant variables of system (1) for different values of c, the average number of sexual partners per unit of time, for given parameter values in Table 2 and initial 

conditions. For more information, see text. 

 

 

by the equality (11) is stable whenever RHCV < 1, and hence (Ic(t), 

Cc(t)) → (0, 0) as t→ ∞ for this linear ODE system. Consequently, 

after using a standard comparison theorem (Lakshmikantham et al., 1989; 

Smith and Waltman, 1995), we obtain (Ic(t), Cc(t)) → (0, 0) for  the  

nonlinear  system,  given  by  the  last  two  equations  of  (4). Returning 

now to the first equation of submodel (4) and substitut- ing Ic = Cc = 0 in 

this equation gives a linear system with S(t) → A/µ. Thus, (S(t), Ic(t), 

Cc(t)) → (A/µ, 0, 0) as t→ ∞ for RHCV < 1, so that P2 is globally 

asymptotically stable if RHCV < 1. D 

The global stability of the disease free equilibrium of model (1), can 

only be achieved in very specific conditions, namely, when new 

coinfection cases are prevented from occurring. Patients infected with HIV 

or HCV could not become coinfected in such conditions. We feel that this 

condition is somewhat unrealistic and do not include it here. New 

techniques will be applied in future work in order to try to prove the 

global stability of the disease free equilib- rium. 

 

2.4. Bifurcation analysis of the model 

 
In this section, we use XPPAUT (Ermentrout, 2006) to draw 

schematic bifurcation diagrams for six relevant parameters of the 

model (1). Changing colors indicates a change in the stability of the 

equilibria. 

Fig. 2 is a sketch of the bifurcation diagram of model (1) for the 

variation of parameter bh, the effective sexual contact rate for a HIV 

infection to occur. We start from a disease free equilibrium and increase 

bh. At bh = 0.0456, there is a bifurcation point (1), at which the model 

bifurcates to the stable HIV endemic equilibrium. The color green means 

that the disease free equilibrium is stable and the color red means that it 

has lost stability, and now is the HIV endemic equilibrium that it is stable. 

Thus, increasing the effective sexual contact rate for HIV infection to 

occur will translate in new cases of HIV infections. 

Fig. 3 depicts the sketch of the bifurcation diagram of model (1), for 

different values of bc, the effective contact rate for HCV infec- tion to 

occur. We start from a stable disease free equilibrium and increase bc. 

At bc = 0.2758, there is a bifurcation point (1), where the model 

bifurcates to the stable HCV endemic equilibrium. This means that 

increasing the effective contact rate for HCV infection to occur will 

promote the appearance of new cases of  HCV. 

In Fig. 4 we plot a sketch of the bifurcation diagram of model (1), for 

variation of parameter c, the average number of sexual partners. We start 

from a disease free equilibrium and increase c. At c = 1.267, there is a 

bifurcation point (1), at which the model bifurcates to the 
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Fig. 15. Dynamics of the relevant variables of system (1) for different values of e, the fraction of newborns infected with HIV during birth, for given parameter values in Table 2, except for bh 

= 0.1, and initial conditions. For more information, see text. 

 
 

stable HIV endemic equilibrium. This means that increasing the 

average number of sexual partners of susceptible individuals will, as 

expected, translate in new cases of HIV infections. Increasing further 

c, a secondary bifurcation occurs at c = 8.651 (2), at which the model 

changes the dynamical behavior to a stable full endemic equilibrium. 

Biologically this implies that increasing the average number of sexual 

partners will burst coinfection cases. Note that as both diseases, HIV 

and HCV share the same transmission route, in this case, by sexual 

contact, increasing the average number of sexual partners affects both 

diseases. Moreover, as HCV is more difficult to be transmitted through 

sexual intercourse, it is reason- able that for HCV to occur a larger 

number of sexual partners is needed. 

In Fig. 5 we depict a schematic bifurcation diagram of model (1), for 

different values of e, the fraction of newborns infected with HIV during 

birth. We start from a stable HIV endemic equilibrium and decrease e. At 

e = 0.0084 there is a bifurcation point (1), at which the model bifurcates 

to the stable disease free equilibrium. The model predicts, in this case, 

that decreasing the number of infected newborns will decrease the number 

of HIV infected  individuals. 

Fig. 6 shows the sketch of the bifurcation diagram for differ- ent 

values of r1, the treatment rate for individuals solely infected with 

HCV. We start from a a stable HCV endemic equilibrium and increase r1. 

At r1 = 0.5277, there is a bifurcation point (1), at which the model 

bifurcates to the disease free equilibrium. This means that  increasing  

the  treatment  rate  for  individuals  solely infected 

 
with HCV is a successful strategy, since patients recover from HCV 

infection. 

