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Intelligent  systems  have  a  great  potential  for  addressing  decision-making 
 problems, because they can model the involved players and produce good 

 

results with low computational time. However, intelligent systems are still glob- 

ally underutilized due to their isolation from the outside world.1 To make better 

 use of them, we need to connect intelligent 

systems to other systems so that the intelli- 

gent systems can make decisions based on 

the decisions of others and still achieve their 

goals. Distributed, intelligent systems can 

support adequate communications among 

agents, learning from agent behavior, con- 

sidering player goals and, in this way, sup- 

porting individual player decision making. 

This approach provides good decisions to 

the overall system. Some successful agent- 

based simulators have already been devel- 

oped for power systems, demonstrating the 

advantages of their use.2,3 

This article describes a multiagent system 

(MAS), which models and simulates a smart 

grid with several different players each 

having independent goals. This distributed, 

intelligent system enables testing of demand 

response (DR) programs with both physi- 

cal and virtual players that are simulated by 

computers using real data.4 

The use of DR programs in a smart grid 

presents a promising opportunity for con- 

sumers, as it allows curtailment capacity, 

which is highly valuable for dealing with 

unexpected changes. It also allows small 

consumers to participate in large DR pro- 

grams when aggregated, extending to them 

the benefits that have usually been accessi- 

ble only to large consumers.5 

Agents such as virtual power players (VPP) 

and curtailment service providers (CSP) ag- 

gregate several consumers, which makes these 

consumers strong enough to be represented 

in the electricity market and/or to participate 
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in DR programs. To participate in DR 

programs, agents representing distrib- 

uted generation and parking lots can 

only be aggregated with VPPs. Indus- 

trial, commercial, and domestic con- 

sumers can either have a contract with 

a VPP or with a CSP. 

The load-management method- 

ology controls and manages the 

physical player on the distributed, 

intelligent system. The load manage- 

ment aims to control loads at the cli- 

ent side to increase the efficiency of 

both the client and the overall system 

operation. Electricity can be expensive 

in some time periods and less expen- 

sive in others, and this should be con- 

sidered at the system and consumer 

level. Load management enables the 

system operator to control some cos- 

tumer-side loads, turning off supply 

during consumption peaks and ex- 

pensive energy generation periods and 

turning on supply during lower con- 

sumption times  or  whenever  there is 

a surplus in energy generation.6 This 

management flexibility is especially 

important for accommodating the 

increasing penetration of renewable- 

based generation plants with intermit- 

tent characteristics. 

The system described in this article 

uses the advantages of MAS to ad- 

dress load management in the  con- 

text of a smart grid with physical and 

simulated players and real consump- 

tion data. This is essential for testing 

demand response programs in a real- 

istic way. Although the proposed sys- 

tem accommodates the modeling of a 

large set of DR programs, in this ar- 

ticle we focus on two programs: Real- 

Time Price (RTP), which requires 

efficient management of the consumer 

agents (domestic and commerce) to 

minimize the energy costs;7 and Real- 

Time Demand Response Program 

(RTDRP), which considers the con- 

tract phase and the actual event that 

involves the energy cut.8 

Multiagent Smart Grid 

Simulation Tool 
Our proposed MAS models a smart 

grid and the involved players. Each 

player is represented by one agent with 

the capability of representing the actual 

corresponding player and to simulate 

his actions. Figure 1 shows the mul- 

tiagent architecture. Figure 1 presents 

a module called Multi-Agent Simula- 

tor of Competitive Electricity Markets 

(MASCEM),  which   corresponds  to 

a different project that will interact 

with the distributed, intelligent system 

(Multi-Agent Smart Grid simulation 

Platform, or MASGriP) presented in 

this article. The MASCEM simulator9 

is a modeling and simulation tool that 

has been developed for studying com- 

plex restructured electricity markets. 

All agents in MASGriP use commu- 

nication by Internet sockets, allowing 

the use of almost any programming 

language as new agents in the system. 

