
 

 

Analysis of pesticide residues in strawberries and soils by GC-MS/MS, 
LC-MS/MS and two- dimensional GC-time-of-flight MS comparing 
organic and integrated pest management   farming 
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Nuno Mateus, Valentina F. Domingues and Cristina   Delerue-Matos 

 
This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to 
compare the residue profiles from organic farming with integrated pest management practices in 
Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, 
effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 
pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass 
spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and 
untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass 
spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for 
the shared samples. The results were similar, thereby providing satisfactory confirmation of both 
similarly positive and negative findings.  No  pesticides  were  found  in  the  organic-farmed  samples.  In  
samples  from  integrated  pest    management 
practices,  nine  pesticides  were  determined  and  confirmed  to  be  present,  ranging  from  2  µg  kg−1   for   fluazifop-p- 
butyl to 50 µg kg−1 for fenpropathrin. Concentrations of residues in strawberries were less than 
European maximum residue limits. 

Keywords: pesticide residue confirmatory analysis; chromatography; mass spectrometry; QuEChERS; 
strawberry; soil; farming practices 

 

 
Introduction 

Technical innovations in crop protection have been a 

major reason for globalised food production and 

distribution over the past several decades. The ease of 

year-round consumer access to foodstuffs from distant 

growing regions has depended, in part, on new 

pesticides that combat the historic foes of food 

production: weeds, fungi and insect/arachnid pests 

(Meng et al. 2010). Hundreds of pesticides are widely 

used in current agri- cultural practices around the 

world, and it is not uncom- mon for residues of these 

pesticides to contaminate the environment and remain 

on food products, especially in fruit and vegetables 

(EUROPA – Food Safety – Rapid Alert System for Food 

and Feed – RASFF Portal; Koesukwiwat et al. 2010). In an 

attempt to avoid exces- sive human and environmental 

exposure to agrochem- icals, regulators worldwide have 

established MRLs to protect environmental and 

consumer health  (USDA, MRL database). 

Some proponents of organic agriculture believe that 

organically produced foods are more beneficial to 

human health  than  foods  produced  using  

conventional farming 

 
practices. Some hold an opposing view, and many others 

doubt if there is any difference (Winter & Davis 2006). 

Several studies have reported that there is insufficient 

evidence to draw valid conclusions, as the scientific 

research has not proven that organic foods are 

superior in nutritional quality and safety (Romero-

Gonzalez et al. 2011; Fernandes et al. 2012). Contrary to 

what most people believe, ‘organic’ does not 

automatically mean ‘pesticide-free’ or ‘chemical-free’. 

Previously, pesticides were found in food samples grown 

using organic farming (OF) as well as integrated pest 

management (IPM) prac- tices (Baker et al. 2002; Lopes 

& Simões 2006; Mladenova & Shtereva 2009; Fernandes 

et al. 2011, 2012a; Kovacova et al. 2013). 

To ensure that proper agricultural practices are being 

followed, monitoring is required, but the task turns out 

to be more difficult as the number of targeted and non- 

targeted pesticides of concern grows. In accordance with 

today’s practices (SANCO/12495/2011 2011), limits of 

identification (LOI) and quantification (LOQ) in the com- 
plex matrices should be <10 ng g–1. Furthermore, the time 
and  cost  of  analysis  should  be  kept  to  a     minimum. 
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Therefore, simple and rapid methods for screening hun- 

dreds of pesticides at trace levels in various matrixes 

provide the most effective approach to meet 

regulatory needs. 

The widely divergent chemical properties (polarity, 

volatility, stability, etc.) of pesticides tend to call for the 

application of different analytical methods (Meng et al. 

