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Abstract—The energy resource scheduling is becoming increas-  
ingly important, as the use of distributed resources is   intensified 
and massive gridable vehicle (V2G) use is envisaged. This paper 
presents a methodology for day-ahead energy resource scheduling 
for smart grids considering the intensive use of distributed gener-  
ation and V2G. The main focus is the comparison of different EV 
management    approaches    in    the    day-ahead    energy    resources man-                    
agement,   namely   uncontrolled   charging,   smart   charging,   V2G      and                     

Demand Response (DR) programs in the V2G approach. Three dif-  
ferent DR programs are designed and tested (trip reduce, shifting 
reduce and reduce+shifting). Other important contribution of the  
paper is the comparison between deterministic and computational           intelligence 
techniques to reduce the execution time. The proposed 

scheduling is solved with a modified particle swarm optimization. Mixed 
integer non-linear programming is also used for   compar- 
ison purposes. Full ac power flow calculation is included to allow  
taking into account the network constraints. A case study with   a 
33-bus distribution network and 2000 V2G resources is used to il- 
lustrate the performance of the proposed method. 

Index Terms—Demand response, electric vehicle, energy re- source 
management, particle swarm optimization. 

 

 

NOMENCLATURE: 
 

                                 Period    duration (e.g., 15 min., 30  
min., 1 hour) 

Grid-to-Vehicle efficiency when the                 
vehicle is in charge mode 

Vehicle-to-Grid efficiency when the 
                       

vehicle is in discharge mode 

                                  Voltage angle at bus   (rad)  

                              Maximum voltage angle at bus 
(rad)  

                              Minimum voltage angle at bus 

(rad) 

                                  Voltage angle at bus (rad)  
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Imaginary part of the element in 

corresponding to the row   and 

column 

Charge price of vehicle in period 

Generation price of unit in 

period 

Discharge price of vehicle in 

period 

Generation curtailment power price 

of unit in period 

Non-supplied demand price of load 

in period 

Trip shifting price for vehicle 

Energy price of external supplier 

in period 

Trip reduction price contracted with 

vehicle in period 

Battery energy capacity of vehicle 

Minimum stored energy to be 

guaranteed at the end of period , for 

vehicle 

Active energy stored in vehicle at 

the end of period 

Vehicle energy consumption in 

period 

Demand response energy reduction 

of  vehicle trip in period 

Maximum energy reduction for 

vehicle trip in period 

Real part of the element in 

corresponding to the row and 

column 

Total number of buses 

Total number of distributed 

generators 

Total number of distributed 

generators at bus 

Total   number   of loads   

Total number of loads at bus 

Total number of external suppliers 

Total number of external suppliers 

at bus 

Total  number  of vehicles   

Total number of vehicles at bus 
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                   Total number of vehicles at bus 

with original trips 

                       Total number of vehicles at bus 

shifting their trips 

                  Power charge of vehicle in period 
 

 