In the present stage of implementation, 

the majority of the agents are imple- 

mented in C#. MASGriP is prepared to 

be integrated with MASCEM, which 

uses Java as the main programming 

languages, so together they can dem- 

onstrate the benefits associated with a 

MAS for the intended application. The 

use of Internet sockets lets the system 

communicate outside of a single ma- 

chine using only the IP address and 

port. In its present state, the developed 

system makes extensive use of a diver- 

sity of Ethernet connections. The sys- 

tem uses a physical laboratory with 

several loads to simulate one domestic 

consumer. These loads are connected 

to a programmable logic controller 

(PLC) that manages and controls the 

loads using a specific IP address. 

Each agent in MASGriP, with the ex- 

ception of the facilitator agents, rep- 

resents a physical player. These agents 

administer the information concerning 

the corresponding physical installation, 

including  its  geographic   coordinate, 

electric, gas, water, and metadata infor- 

mation for each topic. The information 

administered  by each  agent depends 

on the type of player it represents. The 

way this information is shared with the 

other agents in the system depends on 

the business models and contracts in 

use. The sharing rules are based on per- 

missions contained in the configuration 

file of each agent. 

Communications in MASGriP are 

made using XML, which includes source 

and destination tags that allow routing 

in the facilitator agent. The destination 

tag can also have the values of “all” or 

“find.” The “all” value denotes broad- 

cast messages; the “find” value is asso- 

ciated with the “IDHouse” tag, which 

indicates the ID of one installation (elec- 

tric vehicles, micro storage units, micro 

distributed generation, small commerce, 

and domestic consumers) to which the 

facilitator must route messages. 

For the communications process the 

system will use the Foundation for In- 

telligent Physical Agents’ Agent Com- 

munication Language standards.10 At 

this development stage, we only use the 

system for proof of concept, leaving the 

communications and system standards 

implementations  for  future work. 

For this article, we’ve simulated 30 

consumer agents (domestic and com- 

merce), one CSP, four micro grids, one 

smart grid, and one independent sys- 

tem operator (ISO) agent. We ignore the 

management of the loads inside the con- 

sumer agents with the exception of the 

agent with the ID 26; all other agents 

simulate the values of consumption. 

 

Intelligent Energy Systems 

Laboratory 
Here, we present the laboratory that rep- 

resents the physical players and describe 

the way we integrate it with the MAS. 

 
Physical Laboratory 

The Intelligent Energy Systems Labo- 

ratory  of  the  Knowledge Engineering 
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Figure 1. Architecture of communication between agents. The Multi-Agent Smart Grid simulation Platform (MASGriP) interacts 

with the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM). In this way, it’s possible to model the power 

system operation in the competitive electricity market context, including small and large generation and consumption players’ 

behavior. 



  

 

 

 

 

and Decision-Support Research Cen- 

ter is located at the Institute of Engi- 

neering, Polytechnic Institute of Porto. 

The laboratory includes an intelligent 

supervisory control and data acquisi- 

tion (SCADA) house that simulates 

supervision and control of domestic 

electricity generation and consump- 

tion. The generation system includes 

two photovoltaic panels (one fixed 

and one tracking), two wind turbines, 

and one fuel cell. Several loads are 

available, including variable (induc- 

tion motors and fluorescent lamps) 

and discrete (lamps, washing ma- 

chines, refrigerators, and other elec- 

tric appliances).11,12 

The intelligent SCADA house is 

built in the installation agent that rep- 

resents the physical laboratory in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Interface of supervisory control and data acquisition house. The “notification” 

and “stats” tabs are static, while the other tabs are created based on installation agent 

provided information. 

system. This agent controls the PLC 

and, consequently, the physical loads. 

This control is made in C# using 

Modbus protocol for communications 

with the PLC. Despite the control that 

this agent has on the physical loads, 

it doesn’t have an interface to con- 

trol and manage the physical system. 

A separate program connected to the 

installation agent lets the user control 

and manage the loads. Programs that 

provide a capable interface can be de- 

veloped in any technology as long as 

they have an Internet socket connec- 

tion with the installation agent and 

identify themselves as interfaces. 

