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ABSTRACT 
There is a growing socioeconomic recognition that clinical bone diseases such as bone infections, bone tumors and osteoporoti c bone loss mainly 
associated with ageing, are major issues in today0s society. SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, 

may be a promising therapeutic target for preventing or treating bone‐related diseases. In fact, SPARC is associated with tissue remodeling, 

repair, development, cell turnover, bone mineralization and may also participate in growth and progression of tumors, namely cancer‐related 
bone metastasis. Yet, the function of SPARC in such biological processes is poorly understood and controversial. The main objective of this work 
is to review the current knowledge related to the activity of SPARC in bone remodeling, tumorigenesis, and bone metastasis. Progres s in 

understanding SPARC biology may provide novel strategies for bone regeneration and the development of anti‐angiogenic, anti‐proliferative, or 

counter‐adhesive treatments specifically against bone metastasis.  
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SPARC (secreted protein, acidic and rich in cysteine), also termed 

osteonectin or BM‐40, is a major bone matrix non‐collagenous 
protein and a component of the extracellular matrix (ECM) of 

multiple tumor types. It is a member of a larger family of SPARC‐ 
related proteins that modulate cell interaction with the extracellular 
milieu [Termine et al., 1981]. SPARC is in matricellular class of 

secreted glycoproteins that exhibit counter‐adhesive effects that lead 
to cell developing round shape and other changes in cell morphology 

and disruption of cell–matrix interactions [Sweetwyne et al., 2004]. 

Other members of the SPARC family include testican‐1, ‐2, and ‐3, 

tsc 36 (transforming growth factor beta (TGF‐b) stimulated clone 36), 

SPARC‐like 1 also known as hevin/SC1 (synaptic cleft 1), Mast9 or 

ECM2, and SPARC‐related modular calcium‐binding (SMOC)‐1 and ‐ 
2 [Bradshaw, 2012]. 

SPARC, as a multifunctional calcium‐binding matricellular 

glycoprotein, participates in tissue remodeling, morphogenesis, and 

 
bone mineralization and is secreted by many different types of  

cells, such as osteoblasts, fibroblasts, endothelial cells, and  

platelets [Termine et al., 1981; Brekken and Sage, 2000; Alford and 

Hankenson, 2006]. 

SPARC is a single‐copy gene with a high degree of evolutionary 
conservation, with a molecular weight of 32.5 kDa that can be divided 
into three distinct modules as shown in Figure 1. 

Module I (NH2‐terminal) contains immune dominant epitopes and 

binds to hydroxyapatite (HA). The NH2‐terminal domain is an acidic 
region rich in asparagine (Asp) and glutamate (Glu), which can bind to 

5–8 calcium ions, through a different mechanism found in a large 

family of calcium‐binding proteins, the helix‐turn‐helix   structural 

domain (EF‐hand motifs). It is also the region that is the most distinct 
from other members of the SPARC gene  family. 

Module II, Cysteine‐rich, is homologous to a repeated domain in 

follistatin (FS). It contains bioactive peptides that exert different 
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effects on endothelial cells. Peptide 2.1 with an identical structure to 

epidermal growth factor (EGF)‐like S hairpin, inhibits the prolifera- 

tion of endothelial cells. Peptide FS‐E, corresponds to EGF‐like 
module in FS domain of SPARC. It potently inhibits endothelial cell 

migration in vitro and angiogenesis in vivo in a conformation‐ 

dependent manner [Chlenski et al., 2004]. Peptide FS‐K has an 
inhibitory effect on endothelial proliferation. On the contrary, peptide 

2.3 has a stimulatory effect on endothelial cell proliferation and 

angiogenesis [Lane and Sage, 1994]. Additionally, the NH2‐terminal 
region of module II may bind to heparin or to proteoglycans 

[Hohenester et al., 1997]. Module III binds to extracellular Ca2þ ions 

through EF‐hand motifs. This module contains the peptide 4.2, which 
stimulates endothelial cells migration but inhibits their proliferation 

[Kupprion et al., 1998]. The fibril‐forming collagen types I, III, and V, 
and the basement membrane collagen type IV, bind to module III in a 

Ca2þ dependent fashion. Cleavage of SPARC by matrix metal- 

loproteinase 3 (MMP‐3) produces a peptide Z‐1 containing a Cu2þ 

binding sequence that exhibits a biphasic effect on endothelial cell 

proliferation and stimulates vascular growth. In contrast, peptides Z‐ 

2 and Z‐3 inhibit endothelial cells proliferation but stimulate their 

migration. Different regions of SPARC (designated peptides 1.1–4.2) 
are presented in Figure 2. 

