
Block Runge-Kutta Methods for Non-Stiff

Initial Value Problems

A thesis presented for the degree of

Doctor of Philosophy of the University of London

and the

Diploma of Membership of Imperial College

by

Maria Isabel Coutinho Vieira

Department of Mathematics

Imperial College of Science, Technology and Medicine

Queen’s Gate, London SW7 2BZ

December 1994

1



Abstract

Explicit Runge-Kutta methods are very widely used for the numerical integra-

tion of non-stiff initial value problems of the form:

dy

dx
= f(x, y), y(a) = y0. (0.1)

Recent work on Runge-Kutta methods has suggested several ways in which

existing formulae can be improved. In particular, Dormand and Prince have

developed a powerful approach to allow estimation of the global truncation

error. Higham and Hall have investigated a new stability concept which is

particularly appropriate when the steplength of integration is controlled by

stability rather than accuracy and numerous authors have investigated the

possibility of providing an interpolant to define a continuous solution which

can be computed at “off-step” points. In another development, Cash has

considered the possibility of applying block Runge-Kutta methods to non-stiff

problems of the form (0.1). Such formulae can be regarded either as explicit

Runge-Kutta methods integrating forward over two steps or standard Runge-

Kutta methods using more than the minimum number of function evaluations.

A particular 5(4) block method has been shown to be very competitive with

standard methods of the same order. In this thesis we carry out a detailed

investigation of block formulae. In particular we investigate the 5(4) case

more thoroughly and also derive 6(5) and 7(6) formulae. In addition we derive

block formulae which have good stability in the sense of Higham and Hall and

which have proved to be very effective for mildly stiff problems. Finally we

develop block formulae to compute global error estimates. Such formulae are

particularly appropriate for this task since they contain many free parameters

and also it is straightforward to derive an interpolant of the desired form.

Extensive numerical results are given to demonstrate the efficiency of the new

methods.
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Chapter 1

Introduction

1.1 Initial Value Problems

Initial value problems for ordinary differential equations occur very fre-

quently in a variety of application areas such as control theory, chemical en-

gineering, biology, electrical and civil engineering. Such a problem consists of

a first order system of ordinary differential equations together with a set of

conditions which are all specified at the same initial point.

The main aim of this thesis is to find efficient numerical methods for the

approximate solution of the general first order, non-stiff, initial value problem

of the form:

y′ = f(x, y), y(a) = y0, x ∈ [a, b] (1.1)

where y ∈ Rm, y′ ≡ dy

dx
and f : R × Rm −→ Rm. Here y is called the

dependent variable and x the independent variable. If f does not depend on x,

the problem is said to be autonomous, and to be non-autonomous otherwise.

It is easy to write a non-autonomous problem in autonomous form simply by

taking ym+1 ≡ x (where ym+1 is the (m + 1)th component of y) and adding

the extra equation y′m+1 = 1 with initial condition ym+1(a) = a to (1.1). We

now get a new (m+1)-dimensional system which is clearly autonomous. If we

have a system of order higher than one it can always be reduced to the form

(1.1). Consider for example the pth order, m-dimensional system of ordinary

differential equations of the form:

y(p) = f(x, y(0), y(1), ..., y(p−1)), (1.2)

10



1. Introduction

where f : R × Rm × ...× Rm︸ ︷︷ ︸
p ≈im∼

−→ Rm and y(p) denotes the pth derivative of y

with respect to x. We now define a new set of variables Yi ∈ Rm,i = 1,2, ..., p,
as follows:

Y1 = y (≡ y(0))

Y2 = Y ′
1 (≡ y(1))

Y3 = Y ′
2 (≡ y(2))

...
...

Yp = Y ′
p−1 (≡ y(p−1)).

The last p− 1 of these equations together with (1.2) give:

Y ′
1 = Y2

Y ′
2 = Y3

...

Y ′
p−1 = Yp

Y ′
p = f(x, Y1, Y2, ..., Yp),

which is a first order system of dimension pm.

In view of this we confine our attention to (1.1) from now on. The first

question we need to investigate concerns the existence of a solution to our

problem. A theorem that gives a sufficient condition for the existence and

uniqueness of a solution to (1.1), see for example [Lambert91], is:

Theorem 1.1 Let f(x, y) be defined and continuous for all (x, y) in D = {(x, y) :

a ≤ x ≤ b, −∞ < ys < ∞, 1 ≤ s ≤ m, a, b finite}. If f satisfies a Lipschitz

condition on D:

||f(x, y)− f(x, y∗)|| ≤ L ||y − y∗||, (1.3)

where L is a Lipschitz constant, then for any y0 ∈ Rm, there exists a unique

solution, y(x), of the initial value problem (1.1), where y(x) is continuous and

differentiable for all (x, y) ∈ D and y(x) = (y1, y2, ..., ym)T .

Using the Mean Value Theorem we may choose, if f is differentiable,

L = sup
(x,y)∈D

∣∣∣∣
∣∣∣∣
∂f(x, y)

∂y

∣∣∣∣
∣∣∣∣ ,

where
∂f(x, y)

∂y
≡ J is the Jacobian matrix.

11



1. Introduction

In what follows we assume that a unique solution of the problem (1.1) exists

and that the problem is “well posed”. We say that a problem is “well posed” if

“small” perturbations in the initial condition produce correspondingly “small”

changes in the solution. Although most initial value problems have a unique

solution often it can not be found analytically. In view of this it is normally

necessary in practical situations to resort to numerical methods and we will

discuss these in the next section.

1.2 Numerical Methods

There are two widely used classes of numerical methods for the solution

of problems of the form (1.1), namely one-step methods and linear multistep

methods. Both of these classes of methods involve discretising the interval

[a, b] into points xi, i = 0, 1, 2, ..., N , such that x0 = a, xi+1 = xi + hi and

xN = b. The aim then is to get numerical approximations yi to the true so-

lution y(xi) at each grid point xi. In what follows we will discuss these two

classes of methods and we start off with the one-step case.

