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Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been 
detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies 
focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the 
ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance 
(fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their 
ecotoxicity. Effective con-centrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L−1 were obtained in 
the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 
10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. 
Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological 
effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.
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Introduction
Over the last decade, the consumption of antidepressants 
has considerably been growing in Europe [1] and Iceland, 
Denmark and Portugal head the ranking of the European 
countries with the highest levels of consumption.[2]

Selective serotonin reuptake inhibitors (SSRIs) are 
amongst the most widely used antidepressants, fluoxetine 
being one of the most prescribed.[3] It stands out in the treat-
ment of major depression, anxiety disorders and obsessive–
compulsive disorders [4] and acts by inhibiting the reuptake 
of the neurotransmitter serotonin from the synaptic cleav-
age, enhancing serotonergic neurotransmission.[4]

Fluoxetine has been detected in surface waters [5–9] and 
wastewaters [10–13] within the ng L−1 range. In Canada, 
it was detected in surface waters adjacent to discharges of 
wastewater treatment plants (WWTPs) effluents reaching 
maximum concentrations of 46 ng L−1.[14]

Discharge of WWTPs was identified as one of the most 
important sources of entrance of pharmaceuticals into the 
environment. However, direct disposal of pharmaceuticals 
into the sink/toilet or via waste collection can also be 
pointed out as sources of environmental contamination by 
pharmaceuticals.[15,16] Therefore, besides the ecotoxico-
logical risk caused by pharmaceuticals, environmental risk 
assessment should also be extended to excipients, since they 
are an import part of the final medicine. However, in liter-
ature, environmental risk assessment of excipients is rarely 
focused.[17,18]

Serotonin is also an important neurotransmitter in 
hormonal and neuronal mechanisms, participating in reg-
ulatory and endocrine functions in lower vertebrates and 
invertebrates.[15] Thus, the presence of fluoxetine in the 
environment, even at low concentrations (few ng L−1), 
can adversely affect aquatic organisms. Christensen et al.
[19] studied five SSRIs toxicity towards algae and crus-
taceans, showing that fluoxetine was the most toxic for 
the alga Pseudokirchneriella subcapitata with an effec-
tive concentration that causes 50% of inhibition (EC50), 
for a 48 h period, of 27 μg L−1; while Brooks et al. [20] 
reported a decrease in P. subcapitata growth when exposed 
to 14 μg L−1 of fluoxetine. The same authors also described 
a decrease in Ceriodaphnia dubia fecundity for concentra-
tions of 223 μg L−1.[21] Fish species are also affected by 
the exposure to fluoxetine, which is able to significantly 
reduce their growth [22] and also affect their reproduction, 
being reported an increase in developmental abnormalities 
in fish embryos as well as in the plasmatic concentration of 
oestradiol in females.[23] On the other hand, the locomo-
tion of the epibenthic crab Carcinus maenas is significantly 
increased for concentrations of fluoxetine equal or above 
120 μg L−1.[24]

In the present work, the toxicity of five medicines (three 
generic and two brand labels) used in the treatment of 
depression, which are available in the Portuguese market, 
was tested on the alga Chlorella vulgaris. All the medicines 
have the same active substance – fluoxetine. Their effect in
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Table 1. Excipients of the studied medicines according to the producers.

Digassim Prozac Fluoxetina Actavis Fluoxetina Ratiopharm Fluoxetina Sandoz

Cornstarch Cornstarch Pre-gelatinized cornstarch Lactose monohydrate Microcrystalline cellulose
Dimethicone Dimethicone Anhydrous colloidal silica Microcrystalline cellulose Pre-gelatinized starch
Gelatinea Patent blue V (E131)a Magnesium stearate Magnesium stearate Talc
Titanium oxide

(E171)a
Yellow iron oxide

(E172)a
Talc Anhydrous colloidal silica Gelatinea

Indigo carmine
(E132)a

Titanium oxide
(E171)a

Quinoline yellow (E104)a Gelatinea Yellow iron oxide (E172)a

Red iron oxide Gelatinea Erythrosine (E127)a Titanium dioxide (E171)a Titanium oxide (E171)a

(E172)a Shellaca Indigo carmine (E132)a Yellow iron oxide (E172)a Shellaca

Black iron oxide Titanium oxide (E171)a Quinoline yellow (E104)a Soy lecithin
(E172)a Gelatinea Indigo carmine (E132)a Antifoam dc150

Shellac glazea Black iron oxide (E172)a

Black iron oxide (E172)a

aCapsule constituents (not tested).