                 Power charge of vehicle at bus 

in period 

         Maximum power charge of vehicle 

in period 

                    Active  power  generation  of 

distributed generation unit in 

period 

                    Active  power  generation  of 

distributed generation unit at 

bus in period 

     Maximum active power generation 

of distributed generator unit in 

period 

     Minimum active power generation 

of distributed generator unit in 

period 

             Power discharge of vehicle in 

period 

             Power discharge of vehicle at bus 

in period 

     Maximum power discharge of 

vehicle in period 

                  Generation curtailment power in 

unit in period 

                  Generation curtailment power in 

unit at bus    in period 

                     Active power demand of load at 
bus in period 

                    Non-supplied demand for load in 

period 

                    Non-supplied demand for load at 

bus in period 

                Active power flow in the branch 

connecting to external supplier in 

period 

        Active power flow in the branch 

connecting to upstream supplier at 

bus in period 

        Maximum active power of upstream 

supplier in period 

         Active power in HV/MV power 

transformer connected in bus in 

period 

        Active  power  in  MV/LV power 

transformer connected in bus in 

period 

                   Reactive  power  generation  of 

distributed generation unit at 

bus in period  

    Maximum reactive power generation 

of distributed generator unit in 

period 

     Minimum reactive power generation 

of distributed generator unit in 

period 

                    Reactive power demand of load at 

bus in period 

               Reactive power flow in the   branch 

connecting to upstream supplier at 

bus in period 

       Maximum reactive power  of 

upstream supplier in period 

       Reactive  power  in  HV/MV power 

transformer connected in bus in 

period 

        Reactive  power  in  MV/LV power 

transformer connected in bus in 

period 

Total number of periods 

                             Maximum apparent power flow 

established in line that connected 

buses and 

          Maximum apparent power in 

HV/MV power transformer 

connected  in bus 

           Maximum apparent power in 

MV/LV power transformer 

connected  in bus 

                             Maximum apparent power flow 

established in line that connected 

buses and 

                              Voltage magnitude at bus    in period 

                            Maximum voltage magnitude at bus 

                             Minimum voltage magnitude at bus 

                              Voltage magnitude at bus in period 

                            Binary variable of vehicle related 

to power discharge in period 

                   Binary decision variable of unit  

in period 

                             Binary variable of vehicle related 

to power charge in period 

Admittance of line that connect 

buses and 

Shunt admittance of line connected 

to bus 

                              Trip shifting decision binary variable 

 

 
I. INTRODUCTION 

 

The electrification of the transportation sector brings more 

challenges and offers new opportunities to the network 

planning and operation [1], [2]. The technology of using the en- 

ergy stored in the gridable Electric Vehicles (EVs) batteries to 

supply  power  to  the  electric  grid  is  commonly  referred  to as 



 

 
 

Vehicle-to-Grid (V2G). Continuous improvements of EVs en- 

visage their massive use, meaning that large quantities of EVs 

must be considered by future power systems, regarding the re- 

quired supply to ensure their users’ daily travels [3]. In future 

scenarios of intensive EVs penetration, the typical load diagram 

can be significantly changed from the present one without EVs 

[3], [4]. On the other hand, smart grids can use V2Gs intel- 

ligently as distributed energy resources when the vehicles are 

parked. All of these adds further complexity to planning and 

operation of smart grids operation requiring new methods and 

more computational resources [3]–[6]. 

In such a complex context, computational  intelligence 

methods are important to obtain solutions for large dimension 

problems in an acceptable period of time [6]. Authors in [7] 

present a unit commitment model with V2G using the Particle 

Swarm Optimization (PSO)  to  reduce  costs  and  emissions 

in smart grids. PSO is an effective method to determine the 

solution of large-scale nonlinear optimization problems [8]. 

Demand Response (DR) has already proven to be a valuable 

tool to ensure  reliability  of  the  bulk  electric  system  and it 

is evolving and playing a great role in the electric industry 

[9]–[11]. For instance, during the summer heat wave of 2006, 

the Midwest ISO avoided firm load shed using interruptible 

load, demand-side management, and public appeals [11]. EVs 

have the possibility of providing a significant amount of DR 

through a variety of approaches while using their storage 

potential to enable a higher penetration of intermittent and 

variable generation such as wind and solar energy resources 

[11]. Several applications have been proposed in the litera- 

ture [2], [12]–[15]. In [2] the authors describe how demand 

response using electric vehicle charging can be effectively 

used to provide significant gains without any further techno- 

logical improvements, achieving financial savings in Ireland 

by optimizing the charging cycles of an EV. Authors in [12] 

proposes an optimal load management strategy for a residen- 

tial consumer that uses the communication infrastructure of 

future smart grids. The results using two cases of a residential 

consumer in Zaragoza, Spain, show that the proposed model 

allowed users to reduce their electricity bill. The authors in 

[13] propose a distributed demand response algorithm for 

EVs charging needs using the concept of congesting principle 

in the internet traffic control. In [14] a heuristic method is 

implemented to minimize the EV charging cost in response 

to time-of-use price in a regulated market demonstrating that 

peak demand can be reduced. Authors in [15] focuses on the 

impacts of charging EVs on residential networks including the 

transformer. To alleviate the new load peaks a DR strategy is 

proposed consisting in load shaping taking into account con- 

sumers’ preferences, load priorities and privacy. The present 

paper proposes a different kind of DR programs for EVs based 

on the reduction of the EVs trip distance and/or on trip time 

shifting, changing the initial travel requirements. The distri- 

bution network operator will remunerate the participation of 

EVs in the DR event, giving in this way an incentive to reach 

both economic and technical objectives related to the network 

operation. 