In vitro experiments provided evidence that SPARC: 

(a). Has a counter‐adhesion effect on cells, since it disrupts cell 
adhesion to the ECM through its interaction with ECM 
components such as collagen  and  vitronectin  [Yan  and  
Sage, 1999]. 

(b). Promotes changes in cell morphology and cell differentiation 
[Yan and Sage, 1999]. 

(c). Inhibits cell cycle progression, namely by stalling cells in the G1 
phase of cell cycle [Funk and Sage, 1991; Tremble et al., 1993; 
Yang et al., 2007]. 

(d). Regulates the activity of growth factors, such as platelet‐derived 
growth factor (PDGF), fibroblast growth factor (FGF), or vascular 
endothelial growth factor (VEGF) [Kupprion et al., 1998; Yang 
et al., 2007]. 

(e). Regulates ECM and matrix metalloprotease production [Funk 
and Sage, 1991; Tremble et al., 1993]. 

(f). Strongly binds to type I collagen and synthetic HA and mediates 
mineralization of the type I collagen [Termine et al., 1981]. 

(g). Inhibits adipogenesis and promotes osteoblastogenesis [Nie and 
Sage, 2009]. 

In addition to the described functions in vitro, SPARC‐null mice 
are born with no obvious abnormalities, but shortly after birth these 

mice undergo progressive early‐onset cataractogenesis [Anselme and 
Bigerelle,  2005].  Thus,  the  SPARC  gene  is  required  for       lens 
transparency. 

Also SPARC‐null mice exhibit an increased accumulation of white 

adipose tissue (WAT) and show osteopenia. This fact based on in vitro 

studies could be a consequence of the up‐regulation of catenin  
signaling and altered regulation of collagen expression and 
deposition [Nie and Sage, 2009]. Interestingly, the  overproduction 

of SPARC by the adipose tissue of obese mice contributes to increased 

plasminogen activator inhibitor 1 (PAI‐1) levels in conditions 
associated with obesity. SPARC is highly related to body mass index 
as an autocrine and or/paracrine factor of the adipose tissue that may 

affect key functions of this tissue and may influence bone metabolism 

[Tartare‐Deckert et al., 2001]. 
Furthermore, SPARC controls important mechanisms involved in 

cancer development and progression. These include the regulation of 

the epithelial‐to‐mesenchymal transition (EMT), apoptosis, angio- 
genesis, and also the regulation of the inflammatory response. These 

mechanisms are relevant in the metastatic dissemination capacity of 

several cancer cells into bone tissue. However, the function of SPARC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Structure of human SPARC protein. A ribbon diagram derived from crystallographic data shows the three modular domains of SPARC. The follistatin‐like domain, aa 53– 

137 shown in red (except the peptide 2.1), aa 55–74, and the peptide 2.3 (aa 114–130) shown in green and black, respectively. Module III aa 138–286 is shown in blue (except the 

aa 255–274, peptide 4.2 shown in yellow). Adapted from Hohenester et al.  [1997]. 



 

 
 

in such phenomena is contradictory. SPARC seems to be a key factor 

in biological processes, such as bone remodeling, tumorigenesis, and 

bone metastasis due to all the activities performed by this protein 

in Figure 3. 

This review explores the correlation between SPARC expression/ 
function in bone remodeling and in tumorigenesis, particularly in 

cancer‐related bone metastasis. Ultimately, we aim to contribute 
towards filling a gap in the literature on the association of  SPARC 

with bone metastasis and encourage further research and progress on 

novel strategies for bone regeneration and the development of anti‐ 

angiogenic,  anti‐proliferative,  or  counter‐adhesive  treatments for 
metastatic bone tumors. 

 
 

SPARC  AND  BONE REMODELING 

Bone is a dynamic tissue that combines chemical, cellular, 

biophysical, and hormonal processes, which undergoes constant 

turnover. Modeling is a process that sculpts the shape and sizes of 

bone by the coordinated processes of bone formation and resorption. 

Modeling process is critical during growth but becomes relatively 

ineffective after skeleton maturity. Remodeling, on the other hand, is 

a process by which the skeleton is continuously renewed. It results in 

the turnover of lamellar bone without causing significant changes in 

bone quantity, geometry, or size. The purpose of remodeling is to 

adjust the skeleton to changes in mechanical demands, to prevent 

accumulation of fatigue damage, to repair microfractures, to ensure 

the viability of the osteocytes, and to allow the skeleton to participate 

in the mineral homeostasis [Walsh et al., 2003]. The bone resorption 

and formation cycle is a highly orchestrated process carried out by a 

multicellular unit, called the basic multicellular unit (BMU), which 

comprises osteoclasts and osteoblasts [Fauci and Longo, 2008]. The 

determinants of the coupling between bone resorption and formation 

are not known, but they may include the expression pattern of 

growth factors and/or proteins that vary spatially and temporally. 