Figure 1. Chemical structure of fluoxetine.

the growth rate of the alga was evaluated over a 72-h period.
The aim of the work was to evaluate the chronic toxicity of
fluoxetine in this alga as well as to assess the contribution of
excipients for the observed toxicity. Algae were chosen as
test organisms because any disturbance in their dynamics
might affect the higher levels of trophic chain. The unicel-
lular green alga C. vulgaris was selected as test organism
due to its good sensitivity to toxicants,[25,26] it is easily
cultured in laboratory [27,28] and is representative of the
algae present in nature, being found in freshwater, saltwater
and soil.[29]

Materials and methods
Test substances
Five medicines containing fluoxetine hydrochloride as
active substance were studied. Three of them are generic
(Fluoxetina Actavis®, Fluoxetina Rathiopharm® and Flu-
oxetina Sandoz®); and Digassim and Prozac are two brand
labels from Vitória and Lilly laboratories, respectively. All
the medicines are commercialized as capsules and were
obtained in the local market. Each capsule contains 20 mg
of fluoxetine hydrochloride, which corresponds to approxi-
mately 10% of the capsule content, and different excipients
that are enumerated in Table 1 by decreasing order of weight
percentage. Only the capsule content was used in tests. The
chemical structure of fluoxetine is presented in Figure 1.

Test organism
The ecotoxicity tests were carried out with the freshwater
unicellular green alga C. vulgaris. The test organism was
cultured in laboratory under aseptic conditions. A new cul-
ture was started weekly by aseptically transferring 1–2 mL
of stock culture to a 50–100 mL of new culture medium
in order to adapt the alga to the test conditions and ensure
that the alga is in exponential growth phase when it was
used to inoculate the test solutions. The stock cultures were
kept at 21 ± 2 ◦C, under cool white fluorescent lighting,
for four days. Agitation was performed by filtered air bub-
bling. Each stock culture was examined with an optical
microscope (Nikon Alphaphot-2 YS2) to ensure that there
were no contaminating microorganisms. The medium for
the algal growth inhibition test was prepared in accordance
with the OECD Test Guideline 201,[30] using deionized
water with conductivity lower than 5 μS cm−1 and suitable
nutrients. The final pH of the nutrient medium solution was
approximately 8.

Bioassays
The tests were carried out based on the OECD 201 Guide-
lines and the US EPA suggested procedure.[30,31] The
algae population was exposed in a static non-renewal
system, to series of different concentrations of medicine
between 0.25 and 18.5 mg L−1, for 72 ± 2 h, in order to
evaluate its chronic toxicity. The test temperature was
21–24 ± 2 ◦C (maximum variation = 3 ◦C), using contin-
uous illumination (‘Cool white’ fluorescent lighting, 6000
to 10,000 lux) and a test solution volume of 100 mL. Three
replicates were tested.

The inoculum of the green alga, C. vulgaris, pro-
vided a concentration around 106 cells/mL in each test
flask. Initial biomass did not exceed 0.5 mg L−1 as dry
weight, allowing exponential growth through the incubation
period, without risk of nutrient depletion. Aseptic tech-
niques were used in the algal cultures, handling and extreme



care were exercised to avoid contamination. A laminar air
flow chamber (FASTER, model two-30) and a sterilization
chamber (AJC, model Uniclave 88) were used.

A set of four different concentrations and a control were
used for each sample tested, except for Fluoxetina Sandoz
for which an additional lower concentration was tested. The
diluted water was the culture medium, in order to avoid
nutrient limitation.

The test flaks position was randomized and changed
daily, being agitated twice by hand. The agitation by air
bubbling was not used in order to prevent changes in the
concentration and pH.[30,31]

The growth of the algae population was measured in
terms of changes in cell density, which was evaluated by
optical density (Shimadzu UV-2101 PC spectrophotome-
ter) at 440 nm.[28,32] A linear relationship was verified
between cell counts and biomass versus optical density. The
optical microscope was used for cell counts. The biomass
was determined by filtration over a 0.45 μm membrane
(GN-6 Metricel Grid, Pall Corporation) followed by drying
until constant weight.

The pH (Crison® CWL/s7 combined glass electrode
connected to a decimilivoltammeter Crison®, pH meter,
GLP 22) was evaluated in the beginning and at the end of
the test, its variation should not exceed 1.5.

The test conditions were validated through the use of a
reference toxicant, the potassium dichromate, tested in the
same conditions.[31]

Data analysis
The optical density values obtained at 440 nm [32] were
transformed in cell density (cells/mL) using the linear
experimental relation previously determined. The accept-
ability criterion considered was variability less than 20%
among replicates.

The statistical analysis of results was done as suggested
by EPA.[31] The EC50 was calculated using a point esti-
mation technique, the linear interpolation method. Due
to the use of a linear interpolation technique to calculate
an estimate of the EC50, standard statistical methods for
calculating confidence intervals are not applicable.

Results and discussion
The chronic toxicity of five medicines (three generic and
two brand labels) with the same active substance (flu-
oxetine) was tested on the alga C. vulgaris. Considering
that medicines were tested as a whole (pharmaceutical
plus excipients) and subjected to a very rigorous quality
control (concentrations and stability) by pharmaceutical
industry, it was assumed that the real concentrations of
fluoxetine are the nominal ones. According to literature
[30,31] it was considered that there was no significant
change in the nominal concentration during the test period
(less than 20%). Moreover fluoxetine has low volatility

Table 2. Toxicity of the five studied medicines
containing fluoxetine to Chlorella vulgaris.

