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The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bac- 
teriological variables, as well as the interactions between them. An important challenge to scientists is to understand the 
interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response. With this 
aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response 
of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns 
(February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physic- 
ochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative 
correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding 
C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, 
hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may 
allow the evaluation of the eff ect of future pollution abatement measures over the water quality of Leça River. 

Keywords: Chlorella vulgaris; ecotoxicological assessment; multiple linear regression; principal component regression; 
surface water quality; Vibrio fischeri 

 
 

1. Introduction 

Pollution of surface water with toxic chemicals and excess 

of nutrients, resulting from storm water runoff , mains leak- 

age leaching, and groundwater discharges, has been an issue 

of worldwide environmental concern.[1] The water quality 

assessment must comprise an ecotoxicological characteri- 

zation, which allows properly evaluating the potential risks 

of effluent discharges, especially when they are complex.[2] 

The ecotoxicity evaluation by means of acute bioassays 

may bring quick and valuable information.[3,4] However, 

most of the ecotoxicity test methods were established to 

measure the toxicity  of  pure  single  chemicals  and not 

to be applied to unknown environmental water samples 

with complex components. Since chemicals are present in 

environmental water as a complex mixture, their potential 

ecotoxicological eff ects are much complicated due to their 

interactions.[5–9] In addition, even if the toxicity of an envi- 

ronmental sample is tested, there is no guidance on how to 

evaluate the water quality in terms of protection of aquatic 

living organisms.[6] It is difficult to extrapolate the poten- 

tial damage on the aquatic ecosystem from the test results 

with specific species, particularly because not all species 

respond identically to the same pollution stresses.[10] It is 

also quite difficult to evaluate the actual exposure   levels 

 
and ecotoxicological eff ects of all coexisting chemicals 

on aquatic organisms by measuring the concentrations of 

individual chemicals (United States Environmental Protec- 

tion Agency – USEPA).[11,12] It must also be kept in 

mind that there is an uncertainty factor when laboratory 

results are extrapolated to field conditions because of the 

simultaneous influence of a number of environmental and 

biological factors (bioavailability, toxicokinetics, sensitiv- 

ity of organisms, etc.).[4] However, direct toxicity test of 

environmental water sample can provide an integral view on 

ecotoxicological eff ects of all chemicals coexisting in water 

as a mixture and has been widely used in safety assessment 

of water quality.[6,13,14] 

The study of ecological properties of diff erent organi- 

zation levels may reveal changes of potential ecological 

signification that cannot be detected by other analyses.[1] 

The bacterium Vibrio fischeri (decomposer) and the alga 

Chlorella vulgaris (first producer) were selected for this 

study because they belong to diff erent trophic levels and are 

widely used in ecotoxicity tests.[1,2] One of the advantages 

of these tests is the fast assessment of ecotoxicity. 

The ecotoxicological response of the living organisms 

in an aquatic system depends on several variables, such as 

nutrient quantitative and qualitative profiles,  temperature, 
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physicochemical properties of the water and grazing 

pressure.[15] An important challenge for scientists is to 

develop analytical tools that could be used to understand 

the interaction and behaviour of factors involved in a mul- 

tidimensional process [16] such as the ecotoxicological 

response, and to provide the necessary tools for monitor- 

ing and management of resources. Modelling is regarded 

as an important analytical tool for biological and ecological 

studies.[17,18] 

Multivariate statistical techniques are useful for the 

evaluation and interpretation of large and complex water 

quality data sets.[19] Multiple linear regression (MLR) is 

one of the most widely used methodologies for expressing 

the dependence of a response variable on several explana- 

tory (predictor) variables.[16,20–22] Principal component 

analysis (PCA) is useful in pre-processing methodology 

for mitigating the problem of multicollinearity (when the 

explanatory variables are correlated with each other) and 

for exploring the relations among the input variables, par- 

ticularly if it is not obvious which of the variables should 

be the predictors. PCA creates new variables, the principal 

components (PCs), by linear combination of the original 

variables. PCs are uncorrelated to each other, removing the 

multicollinearity problem. They are interpreted by the asso- 

ciation with original variables through the corresponding 

factor loadings. Principal component regression (PCR) is 

the linear model that relates the dependent variable with 

these PCs. Both MLR [20,23] and PCR [16] approaches 

have been applied in studies of water quality. 