2010). For non-polar and semi-polar pesticides, the 

detection of pesticide residues is commonly achieved 

through analysis with GC coupled to different detectors, 

particularly MS. For polar and semi-polar compounds, 

pesticide residue detection is generally achieved using 

LC-MS/MS (Zhang et al. 2011).  LC-MS/MS  methods for 

pesticides are typically devised to target carbamates, 

phenylureas, anilides, triazoles, macrocyclic lactones, 

neonicotinoids, strobilurins, triazines, relatively polar 

organophosphates and other pesticides totalling in the 

hundreds as frequently reported (Kmellar et al. 2010; 

Zhang et al.  2011). 

For sample preparation prior to MS-based analysis, 

the QuEChERS approach is commonly used to provide 

high recoveries of a wide range of pesticides in food and 

other matrices (Paya et al. 2007; Lehotay et al. 2010; 

Wilkowska & Biziuk 2011). The QuEChERS approach has 

evolved from the original unbuffered version 

(Anastassiades et al. 2003) to a pair of multi-laboratory- 

validated methods using acetate buffering (AOAC Official 

Method 2007.01) (Lehotay 2007) or citrate buffering 

(CEN Standard Method EN 15,662) (Koesukwiwat et al. 

2011). QuEChERS is a very flexible template that has 

been modified for different purposes depending on the 

analytes, matrices, analytical instruments and analyst 

pre- ferences (Lehotay et al. 2011). 

Ideally, non-targeted analysis capable of detecting 

any     contaminant     of     concern     at  

concentrations 
>10  ng   g–1    in   food  would  be  performed.  For   GC- 
amenable analytes, very wide chemical coverage is 

achievable with exceptional selectivity, including the 

power of mass spectral deconvolution and library- 

searchable spectra, using comprehensive, 2D GC with 

time-of-flight mass spectrometry (GC × GC-TOF-MS) 

(Amodio et al. 2007; van der Lee et al. 2008). For LC- 

based analytes, UPLC using high-resolution MS with 

TOF or orbi-trap techniques provides the current state- 

of-the-art approach reported in the literature (Mol et 

al. 2012; Wang et al. 2012). Currently, such 

instrumenta- tion is expensive and not yet fully 

validated in residue applications, thus targeted 

monitoring using  LC-MS/ MS is more common, which 

also  yields  much lower LOI and LOQ in complex  

samples.  Some authors defend that the  time of  

analysis is  very important  and a fast GC-MS 

methodology appears in this direction. LP-GC-MS 

commonly uses a short mega-bore analyti- cal column, 

connected through  a  connector  to  a short, 



 

narrow restrictor column at the inlet, providing 

at the injector similar conditions to those  of  a 

conventional GC method, while sub-

atmospheric pressure conditions occur 

throughout the  analytical column. 

The aim of this study was to use LC-MS/MS 

and GC- MS/MS for up to 193 targeted 

pesticides and GC × GC- TOF-MS for a 

potentially unlimited number of pesticides in 

strawberry and soil after rapid sample 

preparation by QuEChERS. The results would be 

compared for those pesticides detected, which 

also provides confirmation and greater 

confidence in the findings. Samples originated 

from OF and IPM production, which allowed 

comparative assessment of pesticide residue 

levels when using those farming practices. 

 

Materials  and methods 

Chemicals  and materials 

Strawberries using OF and IPM practices were 

collected in the first week of May on 2 

consecutive years (2009 and 2010) from a plot 

near the centre of Portugal. Different varieties 

of strawberries were collected including Siba, 

Camarosa, Festival and Albion in both farming 

approaches. Crop soils from which the 

strawberries were grown were also collected 

at the same time. In all, 22 samples were 

collected (eight batches of strawberries and 

eight related soils from OF and three batches of 

strawber- ries and soil from IPM). 

The list of pesticides included in the study 

was selected based on methods from previous  

studies (Lehotay  et  al.  2010;  Koesukwiwat  et  

al.  2011;  Mol et al. 2011) taking into account 

pesticides used in straw- berry production in 

Portugal (Lopes & Simões 2006). For the 

targeted pesticides in the study, high-purity 

pesticide standards were obtained from 

Chemservice (West Chester, PA, USA), the 

Environmental Protection Agency National 

Pesticide Repository (Fort Meade, MD, USA), and 

Dr. Ehrenstorfer GmbH (Augsburg, Germany). 