As our future work will show, the 

agent representing this physical instal- 

lation can also simulate some loads 

that aren’t included in the physical 

system, or can even simulate all the 

installation loads. This possibility 

makes the system more flexible and 

adequate for the simulation of a wide 

set of distinct scenarios. 

 
Multiagent    System    Integration  

The SCADA house is connected  to 

a PLC, which allows for an Ether- 

net network connection. Because this 

connection has an IP address and 

port, the MASGriP is able to connect 

to the PLC and manage the loads ex- 

isting in the house. 

The integration between the MAS- 

GriP and the PLC is built in the in- 

stallation agent, using the Modbus 

protocol present on the PLC. This 

agent manages the information con- 

cerning all the installation loads, 

which can be real/physical loads or 

computationally simulated loads. Us- 

ing this information, the agent is able 

to connect with an existing physical 

load or to computationally simulate 

one. In the XML configuration file, the 

only difference between a physical and 

a simulated load is the lack of a mem- 

ory position inside the PLC. The agent 

representative of the physical labora- 

tory is the agent with the ID 26. 

It’s possible to control the consumer 

physical structure by changing the 

XML configuration file. If a new load 

is added to the file, the system will 

connect to that load in the case of a 

physical load or computationally sim- 

ulate it in the case of a simulated load. 

When an interface agent connects to 

the consumer agent, it will display to 

the user the state of the loads so she 

can manually control them. 

Figure 2 shows a generic GUI. Be- 

sides the “notifications” and “stats” 

tabs, which are static, the other tabs 

are created dynamically according to 

the information provided by the in- 

stallation agent. This makes it possi- 

ble to use an interface code for several 

and distinct types of consumers. The 

information provided by the installa- 

tion agent contains physical data con- 

cerning the loads and rooms of the 

house. We designed the interface lay- 

out so that it can be easily adapted to 

any mobile device. 

 

Demand Response 

Programs 

The two examples that we present in 

this article consider two distinct DR 

programs. The first example will pres- 

ent a single day of consumption using 

RTP and a maximum consumption 

limit for each price range. The second 

example involves the establishment of 

contracts before the actual DR events 

(for example, the moment of the ac- 

tions) can occur. Depending on the 

minimum power amount required by 



 

 

 

 

 

 
the program, the agents can make a 

contract directly with the ISO agent 

or can make an aggregation with 

other agents using a CSP agent to 

reach the minimum required power. 

The example will detail the behavior 

of the CSP during a DR event. This 

DR program is inspired on the energy 

type service of RTDRP implemented 

by the ISO New England.8 

Both DR programs presented in 

this case study bring several advan- 

tages for consumers and network op- 

erators, while reducing energy costs 

and improving the operation flexibil- 

ity, respectively. 

In the first program, RTP, real-time 

prices are applied to the consumers, 

which have determined an amount 

of load reduction when facing a de- 

termined value of variation in the 

electricity price. Then, the proposed 

methodology performs the decision 

on how to attain the desired demand 

reduction. 

The second program, RTDRP, takes 

into account a sequence of information 

exchange between the consumer and 

the operator. This program is more ad- 

vantageous because in addition to the 

diminution in the consumption and 

respective payment, consumers are re- 

munerated regarding the power reduc- 

tion capacity itself and the availability 

to participate in the DR event. 

 
real-Time Price 

This example illustrates the use of 

RTP using agent 26. The agent that 

represents this domestic consumer 

uses a maximum consumption limit 

for each price range. This example 

uses the followed maximum con- 

sumption limits: 

 

• lower than 0.12 euros/kilowatt 

hour (kWh), no consumption limit; 

• higher or equal to 0.12 and lower 

that 0.14 euros/kWh, consumption 

limit of 4 kW; 

• higher or equal to 0.14 and lower 

that 0.16 euros/kWh, consumption 

limit of 3 kW; 

• higher or equal to 0.16 and lower 

that 0.18 euros/kWh, consumption 

limit of 2.5 kW; 

• higher or equal to 0.18 and lower 

that 0.20 euros/kWh, consumption 

limit of 2kW; and 

• higher than 0.20 euros/kWh, con- 

sumption limit of 1.75 kW. 