In Fig. 7 we draw a schematic bifurcation diagram of model (1), for 

different values of r2, the treatment rate for HCV, of individ- uals 

dually infected with HIV and HCV. We start from a stable two disease 

endemic equilibrium. At r2 = 0.4203 there is a bifurcation point (1), at 

which the model bifurcates to the stable HIV endemic equilibrium. 

Biologically, this means that increasing the treatment rate for HCV of 

individuals dually infected with HIV and HCV leads to a recovery from the 

HCV infection. The individual returns to the stage of HIV solely infection. 

In the next section we will present numerical simulations where 

bifurcation between distinct equilibria can be observed, for varia- tion 

of the parameters considered above. 

 

 
3. Numerical results 

 
We present the numerical simulations of model (1). The param- eter 

values used in the simulations can be found in Table 2 and the following 

initial conditions S(0) = 500, Ia(0)= 10= IaIc(0), Aa(0)= 5, Cc(0)= 5, 

Ic(0) = 15, IaCc(0) = 10, AaIc(0)= 3, AaCc(0) = 1 are used. 

In Fig. 8, we plot the dynamics of the relevant variables of system (1). 

We observe that, for the given parameter values and initial 

conditions, the model approaches asymptotically the stable disease free 

equilibrium. 

  =0.1 
  =0.001 

S
u
s
c
e
p
ti
b
le

 p
o
p
u
la

ti
o
n
 

In
d
iv

id
u
a
ls

 s
h
o
w

in
g
 s

y
m

p
to

m
s
 o

f 
A

ID
S

 

In
d
iv

id
u
a
ls

 i
n
fe

c
te

d
 w

it
h
 c

h
ro

n
ic

 H
C

V
 



600 14 

 

  r1=0.25 
  r1=0.7 

  r1=0.25 

  r1=0.7 

In
d
iv

id
u
a
ls

 i
n
fe

c
te

d
 w

it
h
 H

C
V

 

  r1=0.25 

  r1=0.7
 12

 
500 

10 
400 

 

8 

300 

6 
 

200 
4 

 
100 2 

 

0 
0 100 200 300 400 500 600 

Time 

0 
0 100 200 300 400 500 600 

Time 

 

5 
 

4.5 
 

4 
 

3.5 
 

3 

160 

 
140 

 
120 

 
100 

 

2.5 80 
 

2 
60 

1.5 
40 

1 

0.5 
20

 
 

0 

 
40 

 
35 

 
30 

 
25 

 
20 

 
15 

 
10 

 
5 

 
0 

0 100 200 300 400 500 600 
Time 

 

Fig. 16. Dynamics of the relevant variables of system (1) for different values of r1 , the treatment rate for individuals solely infected with HCV, for given parameter values in Table 2, except for 

bc = 0.5, and initial conditions. For more information, see text. 

 

 
 

In Fig. 9, we observe that the model approaches asymptotically the 

stable endemic HIV equilibrium. 

Fig. 10 shows the stable endemic HCV equilibrium for system (1). 

In Fig. 11, we depict the dynamics of the variables of system (1). 

We observe that, for the given parameter values and initial 

conditions, the model approaches asymptotically the stable two 

disease endemic equilibrium. 

Fig. 12 shows the dynamics of the variables of system (1) for 

different values of bh, the effective contact rate for HIV infection to 

occur. We observe that as bh increases  the  system  (1)  bifur- cates from 

the stable disease free equilibrium to the stable HIV endemic 

equilibrium. Realistically, augmenting the sexual contact rate between 

individuals is followed by a burst of HIV  infection. 

In Fig. 13, it is shown the dynamics of the variables of system (1) for 

different values of bc, the effective contact rate for HCV infection to occur. 

We observe that as bc increases the system (1) bifurcates from the stable 

disease free equilibrium to the stable HCV endemic equilibrium. This 

behavior translates, biologically, in new cases of HCV for higher values of 

bc. 

Fig. 14 depicts the behavior of system (1) for different values of c, the 

average number of sexual partners per unit of time. We observe 

that as c increases the system (1) bifurcates from the stable disease free 

equilibrium to the stable HIV endemic equilibrium and then, increasing 

further the value of c, there is another bifurcation to the full endemic 

equilibrium. Biologically, this means that augmenting the average 

number of sexual partners fuels the appearance of new cases of HIV 

infection, and, after some value, it even promotes the appearance of 

coinfection cases. 

In Fig. 15 are depicted the dynamics of the variables of system 

(1) for different values of of e, the fraction of newborns infected with 

HIV during birth. We observe that as e increases the system 

(1) bifurcates from the stable disease free equilibrium to the stable HIV 

endemic equilibrium. 