The isotopi- cally labelled internal standard (IS), 

atrazine-d5, was pur- chased from C/D/N 

Isotopes (Pointe-Claire, QC, Canada). For use as 

quality control (QC) standards, triphenylpho- 

sphate (TPP) was from Sigma-Aldrich (St. 

Louis, MO, USA) and 4,4´-dichlorobenzophenone 

was obtained from Sigma-Aldrich (Steinheim, 

Germany). Acetonitrile (MeCN) was of HPLC 

grade from J.T. Baker (Phillipsburg, NJ, USA), and 

formic acid  (88% purity) was obtained from 

Spectrum (New  Brunswick,  NJ, USA); deionised 

water of 18.2 Ω-cm was prepared with an E-Pure 

Model D4641 from Barnstead/Thermolyne 

(Dubuque, IA, USA). 

Commercial QuEChERS extraction packets were 

obtained from UCT (Bristol, PA, USA) for the citrate- 

buffered version, which contained 6  g  anhydrous 

MgSO4,  1.5  g  sodium  chloride,  1.5  g  trisodium citrate 



 

 

dihydrate and 0.75 g disodium hydrogenocitrate 

sesquihy- drate. For dispersive solid-phase extraction (d-

SPE) clean- up, the commercial QuEChERS kits included 2 

ml mini- centrifuge tubes containing 150 mg primary 

secondary amine (PSA) sorbent, 50 mg C18 and 150 mg 

anhydrous MgSO4. 

 
 
 

Sample preparation 

For strawberries, 10 g homogenised strawberries was 
weighed into a 50 ml centrifuge tube and 10 ml of MeCN 
were added. For soil, 5 g were weighed into a 50 ml cen- 
trifuge tube and 10 ml of MeCN and 3 ml of water were 
added. All samples were fortified with 100 µl of a QC 
standard  (4,4´-dichlorobenzophenone  at  10  µg  ml–1).  
The 
resulting extracts were shaken for 1 min followed by the 

addition of a QuEChERS extraction salts packet described 

above. The centrifuge tubes were capped and shaken vigor- 

ously for another 1 min and centrifuged at 1448 rcf for 5 

min at RT. In the case of soil, the tubes were also 

sonicated for 5 min in an ultrasonic bath working at 50/60 

Hz and 100 W from Selecta (Barcelona, Spain) before 

centrifugation. An aliquot of 1.5 ml was transferred from 

the upper layers   into a 2 ml mini-centrifuge tube for clean-

up, vortexed for 1 min and centrifuged for 5 min at 1448 rcf 

at RT. Subsequently, an aliquot of 900 µl was transferred 

into an autosampler vial 

and 100 µl TPP spiking solution (10 µg ml–1) were added to 

all strawberry and soil extracts before   analysis. 

 

 
LP-GC-MS/MS 

Using similar conditions as described previously 

(Koesukwiwat et al. 2010), the first analyses were 

per- formed on an Agilent (Palo Alto, CA, USA) 7890A 

GC– 7000A triple-quadrupole  mass  spectrometer.  

Injection of 5 µl into the Agilent multimode inlet 

(MMI) was made using a MPS2 autosampler controlled 

by Maestro software (Gerstel Corp., Linthicum, MD, USA). 

The LP-GC separa- tion was conducted on a 15 m × 0.53 

mm i.d. × 1 µm film thickness   Rti-5ms   analytical   

column    coupled    to   a 5 m × 0.18 mm i.d. 