The utility of C. vulgaris as test organism is based on 

its short life cycle, making it easy to study the exposure 

of several generations.[24] It is easily cultured in labora- 

tory and is widespread in nature, being found in freshwater, 

saltwater and soil.[25] 

Vibrio  fischeri  is   a   Gram-negative  biolumines- 

cent  marine  bacterium  that  forms  mutually    symbiotic 

relationships with various species of fish and squids or can 

be found living freely in the oceans.[26] The main advan- 

tages of using this species in ecotoxicity is the short time 

required to obtain results, the simplicity of the test and high 

reproducibility of results.[27] 

The present study aims to model C. vulgaris and V. fis- 

cheri bioassays toxic response in concern to the Leça river 

water characterization by MLR and PCR. The achieved 

models lead to infer possible influences of physicochemi- 

cal and microbiological variables of river water in bioassay 

results. 

 

2. Materials and methods 

2.1. Area description – sampling sites 

The Leça river flows through a highly populated and indus- 

trialized area in the north of Portugal and receives a complex 

mixture of pollutants from poorly treated or untreated 

domestic, agricultural and industrial effluents, and other 

contaminated waters both from point and diff use sources. 

Figure 1 presents the location of Leça river in the north 

of Portugal. It rises in the Mountain of Santa Luzia at Santo 

Tirso and flows for approximately 48 km until the Atlantic 

Ocean. Water samples were collected at seven sampling 

sites along the river: site 1 is located in the upstream part of 

the river in a main rural area; both sites 2 and 4 are located 

downstream from wastewater treatment plants in a highly 

populated area; sites 3 and 5 are situated in a strongly pop- 

ulated and industrialized area; site 6 is in a revitalized area 

with a recreational park; and site 7 is some metres upstream 

from the river mouth, before a waterfall, and therefore it 

does not receive any marine influence. Water samples were 

collected in five diff erent periods – February, May, June, 

August and September of 2006, one day in each month 

(not always the same). Most of the samples were collected 

from bridges, in order to obtain samples from running water, 

 
 

 

Figure 1.   Leça river basin showing the geographical location of the sampling sites. 



  

Table  1.    Analytical procedures. 

Parameter Method Equipment 

Physicochemical parameters 

Temperature Thermometry Multiparameter analyser HANNA 
Instruments model 991003 

pH Electrometry 
ORP Electrometry 
Dissolved oxygen (DO) Membrane electrode DO meter HANNA Instruments model 

9143 
Conductivity Conductimetry Conductivity meter WTW model LF 330 
Turbidity Nephelometry Method 2130 B [28] Turbiquant 3000 IR, Merck 

Colour Spectrophotometry (platinum-cobalt) Method 
110.2 [29] 

UV/Vis Spectrometer PYE Unicam PU 
8600 

Dissolved organic carbon (DOC) High-temperature combustion Method 5310 B [28] Shimadzu analyser 5000 A - 
Biochemical oxygen demand 

(BOD) 
5-Day BOD Test Method 5210 B [28] DO meter Crison OXI 45 

Total nitrogen Persulfate digestion method 4500N C [28] UV/Vis Spectrometer PYE Unicam PU 
8600 

Total phosphorus Persulfate digestion+ascorbic acid method 4500P E 
[28] 

Hardness EDTA titrimetry method 2340 C [28] 

UV/Vis Spectrometer PYE Unicam PU 
8600 

Dissolved Cd, Cr, Cu, Fe, Mn, 
Ni, Pb and Zn 

Atomic absorption spectrometry – flame methods 
3111 B and D [28] 

AAS GBC 932 plus 

Dissolved As and Hg Hydride generation/cold-vapour atomic absorption 
spectrometry Methods 3112 B and 3114 C [28] 

AAS GBC 932 plus and GBC HG 3000 

 

Bacteriological parameters 
Total coliforms Membrane filtration ISO Standard [30] 
Faecal coliforms Membrane filtration ISO Standard [30] 

Faecal streptococcus Membrane filtration ISO Standard [31] 
Ecotoxicological parameters 

Microtox® inhibition Bioluminescent inhibition test of bacteria Vibrio 
fischeri (15 min) ISO Standard [32] 

 

Green algae inhibition Inhibition growth test of microalgae Chlorella 
vulgaris USEPA Guideline [14] 

 

 

 

 

 
Microtox Analyser 2055, Microbics 

Corporation (at present time, AZUR) 
Environmental 

Shimadzu UV/Vis spectrometer 

 
 

 

which were representative of the river water. Grab samples 

were manually collected by immersing the plastic bottles 

into the river. 

 
 

2.2. Analysis of the water samples 

The analytical procedures used to characterize the water 

samples are presented in Table 1. All used reagents were of 

analytical grade. 

Temperature, pH and oxidation−−reduction potential, 
dissolved oxygen and conductivity were measured in situ. 