These polypeptides mediate a number of physiological processes, 

such as immune response, regulation of hormone secretion, growth 

and cell differentiation, morphogenesis, the regeneration of tissues, 

as well as the induction and remodeling of bone [Alford and 

Hankenson, 2006]. 

SPARC binds to ECM proteins such as types I, III, IV, and V 

collagen, thrombospondin, PDGF‐AB, and PDGF‐BB. SPARC binds 
strongly to type I collagen  and synthetic HA  and can mediate the   

in  vitro  mineralization  of  type  I  collagen  [Termine  et  al., 1981]. 

It appears that SPARC has a role in connecting collagen fibers to HA 

crystals by a terminal sequence rich in amino acids. Attachment to 

collagen, however, has been reported both to promote and inhibit HA 

formation [Termine et al., 1981; Romberg et al., 1985; Romberg  

et al., 1986; Doi et al., 1989]. Infrared analysis of the mineral and 

matrix in bones of SPARC‐null mice revealed a decreased number of 
bone cells, leading to decreased bone formation and resorption, that 
could hinder the degradation and replacement of mature collagen, 

thereby  maintaining  collagen  crosslinks  [Boskey  et  al.,  2003]. 

Furthermore, a polyclonal anti‐SPARC antibody did not affect on 
mineralization thus, as previously suggested, SPARC may be more 
important  for  regulating  matrix  formation  than    mineralization 

[Boskey et al., 2008]. Crystal structure analysis and site‐directed 
mutagenesis within module III revealed that five residues R149, N156, 
L242, M245, and E246 are required for collagen binding. In addition, 

SPARC recognized the hydrophobic GVMGFO motif in collagen 

[Hohenester et al., 2008]. The conformational change that occurred in 

SPARC during collagen binding created a deep specificity pocket that 

was bound to the phenylalanine side chain of the GVMGFO motif. 

Yet, the functional importance of these structural alterations is still 

not understood. On the other hand, post‐translational modification of 
SPARC may be controlled in a tissue specific manner and potentially 
associated with functions of SPARC. Several reports indicated that 

SPARC participated in the regulation of collagen fibril assembly 

[Bradshaw et al., 2003; Wang et al., 2005]. More recently, it was 

shown that wild type matrices had thick collagen fibers organized 

into longitudinal bundles, whereas SPARC‐null matrices had thinner 

fibers in random networks [Kapinas et al., 2012]. Rentz et al. [2007] 
speculated that SPARC influenced procollagen processing by 

modulating integrin engagement and processes that affected collagen 

deposition and also improved matrix assembly. The functional 

significance of SPARC interaction with collagens in tissues is not 

clear. Collagen may serve as a storage site for SPARC in the ECM or 

might directly modulate the activity of SPARC. Interestingly enough, 

bone  and  platelet  SPARCs  have  patterns  of  glycosylation that 

appeared to affect collagen‐binding activity. Specifically, bone 
SPARC binds to types I, III, and V collagen and platelet SPARC has no 
apparent affinity for them [Kelm and Mann, 1991]. 

Some applications for SPARC have been explored in the 

development of advanced composite biomaterials for skeletal tissue 

regeneration. One example concerned the production of nano- 

hydroxyapatite/collagen/SPARC composites for bone graft applica- 

tions [Liao et al., 2009]. Others studies have used a glutamic acid‐rich 
peptide derived from SPARC, functionalized with an acrylate group 
for covalent attachment to the matrix that significantly increased the 

shear modulus of a bone‐mimetic hydrogel/apatite  nanocomposite 

 

 

 

 

 

 

 

 
Fig. 2.    The regions spanned by different SPARC peptides identified in various studies, adapted from Tai and Tang [2008]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. SPARC is a key protein in bone remodeling, tumorigenesis, and bone metastasis and its activities associated to these biological processes are respectively indicated. 

 

 
and improved the dispersion of apatite nanoparticles in aqueous 

solution [Sarvestani et al., 2008]. 

 
 

SPARC  ACTIVITY  IN  CANCER BIOLOGY 

SPARC contributes to the disruption of cell adhesion to ECM by 

promoting morphologic changes in cell shape. SPARC also reduces 

the activity of several growth factors, including PDGF, VEGF, and 

bFGF. In addition, its ability to regulate matrix remodeling via  

metalloproteinases, together with its ability to inhibit G1 to S‐phase 
cell cycle progression in primary cells, suggests that SPARC might 
participate directly in tumor progression suppression [Funk and 

Sage, 1991; Tremble et al., 1993]. SPARC involvement with different 

tumors  is  reported  to  be  contextual  and  attributed  to  a  given 

microenvironment. Different expression patterns and activities of 

SPARC are depending on cancer type and upon whether it is 

expressed by malignant cells themselves or by neighboring stromal 

cells [Tai and Tang, 2008]. 