HydroGuard non-coated restriction capillary (both from 

Restek, Bellefonte, PA, USA). Ultra- high purity helium 

(Airgas, Radnor, PA, USA) was used as 

the carrier gas at 2 ml min–1  constant flow rate. The  oven 
temperature was programmed at an initial temperature 

of 70°C (held for 1.5 min), then ramped at 80°C min–1 to 

180° C, then to 250°C at 40°C min–1, followed by a 70°C 

min–1 ramp  to  290°C,  where  the  temperature  was  
held    for 

4.5 min. The MS transfer line and ion source 

temperatures were set at 250°C and 320°C, respectively. 

Electron ionisa- tion energy of –70 eV was used with a 

filament-multiplier delay of 3 min. A full autotune of the 

mass spectrometer using   the   default   parameters   of   

the   instrument was 

 

Table 1.    Pesticides monitored in the three analytical methods. 

  

Method Pesticide list 

  
GC Acephate, alachlor,  atrazine, atrazine-d5,a  azinphos-ethyl, azinphos-methyl, azobenzene,b  azoxystrobin,a    

benzoylurea,b bifenthrin, bromophos, bromophos-ethyl, bromopropylate, bromoxynil octanoate,b 

bupirimate, buprofezin, butocarboxim,b butylated hydroxytoluene,b  cadusafos, captafol,a  captan, carbaryl, 
carbofuran, carbophenothion,    carfentrazone-ethyl, 
chinomethionat, cis-chlordane, trans-chlordane, chlordecone,b  chlorfenvinphos, chlorothalonil,   
chlorpropham, 
chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, α-cyfluthrin, β-cyfluthrin, λ-cyhalothrin, α-
cypermethrin, β-cypermethrin, cyprodinil, dazomet, deltamethrin,a demeton-s-methyl, demeton-s-
methyl sulfone,a diazinon, pp´- dibromobenzophenone,b  dichlofenthion,  pp´-dichlorobenzophenone,  
dicloran,  dicrotophos, dicyclopentadiene,b 

dimepiperate,b dimethoate, dioxacarb,b dioxathion, diphenylamine, disulfoton, disulfoton-sulfone, 

ethalfluralin, ethiolate,b ethion, ethofumesate 2-keto,b ethoprophos, ethoxyquin, esfenvalerate,a famphur, 

fenamiphos, fenarimol, fenchlorphos, fenhexamid, fenitrothion, fenobucarb,b fenpropathrin, fensulfothion, 

fenthion, fenthion-d6, fenthion-sulfone, fenuron,b fenvalerate I, fipronil, flamprop-methyl,b  fluazifop-butyl, 

flucythrinate, fludioxonil, flumioxazin,b    flurenol-butyl,b 
τ-fluvalinate, folpet, fonofos, furmecyclox,b  heptachlor, heptachlor epoxide (iso A), heptachlor epoxide (iso 
B), 

heptenophos, ioxynil octanoate,b iprodione, isocarbamide,b isofenphos, isoprocarb,b kepone,a kresoxim-

methyl, leptophos, malathion, mepanipyrim, mepronil,b metalaxyl, methacrifos, methanimidamide n-(24-

dimethylphenyl)-n´-methyl,b methfuroxam,b methidathion, methiocarb, methyl-parathion,a metolachlor, 



 
metribuzin, mevinphos (sum isomers), mirex, myclobutanil, cis-nonachlor, trans-nonachlor, 4-nonylphenol, 

o-phenylphenol, oxadixyl, oxyfluorfen, parathion,a parathion-ethyl,b  penconazole, pendimethalin, 
pentachloroanisole,  cis-permethrin, trans-permethrin, phorate,   phosalone, 
phosmet, phosphamidon, phthalimide, piperonyl butoxide, pirimiphos-ethyl,a pirimiphos-methyl, 
procymidone, profenofos, propachlor, propargite, propazine,, propetamphos, propham, propiconazole, 
propoxur,    propyzamide, 
pyrimethanil, quintozene, quizalofop-ethyl, resmethrin, simazine, spiroxamine,b sulprofos, tebuconazole, 
tecnazene, terbucarb, terbufos, terbuthylazine, tetrachlorvinphos, tetraconazole, tetradifon, 
tetrahydrophthalimide, tolclofos-methyl, tolylfluanid, triadimefon, triazophos, tridemorph,b  trifluralin,  
vinclozolin 