Water samples were stored at 4◦C (no chemical  preserva- 

tives were added) and analysed in duplicate within 24 h. 

For dissolved organic carbon (DOC) and metals, a filtration 

by 0.45- μm pore diameter membrane filter was performed. 

Bioassays were performed within (the maximum) 48 h after 

sampling. 

The bioluminescent inhibition toxicity tests (ISO 

11348) were performed using the bacteria V. fischeri (NRRL 

B 11177). Tested concentrations were 5.6%, 11.3%, 22.5% 

and 45% (v/v). The values of EC50 (eff ective concen- 

tration  of  the  sample  that  causes  50  inhibition  to   the 

test organisms) and the corresponding 95% confidence 

intervals were determined for 5 and 15 min of bacterial 

exposure. 

The green algae inhibition growth tests were performed 

with the microalgae C. vulgaris according to USEPA Guide- 

line [14]. Three replicates of each sample were tested for 

five diff erent concentrations (10%, 20%, 40%, 60% and 

80%). The test solutions were incubated for 72 h, under 

continuous cool white fluorescent light. Agitation was per- 

formed manually twice per day. Initial and final absorbance 

was measured at 440 nm [33] to evaluate the growth of 

the algal population. A calibration curve was used to con- 

vert the absorbance in cell concentration (cells/mL) using 

the experimental linear relation obtained: (cell density) = 
6.42 × 104 + 8.00 × 107 × (absorbance at 440 nm),  with 
a square correlation factor of 0.995. 

The acceptability criterion considered was   variability 

< 20% among replicates. Shapiro-Wilk’s normality test and 

Bartlett’s test for homogeneity of variance were performed 

to validate data, and Dunnett’s procedure was followed [14]. 

Since these assumptions were met, EC50 was calculated by 

linear interpolation. 



j=1 

  
 

The reference toxicants used to validate tests were phe- 

nol and potassium dichromate, respectively, for V. fisheri 

and C. vulgaris bioassays. 

The toxic response was evaluated through the    calcu- 
lation of EC50, eff ective concentration that causes    50% 

The significance of the regression coefficients in the 

MLR and PCR models was evaluated through the calcu- 

lation of their confidence intervals.[36,39] The regression 

coefficient β̂ i   is statistically significant if: 

of inhibition to test organism. For regression models  pur- 

pose, EC50 was converted in toxicity units, TU50 (TU50 = 
100/EC50), as suggested by Wisconsin Department of Natu- 
ral Resources.[34] Because EC50 was expressed in percent- 

age, the sample is considered ‘not toxic’ when TU50  =  1 

  

 

where t is the Student t distribution, n is the number of 

points, k  is the number of parameters, α  is the signif- 
and biostimulated when TU50  < 1. icance level, σ̂  is  the  standard  deviation  given  by and j

SSE/(n-k-1)  Sxxi   is  the  sum  of  the  squares  related  to 

xi  given by 
J,n

 (xij − x̄ i )2. 
2.3. Regression models 

The data considered for this analysis were the mean of repli- 

cates. Before the determination of the models, the data were 

Z standardized to have zero mean and unit standard devia- 

tion. MLR attempts to model the relationship between two 

or more explanatory variables and a response variable, by 

fitting a linear equation to the observed data.[35,36] The 

dependent variable (y) is given by 
 

 

  

where xi (i = 1, ..  ., k) are the explanatory variables, β̂ i (i = 
0, . . .  , k) are the regression coefficients, and ε is the error 
associated with the regression and assumed to be normally 

distributed with both expectation value zero and constant 

variance.[37] 

The predicted value given by the regression model (y )̂ 
is calculated by 

 

 

  

To estimate the regression coefficients β̂ i the minimiza- 

tion of the sum of squared errors (SSE) method is used, as 

follows: 

 

 

  

PCR is a method  that  combines  linear  regression 

and PCA.[36] Essentially, PCA maximizes the correlation 

between the original variables to form new variables, the 

PCs that are orthogonal and uncorrelated. These variables 

are linear combinations of the original variables. The PCs 

are ordered in such a way that the first component has the 

largest fraction of the original data variability.[16,38] To 

evaluate the influence of each variable in the PCs, vari- 

max rotation is generally used to obtain the rotated factor 

loadings that represent the contribution of each variable in 

a specific PC. PCR establishes a relationship between the 

output variable (y) and the selected PC obtained from the 

explanatory variables (xi ).[36] 

Hence, several MLR and PCR models were determined 

by testing all combinations of the explanatory variables, 

selecting the ones that presented the lowest SSE and all 

statistically significant regression coefficients.[36] 

The PCs were calculated using Matlab, whereas MLR 

and PCR models were evaluated by developed subrou- 

tines in Microsoft Visual Basic for Applications (Microsoft 

Excel). 