SPARC expression is associated with a favorable prognosis in 

some studies on human prostate cancer [Welsh et al., 2001; Lapointe 

et al., 2004; Wong et al., 2007]. In these studies SPARC may 

indeed function as a tumor suppressor since down‐regulation   and 
inactivation of SPARC gene expression enhanced aggressive   and 
metastatic behavior. On the other hand, SPARC can be described as 

a protumorigenic and prometastatic protein as found in studies of 

colorectal cancer [Porte et al., 1995]. Moreover, high SPARC 

expression might have utility as a prognostic marker in human  

breast cancer [Graham et al., 1997; Lakhani et al., 2005]. However, 

SPARC has been associated with metastasis of prostate cancer,  as 



 

high levels of SPARC were found at sites of bone metastasis 

[Thomas et al., 2000]. Therefore the specific contribution of 

SPARC in tumor growth and progression is not clear [Arnold and 

Brekken,  2009].  Understanding  of  the  mechanisms    mediating 

SPARC0s   functions   in   each   different   cancer‐associated   process 
may clarify how this complex multifunctional protein functions in 
cancer. 

One of the important mechanisms involved in cancer develop- 

ment and progression is apoptosis. In fact, defects in apoptotic  

pathways  are  now  thought  to  contribute  to  tumor     initiation, 

progression, and metastasis. SPARC‐mediated apoptosis occurs by 
activating the expression of several members of extrinsic pathways of 

apoptosis such as caspase 3, caspase 8, caspase 10, and Fas‐associated 
protein with death domain (FADD). SPARC induced apoptosis   in 
ovarian carcinoma cells and enhanced the chemosensitivity of 

colorectal cancer cells when exposed to chemotherapy either alone or 

in combination with vitamin D [Yiu et al., 2001; Said and 

Motamed, 2005; Tai et al., 2005; Taghizadeh et al., 2007; Tang and 

Tai, 2007]. In contrast, the expression and activity of SPARC in 

human brain tumors promoted tumor invasion by reducing 

apoptosis and caspase activity of glioma cells through protein kinase 

B activation [Vajkoczy  et  al.,  2000;  Schultz  et  al.,  2002;  Shi 

et al., 2004]. 

In tumorigenesis, an invasive and metastatic phenotype is often 

acquired via induction of an epithelial‐mesenchymal transition (EMT) 

in which epithelial cells lose their polarity and develop a 
mesenchymal phenotype. This process is characterized by the  loss 

of intercellular adhesion (E‐ to N‐cadherin switch), down‐regulation 

of epithelial markers (cytokeratins), up‐regulation of mesenchymal 

markers (vimentin), and the acquisition of a fibroblast‐like motile and 
invasive phenotype. The transcription factor Snail and other members 

of its family have been implicated in the promotion of EMT [Cano 

et al., 2000; Moreno‐Bueno et al., 2006]. SPARC intervenes at several 
stages of EMT, thus contributing to malignant phenotype. For 

example, expression of SPARC in melanoma cells suppresses E‐ 

cadherin and increases N‐cadherin and vimentin expression through 
phosphorylation of focal adhesion kinase (FAK) and/or induction of 
Snail with the subsequent enhancement of cell migration and 

invasive capacity [Robert et al., 2006; Smit et al., 2007; Sosa      

et al., 2007]. SPARC might be involved in a collagen‐mediated EMT 
induction, since it induces collagen expression [Brekken et al., 2003; 

Prada et al., 2007; Sosa et al., 2007]. Moreover, SPARC was shown to 

modulate  cell  survival  and  invasion  of  glioma  cells  through   the 

activation of FAK and integrin‐linked kinase (ILK) [Shi et al., 2007]. 

Another cancer‐associated process is inflammation and SPARC 
likely plays a central role in this process, since its expression by 

malignant or stromal cells modulates the activity of growth factors 

and the capacity of inflammatory cells to infiltrate the tumor 

microenvironment. The suppression of SPARC expression in 

melanoma cells induced polymorphonuclear leukocyte (PMN) 

recruitment and inhibited tumor growth through a mechanism that 

involved the release of chemotactic factors such as interleukin 8 (IL‐8) 
and leukotrienes by inflammatory cells [Ledda et al., 1997; Alvarez 
et al., 2005]. 