Medicine 72 h EC50 (mg L−1)

Fluoxetina Actavis 0.57
Fluoxetina Ratiopharm 15
Fluoxetina Sandoz 0.25
Digassim 3.8
Prozac 8.1

and biodegradability, being described as one of the most
persistent pharmaceuticals in the environment.[33]

The obtained average inhibition rates, and also the max-
imum and minimum values, are presented in Figure 2. It
was noticed that there was an increasing growth inhibition
of algae to increasing concentrations of the tested medicine.

EC50 ranging from 0.25 to 15 mg L−1 were obtained in
the growth inhibition test performed on C. vulgaris for the
different medicines (Table 2). The corresponding values for
fluoxetine content are 10 times lower. Nevertheless, a higher
value (EC50 = 4.3 mg L−1) was previously published for
C. vulgaris, when exposed to fluoxetine for a period of
96 h,[34] albeit the incubation time used was lower (72 h).

Although similar EC50 values were reported in literature
for the algae Scenedesmus acutus and S. quadricauda, with
EC50 of 91 and 213 μg L−1, respectively,[34] and also for P.
subcapitata (EC50 ranging from 24 to 90 μg L−1).[3,19,20,
34] The latter also showed smaller cells with deformities for
13.6 μg L−1 of fluoxetine.[20] On the other hand, this SSRI
did not show any effect on the efficiency of photosynthesis
of P. subcapitata. [3]

In the present study the medicines were tested as a whole
(active substance plus excipients), since the quantitative
composition of the medicine is not of public domain and
excipients represent 90% of their total weight. They share
the same active substance (fluoxetine), so differences in
their toxicity might be attributed to the excipients attend-
ing that: all test conditions were the same, being controlled
and kept constant; experiments were made in triplicate,
the results being reproducible among replicates; the only
parameter that changed was the supplier of the medicine,
which implies different composition in terms of excipients
and their quantities.

As it was mentioned, EC50 values are lower than data for
fluoxetine toxicity in C. vulgaris, which could be attributed
to the presence of excipients. In accordance with litera-
ture, most of the excipients present in the studied medicines
(Table 1), namely starch, cellulose and lactose, are con-
sidered environmentally safe.[17] The lowest EC50 values
were obtained with two generic formulations (Fluoxetina
Sandoz and Fluoxetina Actavis). This could be due to the
presence of talc in their formulations (Table 1), which might
have caused some turbidity in the test solution decreasing
the penetration of light and, consequently, the growth of
the alga.



Figure 2. Inhibition rates for: (a) Fluoxetina Actavis; (b) Fluoxetina Rathiopharm; (c) Fluoxetina Sandoz; (d) Digassim; (e) Prozac.

Fluoxetine has been detected in surface waters at
concentrations of few ng L−1. For example, 66.1 ng L−1

were detected in the Henares–Jarama–Tajo river sys-
tem (Spain),[9] in USA surface waters levels can go
upto 43.2 ng L−1,[7] while in St Lawrence river (Canada)
concentrations ranging from 0.42 to 1.3 ng L−1.[5] Attend-
ing to the EC50 values obtained in the present study
(Table 2), environmental concentrations of fluoxetine may
not pose a risk for algae. However, it was proved that dif-
ferent SSRIs can have additive effects,[3,19] therefore as
pharmaceuticals contaminate the environment as a mixture
and not as single compounds, should be taken into account
that fluoxetine might have toxicity for non-target organisms
even at lower concentrations. On the other hand, the chronic
exposure of fish to low levels of fluoxetine may cause neg-
ative effects in reproduction or behavioural functions.[20]
For instance, a decrease in swimming velocity was observed
when the Arabian killifish was exposed to concentrations of
fluoxetine as lower as 0.03 μg L−1,[35] while a delay in the

development of external sexual morphology in both male
and female western mosquitofish was reported for the levels
of 71 μg L−1.[36]

In fact, fluoxetine was included in a shortlist of 10 phar-
maceuticals potentially dangerous for aquatic organisms
due to environmental exposure (by WWTP effluents) that
should be further monitored.[37]

Conclusions
The evaluation of chronic toxicity of five medicines (three
generic and two brand labels) with the same active sub-
stance (fluoxetine) to the alga C. vulgaris was performed
on a 72 h growth inhibition test. EC50 ranging from 0.25
to 15 mg L−1 were obtained for the studied medicines,
corresponding to concentrations 10 times lower than that
of fluoxetine. Higher EC50 values were reported in lit-
erature for the same alga, taking into account only the
toxicity of fluoxetine. Therefore, the observed increase in



toxicity may be attributed to the presence of excipients.
However, nowadays there is a scarce knowledge in eco-
toxicity of excipients present in pharmaceutical products.
Although they are present in small amounts, environmen-
tal risk assessment should consider the whole medicine
(active substance(s) plus excipients). Therefore more stud-
ies on ecotoxicological effects of excipients are required
in order to assess the environmental risk they may pose to
aquatic organisms, since they show a more realistic impact
of medicines than testing only their individual constituents.
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