LC Acephate, acibenzolar-s-methyl, atrazine, atrazine-d5, azoxystrobin, carbaryl, carbofuran, cyazofamid, diazinon, 
dichlorvos, dimethoate, ethoprop, fenthion-sulfone, imidacloprid, linuron, methomyl, methidathion, 
omethoate, phosmet, pymetrozine, pyrimethanil, spinosad A, spinosad D, thifensulfuron-methyl, tolclofos-
methyl, tolylfluanid, tricyclazole, triflumizole 

  
Notes: aOnly monitored by LP-GC-MS/MS. 
bOnly monitored by GC × GC-TOF/MS. 



 

 

performed before each sequence, which typically yielded 

1250 V multiplier voltage. An Agilent MassHunter was 

used for instrument control and data collection. For the 

final MRM acquisition method, two ion transitions at the 

experimentally optimised collision energy (CE) were mon- 

itored for each analyte, and dwell time of 2.5 ms was set 

for all transitions (inter-dwell delay of 1 ms). To detect all 

analytes, the MRM method was divided into 26 time 

segments. 

 

 
LC-MS/MS 

LC-MS/MS analysis was performed with an Applied 

Biosystems (Toronto, ON, Canada) API-3000 triple quadru- 

pole MS/MS with ESI in the positive mode coupled to an 

Agilent 1100 LC. Applied Biosystems Analyst 1.5 software 

provided instrument control and data collection. The 

analy- tical column was a Phenomonex (Torrance, CA, 

USA) Prodigy ODS-3 150 mm × 3 mm i.d., 5 µm particle 

size, coupled to a 4 mm × 3 mm i.d. Security Guard C18 

column. 

The column temperature was 30°C, injection volume was 

20 μl and flow rate was 0.3 ml min–1. The mobile 
phase consisted of 0.1% formic acid in water (A) or 
MeCN (B). The gradient programme started at 70% A and 
increased to 100% B over 8 min and where it was held for 
5.5 min. 

 
 

GC × GC-TOF-MS 

For GC × GC–TOF-MS analysis, a Pegasus-4D system (Leco, 

St. Joseph, MI, USA) including an Agilent 6890 GC 

equipped with an Optic-3 PTV injector (Atas, Veldhoven, 

The Netherlands) was used. The 1D column was 30 m × 

0.25 mm i.d. × 0.25 µm RTX-CL (Restek, Breda,  The   

Netherlands),   and   the   2D   column   was 2 m × 0.1 mm 

i.d. × 0.07 µm BPX-50 (SGE, Darmstadt, Germany), 

mounted in a separate oven installed within the main GC 

oven. Helium was used as carrier gas at a constant 

pressure of 47 psi. The PTV temperature was 

programmed 

as follows: 20°C (0.5 min) ramp at 0.5°C s–1 to 50°C, ramp 

at  6°C  s–1   to  280°C  hold  for  20  min.  The 
temperature 

programme of the first column (main GC oven) was as 

follows: 60°C (2 min) ramp at 10°C min–1 to 200°C, hold 

for 0 min, ramp at 7°C min–1 to 270°C, ramp at 10°C min–

1 to 320°C hold for 15 min. The temperature of the 
second oven was programmed from 70°C (2 min) to 

360°C at a rate of 10°C min–1 with a final hold time of 15 
min. The modulator temperature offset was 50°C relative 
to the first GC oven temperature. The 2D separation time 
(modulation time) was 4.5 s divided into a hot pulse time 
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of 0.60 s and a cold pulse time between the stages of 1.65 
s. The transfer line from the secondary oven into the 
mass spectrometer was maintained at 280°C, and the ion 
source was operated at 250°C. The data acquisition rate 

was 200 scans s–1, covering a mass range of 50–600  
m/z. The     optimisation 



 

 

 

 

Figure 1.    Mean pesticide concentrations found in different IPM samples by LP-GC-MS/MS (n =  3). 
 