SPARC has been implicated in angiogenesis, a process of 

neovascularization  that  is  critical  to  the  survival  of  tumors. In 

endothelial cells, SPARC is capable of inhibiting the activity of 

angiogenic growth factors VEGF, PDGF, and basic fibroblast growth 

factor (bFGF) [Kupprion et al., 1998]. Furthermore, in animal models 

of ovarian cancer, the absence of SPARC resulted in high expression 

of VEGF, VEGFR2, MMP‐2, and MMP‐9, thereby promoting the 
angiogenic and metastatic potential of these cancers [Said and 
Motamed, 2005; Said et al., 2007]. In neuroblastomas SPARC can 

function as an anti‐angiogenic factor produced by Schwann cells 
being its expression inversely correlated with tumor progression 
[Chlenski et al., 2002; Nie and Sage, 2009]. The role of SPARC in 

tumor angiogenesis is clearly dependent on the availability and  
activity of the intact protein, as well as its peptide fragments. For 

instance, peptides that include the KGHK‐Cu2þ motif, stimulated 
endothelial cell cycle and angiogenesis in vivo [Sage et al., 2003]. On 

the contrary, FS‐E peptide, inhibited angiogenesis associated with 

neuroblastoma, even in the presence of bFGF‐stimulation [Chlenski 
et al., 2004, 2010]. 

 
 

SPARC AND CANCER‐RELATED BONE METASTASIS 

During tumor progression, malignant cells, initiate a process of 

attachment and subsequent degradation of nearby stroma, leading 

finally to the establishment of metastatic foci in specific tissues, such 

as lung, bone, liver, or brain [Liotta and Kohn, 2001]. This contributes 

to the success of the tumor and consequently to poorer prognosis for 

patients. 

Bone metastases result when cancer cells spread from their site of 

origin (primary tumor) and settle in a bone to form a secondary 

cancer. This can affect only one area of the bone or several areas at 

any one time; complications of bone metastases include pain, 

increased risk of facture, hypercalcemia (abnormally high levels of 

calcium in the blood), and a decreased blood cell count. The most 

common cancer types that show tendency to metastasize in bone 

include prostate, breast, lung, kidney, thyroid cancer, and multiple 

myeloma. One of the consequences of bone metastases results from a 

decrease of osteoblast number. Having reached the bone, malignant 

cells disrupt the remodeling process that normally occurs. Osteoclast 

number increase as tumor cells secrete factors such as parathyroid 

hormone related protein (PTHrP) that stimulates bone resorption and 

therefore gradually destroy it. This in turn results in the release  of 

breakdown products such as TGF‐b which stimulates the growth of 
malignant cells, thus perpetuating the destructive cycle and 
enhancing localized tumor growth. Recently improved understanding 

of these biochemical processes has prompted investigation into  

whether skeletal events in patients with malignant bone disease may 

correlate with levels of serum and urine markers of bone turnover, 

thus facilitating earlier detection or screening for such events. More 

than 90% of all metastases are found in the back, pelvis, upper leg, 

ribs, upper arm, and skull. The prognosis of cancers that metastasize 

to bone is in general very poor and the treatment for bone metastases 

tend to minimize the symptoms by reducing pain and the risk of 

fracture. The prevention and the development of therapeutic 

strategies against metastatic bone tumors lie in understanding the 

malignant cells preference in certain cancer types (prostate, breast, 

lung, kidney, thyroid cancer, or multiple myeloma) to metastasize in 



 

bone tissue. Bone microenvironment may provide growth stimulating 

factors or others proteins that induce proliferation and angiogenesis 

of cancer cells allowing them to arrest the bone tissue. SPARC has 

been shown by several studies to be a key protein that attracts prostate 

cancer cells to bone microenvironment [Jacob et al., 1999; De      

et al., 2003; Donahue, 2004]. One study showed that prostate cancer 

cells preferably migrated towards wild type bone extracts when 

compared to extracts obtained from SPARC null mice. This effect was 

reversed by restoration of SPARC [De et al., 2003]. The up‐regulation 
of VEGF production by SPARC via avb3 and avb5 is a  prostate 
cancer specific phenomenon, providing prostate cancer cells with 
significant growth advantage in bone [Donahue, 2004]. Other work 

indicates that p45‐sErbB3 (a soluble form of ErbB3, pooled in bone 
marrow supernatant samples from men with prostate cancer that had 

metastasized to bone) enhances the invasiveness of prostate cancer 

cells in part by stimulating the secretion of SPARC by bone. Thus p45‐ 

sErbB3 may mediate the bidirectional interactions between prostate 

cancer cells and bone [Chen et al., 2007]. 