 
 

2.4. Performance indexes 

The performances of MLR and PCR models in the pre- 

diction of C. vulgaris and V. fischeri toxic response were 

evaluated through calculation of the coefficient of determi- 

nation (R2), mean absolute error (MAE), root mean squared 

error (RMSE) and index of agreement (d2).[40,41] The 

MAE and the RMSE measures residual errors, which gives 

a global idea of the diff erence between the observed and 

modelled values. The values d2 indicate the degree to which 

the predictions are error free, because it compares the dif- 

ference between the mean, the predicted and the observed 

concentrations. 

 

3. Results 

The physicochemical, bacteriological and ecotoxicologi- 

cal results, presented in a previous study,[42] are  shown 

in Table 2 for physicochemical data and in Figures 2   and 

3 for ecotoxicological data. For bacteriological param- 
eters, the maximum concentrations of total coliforms, 
faecal coliforms and faecal streptococcus were, respec- 

tively, 5.5 × 107, 5.0 × 106 and 3.0 × 105 CFU/100 mL, 
all  obtained  at  site  2.  From  the  dissolved  metals eval- 

uated (As, Cd, Cr, Cu, Fe,  Hg,  Mn,  Ni,  Pb  and  Zn) 

only zinc (0.08–0.22 mg/L), manganese (< 0.13 mg/L), 

mercury (0.5–6.5 μg/L), arsenic (0.5–3.0 μg/L) and iron 

(0.20–0.40 mg/L) were detected. 

The models were determined to model  C.  vulgaris 

and V. fischeri toxic response using physicochemical and 

bacteriological variables as predictors. Regarding V. fis- 

cheri results, only the 15 min-toxic responses were  used 

in the regression models. From the 25 monitored variables, 

only 15 were applied for models development.   Variables 



 

 

 

 

 

 

 
 

Table  2.   Physicochemical characterization of Leça river water samples. 
 

 

Physicochemical parameters 
 

Sampling 
sites 

 
Month 

Temp. 
(◦ C) 

 
pH 

ORP 
(mV) 

Cond. 
(μS/cm) 

DO 

(mg/L) 

DOC 

(mg/L) 

BOD 

(mg O2/L) 

Turb. 
(NTU) 

Colour 
(Pt-Co) 

Total N 
(mg N/L) 

Total P 
(mg P/L) 

Hardness 
(mg CaCO3/L) 

1 February 9.8 7.14 235 121 10.5 3.6 – 28 10 27.4 0.8 37.1 

 May 12.1 6.75 263 73 8.5 1.3 2.6 0.60 0 2.3 < 0.1 28.7 

 June 17.0 6.11 176 89 8.3 2.2 0.6 0.06 14 7.9 0.1 40.7 

 August 21.0 6.61 79 179 6.1 3.8 1.5 3.5 1 5.4 0.2 44.3 

 September 18.0 5.88 153 123 6.8 11.3 5.6 240 43 3.3 0.2 35.9 
2 February 9.8 7.07 187 150 10.3 5.7 – 110 21 35.5 0.8 46.7 

 May 14.4 6.04 244 226 8.2 3.0 5.1 3.5 2 11.7 0.8 67.0 

 June 20.0 5.64 222 483 7.9 12.0 10.2 7.8 43 30.7 2.4 89.7 

 August 22.2 6.00 71 1050 5.4 24.6 21.2 12 44 70.7 3.7 140.0 

 September 18.7 5.85 133 160 5.0 11.1 9.6 130 32 4.7 1.8 75.2 
3 February 10.6 6.94 161 179 9.5 5.4 – 60 13 28.3 0.9 51.4 

 May 15.0 6.03 236 251 7.8 4.3 6.0 3.5 1 17.4 0.9 71.8 

 June 20.2 5.96 197 496 7.5 13.6 15.0 9.3 46 38.2 2.8 101.7 

 August 22.5 5.96 109 857 5.2 23.1 10.6 8.5 35 57.8 4.3 140.0 

 September 18.6 6.55 80 174 5.3 11.0 12.0 170 33 3.5 2.3 83.6 
4 February 10.9 7.01 187 180 9.8 4.7 – 65 16 30.9 0.6 89.7 