 

For example, if the price  exceeds 

0.12  euros/kWh  and  if  it’s  below 

0.14 euros/kWh, the house will try 

not to consume more than 4 kWs. To 

achieve the offset imposed by the re- 

spective maximum consumption limit 

for the price in question, the agent 

uses the optimization module.13 

We used the price of energy on 21 

February 2012 in Portugal as a guide- 

line for the simulation. The energy 

price we considered in this simula- 

tion (the electricity price for end-use 

consumers) was twice the real-price 

energy in generation (the electricity 

price in the electricity market). 

Considering these maximum con- 

sumption limits and the energy price, 

we performed a simulation for a com- 

plete day of consumption for  agent 

26. Figure 3 shows the consumption 

and the energy price for the last six 

hours of that day. It’s clear that the 

optimization process considering the 

maximum consumption limits accord- 

ing to the real-time price range pro- 

duced the expected result. The agent 

is able to control the consumer’s con- 

sumption so that it doesn’t exceed the 

established limit. 

In fact, there’s only one way to 

exceed the imposed limit, and this 

might happen during the learning 

process of the optimization mod- 

ule. The learning process makes the 

optimization module learn the loads 

that the users want to turn on in 

each context (contexts are  defined 

according to the period of the day 

and their conditions, like the season, 

luminosity, and temperature). The 

machine learning module is active in 

every optimization, waiting for the 

eventual subsequent users’ reactions 

to learn from them and adapt itself 

to the will of the installation users.14 

The optimization can occur by user 

demand or during the existence of 

an offset; in this case, the optimiza- 

tion will occur every time the con- 

sumption value is higher than the 

offset. 

The optimization process doesn’t 

consider inputs given directly by the 

users.13 It uses the artificial-neural- 

network-based machine learning 

module results that determine the 

current preferences factors for each 

load. These preferences factors indi- 

cate the priority of each load to main- 

tain its state before the optimization 

process. 

Figure 3a shows the evolution of 

the price of energy between 6:10 p.m. 

and 11:55 p.m. The prices in red rep- 

resent a price that triggers an offset 

for consumer agent 26. Figure 3b 

shows the consumptions values of the 

agent. The blue represents consump- 

tion values without any kind of op- 

timization module during the hours 

with a high energy price; green shows 

consumption values using the opti- 

mization module when offsets occur 

during the day; and red represent the 

offsets present on the agent described 

previously. The blue values can be 

the same as the green or higher, but 

never less. 

As shown in Figure 3, this DR pro- 

gram can control the consumption in 

one installation every time the energy 

price is higher than expected. This 

procedure can save money to the user 

and relieve the distribution grid. This 

DR program can be applied in any in- 

stallation as long as the required con- 

trol and management resources exist 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Six hours of energy consumption for agent 26: (a) energy price and (b) consumption. The optimization process lets the 

agent control the consumer’s consumption so that it doesn’t exceed the established  limit. 

 

 

on the user side. The grid only needs 

to provide the prices of energy to the 

consumers. 

 
real-Time Demand 

response Program 

A CSP can be defined as a special 

player aggregating consumers for DR 

participation, enabling small consum- 

ers to participate in DR programs and 

events. Small consumers without the 

reduction capacity required by the DR 

program managing entity (usually an 

ISO) establish a contract with a CSP, 

which aggregates several small and 

medium consumers and participates 

in the DR program as one. CSPs tasks 

are: to identify curtailable loads, en- 

roll customers, manage curtailment 

events, and calculate payments or 

penalties for its customers.14 

For this example, the ISO agent 

launches the DR program to all sys- 

tem players. Players with a sufficient 

amount of energy to cut use to achieve 

the minimum required by the program 

will build a direct contract with  ISO. 

 

Players willing to participate but who 

don’t have sufficient power to cut to 

achieve the minimum required by the 

program will try to build a contract 

with a CSP or VPP. 