The proposed application uses a modified Particle Swarm Op- 

timization (PSO) approach which considers dynamic changing 

 

 

 

Fig. 1.   EVs management and DR models considered. 
 

 
of velocity limits [16]. This enables its use to address real world 

large-scale problems in a shorter execution time than the deter- 

ministic methods, providing the system operators with adequate 

decision support and achieving efficient resource scheduling, 

even when a significant number of alternative scenarios should 

be considered [3], [16]. 

In the present paper, it is assumed that efficient and adequate 

infrastructure and communications are able to guarantee the ef- 

ficient tracking of each EV by the utilities/aggregators. Recent 

approaches to support the design of an efficient communication 

infrastructure can be supported by the existent cellular com- 

munication networks, by the emerging vehicular ad hoc net- 

works (VANETs) with vehicle-to-infrastructure (V2I) commu- 

nication capabilities and by the existent wireless networks for 

smart meters (used as auxiliary communication infrastructures) 

[17], [18]. 

The paper is organized as follows: after the initial intro- 

ductory section, Section II explains the importance of V2G 

contracts and DR opportunities for EVs for energy resource 

management, in the scope of distribution systems, using  the 

smart grid paradigm. Section III presents the problem for- 

mulation, including the resources and network  constraints. 

Section IV presents the case studies using a 33-bus distribution 

network and considering 2000 vehicles. Section V presents the 

most important conclusions of the work. 

II. DEMAND  RESPONSE  FOR  EVS  IN  SMART GRIDS    

This section explains the concepts used in the paper regarding 

EVs management and DR models in the context of smart grids. 

Two DR programs are described in detail in this section: the trip 

reduce and trip shifting. The use of the proposed DR models 

can be activated every time the price of the energy reaches a 

predefined value. Other potential use of these programs can be 

fruitful regarding the network management or ancillary services 

[9], [19]. Fig. 1 presents the EVs management strategies con- 

sidered in this paper and the DR proposed approaches. A brief 

description for each strategy is depicted in Fig. 1 presenting the 

main  differences. 

A. Trip Reduce Demand Response Program 

The idea is to provide the network operator with another 

useful resource which consists in reducing vehicles    charging 



 

 
 

necessities. This DR program enables EVs’ users to get some 

profit by agreeing to reduce their travel necessities and min- 

imum battery level requirements. 

In phase 1 an initial optimization is made assuming that EVs 

which contracted DR option will participate. With the optimiza- 

tion results it is possible to identify which EVs’ users are sched- 

uled to participate in the event. After that, these EV’s users can 

be invited to participate, e.g., through an internet application, 

SMS message, etc. The network operator should wait for a re- 

sponse within a time limit. With the responses of EVs’s users, 

the optimization program reschedules the day-ahead problem 

with the updated information. Additionally, if EV’s users are 

scheduled to participate in the DR program, according to the 

new optimization results, the operator should follow the same 

procedure. The users that do not respond within the time limit 

are excluded from the present DR event. 

 

B. Trip Shifting Demand Response Program 

In what concerns the trip shifting program it aims to provide 

another useful resource for the network operator. This DR pro- 

gram enables EVs’ users to provide a list of optional travelling 

periods for their expected trips. The program enables the net- 

work operator to shift EVs load by remunerating their users, re- 

ducing operational costs and alleviating network contingencies. 