 May 15.4 6.28 204 287 7.8 4.8 7.7 4.3 3 22.2 1.0 82.5 

 June 20.5 6.12 206 577 8.1 16.6 15.7 17 62 33.7 3.0 99.3 

 August 23.0 6.07 94 935 5.8 21.7 31.3 10 38 54.7 2.7 130.4 

 September 18.6 5.91 105 178 5.2 10.5 15.6 260 28 12.8 2.8 90.5 
5 February 10.4 6.65 183 176 9.8 4.4 – 65 15 26.4 0.8 69.4 

 May 15.0 6.07 230 265 8.0 3.8 12.0 6.7 1 14.4 0.9 76.6 

 June 20.4 6.05 203 556 7.9 15.3 12.6 12 57 30.7 2.6 100.5 

 August 23.3 5.97 72 952 5.5 21.8 20.2 13 32 57.0 3.0 140.0 

 September 18.7 6.07 98 194 4.5 10.9 13.2 180 30 5.4 1.8 82.5 
6 February 10.7 6.50 158 192 11.7 4.8 – 100 16 25.0 0.7 62.2 

 May 16.0 6.34 197 318 7.7 5.6 8.7 10 3 19.8 1.2 82.5 

 June 21.8 6.07 241 560 7.9 15.5 18.9 11 61 30.4 2.7 102.9 

 August 22.4 6.23 109 932 5.3 20.7 22.7 13 39 56.4 8.2 131.6 

 September 18.3 6.41 149 305 6.3 12.7 3.8 200 29 11.1 2.5 89.7 
7 February 10.9 6.98 145 187 10.3 5.0 – 120 18 27.7 0.7 58.6 

 May 16.0 6.25 204 343 8.3 5.7 9.3 8.1 3 27.9 1.1 88.5 

 June 22.9 6.05 253 578 7.6 14.8 19.2 12 58 34.0 2.8 117.2 

 August 23.2 5.98 113 1769 5.2 19.1 24.7 8.2 38 26.0 12.2 226.0 

 September 18.2 6.74 90 298 5.6 12.7 13.6 180 28 117.0 2.8 100.4 



  

 

 

Figure 2.   Comparison between experimental values and values given by MLR and PCR models for Chlorella vulgaris toxic response. 

 

 

Figure 3.   Comparison between experimental values and values given by MLR and PCR models for Vibrio fischeri toxic response. 

 

that were measured in situ and that presented always val- 

ues below the detection limit were not considered. Both 

MLR and PCR models were determined by statistically 

significant regression coefficients with a significance level 

of 0.05. 

The MLR led to the following results: (i) C. vulgaris 

toxic response was negatively aff ected by DOC, Zn and 

Mn, and positively aff ected by turbidity and As; and (ii) V. 

fischeri toxic response was negatively aff ected by conduc- 

tivity and turbidity, and positively aff ected by phosphorus, 

hardness, Fe, Hg, As and faecal coliforms. The regression 

models obtained by MLR were as follows: 
 

C.vulgaris = 2.719 − 2.193 (DOC) − 1.399 (Zn) 

− 0.782 (Mn) + 1.651 (turbidity) 

+ 3.643 (As) (5) 

V .fischeri = 1.849 − 5.845 (conductivity) 

− 0.860 (turbidity) 

+ 0.971 (phosphorus) + 2.951 (hardness) 

+ 0.551 (Fe) + 1.624 (Hg) 

+ 0.595 (As) + 0.657 (faecal coliforms) 
(6) 

 
PCA was performed to obtain in the PCs all variance 

contained in the original data. Thus, 15 PCs were deter- 

mined. Table 3 presents the results from PCA showing 

the rotated factor loadings for all 15 PCs. Values in bold 

correspond to the greatest contributions of the original vari- 

ables on the PCs. PC1 had important contributions from 

conductivity, DOC, total nitrogen, total phosphorus, hard- 

ness and Hg. PC3 was heavily loaded by all bacteriological 



 

 

 

 

 

 

 
 

Table 3.   Rotated factor loadings for all principal components (PC) of the physical, chemical and bacteriological variables. 
 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 

Conductivity (μS/cm) −0.896 0.034 0.223 −0.130 0.213 0.137 −0.088 −0.194 −0.035 −0.072 0.068 0.029 0.003 −0.007 0.085 