DR events are supported by con- 

tracts established between the consum- 

ers and the CSPs or the ISO and aim 

to reduce consumption. During the DR 

event, CSPs have a ramp period, which 

is the time needed to reach the contrac- 

tual consumption reduction. 

Letters A through G in Figure 4 

represent key points in the ramp 

period, as follows: 

 
• A: Beginning of the DR event, dur- 

ing which the CSP alerts the con- 

tracted players. 

• B: The players return  the  values 

of both regular and additional re- 

sponse amounts to the CSP. 

• C: The CSP evaluates the use of the 

regular response amount and per- 

forms the evaluation of additional 

amounts if the regular resources 

are insufficient for participation. 

 

• D: The CSP sends the result of his de- 

cision regarding the use of both regu- 

lar and additional response amounts 

to the houses, or performs the estima- 

tion of the available direct load con- 

trol (DLC) power if the regular and 

additional resources are insufficient 

for participation in the DR event. 

• E: The probable value of the available 

DLC amount is obtained, and the CSP 

performs the evaluation of the three 

referred amounts for participation. 

• F: A CSP makes a decision regard- 

ing the participation of consumers 

in the DR event. 

 
Table 1 presents the consumer ID, 

type, average consumption, and DR 

contract main parameters for 30 

participating agents in the RTDRP 

example. We assume that all the con- 

sumer agents only communicate with 

a single CSP. The  RTDRP launched 

by the ISO agent has a minimum use 

of 100 kW for participation. 

When an agent establishes a con- 

tract with the CSP it agrees to    send 
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Figure 4. Curtailment service providers’ ramp period of the acting process for the Real-Time Demand Response Program 

(RTDRP). The figure shows key points in the ramp period. 

 
 

her two values at the beginning of a 

RTDRP event. These values are the 

regular cut and the additional cut 

that the agent is able to support in 

the present context. The  regular cut 

is an approximate amount of energy 

that the agent can reduce in real time; 

this value can be calculated with the 

use of an optimization module, spe- 

cific for each agent, and based on the 

value existing in the CSP contract. 

The additional cut is the amount of 

energy by which the agent can reduce 

above the regular cut; this value can 

be obtained by the level of comfort 

defined by the user—for example, if 

the comfort level is 70 percent,  then 

a load with a preference factor of 20 

percent can be turned off, but a load 

with preference factor of 35 percent 

can’t be turned off. We used the op- 

timization   module   for  calculating 

 

formulate the method that best fits his 
interests. The equation uses the past 
year consumption data  to calculate 
the average power consumption dur- 
ing the same time duration of the DR 
program activation period. We con- 
sider three periods of consumption for 
this purpose: on-peak (POnPeak), mid- 

peak (PMidPeak), and off-peak (POffPeak). 

To calculate the power of the contract 
(PContract), we use different weights for 

the three considered periods and com- 
bined them with the percentage of cut 
(PCutPercentage) established by the user. 

Once the result is obtained, the agent 
will reduce this amount by 30 percent 
to prevent participation failure. 

 

P
contract 


P

OnPeak 
4 P

MidPeak 
2 P

OffPeak 

7 

P
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The optimization used  by  agent 

26 uses the machine learning module 

based on the artificial neural networks 

described in other work,13 which up- 

dates the preference factors associ- 

ated to each load present in the house. 

Based on the targeted reduction value, 

the optimization module performs a 

cut in the consumption according to 

the values of the preference factors. 

The preference factors are updated by 

the machine learning module that has 

as inputs the users’ past actions (for 

example, if one user has never agreed 

to cutting a certain load, the optimiza- 

tion module will not reduce the con- 

sumption by cutting that specific load 

unless absolutely necessary). 