The shifting is limited to the alternatives that users impose, re- 

straining the computational execution time of the optimization 

process at the same time. Phase 1 consists in considering users’ 

alternative trips in the optimization model. After this step, the 

network operator can inform EVs’ users about shifting results 

from the optimization phase 1 to know if they are able to par- 

ticipate in the next day. The acknowledgment of users’ partic- 

ipation (phase 2) in the program is important for the network 

operator in order to obtain the appropriate resources scheduling 

and  reduce  the costs. 
 

III. ENERGY  RESOURCE  SCHEDULING FORMULATION  

This section presents the mathematical formulation of the 

proposed methodology including the EVs DR programs. The 

implemented PSO approach is also presented in this section. 

 

A. Problem Formulation 

This methodology is used to support the network operator to 

obtain an adequate energy resource management for the next 

day, including Electric Vehicles (EVs) resource, in the smart 

grid context. In terms of problem description, the network op- 

erator has contracts for managing the resources installed in the 

grid, including load demand. The load demand can be satisfied 

by the distributed generation resources, the discharge of EVs, 

and external suppliers (namely retailers, the electricity pool). 

The use of Vehicle-to-Grid (V2G) discharge, and the respec- 

tive charge, considers V2G user profiles and requirements. The 

energy resource scheduling problem is a Mixed Integer Non- 

Linear Programming (MINLP) problem. The objective function 

considers all the costs with the energy resources. The energy 

resource model includes: distributed generation, energy acqui- 

sition to external suppliers, the V2G discharge or charge en- 

ergy, the non-supplied demand, the excess available power [3], 

 

[5], trip reduce demand response and trip shifting demand re- 

sponse model for EVs. The present problem differs from pre- 

vious works [3], [5] as it includes network constraints, impor- 

tant in real world operation, and the DR events. 

In order to achieve a good scheduling of the available energy 

resources, it is necessary to apply a multi-period optimization; 

the presented formulation is generic for a specified time period 

(from  period to ) [3], [19]. 

 

 

 

 

(1) 

The objective function considers   to allow different   pe- 

riod duration. For instance, for 30 minutes period  duration, 

the value of  should be 0.5 if the cost function is   specified 

in an hour basis. In order to improve the solution feasibility, 

the mathematical model includes variables concerning the gen- 

eration curtailment power  and non-supplied de- 

mand  . is important because the   net- 

work operator can establish contracts with uninterruptible gen- 

eration (“take or pay” contracts) with, for instance, producers 

based on renewable energy sources. In extreme cases, when the 

load is lower than the uninterruptible generation, the value of 

 is different from zero.  is positive when 

the available resources are not enough to satisfy the load de- 

mand. The minimization of objective function (1) is subject to 

the following constraints: 

• The network active (2) and reactive (3) power balance with 

power loss in each period : 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

• Bus voltage magnitude and angle limits: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(4) 

(5) 

 

 

 
 

 

 
• Upstream supplier maximum limit in each period : 

 
 

 
 

 

 
• Vehicle technical limits in each period : 

 

 

 
(11) 

 

 
 

(12) 

 

 

 

 
 

(13) 

 

(14) 

• Line thermal limits: 

 

 
 

(6) 

 
• HV/MV power transformers limits considering the power 

flow direction from HV to MV: 

 

 

 

 

 
(7) 

 
• MV/LV power transformers limits: 

 

 

 

                                                      (8) 

 

 

(9) 

• The vehicle charge and discharge are not simultaneous: 

 
 

 

                               (15) 

 
• Battery balance for each EV. The energy consumption for 

period travel has to be considered jointly with the energy 

from the previous period: 

 
 

 

 

                                         (16) 

• Discharge limit for each EV considering battery discharge 

rate: 

 

 (17) 

• Charge limit for each EV considering battery charge rate: 

 

(18) 

• EV battery discharge limit considering battery balance: 

 

(19) 
 

 

 

• Maximum and minimum DG limit in each period : 

(10) • EV battery charge limit considering the battery capacity 

and previous charge status: 

 
 

 

(20) 

(2) 

(3) 



 

 
 

• Battery capacity limit for each EV: 
 

 

 

 

(21) 

 

V2G charge to be reduced and the DG generation to be in- 

creased. More information about voltage drop in radial distri- 

bution networks can be found in    [23]. 