In Fig. 16 we plot the behavior of system (1) for different val- ues 

of r1, the treatment rate for individuals solely infected with HCV. We 

observe that as r1 increases the stable HCV endemic state gives rise to the 

stable disease free equilibrium. This means that the treatment was 

successful and patients recovered from  HCV. 

In Fig. 17 we can observe the effects on the dynamics of model (1), 

for variation of r2, the treatment rate for individuals dually infected 

with HIV and HCV. As r2 increases the system (1) bifur- cates from 

the stable full endemic equilibrium to the stable HIV endemic 

equilibrium. Thus, patients recover from HCV  infection. 
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Fig. 17. Dynamics of the relevant variables of system (1) for different values of r2 , the treatment rate for HCV in individuals dually infected with HIV and HCV, for given parameter values in 

Table 2, except for bh = 0.15, bc = 0.5, and aC = 0.43, and initial conditions. For more information, see text. 

 

Table 2 

Parameters used in the numerical simulations of model (1). Where appropriate the units are 

year−1 . 
 

 

Parameter Value Reference 
 

 

c 1 Estimated 

bh 0.036 Hollingsworth et al. (2008) 

a3 1.0002 Estimated 

bc 0.05 van de Laar et al. (2010) 

771 1.0002 Bhunu and Mushayabasa (2013) 

772 1.002 Estimated 

A 12 Estimated 

µ 0.02 Bhunu and Mushayabasa (2013) 

r1 0.25 Bhunu and Mushayabasa (2013) 

r2 0.2 Estimated 

r3 0.15 Estimated 

p 0.1908 Nyabadza and Mukandavire (2011) 

a 1.001 Bhunu and Mushayabasa (2013) 

E 0.2 Waziri et al. (2012) 

e 0.1 Estimated 

v1 0.2 Bhunu and Mushayabasa (2013) 

v2 0.2 Estimated 

v3 0.15 Estimated 

da 0.33 Bhunu and Mushayabasa (2013) 

dc 0.2801 Bhunu and Mushayabasa (2013) 

ı 1.001 Bhunu and Mushayabasa (2013) 

p1 0.43 Sanchez et al. (2013) 

p2 0.45 Estimated 

p3 0.47 Estimated 

    a C 0.1667 Sanchez et al.  (2013)   

4. Conclusion 

 
In this paper, we analyzed a mathematical model for the coinfec- tion 

of HIV and HCV, that includes treatment for both diseases, and vertical 

transmission in the case of HIV. We studied the local sta- bility of the 

disease free equilibria for the full model and the global stability of the 

disease free equilibria for the two submodels (HCV only and HIV only 

submodels). XPPAUT was used to sketch bifur- cation diagrams, for 

relevant parameters, e.g., the mean number of sexual partners, the sexual 

contact rates, and the treatment rates. Numerical results illustrate the 

change on the dynamical behavior of the model for these parameters. The 

outcomes suggest that spe- cific measures should be considered, by the 

policy makers, in order to reduce HIV infection, such as: distributing more 

condoms to indi- viduals; develop campaigns in order to warn individuals 

about the consequences of having many sexual partners; continuing 

treat- ment for AIDS and pursuing the investigation of new and better 

drugs to combat HIV, treat newborns infected with HIV and advise 

pregnant women for the benefits of HIV treatment. Considering HCV 

infection, treatment is highly recommended as well as other measures 

(e.g., more informational campaigns about the disease, its transmission 

routes, amongst others) in order to decrease the num- ber of infectious and 

of chronic carriers. Future work will focus on the study of regular 

screening for HIV and of condom use, of the effects of needle sharing, 

as well as an application/validation of the 
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model to real portuguese data, with corresponding estimation of 

parameter values. 
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through the FCT – Fundaç ão para a Ciência e a Tec- nologia under the 

project PEst-C/MAT/UI0144/2013. The research of  AC  was  partially  

supported  by  a  FCT  grant  with  reference SFRH/BD/96816/2013. 

We thank the anonymous reviewers for their valuable com- ments 

and helpful suggestions that very much contributed to the improvement 

of the quality of our paper. 

 
References 

 
Alter, M.J., 2006. Epidemiology of viral hepatitis and HIV co-infection. J. Hepatol. 44, S6–

S9. 

Bhunu, C.P., Mushayabasa, S., 2013. Modelling the transmission dynamics of HIV/AIDS and 

hepatitis C virus co-infection. HIV AIDS Rev. 12, 37–42. 

Corson, S., Greenhalgh, D., Taylor, A., Palmateer, N., Goldberg, D., Hutchinson, S., 2013. 

Modelling the prevalence of HCV amongst people who inject drugs: an investigation 

into the risks associated with injecting paraphernalia sharing. Drug Alcohol Depend. 133 

(1),  172–179. 
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