Runge-Kutta methods (RKM) are a class of one-step methods which have

the general form:

yn+1 = yn + hn

s∑
j=1

bjkj, (1.4)

where

kj = f(xn + cjhn, yn + hn

s∑
i=1

ajiki), j = 1, 2, ..., s. (1.5)

Here s is the number of stages and hn the steplength of integration. Note

that each kj defines a function evaluation so that an s-stage method requires

exactly s function evaluations. A more compact way of writing a Runge-Kutta

formula is by means of the so called Butcher’s table:

c A

bT

12



1. Introduction

where c and b are s-dimensional vectors and A is an s× s matrix defined by:

c = (c1, c2, . . . , cs)
T , b = (b1, b2, . . . , bs)

T , A = [aij].

If A is strictly lower triangular we say that the method is explicit; if A is

lower triangular we say that the method is semi-implicit and if A is not lower

triangular we say that the method is implicit. If we denote by y(xn+1) the

exact solution of the differential equation at xn+1 = xn +hn we have by Taylor

expansion about xn:

y(xn+1) = y(xn) + hny′(xn) +
h2

n

2
y′′(xn) + · · · .

Definition 1.1 Assuming the localizing assumption: yn = y(xn), i.e., the nu-

merical solution is exact at the beginning of each step, we say that the Runge-

Kutta method defined by (1.4) is of order p if the Taylor expansions for y(xn+1)

and yn+1 agree up to and including the terms in hp
n.

We define the local truncation error (LTE) associated with a Runge-Kutta

method by the difference between these two Taylor expansions. This is in effect

the amount by which the true solution fails to satisfy (1.4) and can be written

as:

LTE = y(xn+1)− yn+1 = hp+1
n φp + O(hp+2

n ), (1.6)

where φp is the principal error function of the Runge-Kutta formula. This

error function can be written as φp =

Np∑
j=1

TjDj where Tj are polynomials in

the coefficients of the formula, Dj are elementary differentials [Butcher63a]

depending on the problem and its solution and Np is an integer depending on

p. The values of Np are given in the table below.

p 1 2 3 4 5 6 7 8 9

Np 1 1 2 4 9 20 48 115 286

These polynomials give rise to a set of nonlinear algebraic equations defin-

ing the so called order conditions. The order conditions are complicated to

derive from the Taylor expansions, but fortunately an analysis developed by

J.C. Butcher [Butcher87] based on the use of rooted trees makes them quite

13



1. Introduction

easy to write down. The order conditions define simultaneous nonlinear alge-

braic equations in the coefficients ci, bi and aij. For high order formulae, these

order conditions become extremely difficult to solve. One can understand why

the construction of high order Runge-Kutta formulae is not an easy task if we

consider the next table.

order p 1 2 3 4 5 6 7 8 9 10

no. of order conditions 1 2 4 8 17 37 85 200 486 1205

In order to solve these equations it is often necessary to impose certain

simplifying assumptions and we return to these later in this thesis.

We now consider linear multistep methods (LMM). A general linear k-step

method can be defined by the equation:

k∑
j=0

αjyn+j = hn

k∑
j=0

βjf(xn+j, yn+j) (1.7)

where αj and βj are constants that satisfy:

αk = 1, |α0|+ |β0| 6= 0.

The condition on αk is simply a normalising condition while the condition on

α0 and β0 ensures that (1.7) can not be rewritten as a linear (k − 1)-step

method.

A linear multistep method is said to be explicit if βk = 0 and implicit

otherwise.

Associated with a linear multistep method, it is usual to define the first

and second characteristic polynomials as:

ρ(ξ) =
k∑

j=0

αjξ
j, σ(ξ) =

k∑
j=0

βjξ
j, (1.8)

where ξ ∈ C is a dummy variable.

It is also convenient to define the linear difference operator L by:

L[z(x); hn] =
k∑

j=0

[αjz(x + jhn)− hnβjz
′(x + jhn)], (1.9)

14



1. Introduction

where z(x) ∈ C1[a, b] is an arbitrary function.

If we choose z(x) to be differentiable as often as we need, expand z(x+jhn)

and z′(x + jhn) in a Taylor series about x, and collect terms, we obtain:

L[z(x); hn] = C0z(x) + C1hnz
(1)(x) + · · ·+ Cmhm

n z(m)(x) + · · · (1.10)

where the Cm are recursively defined by:

C0 =
k∑

j=0

αj = ρ(1)

C1 =
k∑

j=0

(jαj − βj) = ρ′(1)− σ(1)

Cm =
k∑

j=0

(
jm

m!
αj − jm−1

(m− 1)!
βj

)
, m = 2, 3, . . . .

Definition 1.2 The method (1.7) is said to be of order p if in (1.10) the

constants C0 = C1 = C2 = · · · = Cp = 0 and Cp+1 6= 0.

The local truncation error of a linear multistep method at the point xn+k

is defined by L[y(xn); hn], where y(x) is the exact solution of the initial value

problem (1.1). If we make the localizing assumption that yn+j = y(xn+j),

j = 0, 1, . . . , k − 1, i.e., all back values are exact, and also assuming that

y(x) ∈ Cp+1[a, b], where p is the order of the method, it can be shown that:

LTE = Cp+1h
p+1
n y(p+1)(xn) + O(hp+2

n ). (1.11)

The term Cp+1h
p+1
n y(p+1)(xn) is referred to as the principal local truncation

error and the constant Cp+1 as the error constant or principal error constant.

As in the case of Runge-Kutta methods, the local truncation error provides a

measure of the difference between the true solution and the numerical solution

over a single step on the assumption that previously computed solutions are

exact. Note however that the form of the local truncation error for linear

multistep methods is relatively simple containing as it does just a single term.