The velocity limits of the marked variables are changed ac- 

cording to the type of signaling. For instance, when DG reac- 
tive power variables are marked, the maximum velocities of 

• Minimum stored energy to be guaranteed at the end of pe- 

riod . This can be seen as a reserve energy (fixed by the 

EVs users) that can be used for a regular travel or a unex- 

pected travel in each   period: 

 
 

  

(22) 

        (23) 
 

 

(24) 

 

 
B. Particle Swarm Approach 

The PSO concept began as a simulation of simple social sys- 

tems like the flocks of birds or the schools of fish [20]. The main 

advantage of PSO is its simplicity, while being capable of deliv- 

ering accurate results consistently. It is fast and also very flex- 

ible, being applicable to a wide range of problems with lim- 

ited computational requirements [8]. The original PSO relies 

on fixed velocity limits that are not changed during the swarm 

search process (PSO iterations) [20], [21]. Research work con- 

ducted by Fan and Shi [20], [22] has shown that an appropriate 

dynamic change of maximum velocities can improve the per- 

formance  of  the  PSO algorithm. 

In the present implementation to the problem of day-ahead 

scheduling, the maximum and minimum values of velocity 

limits can change dynamically throughout the search process. 

The initial velocities are set for each variable according to 

its type, e.g., the maximum velocities for generators reactive 

variables are set to 0.02, while the minimum velocities are set   to 

0.01. The maximum and minimum velocities for generators 

active power are calculated by a rank algorithm which takes 

into account the generators energy price. 

In the evaluation phase, the implemented mechanism will 

check for constraint violations, namely bus lower and over- 

voltage violations (4)–(5), line thermal limits (6) and power 

transformers (7)–(10). If there is any violation of the above con- 

straints, the algorithm will mark the variables that can possibly 

help alleviating these violations. In case of bus lower voltage vi- 

olations, the mechanism will mark DG reactive power and V2G 

resources variables to increase reactive power and discharges, 

respectively. In case of bus overvoltage violations, the mech- 

anism will mark DG reactive power variables to decrease and 

EVs to charge. The buses selected to get the appropriate V2G 

and DG resources are the buses in which violations occurred as 

well as the buses that were preceding    it. 

Line thermal limit and power transformers violations can be 

corrected in two ways: by reducing V2G charge or increasing 

generation in the downstream lines. The mechanism marks the 

these variables are increased by 20%. When the DG reactive 

power variables are marked to decrease, the minimum veloci- 

ties of these variables are decreased by 20%. 

The described mechanism contributes for a faster conver- 

gence to a solution without violations, as well as to improve the 

solution fitness. To improve the fitness function the mechanism 

works as follows: 

• It tries to increase V2G charge variables values when V2G 

charge price is lower than mean generation cost increasing 

maximum velocity limits; 

• It tries to increase V2G discharge variables values when 

V2G discharge price is lower than mean generation cost 

acting on minimum velocity limits; 

• It tries to apply DR V2G trip reduce program (when avail- 

able) by increasing the corresponding variables when DR 

program price is lower than the mean generation total cost 

and the respective vehicle charge price. 

Regarding the problem formulation presented in Section A, 

namely the objective function, one can see why the above as- 

pects improve the solution. The variables of DR trip shifting 

program are not controlled by the described mechanism. 

The initial swarm population is randomly  generated between 

the upper and lower bounds of variables, except from V2G vari- 

ables that are initialized with zeros. During the swarm search, 

the algorithm checks whether to charge or discharge vehicles, 

and to apply DR trip reduce programs in case it is necessary or 

advantageous. DR shifting variables are randomly initialized by 

the swarm. 