Although the minimum energy use 

for participation is 100 kW, at the 

time of an event the CSP only partici- 

pates if he has 120 percent of the min- 
the regular cut and the comfort level 
for calculating the additional cut  by 

100 (1) imum required to overcome possible 
failures in the anticipation of cuts  or 

agent 26 that represents the labora- 

tory described in this article.13 

Equation 1 determines the amount 

of power that each consumer agent 

will contract to curtail. The result 

value  can  be  calculated  in  differ- 

ent ways, and it’s up to each agent  to 

Agents 28, 29, and 30 don’t establish 

any DR contract and, consequently, 

don’t participate in any DR event, as 

Table 1 shows. To overcome consumer 

participation failures, the CSP adds 

60 percent of power to the minimum 

stipulated on the RTDRP. 

the eventuality of any player, deciding 

not to follow the cuts that he agreed 

to at the beginning of the event. In 

this example, the regular and addi- 

tional cuts aren’t enough to reach the 

120 percent required by the CSP. This 

requires the use of DLC contracts. For 

A B C D E F G 

Houses optimize CSP evaluates CSP evaluates 

DR regular DR use additional DR use 
CSP estimate DLC use 

CSP evaluate DR
 

use with DLC 

Houses optimize 
DR 

CSP evaluates 
regular DR use 

CSP evaluates 
additional DR use 

CSP estimate DLC use CSP evaluate DR 
use with DLC 

Fail the response 

Regular DR + additional DR 

+ DLC is insufficient 

Reduction 

Regular DR + additional DR + DLC is sufficient 

Houses optimize 
DR 

CSP evaluates 
regular DR use 

CSP evaluates 
additional DR use 

Reduction 

Regular DR + additional DR is sufficient 

Houses optimize 
DR 

CSP evaluates 
regular DR use 

Reduction 

Regular DR is sufficient 

Ramp period 

      Information flux from CSP to houses 

Information flux from houses to CSP 



 

Table 1. Agent participation parameters using the RTDRP. 

 

 
  

 
 

1 Domestic 4,489 3,912 1,520 15 410 CSP 410 150 0 

2 Commerce 100,456 80,165 50,468 40 24,505 CSP 899 342 200 

3 Domestic 4,856 3,562 1,676 30 847 CSP 320 0 150 

4 Domestic 5,132 3,465 246 18 499 CSP 0 0 0 

5 Commerce 30,546 24,983 2,354 30 5,235 CSP 0 0 0 

6 Domestic 6,542 5,132 3,645 50 2,004 CSP 0 0 0 

7 Domestic 4,651 3,216 925 12 312 CSP 315 26 0 

8 Commerce 70,468 50,468 25,987 30 12,264 CSP 0 0 0 

9 Domestic 4,321 3,654 3,211 32 890 CSP 890 251 0 

10 Domestic 8,329 6,548 3,546 20 999 CSP 999 856 0 

11 Domestic 7,426 5,132 2,756 15 641 CSP 450 265 0 

12 Commerce 230,455 200,897 165,444 50 74,453 CSP 64,321 5,423 2,300 

13 Domestic 6,542 4,563 2,135 20 749 CSP 0 0 0 

14 Domestic 4,521 2,468 2,465 20 510 CSP 500 785 0 

15 Commerce 50,216 40,546 20,456 15 4,536 CSP 652 3,521 210 

16 Domestic 5,132 3,546 1,584 10 292 CSP 290 210 0 

17 Domestic 3,587 2,465 1,045 20 406 CSP 406 0 0 

18 Domestic 7,324 5,132 3,498 25 1,076 CSP 890 260 0 

19 Commerce 345,087 300,489 232,146 50 110,674 ISO – – – 

20 Domestic 3,549 2,468 1,548 20 414 CSP 414 32 0 

21 Domestic 1,358 456 122 5 32 CSP 0 0 0 

22 Domestic 6,245 4,878 3,425 35 1,336 CSP 1,309 350 320 

23 Domestic 3,456 2,468 1,897 20 413 CSP 420 652 0 

24 Commerce 565,218 498,252 420,465 35 128,724 ISO – – – 

25 Domestic 5,498 4,568 3,249 20 688 CSP 688 230 0 

26 Domestic 4,238 3,254 3,218 15 400 CSP 400 978 0 

27 Commerce 160,456 100,486 30,469 40 34,931 CSP 29,865 890 1,500 

28 Domestic 6,543 4,688 2,468 30 1,140 None – – – 

29 Domestic 5,138 3,424 1,653 15 436 None – – – 

30 Domestic 4,235 3,218 1,532 15 374 None – – – 

       Total by event 104,438 15,221 4,680 

       Total  124,339  

* DR = demand response; CSP = curtailment service provider; and ISO = independent system operator. 