The development and progression of bone metastatic prostate 

cancer using SPARC‐deficient mice infected with RM1 mouse 
prostate  cancer  cells  showed  that  bone  stromal  SPARC  inhibited 

prostate cancer expansion in bone through the regulation of 

osteoclast maturation and function [McCabe et al., 2011]. Another 

report, by Podgorski et al. [2009], suggested that cathepsin K 

modulates the biological activity of SPARC in prostate cancer bone 

metastasis by cleaving it. In two tumor bone metastases cell lines 

(derived from clinical, PC3, and experimental MDA‐231BO) enzy- 
matic processing of SPARC was reduced by inhibition of cathepsin K. 
Moreover the presence of a cathepsin inhibitor reduces the GRO 

(growth‐regulated oncogene) secretion, a pro‐inflammatory and 
chemotactic factor regulated by SPARC. On the other hand, SPARC 

and cathepsin K overexpression and secretion raised GRO secretion 

[Podgorski et al., 2009]. 

In a recent study the effect of bone matrix SPARC on PC3 behavior 

was assessed by using murine osteoblast to create normal and 

SPARC‐null bone matrix in vitro. The results of this study showed 
that when PC3 cells were grown on the wild type matrices, they 

presented decreased cell proliferation, increased cell spreading, and 

decreased resistance to radiation‐induced cell death, compared to 

cells grown on SPARC null‐matrix [Kapinas et al., 2012]. DeRosa et al. 
[2012] recently showed that SPARC gene was highlighted as a 
potential early marker of poorly differentiated phenotype of prostate 

cancers and the high SPARC expression at the time of prostatectomy 

was associated with the development of metastasis. 

Based on the two separate transgenic models of prostate and breast 

cancer (transgenic adenocarcinoma of the mouse prostate and 

murine mammary tumor virus polyomamiddle T, respectively), using 

SPARC-/- and SPARCþ/-  mice, found that loss of SPARC had no 

significant impact on tumorigenesis [Wong et al., 2008]. Although the 

loss of SPARC, by itself, neither directly promoted nor inhibited 

spontaneous prostate or breast cancer progression, SPARC expression 

could be used as a potential prognostic biomarker of tumor severity 

and/or aggressiveness. 

SPARC might have an indirect effect on breast cancer cell 

metastasis in bone since its isolation from several sources such as 

osteoblasts or epithelial cells stimulated motility of human   breast 

cancer cells and also enhanced the chemoattraction of breast cancer 

cells toward vitronectin (a known chemoattractant protein) 

[McKnight et al., 2006]. In another study a breast cancer cell   line 

(MDA‐231) deficient of SPARC was used in order to determine the 

endogenous effect of SPARC expression on invasion and metastasis 
of the breast malignant cells in bone. The induction of SPARC  

expression in MDA‐231 cells did not affect the proliferation, 
apoptosis, aggregation, or cell migration, but inhibited tumor cell 

invasion in vitro. Moreover, high expression of SPARC inhibited 
metastasis to different organs including lung and bone. Exogenous 

SPARC inhibited the platelet aggregation in vitro and the high  

expression of this protein in MDA‐231 cells reduced tumor cell‐ 

induced thrombocytopenia in vivo in relation with control. In 
conclusion, a high endogenous SPARC expression seems to inhibit 

MDA‐231 breast cancer metastasis by reducing the invasion activity 

and tumor cell‐platelet aggregation [Koblinski et al., 2005]. 
As already mentioned, the survival rate in the case of patients 

with bone metastasis is very low. The understanding of cancer  

metastasis to bone should help the prevention of metastasis and the 

establishment of a valid therapy in order to improve the patient0s life 

quality and may increase survival rates. It has been described that 

SPARC is associated to tumorigenicity and metastasis of cancer‐ 

related  bone  metastasis  like  lung  or  melanoma  cancers   [Kato 
et al., 2000; Zhou et al., 2010]. Nevertheless, there are only few 

studies regarding prostate and breast cancers that tried to disclose   

the roles of SPARC in bone metastasis (Table I), and none associated 

with other cancer types that show a tendency to develop bone 

metastasis. 

 
 

CONCLUSIONS  AND  PERSPECTIVES 
 

Considerable attempts have been made to produce adequate matrices 

or scaffolds that mimic bone ECM for applications in tissue 

engineering and regenerative medicine. In this context, several  

factors must be considered, such as the modification of biomaterial 

surfaces using growth factors, living bone cells or proteins, to guide 

cellular responses in bone remodeling, like osteoblast adhesion and 

long‐term  functionality  expressed  as  proliferation,  synthesis  of 
alkaline phosphatase, and deposition of calcium containing mineral 
[Manuel et al., 2003]. SPARC, a matricellular glycoprotein associated 

with tissue remodeling, repair, development, cell turnover, is involved 

in bone formation, bone initiating mineralization process, and 

collagen fibril assembly [Termine et al., 1981; Doi et al., 1989; 

Bradshaw et al., 2003; Wang et al., 2005; Kapinas et al., 2012]. The 

application of this protein could benefit the development of new valid 

therapeutic strategies for skeletal tissue regeneration. In addition, the 

research in this topic is essential since there are very few works 

involving SPARC and biomaterials for bone tissue regeneration 

[Sarvestani et al., 2008; Liao et al., 2009]. 