A robust radial power flow model from [24] is included in 

the modified PSO approach to check the solutions’ feasibility 

during the swarm search process. The load flow is run before 

the fitness evaluation for each swarm solution. The load system 

balance (2)–(3) is validated by a power flow algorithm, and the 

power losses are compensated by the energy suppliers or DG 

generators. Vehicle battery balance constraints (19) are checked 

before fitness evaluation. The fitness function corresponds to the 

objective function (1) of the mathematical model. If the values 

of swarm solutions are not according to the constraint limits, 

the solution is corrected by the direct repair method. The direct 

repair method can be used instead of indirect repair, such as 

penalty factors which are efficient in correcting solutions before 

evaluating the fitness function [25]. 

 

IV. CASE                                   STUDY                                      

This section presents the case study used in this paper to illus- 

trate the proposed models. For that, an exact method (MINLP) 

obtained using the software GAMS, is compared with the PSO 

in terms of execution time and solution quality. 

This case study considers a 33-bus distribution network as 

can be found in [3]. An innovative tool [26], developed by the 



 

 
 

TABLE    I   
SOURCES    CHARACTERIZATION 

 
 

 

 
 

TABLE II 
PARAMETERS  OF  PSO  METHODS 

 
 

 

 

 

authors, was used to generate the EVs scenario and to model the 

behavioral pattern of the drivers. 

Table I presents the prices for each resource, minimum and 

maximum available capacity, and the number of units for each 

type of technology. The values for the ten considered suppliers, 

connected to the network in the substation, are also presented. 

Only the linear component of the sources cost functions is con- 

sidered in this case study. The cost of EV discharge is low, 

as it is considered a profit for EVs’ users (objective function 

(1)–Section III). The EV charge and loads cost are considered 0 

(m.u./kWh) because the main goal of the VPP is to minimize the 

operation cost, the load supply and the EV charge are manda- 

tory services of VPP. 

The paper presents the results of five scenarios using 2000 

EVs. This number is adequate for the dimension of the given 

MV distribution network under study considering a high pene- 

tration of EVs in year 2040. Uncontrolled charging is not pre- 

sented in the case study because the optimal solution with 2000 

EVs is not found (unfeasible due to network constraints). The 

DR scenarios consider phase 1 of the described approach in 

Section II. 

Regarding the parameterization of the PSO approach, the 

number of iterations is set to 50 for each scenario. The pa- 

rameters definition of PSO can be seen in Table II. Gaussian 

mutation weights are used for mutation of the strategic param- 

eters of PSO particles movement equation [27]. 

Figs. 2 and 3 show the load and the EVs charge for the sce- 

nario  using  both trip reduce and  shifting  DR  programs. Fig.   2 

 

 

 

 
Fig. 2.   Load and EVs charge profile of MINLP methodology. 

 

 

 

 

 
Fig. 3.   Load and EVs charge profile of PSO methodology. 

 

 
 

presents the results for the MINLP approach and Fig. 3 depicts 

the results for the PSO approach. The system demand considers 

the EVs discharges as  can be seen  in peak   periods. 

The results are similar; however, MINLP schedules more ve- 

hicles to charge in the night hours, minimizing the impact during 

the day. The vehicle charge that occurred in periods 23 and 24 

in PSO’s solution are due to the fact that batteries must have at 

least 30% at the end of the day. In MINLP these charges oc- 

curred in other periods and the minimum level was guaranteed. 

In both solutions, none of the approaches increased the peak 

load as verified in period 20 without    EVs. 

Table III presents the summary of the results for MINLP and 

the PSO approach for the five scenarios. In this case study PSO 

is approximately 2,700 times faster than the MINLP method- 

ology, and the objective function is close to its cost in the five 

scenarios. The solutions for the scenarios presented in the paper 

for the PSO approach are selected from 1,000 trials, trying to 

present the average cases, thus not representing the best or the 

worst case of those trials yet aiming to show an average case. 

The solution cost of the PSO approach is higher than the exact 

method compared because meta-heuristics, such as PSO, give 

an approximate solution that converges in a local optimum [20]. 