This is in contrast to high order Runge-Kutta methods which generally have

very complicated expressions for their local truncation error.
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1. Introduction

A widely used class of linear multistep methods is the class of Adams meth-

ods. These can be written in the form:

yn+k − yn+k−1 = hn

k∑
j=0

βjf(xn+j, yn+j). (1.12)

The explicit formulae are known as Adams-Bashforth methods while the im-

plicit ones are known as Adams-Moulton methods. A popular technique used to

solve an initial value problem using these two types of formulae is the predictor-

corrector approach. We can explain this by considering the Adams-Bashforth

formula:

yn+k = yn+k−1 + hn

k−1∑
j=0

β̄jfn+j (1.13)

and the Adams-Moulton formula:

yn+k = yn+k−1 + hn

k∑
j=0

βjfn+j. (1.14)

Assuming that the data (xi, yi) is known for 0 ≤ i ≤ k−1, a predictor-corrector

approach is as follows.

(P) Use the Adams-Bashforth formula to predict a solution y
(0)
n+k.

(E) Evaluate f
(0)
n+k ≡ f(xn+k, y

(0)
n+k).

(C) Use the iteration scheme

y
(i)
n+k = yn+k−1 + hnβkf

(i−1)
n+k + hn

k−1∑
j=0

βjfn+j, i = 1, 2, . . . , M

(E) f
(i)
n+k ≡ f(xn+k, y

(i)
n+k)

to find a sequence of corrected solutions.

Often this approach is implemented with M = 1 and in this case the formulae

are said to be used in PECE mode.

In the next section we examine the concepts of stability and convergence

of numerical methods.
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1. Introduction

1.3 Stability and Convergence

In analysing the stability of numerical methods it is normal to study the

scalar test equation:

y′ = λy, y(0) = 1, λ ∈ C, R(λ) < 0 , (1.15)

with constant stepsize.

Although this is a very simple model problem it does help us to derive

methods which work well in practice for many problems of interest.

If we apply any one-step numerical method with a steplength h to (1.15)

we obtain a difference equation of the form:

yn+1 = R(z)yn, (1.16)

where z = λh. Here R(z) is called the stability function of the method.

Definition 1.3 A numerical method is said to be absolutely stable for those

values of z that satisfy:

|R(z)| < 1. (1.17)

Definition 1.4 The region of absolute stability, <A, of a numerical method

is that part of the complex z-plane for which (1.17) is satisfied for all z ∈ <A.

These regions are symmetric about the real axis.

The function R(z) obtained by applying a Runge-Kutta method to (1.15)

can be expressed in either of the following ways [Lambert91]:

R(z) = 1 + zbT (I − zA)−1e (1.18)

or

R(z) =
det(I − zA + zebT )

det(I − zA)
, (1.19)

where e = (1, 1, ..., 1)T . When the method is explicit, in which case A is

a strictly lower triangular matrix, the matrix I − zA is also lower triangu-

lar, with all the diagonal elements equal to one. It follows immediately that

17



1. Introduction

det(I − zA) = 1 in this case and this means that, for an explicit method,

R(z) is a polynomial in z.

When we apply a linear multistep method to the scalar test equation (1.15)

we get a kth order constant coefficients difference equation which are of the form

Arm where r satisfies solutions of:

R(r, z) ≡ ρ(r)− zσ(r) = 0. (1.20)

We now consider how the property of stability is related to that of conver-

gence. Most numerical methods for solving the initial value problem (1.1) can

be written in the form:

k∑
j=0

αjyn+j = hnφf (yn+k, yn+k−1, . . . , yn, xn; hn). (1.21)

Theorem 1.1 gives us conditions for the existence of a solution of the initial

value problem (1.1). Now, we are interested in knowing if the numerical method

used to obtain such a solution is convergent. Assuming for the time being that

hn ≡ h is a constant we have:

Definition 1.5 The numerical method (1.21) is said to be convergent if, for

all initial value problems satisfying the hypotheses of Theorem 1.1, the following

condition is satisfied at an arbitrary fixed point xn = a + nh:

lim
h→0

||y(xn)− yn|| = 0.

Given a particular numerical method it is very difficult to check directly

whether it satisfies this condition. What we would like is a necessary and

sufficient condition for convergence which is easy to check in practice. To

obtain this we first define the concept of consistency.

Definition 1.6 The numerical method (1.21) is said to be consistent of order

p if, for all initial value problems satisfying the hypotheses of Theorem 1.1, the

following condition is satisfied:

1

hn

k∑
i=0

αiy(xn+i)− φf (y(xn+k), y(xn+k−1), . . . , y(xn), xn; hn) = O(hp
n).
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In order to state the fundamental theorem on convergence we need to give

some further definitions.

Definition 1.7 The numerical method (1.21) is said to satisfy the root con-

dition if all of the roots of the first characteristic polynomial have modulus less

than or equal to one, with those of modulus one being simple.

The following theorem gives a necessary and sufficient condition for a nu-

merical method to be zero-stable (defined for example in [Lambert91]).

Theorem 1.2 The method (1.21) is zero-stable iff it satisfies the root condi-

tion.

We can now state the fundamental result (see for example [Lambert91]):

Theorem 1.3 The necessary and sufficient conditions for the numerical method

(1.21) to be convergent are that it is zero-stable and consistent.

Since Runge-Kutta methods are one-step in nature they automatically sat-

isfy the root condition. This means that providing the coefficients bi, aij, ci

are chosen so that the method is consistent, a Runge-Kutta method is also

convergent. Thus in the case of Runge-Kutta methods it is trivial to get con-

vergence. In the case of linear multistep methods it is not so simple and this

can be seen by the following theorem:

Theorem 1.4 (first Dahlquist barrier)

No zero-stable linear k-step method can have order exceeding k+1 when k is

odd and k+2 when k is even.

We see that the condition that a linear multistep method should be con-

vergent imposes a severe restriction on the attainable order.
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1.4 Stiffness

Many of the initial value problems that occur in practice fall into two distinct

(but not very well defined) classes known as stiff and non-stiff problems.

The concept of stiffness is a property of the differential system itself. How-

ever in practice, whether or not a problem appears to be stiff depends on the

method being used to solve it, since with an appropriate choice of methods

one hardly notices that there are any difficulties in finding the solution to a

stiff system. Stiffness cannot be defined in a very precise mathematical way.