 
 

these contracts, the CSP is able to di- 

rectly turn off loads that are in the 

contract between her and each player. 

Therefore, this example shows the 

case of Regular DR + Additional 

DR + DLC presented  in  Figure 4. 

In this case, the CSP needs to use his 

last resource (DLC), the most expen- 

sive one, to achieve the minimum   of 

 

participation required by him to par- 

ticipate in the DR event. 

One of the problems of a small sim- 

ulation like the one presented here is 

scalability. In the real world, the num- 

ber of consumers largely exceeds the 

number simulated, and so smaller simu- 

lations must evolve to a larger scale to 

confirm their scalability. To  ensure  the 

 

successful outcome of this simulation 

in a larger scenario, each agent can only 

build a contract directly with the ISO or 

with one CSP or VPP in the smart grid. 

In this way, an excessive communica- 

tion burden is prevented as each DR 

program manager (ISO, CSP, or VPP) 

knows a priori which consumers it can 

count on to manage each DR event

Agent 
information 

Average DR* contract 
consumption information 

Mid-peak Off-peak  Cut Cut capacity DR contract 
On-peak (W) (W)  (W) (%)  (W)  agent 

Information sent to CSP 
during DR event 

 
ID 

 
Type 

Real cut 
(W) 

Additional 
cut (W) 

Direct load 
control (W) 

 



 

 
 
 
 

Strategies and Virtual Power Produc- 

ers,” Proc. Power and Energy Society 

General Meeting— Conversion and 

Delivery of Electrical Energy in the 

21st Century, 2008, pp. 1–8. 

3. T. Logenthiran et al., “Multiagent 

System for Real-Time Operation of a 

Microgrid in Real-Time Digital Simula- 

tor,” IEEE Trans. Smart Grid, vol. 3, 

no. 2, 2012, pp. 925–933. 

4. I. Beausoleil-Morrison, “The Simula- 

tion of Building-Integrated Fuel Cell 

and Other Cogeneration Systems 

(COGEN-SIM),” summary  report, 

EBC Annex 42, 2007; www.iea-ebc. 

org/fileadmin/user_upload/docs/EBC_ 

Annex_42_PSR.pdf. 

5. P. Faria et al., “Demand Response Man- 

agement in Power Systems Using Particle 

Swarm Optimization,” IEEE Intelligent 

Systems, vol. 28, no. 4, 2013, pp. 43–51

The adequate use of DR pro- grams is 

crucial to enabling ef- ficient and 

secure future smart grid operation, as 

they can ensure re- liable service at 

controlled costs. However, the lack of  

experience in this field makes DR 

program use far from successful. The 

proposed sys- tem supports decision 

making about DR design  and  use.  

Testing  the  use of these programs 

with real data and varying their 

parameterization al- lows putting in 

place DR programs that are adequate 

for the smart  grids’ 

characteristics. 

The proposed MAS is able to model 

all the players that act in the scope of 

the smart grid, taking into account the 

characteristics, goals, and resources of 

each individual player. Moreover, this 

system can accommodate both physi- 

cal (actual generation, storage, and 

consumption installations) and virtual 

(computationally simulated) agents 

that can be placed in any  machine 

with Ethernet connection. 

The use of the proposed system al- 

lows the performance of realistic sim- 

ulations to assess the real impact  that 

demand response programs have for 

the participating consumers and for 

the smart grid as a whole. 

Further improvements in the pre- 

sented system are being done in order 

to accommodate the realistic simula- 

tion validation allowed by real-time 

simulation hardware for electric power 

systems and components. 
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