DOC (mg/L) −0.615 0.052 0.415 −0.217 −0.064 0.299 0.030 −0.501 −0.019 −0.107 0.048 0.030 0.199 −0.018 −0.001 
Turbidity (NTU) 0.169 −0.067 −0.011 0.062 −0.963 −0.082 0.159 −0.064 0.009 −0.013 −0.003 −0.001 0.001 −0.001 −0.001 
Colour (Pt–Co) −0.352 0.148 0.139 −0.109 −0.091 0.218 0.332 −0.809 −0.002 0.040 −0.015 −0.005 −0.030 0.004 0.001 
Total nitrogen (mgN/L) −0.884 0.005 0.235 0.188 0.254 0.101 −0.090 −0.075 −0.028 −0.056 0.097 −0.024 −0.029 0.159 −0.007 
Total phosphorus (mgP/L) −0.938 0.007 0.028 −0.126 −0.043 0.101 −0.037 −0.143 −0.001 0.017 −0.257 −0.053 −0.025 −0.017 −0.003 
Hardness (mgCaCO3/L) −0.940 0.013 0.178 −0.177 0.058 0.055 0.040 −0.110 0.034 0.075 0.094 0.059 0.032 −0.094 −0.061 
Zn (mg/L) 0.131 −0.037 −0.056 0.980 −0.059 0.063 0.049 0.084 0.003 -0.009 0.003 -0.003 -0.003 0.004 0.000 
Fe (mg/L) 0.146 0.184 −0.111 0.064 −0.186 0.092 0.917 −0.204 0.008 0.043 0.001 −0.004 0.002 −0.002 −0.001 
Mn (mg/L) −0.009 0.978 −0.025 −0.037 0.064 0.082 0.153 −0.089 −0.001 0.014 0.000 −0.002 0.001 0.000 0.000 
Hg (μg/L) −0.725 −0.083 0.181 0.051 −0.070 0.323 −0.259 0.062 0.006 −0.502 0.004 0.012 0.008 0.004 0.002 
As (μg/L) −0.296 0.120 0.206 0.094 0.120 0.877 0.119 −0.213 0.000 −0.052 −0.003 0.007 0.002 0.002 0.001 
Total coliforms (CFU/100 mL) −0.207 −0.046 0.884 −0.055 0.007 0.266 −0.094 −0.045 0.102 −0.067 0.046 0.268 0.014 −0.009 0.001 
Faecal coliforms (CFU/100 mL) −0.190 0.009 0.905 −0.065 0.144 0.007 −0.127 −0.079 −0.305 0.019 −0.001 −0.068 0.006 0.007 0.002 
Faecal streptococcus (CFU/100 mL) −0.161 −0.006 0.960 0.016 −0.083 0.044 0.047 −0.080 0.138 −0.021 −0.024 −0.120 −0.008 0.005 −0.001 

Note: Values in bold correspond to the greatest contributions of the original variables on the PCs. 

 

 

Table  4.   Transformation matrix used to calculate the PCs from the physical, chemical and bacteriological variables. 
 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 

Conductivity 0.367 0.020 −0.212 0.048 −0.011 0.072 −0.087 0.002 −0.138 0.041 −0.130 0.015 −0.113 −0.215 −0.841 
DOC 0.354 −0.177 0.083 0.067 0.132 −0.164 0.052 0.277 −0.231 0.091 −0.117 0.009 0.601 0.519 −0.040 
Turbidity −0.103 −0.233 0.225 −0.274 0.654 0.229 0.379 0.078 0.101 −0.100 −0.285 0.180 −0.187 0.020 −0.105 
Colour 0.225 −0.484 0.075 0.060 0.094 −0.159 −0.249 0.548 −0.132 0.030 0.225 −0.074 −0.306 −0.323 0.193 
Total nitrogen 0.338 0.094 −0.205 −0.192 −0.128 0.236 −0.211 −0.010 −0.106 0.073 −0.103 0.432 −0.460 0.453 0.224 
Total phoshorus 0.318 −0.067 −0.303 −0.031 0.205 0.178 −0.003 −0.050 0.579 −0.184 0.346 −0.429 −0.010 0.231 0.002 
Hardness 0.344 −0.039 −0.222 0.061 0.143 0.199 −0.136 −0.258 −0.117 −0.370 −0.306 0.104 0.320 −0.444 0.358 
Zn −0.098 0.018 0.066 −0.785 −0.273 0.266 −0.199 0.249 −0.057 −0.118 −0.021 −0.202 0.232 −0.075 −0.065 
Fe −0.067 −0.592 0.144 −0.094 0.007 0.043 −0.336 −0.598 −0.052 0.319 −0.050 −0.151 0.003 0.102 −0.045 
Mn 0.029 −0.384 0.012 0.246 −0.504 0.518 0.509 0.072 −0.046 −0.040 0.009 −0.018 0.003 0.005 0.016 
Hg 0.299 0.153 −0.163 −0.303 0.090 −0.082 0.457 −0.147 −0.204 0.577 0.188 −0.141 0.001 −0.237 0.193 
As 0.240 −0.226 0.077 −0.266 −0.343 −0.576 0.240 −0.122 0.401 −0.194 −0.152 0.255 −0.031 −0.067 −0.031 
Total coliforms 0.265 0.169 0.446 −0.008 −0.039 −0.103 0.119 −0.206 −0.380 −0.403 −0.029 −0.460 −0.306 0.142 0.029 
Faecal coliforms 0.244 0.225 0.424 0.156 −0.095 0.172 −0.152 0.153 0.423 0.389 −0.462 −0.184 −0.021 −0.115 0.097 
Faecal streptococcus 0.231 0.112 0.523 −0.005 0.042 0.210 −0.078 −0.142 0.081 −0.030 0.582 0.431 0.184 −0.119 −0.095 