To get the “feeling” of what it is let us consider the following problem:

y′ = Ay + ϕ(x), y(a) = y0, (1.22)

where y, ϕ ∈ Rm and A is an m×m matrix of constant coefficients with distinct

eigenvalues λi ∈ C, i = 1,2, ...,m. The restriction to distinct eigenvalues is

not crucial but makes the analysis more straightforward. The analytic solution

of (1.22) has the form:

y(x) =
m∑

i=1

cie
λixvi + ψ(x), (1.23)

where the ci are constants and ψ(x) is a particular integral. Let us assume

that Re(λi) < 0, i = 1, 2, ..., m, and that

max|Re(λi)|
min|Re(λi)| À 1.

Here
max|Re(λi)|
min|Re(λi)| defines the stiffness ratio. If we compare the two compo-

nents of the solution: e(−max|Re(λi)|)x and e(−min|Re(λi)|)x the first decays very

fast while the second decays slowly in comparison.

In practice the aim is often to reach the steady state solution, ψ(x). Using

a code based on a method with a finite region of absolute stability the stepsize

will be restricted since the stability region is “small” and some of the λi are

“very” negative. Integrating with this small stepsize will be very time con-

suming, and we will have to integrate over a long distance until we get to the
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steady state solution. Let us consider an example. Consider the second order

differential equation:

y′′ − (λ− 1)y′ − λy = 0. (1.24)

This can be transformed into a system of two first order differential equations

to give:

y′ = z

z′ = (λ− 1)z + λy or

(
y′

z′

)
=

(
0 1

λ λ− 1

) (
y

z

)
. (1.25)

The analytic solution is given by:

y = Aeλx + Be−x, A, B ∈ R.

Suppose we use Euler’s method to solve (1.25). The interval of absolute sta-

bility of this method is (−2, 0). The restrictions on the stepsize of integration

needed to ensure stability are:

0 > −h > −2

0 > hλ > −2.
(1.26)

Suppose for example that λ = −1. In this case the restriction (1.26) is not

at all severe. However if for example λ = −1000 then the second equation of

(1.26) would need a very small stepsize for it to be satisfied. If, however, we

look at the solution:

y = Ae−1000x + Be−x

we can see that the first component goes to zero much quicker than the second

one. In contrast, if we consider the equation y′ = −y, which has approximately

the same solution after a small time, we just need to have h < 2 for stability.

The concept of stiffness is defined in [Lambert91] in the following way:

Definition 1.8 If a numerical method with a finite region of absolute stability,

applied to a system with any initial conditions, is forced to use in a certain

interval of integration a steplength which is excessively small in relation to the

smoothness of the exact solution in that interval, then the system is said to be

stiff in that interval.
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As we have seen, the ability of a numerical method to successfully integrate

a stiff system efficiently depends among other things on the size of its stability

region. Ideally we would like a numerical method to have an infinite region

of absolute stability and we give the following definitions which impose this

requirement.

Definition 1.9 A method is said to be A-stable, see for example [Lambert91],

if its region of absolute stability, <A, contains the whole complex left half plane

Re(z) ≤ 0 i.e.:

<A ⊇ {z ∈ C : R(z) ≤ 0,z = λh}.

Definition 1.10 A one-step method is said to be L-stable if it is A-stable and

in addition when applied to the scalar test equation the stability function R(z)

satisfies:

lim
Re(z)→−∞

|R(z)| = 0. (1.27)

The most widely used methods for the integration of stiff systems are the

backward differentiation formulae (BDF) which are from the class of linear

multistep methods. Although these have been successfully applied to a wide

class of stiff problems they are restricted by the second Dahlquist barrier which

says that an A-stable linear multistep method cannot have order exceeding 2.

As a result of this, many classes of L-stable implicit Runge-Kutta formulae

have been proposed but these have been found to be relatively expensive. In

an attempt to get over these problems there has recently been some interest

in the use of block methods. In particular block implicit methods have been

considered for stiff problems in [Butcher90],[Cash83b]. Results so far indi-

cate that this approach is likely to be particularly efficient for stiff problems

combining as it does high stage order with excellent stability. In this thesis we

extend these ideas to block explicit methods suitable for non-stiff problems.

Some early work on this approach was given in [Cash83a] and later on in

this thesis we will develop this approach to high order, computationally effi-

cient formulae. Before considering these methods, which can be regarded as a

combination of linear multistep and Runge-Kutta methods, in detail we first

examine the relative merits of these two classes of formulae.
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1.5 Comparison Between RKM and LMM

RKM LMM

self-starting not self-starting except at order

≤ 2

easy to change stepsize expensive to change stepsize

for problems with frequent dis-

continuities it is easy to start at

any order

need to restart at order 1 and

then build up the order to a rea-

sonable level

expensive to estimate the LTE

due to the number of function

evaluations required; difficult to

construct a variable order code

easy to estimate the LTE; easy

to construct a variable order

code

low overhead high overhead

no natural interpolation poly-

nomial available; expensive to

obtain solutions at “off-step”

points; can restrict the stepsize

to hit output points or derive an

interpolant usually at the cost of

extra function evaluations

natural underlying interpola-

tion polynomial available; easy

to obtain solutions at “off-step”

points; stepsize determined just

by accuracy requirements

need more than 2 function eval-

uations per step for high order:

difficult to obtain efficient high

order methods

only 2 function evaluations per

step are needed at all orders if

implemented in a PECE mode

Here “overhead” denotes all computation effort apart from function evalua-

tions.