The MINLP execution time is high and uses more than 24 hours 

to solve the optimization problem. This execution time is ex- 

pected to rise exponentially with the increase of the number of 

resources and the complexity of the opportunities used in EVs, 

such as DR programs. Neither PSO nor MINLP can guarantee 

a global optimum. The modifications in PSO aim to improve 

the  quality  of  the  solution  by  satisfying  problem’s constraints 



 

 
 

TABLE III 

RESULTS OF THE MINLP AND PSO APPROACHES 

 

 

 

 

 

Fig. 4.  Objective function cost evolution by iteration using the PSO approach. 

 
 

 

 

Fig. 5.   Energy resource scheduling for the five scenarios. 
 

 

and by obtaining lower costs. The lower cost, while satisfying 

problem’s constraints, means a higher quality of the solution. 

Fig. 4 shows the objective function evolution of the 1,000 

trials average for the V2G scenario using the PSO approach, 

therefore  presenting  its  convergence characteristics. 

The robustness test using 1,000 trials presented a maximum 

objective function cost of 8,340 m.u., a minimum cost of 8,180 

m.u. and an average cost of 8,252 m.u. The variability of the 

PSO approach is low with a standard deviation of 21 m.u. 

Fig. 5 shows the energy resource scheduling for the five sce- 

narios in the case study. In this figure are presented the results 

for the MINLP and PSO approaches. Also, the active power 

scheduling per type of resource, scenario and method can be 

compared with each other. 

Fig. 6 shows the charge and discharge profile obtained for the 

five scenarios. The PSO approach uses more charging than the 

MINLP approach except for V2G scenario. 

Even though there is a mechanism to optimize EVs charging 

(see  Section  III,  subsection  B),  this  happens  due  to PSO’s 

 

 

 

 

Fig. 6.  Charge and discharge scheduling for the five scenarios. 

 
 

 

 

Fig. 7.   Charge and discharge profile for the trip shift scenario. 

 

 

 

Fig. 8.   Charge and discharge profile for the trip shift scenario. 
 

 
stochasticity nature, whereas MINLP is more accurate, thus 

providing solutions with lower cost. 

Fig. 7 depicts the trips energy consumption for DR trip re- 

duce DR scenario. For the reduce program all the vehicles can 

participate reducing at most 50% of the needs of their travels. 

In this scenario almost all vehicles reduce their trips according 

to optimization results. 

Fig. 8 concerns the trip shifting program results. This scenario 

considered at most 200 vehicles to participate between periods 

17–20. 

In the optimization solution, using this program, the resulting 

trip of 110 EVs are dislocated from the initial forecasted trip. 

The network operator’s decision prevails in order to use the DR 

programs. 
 

V. CONCLUSION 

The large amount of energy resources, including EVs, leads 

to an increase in the complexity of operation and planning 



 

 
 

of distribution networks. In this field, computational intelli- 

gence methods have an important role in the smart grid. A 

meta-heuristic widely used in several power systems problems 

(PSO) is applied to solve the problem of energy resource sched- 

uling  with  EVs and  DR  programs in the day-ahead context. 

In this paper a new kind of DR program specifically for EVs 

users is proposed. Two different programs are implemented, 

namely, the trip distance reduce and trip shifting DR programs. 

These programs can be used in the smart grids context with sig- 

nificant penetration of EVs in which users might be able to join 

and participate in DR events. The optimization model includes 

the constraints associated with the proposed DR programs for 

EVs. These programs, as it is demonstrated with the case study, 

can provide effectiveness regarding the reduction of the opera- 

tion costs from the network operator point of view. 

To solve the large mixed-integer non-linear combinational 

problem a PSO approach is developed with integrated ac power 

flow. In each case study scenario a reference technique MINLP, 

developed in GAMS, is used to be compared with PSO in terms 

of execution time and solution quality. The PSO approach is 

2,700 times faster when compared with MINLP, presenting low 

variability of the results and providing satisfactory solutions for 

the day-ahead problem. The PSO took an average of 30 to 34 

seconds depending on the scenario, while MINLP took between 

85,475 and 97,416 seconds (24–27 hours). The objective func- 

tion of the PSO when compared with MINLP ranged between 0 

and  3% difference. 
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