 

 

 

  

 

 

Figure 2. Mean pesticide concentrations found in IPM-grown strawberries using LP-GC-MS/MS analysis (n = 3), and 
examples of their mass spectral identifications. 

 

and validation process for several pesticides was 

previously described (Mol et al. 2011). Automated 

pesticide detection involving  deconvolution  was  

performed  by ChromaTOF 

4.2 software (Leco). The large pesticide database library 
was created by the injection of reference standards in 
order to obtain retention time (tR) information and mass 

spectra. The automated pesticide detection was based on 
similarity (>600) and tR (within 20 s of the reference tR in 

the database). 
 
 

 
Results and discussion 

This study describes the combination of three parallel 

methods:  (1)  qualitative  identification  and  

quantitative 



 

determination for 143 target pesticides by LP-

GC-MS/ MS; (2) qualitative screening of 27 

targeted pesticides by LC-MS/MS; and (3) 

qualitative screening of 167 pesti- cides by GC 

× GC-TOF-MS. The acquired full-scan MS using 

TOF-MS detection was used to identify targeted 

and unexpected compounds. Table 1 shows the 

list of pesti- cides evaluated by the three 

chromatographic methods. As shown, some of 

the pesticides are common in the three 

methods, which allows for confirmation, and in 

total 193 different pesticides were included. 

The selected pesticides were mainly chosen 

from pre- existing GC and LC methods to assess 

the samples mainly for comparison purposes. 

The chosen pesticides are commonly monitored 

in many regulatory programmes worldwide. 

Moreover, these pesticides are  representative 



 

 

 

 

  

 

 

Figure 3. Mean pesticide concentrations found in IPM-grown soils using LP-GC-MS/MS analysis (n = 3), and examples of 
their mass spectral identification. 

 

different pesticide classes often found at ultra-trace 

levels in fruits and vegetables. The use of MS/MS in this 

study was limited to target screening and quantification, 

but there is an increasing demand for retrospective and 

non- targeted data analysis possible by the GC × GC-TOF-

MS method. Ideally, pesticide monitoring should survey 

all pesticides in all samples. 

The methods have previously been fully validated 
before their use in this study (Lehotay et al. 2010; 
Koesukwiwat et al. 2011; Mol et al. 2011). Additional 
validation of the quantitative MS/MS methods was per- 
formed for strawberries and soil. Calibration of 

matrix- matched standards in the range 5–200 µg kg–1 

provided R2 

values higher than 0.99 for all  analytes. 
 

 
Case study of Portuguese strawberries and strawberry 

crop soils 

None of the 27 targeted pesticides was detected in the 

LC- MS/MS analyses of the samples. No pesticides were 

detected in any of the samples in the OF regimen by any 

of the methods. The two GC-based methods detected 

those pesticides in the IPM samples as shown in Table 2, 

which indicates the presence of nine pesticides in 22 

analysed samples. The results indicate the presence of 

at least seven compounds in the strawberries and five in 

soils. Five pesticides were detected by LP-GC-MS/MS and 

seven were detected by GC × GC-TOF-MS. Only three 

pesticides (cyprodinil, fludioxonil and iprodione) were 

confirmed to be present in the samples using both 

methods. 

The data showed that some pesticides were 

detected only by TOF or only by MS/MS, which suggests 

that the two equipments have different sensitivities and 

selectivities. 