Many attempts have been made to derive a class of methods which is in

some sense between these two classes. Examples of these are: general lin-

ear methods [Butcher87], hybrid methods [Lambert73] and block explicit

Runge-Kutta methods [Cash85],[Cash86],[Cash89]. One of the major pur-

poses of our investigation is to develop a new class of methods which has none

of the drawbacks associated with each method but has the advantages of both.
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Ideally we would like a method which is self-starting, has free interpolation, in

the sense that no extra function evaluations are necessary, has good stability

properties and for which it is easy to compute local error estimates and to

change order.
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Chapter 2

Runge-Kutta Methods - A Survey

2.1 Introduction

In this section we consider in more detail the use of explicit Runge-Kutta

methods for the numerical solution of (1.1). The simplest numerical method

is Euler’s method which for constant h is:

yn+1 = yn + hf(xn, yn). (2.1)

This method has order 1 which is not sufficiently high for it to be efficient for

the integration of general systems of the form (1.1) except possibly when very

low accuracy is required. As we saw in the previous chapter the two main

ways of obtaining higher order are either to consider a multistep approach or

to consider a one-step Runge-Kutta approach. In this section we concentrate

on the Runge-Kutta approach.

Runge (1895) first had the idea of getting methods of order greater than

1 by keeping the one-step formulation but at the cost of losing linearity. His

initial ideas were further developed by Heun (1900) and Kutta (1901).

An s-stage Runge-Kutta method can be written in either of the following

two equivalent ways:

yn+1 = yn + h

s∑
j=1

bjkj, (2.2)

where

kj = f(xn + cjh, yn + h

s∑
i=1

ajiki), j = 1, 2, ..., s, (2.3)
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or

yn+1 = yn + h

s∑
j=1

bjf(xn + cjh, Yj), (2.4)

with

kj = f(xn + cjh, Yj), j = 1, 2, ..., s, (2.5)

where

Yj = yn + h

s∑
i=1

ajif(xn + cih, Yi), j = 1, 2, ..., s. (2.6)

As explained in the previous chapter, in order to derive a Runge-Kutta method

of order p we need to satisfy certain nonlinear order conditions. In the next

section we examine the link between the integers p and s.

2.2 Order versus Stages

An s-stage explicit Runge-Kutta method has s(s+1)/2 free parameters. If it

is to be of order p it must satisfy

p∑
i=1

Ni order conditions. Butcher [Butcher87]

has given a table that relates the number of parameters, the number of order

conditions and the number of stages for each order and we reproduce it below.

s 1 2 3 4 5 6 7 8 9

s(s + 1)/2 1 3 6 10 15 21 28 36 45
s∑

p=1

Np 1 2 4 8 17 37 85 200 485

Of particular interest is the number of stages s required to get a particular order

p formula. Butcher [Butcher87] has given the following theorems relating to

explicit Runge-Kutta methods.

Theorem 2.1 An explicit Runge-Kutta method with s-stages has order not

exceeding s.

Theorem 2.2 For an explicit Runge-Kutta method with s ≤ 4 stages, the

greatest attainable order is s.

26



2. Runge-Kutta Methods - A Survey

Theorem 2.3 There is no p-stage, pth order explicit Runge-Kutta method with

p ≥ 5.

Theorem 2.4 For a given p ≥ 6 there exists an explicit Runge-Kutta method

with s-stages where s =
p2 − 7p + 20

2
. Furthermore, if p ≥ 10, a method of the

required order exists with s =
p2 − 7p + 10

2
stages.

Theorem 2.5 For a given p there exists an explicit Runge-Kutta method of

order p with s-stages where

s =





3p2 − 10p + 24

8
p even,

3p2 − 4p + 9

8
p odd.

The known results for explicit Runge-Kutta methods can be summarised in

the following table:

Order Minimum number of stages

Lower bound Upper bound

1 1

2 2

3 3

4 4

5 6

6 7

7 9

8 11

9 12 17

10 13 17
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2.3 Some Examples of Low Order Formulae

In this section we will give some well known explicit Runge-Kutta methods

of order 1 to 4.

Euler’s method is the only order 1 explicit Runge-Kutta method with 1

stage. Using Butcher’s matrix notation this formula can be written as:

0 0

1
(2.7)

As examples of an order 2 method with 2 stages, we have the Modified Euler

method:

0 0

1

2

1

2
0

0 1

(2.8)

and the Improved Euler method:

0 0

1 1 0

1

2

1

2

(2.9)

For order 3 with 3 stages there are two well known formulae: Heun’s third
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order formula given by:

0 0

1

3

1

3
0

2

3
0

2

3
0

1

4
0

3

4

(2.10)

and Kutta’s third order formula:

0 0

1

2

1

2
0

1 −1 2 0

1

6

2

3

1

6

(2.11)

For order 4 with 4 stages by far the most well known method is the classical

Runge-Kutta method:

0 0

1

2

1

2
0

1

2
0

1

2
0

1 0 0 1 0

1

6

1

3

1

3

1

6

(2.12)

The method was derived in 1901 by Kutta in the pre-computer era which

accounts for the simplicity of the coefficients and the large number of zeros.
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Many methods with order greater than 4 exist and can be found, for example

in [Butcher87] together with the references given therein.

2.4 Butcher’s Analysis and Relation to Rooted

Trees

As we have seen in previous sections, the order conditions for high order

explicit Runge-Kutta formulae are not easy to derive from first principles us-

ing Taylor expansions. However by using the theory of rooted trees, Butcher

[Butcher87] has considerably simplified this analysis. Based on graph the-

ory Butcher has developed an approach which gives a correspondence between

trees and order conditions. In what follows we give a brief introduction to this

analysis.

The trees used in Butcher’s theory are built up from a unique root and a

set of nodes joined by lines which are referred to as branches. It is very easy to

build up the trees from the lower order ones just by adding some branches on to

the “free” nodes. Of course we have to make sure that we are not considering

equivalent trees. For example the trees with just one or two nodes are:

s s
s

From the tree with two nodes we have two alternatives, either add another

node to the root to give the tree:

s
s s

@
@

¡
¡

or add another branch to the top node to give:

s
s

s

¡
¡
@

@

Thus new trees can be created simply by adding new branches and nodes to

the existing nodes. There is a constraint that doesn’t permit branches to grow
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together again, an example of this being:

s
s s s

s

@
@

¡
¡

¢
¢

A
A

Such a tree would not be allowed. The number of nodes corresponds to the

order. To obtain the order conditions from the trees we will define the poly-

nomials in aij, bi, ci by Φ(t) and the constants by γ(t) for each tree t. The

necessary and sufficient conditions for a method to be of order p are that

Φ(t) =
1

γ(t)
for all trees t with no more than p nodes (cf. [Butcher87]). The

polynomial Φ(t) is obtained by giving a label i, j, k, ... to each of the nodes of

the tree, starting from the bottom and going up, i.e., i is the label of the root.