Furthermore, SPARC controls important mechanisms involved in 
cancer development and progression including the regulation of 

epithelial‐to‐mesenchymal transition, apoptosis, angiogenesis, and 
also the regulation of the inflammatory response. SPARC is relevant 

in metastatic dissemination capacity of prostate, breast, lung, kidney, 

thyroid cancer, and multiple myeloma cancer cells into bone tissue. 



 

TABLE  I. Studies Related  to SPARC Activity in  Bone  Metastasis 
 

Tumor type Expression Experimental approach Activity Refs. 

Prostate High levels of SPARC at sites 
of bone metastasis 

 

 
High expression of SPARC in 

metastatic prostate cancer 

 

 

 

 
SPARC expression is increased 

in prostate cancer 
metastases 

 
A low glycosylated SPARC is 

highly abundant in  bone 

 

 

 

 
p45‐sErbB3 up‐regulated the 

expression of SPARC 
 

Higher SPARC expression in 
bone metastasis compared 
to primary tumor 

Human prostate cancer cell lines 
LNCaP, LNCaP‐C4–2, PC3, and 
lacZ‐transfected CWR22R 
(H‐clones) SPARC‐null mouse 
model 

Transcriptomes of laser 
capture‐micro‐dissected tumor 
cells with well‐ and poorly 
differentiated (PD) phenotype 
from primary prostate tumors of 
patients with 78 months of mean 
follow‐up after radical 
prostatectomy. 

In vitro system composed by PC3 
and mineralized matrices 
synthetized by wild type and 
SPARC‐null osteoblasts. 

In vitro studies using human 
prostate cancer cell lines (DU‐145 
and PC‐3), several human 
prostate epithelial cell lines as 
well as a HT1080 fibrosarcoma 
cell line and a B16‐F10 mouse 
melanoma cell and extracts from 
various organs of mice and rat 

Human prostate cancer cell lines 
(LNCaP and PC‐3) 

SPARC deficient mice infected with 
SPARC‐expressing syngeneic 
RM1 mouse prostate cancer  cells 

Attracts prostate cancer cells to 
bone; Increases VEGF production 
by metastatic cancer cells and 
integrin activation 

High SPARC expression at the time 
of radical prostatectomy is 
associated with an increased risk 
of tumor metastasis. SPARC gene 
was identified as a potential early 
marker of less favorable outcome 
associated with PD of prostate 
cancers. 

Bone matrix‐associated SPARC 
attenuated the growth of PC3, 
increased cell spreading, and 
increased their sensitivity to 
ionization radiation. 

Enhances the invasion and 
migration by prostate cancer 
cells; Chemoattractant for 
bone‐metastasizing epithelial 
cells; Enhances matrix 
metalloprotease activity in 
prostate cancer cells 

 
Enhances the invasiveness of the 

prostate cancer cell lines PC‐3 
and C4‐2B 

Inhibits prostate cancer expansion 
in bone through the regulation of 
osteoclast maturation and 
function 

De et al. [2003] 

 

 

DeRosa et al. [2012] 

 

 

 

 

Kapinas et al.  [2012] 

 

 

Jacob et al. [1999] 

 

 

 

 

Chen et al. [2007] 

McCabe et al. [2011] 

Breast In vitro MDA‐231 breast carcinoma 
cell line study applying SPARC 
derived from several sources 
(MDA‐MB‐435, MDA‐MB‐468), 
osteoblasts (hFOB1.19), 
non‐neoplastic breast epithelial 
(hTERT‐HME1), and vascular 
endothelial cells isolated from a 
bone biopsy (HBME‐1) 

Enhances breast cancer cells 
chemoattraction toward 
vitronectin 

McKnight et al. [2006] 

High SPARC expression in 

MDA‐231 cells 

 

 

 

 

 
 

Prostate/breast SPARC is significantly 
down‐regulated in highly 
metastatic human prostate 
cancer cells 

 

 
Up‐regulation of SPARC both 

in vivo in experimental 
prostate bone tumors, and 
in vitro in co‐cultures of 
bone marrow stromal cells 
with PC3 prostate 
carcinoma cells 

In vitro human cell line study using 
SPARC‐negative MDA‐231 breast 
carcinoma cell line infected with 
an adenovirus expressing SPARC; 
In  vivo nude  mouse model 

 

 

 

 
SPARCþ/- and SPARC-/- mice 

using two separate transgenic 
mouse tumor models: transgenic 
adenocarcinoma of the mouse 
prostate (TRAMP) and murine 
mammary tumor virus polyoma 

middle T (MMTV‐PyMT) 
In vitro co‐cultures of bone marrow 

stromal cells with prostate (PC3) 
and breast carcinoma cells 
(MDA‐231BO) Severe combined 
immunodeficient (SCID) mice 
human/intrabone model 