  

 
Table 5. Performance indexes for MLR and PCR in the fitting of the Chlorella vulgaris and Vibrio 
fischeri toxic responses. 

 
 

MLR PCR 
 

  

MAE RMSE d2 R2 MAE RMSE d2 R2
 

 

Chlorella vulgaris 1.532 1.945 0.884 0.643 1.901 2.364 0.797 0.473 
Vibrio fischeri (15 min) 0.613 0.860 0.911 0.711 0.817 1.008 0.864 0.603 

 

parameters. PC2, PC4, PC5, PC6, PC7 and PC8 had impor- 

tant contributions from Mn, Zn, turbidity, As, Fe and colour, 

respectively. PC9 to PC15 did not present any significant 

contribution of the original variables; however, they were 

used in PCR to analyse if these minor contributions are 

statistically significant in the ecotoxicological response of 

living organisms. The regression models using PCs as input 

variables (PCR) were the following: 
 

C.vulgaris = 2.719 + 0.683 (PC3) − 1.899 (PC6) 

− 1.677 (PC8) + 2.841 (PC9) (7) 

V .fischeri = 1.849 − 0.442 (PC4) − 1.304 (PC8) 

+ 1.087 (PC9) + 8.596 (PC15) (8) 

Table 4 presents the matrix that multiplied by the orig- 

inal variables matrix gives the values of PCs. These values 

show how a PC was influenced by each  original vari- 

able. For instance, negative values showed that the original 

value and the PC are negatively correlated. Taking val- 

ues in Table 4 corresponding to high factor loadings (in 

Table 3) and the regression coefficients for each PC, it 

is possible to infer the relationship between the original 

variables and the output variable. If both values have the 

same signal, the influence is positive; otherwise, the influ- 

ence is negative. According to this transformation and the 

regression coefficients given by the models, PCR showed 

that: (i) C. vulgaris toxic response was negatively influ- 

enced by colour and DOC, and positively by As, Hg and 

all bacteriological parameters, especially faecal coliforms; 

and (ii) V. fischeri toxic response was negatively correlated 

with colour and DOC, and positively with Zn and faecal 

coliforms. 

Figures 2 and 3 present the comparison between toxicity 

experimental and calculated values (TU50) from MLR and 

PCR, respectively. Table 5 shows the performance indexes 

for MLR and PCR. MLR is the regression model that best 

fit the C. vulgaris and V. fischeri toxic response with respect 

to the Leça river water characterization. 

 
 

4. Discussion 

4.1. Multiple linear regression 

The MLR results for C. vulgaris showed a negative cor- 

relation between the toxic response and the DOC, Zn and 

Mn parameters. DOC is extremely important in the trans- 

port of metals in aquatic systems, forming strong complexes 

with metals, enhancing metal solubility while also reducing 

metal bioavailability. Studies using multispecies laboratory 

bioassays proved C. vulgaris resistance to toxicants like 

Zn.[43,44]. 

Turbidity is considered an important variable relative 

to transport and bioavailability of contaminants in natural 

waters.[45] In addition, turbidity aff ects the results of tests 

based on photometric measurements, produces light losses 

and leads to toxicity overestimation.[46] In the present 

study, turbidity was positively related toC. vulgaris toxic 

response results due to the scattering of incident light by 

colloidal and particulate matter in water. 