To each branch we assign the label aij where i and j are the labels of the two

nodes that are connected by this branch. Then we form the product bi

∏
ajk,

and sum over i, j, k, . . . from 1 to s. For example if we consider the tree:

s
i

s
j

s
k

s l

@
@

¡
¡
@

@

the corresponding polynomial is
s∑

i,j,k,l=1

biaijaikakl which can be simplified to

s∑
i,j=1

biciaijcj by making use of the row-sum conditions
s∑

j=1

aij = ci, 1 ≤ i ≤ s.

If we want to know the value of γ(t), which is called the density of the tree t,

for a particular tree t, we label the terminal nodes with 1 and all the others

with a value i + 1, where i is the number of branches going outward from that

branch. Then the value of γ(t) is the product of the numbers attached to each

node. If we consider the same tree, for example, then following these rules we

have:

s
4

s
1

s
2

s1

@
@

¡
¡
@

@

so that γ(t) = 8. We can define the height of a tree t, H(t), as the length

of the longest possible path in the tree plus 1, and width of a tree t, w(t), as
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the number of terminal nodes. In the case of the previous tree H(t) = 3 and

w(t) = 2. Table 2.1 gives the order conditions, the height, the width and the

corresponding trees for orders 1 to 6. All subscripts run from 1 to s.

2.5 Simplifying Assumptions

Since it is difficult to solve the nonlinear algebraic equations defining a

high order Runge-Kutta method it is often necessary to use simplifying as-

sumptions to reduce the complexity of the equations. The effect that these

simplifying assumptions have is to reduce the number of nonlinear algebraic

order conditions by forcing some of the equations to become equivalent. There

are two kinds of simplifying assumptions that are commonly used namely:

row-simplifying assumptions and column-simplifying assumptions. The row-

simplifying assumptions are for example:
s∑

j=1

aijcj =
1

2
c2
i , i 6= 2, (2.13)

b2 = 0.

If we consider for example an order 6 method, when the row-simplifying as-

sumptions are satisfied together with the order conditions of the form:
s∑

i=1

bic
j
i =

1

j + 1
, j = 0, 1, . . . , 5 (2.14)

the order conditions in the first column of the table below will “disappear”

since they become equivalent to equations in the second column.

4
∑

biaijcj = 1
6 3

∑
bic

2
i = 1

3

6
∑

biciaijcj = 1
8 5

∑
bic

3
i = 1

4

10
∑

bic
2
i aijcj = 1

10 9
∑

bic
4
i = 1

5

13
∑

biaijcjaikck = 1
20 10

∑
bic

2
i aijcj = 1

10

19
∑

bic
3
i aijcj = 1

12 18
∑

bic
5
i = 1

6

20
∑

biciaijcjaikck = 1
24 19

∑
bic

3
i aijcj = 1

12

The column-simplifying assumptions are:
s∑

i=1

biaij = bj(1− cj), j = 1, 2, ..., s. (2.15)

In the table below we show which order conditions will “disappear”.
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t Order Condition w(t) H(t)

1 τ
(1)
1 s ∑

bi = 1 0 1

2 τ
(2)
1 s

s
∑

bici = 1
2 1 2

3 τ
(3)
1 s

s s
@

@
¡

¡ ∑
bic

2
i = 1

3 2 2

4 τ
(3)
2 s

s
s

¡
¡
@

@

∑
biaijcj = 1

6 1 3

5 τ
(4)
1 s

s
s

s
@

@
¡

¡ ∑
bic

3
i = 1

4 3 2

6 τ
(4)
2 s

s s
s

@
@

¡
¡
@

@

∑
biciaijcj = 1

8 2 3

7 τ
(4)
3 s

s
s s

@
@

¡
¡

∑
biaijc

2
j = 1

12 2 3

8 τ
(4)
4 s

s
s

s

¡
¡
@

@
¡

¡

∑
biaijajkck = 1

24 1 4

9 τ
(5)
1 s

s s s s
@

@
L

LL
¯
¯̄

¡
¡ ∑

bic
4
i = 1

5 4 2

10 τ
(5)
2 s

s
s

s
s

@
@

¡
¡ ∑

bic
2
i aijcj = 1

10 3 3

11 τ
(5)
3 s

s s
s s

@
@

¡
¡
@

@
¡

¡

∑
biciaijc

2
j = 1

15 3 3

12 τ
(5)
4 s

s s
s

s

@
@

¡
¡
@

@
¡

¡

∑
biciaijajkck = 1

30 2 4
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t Order Condition w(t) H(t)

13 τ
(5)
5 s

s s
s s

@
@

¡
¡ ∑

biaijcjaikck = 1
20 2 3

14 τ
(5)
6 s

s
s

s
s

@
@

¡
¡

∑
biaijc

3
j = 1

20 3 3

15 τ
(5)
7 s

s
s s

s

@
@

¡
¡
@

@

∑
biaijcjajkck = 1

40 2 4

16 τ
(5)
8 s

s
s

s s
@

@
¡

¡

∑
biaijajkc

2
k = 1

60 2 4

17 τ
(5)
9 s

s
s

s
s

¡
¡
@

@
¡

¡
@

@

∑
biaijajkaklcl = 1

120 1 5

18 τ
(6)
1 s

s s s s s
@

@
L

LL
¯
¯̄

¡
¡ ∑

bic
5
i = 1

6 5 2

19 τ
(6)
2 s

s s s s
s

@
@

L
LL

¯
¯̄

¡
¡ ∑

bic
3
i aijcj = 1

12 4 3

20 τ
(6)
3 s

s s s
s s

@
@

¡
¡

A
A

A
A

∑
biciaijcjaikck = 1

24 3 3
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t Order Condition w(t) H(t)