The pesticides (cyprodinil, fludioxonil and fluazifop-p- 

butyl) found in soil samples were also detected in the 

corresponding strawberries. The analyses were 

performed in triplicate for each sample. Figure 1 

shows the mean concentrations of cyprodinil and 

fluazifop-p-butyl deter- mined by LP-GC-MS/MS in 

strawberries of the camarosa, festival and siba varieties, 

and their soils. The levels detected of cyprodinil were 

nearly three-fold higher in soils than in the strawberry 

samples. In the case of fluazi- fop-p-butyl, higher levels 

were also achieved in soil samples, but only by a factor of  

1.2–1.8-fold. Strawberries are grown very low to the soil, 

so these findings are not surprising. 

Mepanipyrim (a fungicide) was shown to be present 

in IPM-grown strawberries from 2009, and in samples 

from 2010, iprodione (a fungicide) and fluazifop-p-butyl 

(a herbicide) were determined. The fungicides cyprodinil 

and fludioxonil and the insecticide fenpropathrin were 

determined in strawberries from both 2009 and 2010. 

Figures 2 and 3 show the MS/MS results obtained from 

LP-GC-MS/MS analysis and the mean concentrations of 

the pesticides. 

The herbicide oxyfluorfen and the fungicide 
tetracona- zole were also found in the strawberry 

crop soils from 2009. Cyprodinil and fludioxonil were 
found in the 2010 strawberry crop soils, and fluazifop-p-

butyl in soils from both years. Figure 4 shows the 
confirmation of fludioxonil 



 

 

 

 

Figure 4. Confirmatory GC × GC-TOF-MS chromatograms for fludioxonil residue in IPM-grown strawberry and 
corresponding soil samples. 



 

 

by GC × GC-TOF-MS chromatograms for fludioxonil 

residues in camarosa IPM crops from  2010. 

Overall, the pyrethroid fenpropathrin, which was 
detected in camarosa, festival and siba strawberries 
from 2010, gave the  highest  residue  value  of  45  µg  

kg–1. All determined concentrations were below the 
European Union regulatory limits in all strawberry 
samples, which indicate that the detected pesticides 
were used legally in the 

Portuguese strawberry crops (EU pesticide database; 
Lopes 

& Simões 2006). For soils, legislation has not been estab- 
lished in to set maximum pesticide levels for Portuguese 
soils. Most findings of pesticide residues in the different 
soils by LP-GC-MS/MS analysis were <6 µg kg–1, which is 
not a cause of concern. Previously studies about IPM and 

OF systems were performed using ion-trap GC-MS/MS and 

bifenthrin, mepanipyrim, tetraconazole, malathion, tolyl- 

fluanid, lindane, β-endosulfan, aldrin, cyprodinil, fludioxo- 

nil and fluazifop-p-butyl were detected (Fernandes et al. 

2011, 2012b, 2012c). 

In conclusion, the application of this methodology 

enabled fast and easy, yet  effective,  monitoring  of  a long 

list of pesticides on strawberries and the surrounding 

soils involved in their production. The combination of the LC- 

MS/MS, LP-GC-MS/MS and GC × GC-TOF-MS was very 

powerful to screen, quantify, identify and confirm  the 

detected residues. Chromatography coupled to triple 

quadru- pole MS/MS could target 193 pesticides of interest, 

showing excellent sensitivity and selectivity to provide easy 

and reli- able data processing and pesticide identifications 

(fluazifop- p-butyl, fludioxinil, fenpropathrin,  cyprodinil, 

iprodione). GC × GC-TOF-MS was used to identify 

qualitatively addi- tional pesticides (oxyfluorfen, 

tetraconazole) and make a confirmation of those already 

found (iprodione, mepani- pyrim, fludioxonil, fenhexamid, 

cyprodinil). 

Samples from different farming practices in Portugal 

obtained over the course of 2 years were analysed by 

this approach. No pesticides were detected in 

strawberries and soils from OF practices, and nine 

pesticides were found in samples when using IPM 

practices, with slightly higher levels occurring in the 

soils. Based on European Union legislation, all findings 

were well below maximum per- missible levels. 
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