The V. fischeri toxic response, according to MLR, 

presented a negative relation with conductivity and tur- 

bidity. Conductivity is related to ionic concentrations and 

pH. The Microtox® test procedure, based on the inhibi- 

tion of V. fischeri marine bacteria, involves the  addition 

of sodium chloride, therefore, possibly changing sample 

ionic concentration and, consequently, metals toxic poten- 

tial. This eff ect may be due to competition between toxic 

ions and chloride ions in the cellular membrane.[47] Some 

studies showed silver toxicity diminishing with the raise 

of salinity up to 25%; however, for salinity above 25%o 

an increase in the metal toxicity  was  observed, which 

was attributed to osmotic imbalance caused by chloride 

ions.[48–50] 

The hardness, the metals Fe, Hg and As and the fae- 

cal coliforms presented a positive correlation with the toxic 

response of V. fischeri. Concerning the eff ect of hardness on 

metals toxicity, it is known that the presence of calcium and 

magnesium carbonates in water can cause the precipitation 

of metals, making them insoluble and therefore not avail- 

able to penetrate into the membranes of living organisms. 

This eff ect was observed for manganese chronic toxicity in 

aquatic species Salmo trutta, and also for other metals, such 

as copper, zinc and cadmium.[51–53] The hardness val- 

ues obtained for Leça river were normal for surface water 

and, therefore, the metals Fe, Hg and As contributed to 

global toxic eff ect. Nevertheless, Microtox® test is espe- 

cially sensitive to several metals, such as Hg, Pb, Zn and 

Cu [54,55]; the toxicity of heavy metals is highly influenced 

by matrix eff ects, conditions and concentration,[56,57] The 

faecal coliforms in Leça river presented extremely high 

concentrations showing positive correlation with the V. fis- 

cheri toxic response probably due to competition between 

the bacteria, both Gram-negative, heterotrophic and facul- 

tative anaerobes. This competition might be for    oxygen, 



  

 
which would influence the luminescence produced once 

its mechanism is intrinsically connected to the respiratory 

metabolism.[58] 

 

4.2. Principal component regression 

The PCR results for C. vulgaris toxic response showed a 

negative correlation with colour and DOC parameters. In 

the specific case of surface water samples in the natural 

environment, the colour is related to high concentrations of 

DOC, which could explain the inclusion in the same PC 

(PC8). As algae absorb light energy for photosynthesis, 

in coloured samples the light provided during the toxi- 

city bioassay may be partially absorbed by the coloured 

compounds of the surface waters.[59] 

Arsenic, mercury and all bacteriological parameters 

(especially faecal coliforms) showed a positive correlation 

with C. vulgaris toxic response. Algae are generally hyper- 

accumulators of heavy metals.[1,60–63] However, some 

studies showed that arsenic is toxic to algae but highly 

variable data have been reported due to diff erent experimen- 

tal conditions (e.g. ‘no eff ect’ concentrations ranged from 

0.16 to 1000 mg/L).[57] With regard to the bacteriological 

parameters, a positive correlation was found. It might be 

related to the fact that bacteria respiration releases carbon 

dioxide, essential for algae photosynthesis. 

According to PCR, the V. fischeri toxic response pre- 

sented a negative correlation with colour and DOC. A 

coloured sample may potentially absorb a portion of the 

light produced by the V. fischeri before it reaches the pho- 

tomultiplier, and the sample may appear more toxic than it 

really is.[64] In this manner, colour should present a posi- 

tive and not a negative correlation. The DOC biodegrad- 

able fraction consists of organic molecules  that  can be 

used by heterotrophic bacteria, such as V. fischeri, as  a  

source of energy and carbon, thus contributing to bacte- 

rial metabolism. Zn and faecal coliforms presented positive 

correlation with V. fischeri toxic response, which agrees 

with the result obtained by MLR, confirming the idea of 

competition between V. fischeri and coliforms. 

 

5. Conclusions 

To better understand the interaction of physical, chemical 

and bacteriological factors involved in a multidimensional 

process such as the ecotoxicological response, MLR and 

PCR were applied to the results of C. vulgaris and V. 

fischeri toxic response to the Leça river water characteriza- 

tion, both physicochemical and microbiological. According 

to the results obtained, the first seems to be more sensi- 

tive, which is in accordance with most studies presented in 

literature. 

In a general way, and supported by the performance 

indexes, the MLR seems to be the most appropriate model 

to the Leça river data, presenting: (i) a negative correlation 

with DOC, Zn and Mn, and a positive one with   turbidity 

 
and As for C. vulgaris toxic response and (ii) a negative 

correlation with conductivity and turbidity, and  a posi- 

tive one with phosphorus, hardness, Fe, Hg, As and faecal 

coliforms for V. fischeri toxic response. 

The results obtained may be useful in the future to eval- 

uate the eff ect of pollution abatement measures over the 

water quality of Leça River. This approach will be helpful 

for the strategy dictated by the water framework Directive 

2000/60/EC, which include the classification of water bod- 

ies to allow the definition of environmental objectives and 

the implementation of management programs. 
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