21 τ
(6)
4 s

s s s
s s

@
@

¡
¡
@

@
¡

¡

∑
bic

2
i aijc

2
j = 1

18 4 3

22 τ
(6)
5 s

s s
s s s

@
@

¡
¡
@

@
¡

¡

∑
biaijc

2
jaikck = 1

36 3 3

23 τ
(6)
6 s

s s
s

s
s

@
@

¡
¡
@

@
¡

¡

∑
biciaijc

3
j = 1

24 4 3

24 τ
(6)
7 s

s
s

s s
s

@
@

B
B

BB

£
£
££

¡
¡

∑
biaijc

4
j = 1

30 4 3

25 τ
(6)
8 s

s s s
s

s

@
@

¡
¡
@

@
¡

¡

∑
bic

2
i aijajkck = 1

36 3 4

26 τ
(6)
9 s

s s
s s

s

@
@

¡
¡

¡
¡
@

@

∑
biaijaikckajlcl = 1

72 2 4

27 τ
(6)
10 s

s s
s s

s

@
@

¡
¡
@

@
¡

¡
@

@

∑
biciaijcjajkck = 1

48 3 4

28 τ
(6)
11 s

s
s s s

s

@
@

¡
¡
@

@

∑
biaijc

2
jajkck = 1

60 3 4
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t Order Condition w(t) H(t)

29 τ
(6)
12 s

s
s s
s s

@
@

¡
¡
@

@

∑
biaijajkckajlcl = 1

120 2 4

30 τ
(6)
13 s

s s
s

s s

@
@

¡
¡
A

A
@

@
¡

¡

∑
biciaijajkc

2
k = 1

72 3 4

31 τ
(6)
14 s

s
s s

s s

@
@

¡
¡
@

@
¡

¡

∑
biaijcjajkc

2
k = 1

90 3 4

32 τ
(6)
15 s

s
s

s
s

s
@

@
¡

¡

∑
biaijajkc

3
k = 1

120 3 4

33 τ
(6)
16 s

s s
s

s
s

@
@

¡
¡
@

@
¡

¡
@

@

∑
biciaijajkaklcl = 1

144 2 5

34 τ
(6)
17 s

s
s s

s
s

@
@

¡
¡
@

@
¡

¡

∑
biaijcjajkaklcl = 1

180 2 5
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t Order Condition w(t) H(t)

35 τ
(6)
18 s

s
s

s s
s

@
@

¡
¡
@

@

∑
biaijajkckaklcl = 1

240 2 5

36 τ
(6)
19 s

s
s

s
s s

¡
¡
@

@
¡

¡
@

@
¡

¡

∑
biaijajkaklc

2
l = 1

360 2 5

37 τ
(6)
20 s

s
s

s
s

s

¡
¡
@

@
¡

¡
@

@
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Table 2.1: Order equations for a sixth order Runge-Kutta method
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4
∑

biaijcj = 1
6 2−3

∑
bici = 1

2 −
∑

bic
2
i = 1

3

7
∑

biaijc
2
j = 1

12 3−5
∑

bic
2
i = 1

3 −
∑

bic
3
i = 1

4

14
∑

biaijc
3
j = 1

20 5−9
∑

bic
3
i = 1

4 −
∑

bic
4
i = 1

5

24
∑

biaijc
4
j = 1

30 9−18
∑

bic
4
i = 1

5 −
∑

bic
5
i = 1

6

By making the simplifying assumptions (2.13), (2.15) we would be able to

derive higher order methods in a very straightforward way. We will return to

these simplifying assumptions in the next chapter where we will extend this

approach to derive high order block explicit Runge-Kutta formulae.

2.6 Local Error Estimation

The local truncation error of high order Runge-Kutta formulae is difficult

to estimate directly because of its complicated form. As we showed earlier, the

LTE of an order p Runge-Kutta method is given by:

LTE = y(xn+1)− yn+1 = hp+1
n φp + O(hp+2

n ), (2.16)

where φp, the error function, is given by: φp =

Np∑
j=1

TjDj. The number of

terms in this sum increases rapidly with p. The problem we are faced with

is to establish some practical way in which the LTE can be estimated. The

first approach developed was Richardson extrapolation otherwise known as the

deferred approach to the limit, see for example [Lambert91]. This approach

consists of parallel integration with different stepsizes. Starting from the point

(xn, yn) let yn+1 and y∗n+1 be two numerical approximations to the true so-

lution, y(xn+1), obtained using stepsizes hn and hn/2, respectively with the

same pth order formula. The local truncation error in yn+1 is given by (2.16).

Considering the second approximation we get:

LTE = y(xn+1)− y∗n+1 = 2

(
hn

2

)p+1

φp + O(hp+2
n ). (2.17)

We can obtain an estimate for the LTE by subtracting equation (2.16) from

(2.17):

φph
p+1
n

∼= 2p(yn+1 − y∗n+1)

1− 2p
. (2.18)
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Assuming that the method has s-stages this procedure will require a total

of 3s − 1 function evaluations. Although this procedure often gives a good

approximation to the LTE it is relatively expensive and so it is natural to

consider cheaper alternatives. One possibility is to use the idea of embedding.

This approach consists of defining two methods of consecutive orders with the

same coefficients aij and ci, but with different bi. Assuming that yn+1 and ȳn+1

are the two estimates of y(xn+1) given by the main method and the embedded

method, respectively, then we can write:

yn+1 = yn + hn

s∑
i=1

biki,

ȳn+1 = yn + hn

s∑
i=1

b̄iki.