No effect on MDA‐231  cell 
proliferation, apoptosis, cell 
aggregation, or migration; 
Inhibits breast cancer metastasis 
by reducing the invasion activity 
and tumor cell platelet 
aggregation in vitro; Reduces 
tumor cell‐induced 
thrombocytopenia in vivo 
compared with control‐infected 
cells 

No effect on prostate or breast 
cancer with the mouse tumor 
models tested Useful biomarker of 
aggressive, metastasis‐prone 
tumors 

 
Bone marrow cathepsin K regulates 

the biological activity of SPARC 
in  prostate  cancer  bone 
metastasis 

Koblinski et al. [2005] 

 

 

 

 

 

 

Wong et al. [2008] 

 

 

 
 

Podgorski et al. [2009] 

 
 

 
Yet, the actual function of SPARC in tumorigenesis and tumor 

progression is still contradictory and not fully understood. There is 

not any review article addressing SPARC and cancer‐related bone 
metastasis. Depending on cancer type, different expression patterns 
and activities of SPARC may be found. This could be explained by the 

distinct tumor microenvironment established in different types   of 

cancers that translates in terms of local composition of matrix 

molecules and cytokines and the protease profile. The different  

proteolytic products (peptide fragments) corresponding to different 

regions of SPARC have distinct activities and may explain the  

divergent and inconsistent biological activities observed with native 

full‐size SPARC protein in distinct malignancies. SPARC  peptide 



 

models  could  be  a  valid  strategy  to  understand  SPARC0s  specific 

action in mechanisms that occur in tumor invasion and metastasis in 

bone tissue. Very few attempts, including SPARC peptides combined 

with chemotherapy and/or drugs, have been performed in this 

direction up  to  now  [Chlenski  et  al.,  2004,  2010;  Gradishar  

et al., 2005; Von Hoff et al., 2008; Inoue et al., 2010]. 

Furthermore, the differential function of SPARC in several types of 

cancers might be dependent upon whether it is expressed by the 

malignant cells themselves or by neighboring stromal cells. A series of 

studies have been performed in an attempt to elucidate the actual role 

of SPARC produced  by  non‐malignant  stromal  cells  [Brekken 
et al., 2003; Sangaletti et al., 2003; Haber et al., 2008]. SPARC 

knock‐out   mice   showed   low   turnover   osteopenia   [Nie  and 
Sage,  2009],  intensive  osteoclastogenesis  [McCabe  et  al.,   2011], 
and matrices composed by thinner collagen fibers in random 

networks [Kapinas et al., 2012] that translated a less stroma and 

collagen deposition. It was proposed that SPARC is a critical 

component in the orchestration of the tissue microenvironment, 

important for metastatic cancer cells to grow and survive in the 

skeleton (skeletal cancer metastasis). In fact, the expression of many 

bone‐enriched proteins, including SPARC by stromal cells in normal 

prostate and the up‐regulation of VEGF production by SPARC being a 
prostate cancer specific phenomenon, contributes to the preference 

and significant growth advantage in bone‐like environment by 
prostate cancer cells. Also the association between SPARC expression 

pattern and malignancy of prostate and breast cancers may 
contribute to the use of SPARC as a potential prognostic biomarker 

of tumor severity and/or metastasis [Wong et al., 2008; DeRosa    

et al., 2012]. 

According to the works related to bone metastasis and presented in 

Table I, SPARC acts as protumorigenic and prometastatic protein, 

when expressed by stromal cells, trough enhancement of metal- 

loprotease activity, VEGF production, or chemoattraction toward 

vitronectin [Jacob et al., 1999; De et al., 2003; McKnight et al., 2006; 

Chen et al., 2007; DeRosa et al., 2012]. On the contrary, when SPARC 

is produced by malignant cells, it inhibits cancer expansion through 

regulation of osteoclast maturation/function or by reducing platelet 

aggregation. The final outcome of SPARC function will undoubtedly 

be highly context dependent [Framson and Sage, 2004]. The 

development of SPARC‐peptide models, conditional/gene inactiva- 
tion models [Ledda et al., 1997; Briggs et al., 2002; Smit et al., 2007] or 
the transcriptional targeting using SPARC promoter [Sato et al., 2003; 

Suzuki et al., 2005; Kelly et al., 2006; Lopez et al., 2006; Yang    

et al., 2007; Cheetham et al., 2008] could be a valid strategy to 

understand how SPARC influences tumor invasion and metastasis 

and may lead to the development of anti‐angiogenic, proliferation or 

counter‐adhesive  therapeutic  treatment  against  metastatic   bone 
tumors. 
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