By evaluating the difference between the results computed by each method we

get an estimate of the local truncation error in the lower order method. Thus

when deriving an order p Runge-Kutta method we will also find an order p−1

method for the purpose of error estimation. Usually we denote the pair of

formulae by (p, q) or p(q) where p is the order of the main method and q is the

order of the embedded one. In the formulae developed in this thesis we will

consider q = p− 1. The error estimate can be used to monitor the local error

and to control the stepsize of integration. Again if we consider yn+1 and ȳn+1

as two approximations to the true solution, where yn+1, ȳn+1 are obtained by

the formulae of order p, p− 1, respectively, then we can write:

y(xn+1)− yn+1 = hp+1
n φp + O(hp+2

n ), (2.19)

y(xn+1)− ȳn+1 = hp
nφp−1 + O(hp+1

n ). (2.20)

Subtracting these two equations and neglecting O(hp+1
n ), we get:

hp
nφp−1

∼= yn+1 − ȳn+1. (2.21)

Suppose we wish to choose a step hn+1 so that

||LTE|| = TOL, (2.22)

where TOL is some user defined local error tolerance. The next step is given

by:

hn+1 = hn

(
TOL

||En+1||∞

)1/p

, (2.23)
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where ||En+1||∞ ≡ ||yn+1 − ȳn+1||∞. However since this estimate assumes

that the terms in hp+1
n are negligible we introduce a safety factor SF into our

formula. Hence we actually choose hn+1 as

hn+1 = SF hn

(
TOL

||En+1||∞

)1/p

. (2.24)

An alternative way of choosing the step is:

hn+1 = SF hn


 TOL∣∣∣

∣∣∣En+1

hn

∣∣∣
∣∣∣
∞




1/p

. (2.25)

Equation (2.24) gives the error per step control (EPS) and equation (2.25)

gives the error per unit step control (EPUS). This technique of estimating

the error is called Fehlberg embedding. If the solution ȳn+1 is acceptable on

accuracy grounds we actually accept the asymptotically more accurate solution

yn+1 and this technique is known as local extrapolation. An extension to this

error estimation technique comes from considering First Same As Last (FSAL)

methods. Such methods come from assuming that the last row of the matrix

A is formed by the vector b. In this approach there are s + 1 stages but the

last function evaluation of each step will be the same as the first function

evaluation of the following one. That is as+1,i = bi. If we denote by kn
s+1 the

last evaluation during the step from xn to xn+1, then

kn
s+1 = f(xn + h, yn + h

s∑
i=1

as+1,ik
n
i ). (2.26)

If we go another step forward, xn+1 to xn+2, there is no need to evaluate the

first k of the next step as it is given by:

kn+1
1 = f(xn + h, yn + h

s∑
i=1

bik
n
i ) = kn

s+1. (2.27)

Important contributions to this area of deriving embedded Runge-Kutta pairs

were made by E. Fehlberg, J. H. Verner and R. England. In [Fehlberg68] and

[Fehlberg69] Fehlberg derives formulae of orders 1-8 with stepsize control.

Together with each order p formula an order p + 1 formula is derived for the

purpose of error estimation. These formulae require more function evaluations

per step than conventional Runge-Kutta formulae without stepsize control.

However they require less function evaluations than conventional formulae with
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Richardson extrapolation. Simplifying assumptions and the FSAL technique

for the error estimation were used by Fehlberg. The formulae presented by

Fehlberg have several free parameters and these were chosen so that the leading

terms of the LTE are small. However these methods for order greater than 4

are unsatisfactory because they give error estimates which are identically zero

when solving quadrature problems of the form y′ = f(x).

One of the first people to consider embedded formulae was England [Eng-

land69] who gives an example of a 5(4) pair with 6 stages, which is the mini-

mum number of stages possible for an order 4 method with an error estimate.

The advantage of this method is that b5 and b6 are both zero, which make it

efficient when the error estimate is not required.

Many pairs of embedded formulae have been derived by Verner [Cooper72],

[Verner78], [Verner79], [Verner91a] and [Verner91b]. In particular, in

[Verner78], pairs of formulae of order 6(5), 7(6), 8(7) and 9(8) were devel-

oped. These overcome the disadvantage of the methods presented by Fehlberg

in that they do not give zero error estimates for quadrature problems.

Dormand and Prince [Dormand80], [Prince81] have also given examples

of embedded formulae of orders 5(4), 6(5) and 8(7). Their aim is to develop

pairs of formulae that have ’small’ principal local truncation errors and ’good’

regions of absolute stability. They use the quantities:

A(p+1) = ||T (p+1)||
B(p+1) =

||T̄ (p+1)||
||T̄ (p)|| (2.28)

C(p+1) =
||T̄ (p+1) − T (p+1)||

||T̄ (p)||

to determine the efficiency of the p(p− 1) formulae, where T (i) are the polyno-

mials corresponding to the ith order conditions. The bar is associated with the

order p− 1 formula. For a discussion of these norms and how they are used to

design methods the reader is referred to [Dormand80], [Prince81].

One of the more efficient 5(4) formulae which has been derived by Dormand
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and Prince [Dormand80] is given below.
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0
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0
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5
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0
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351

220

1

20

(2.29)

In this case the quantities (2.28) are A(6) ∼= 0.1227 × 10−2, B(6) ∼= 1.2808,

C(6) ∼= 1.3436.

2.7 Stability

As we saw in the previous chapter it is common to study stability using the

scalar test equation y′ = λy. If we consider an explicit Runge-Kutta method

of order p with s stages and if we expand the exact solution y(xn+1), we have:

y(xn+1) = y(xn) + hλy(xn) +
1

2!
h2λ2y(xn) + · · ·+ 1

p!
hpλpy(xn) + O(hp+1).

Under the localizing assumption that yn = y(xn), the value yn+1 given by

the method applied to the test equation differs from the the previous Taylor
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expansion by O(hp+1) terms. So we can write:

yn+1 = yn

(
1 + hλ +

1

2!
h2λ2 + · · ·+ 1

p!
hpλp

)
+ O(hp+1).

The stability function is given by:

R(z) = 1 + z
∑

i

bi + z2
∑
ij

biaij + z3
∑

ijk

biaijajk + · · ·

= 1 + z
∑

i

bi + z2
∑

i

bici + z3
∑
ij

biaijcj + · · · (2.30)

which is a polynomial of degree ≤ s. If a Runge-Kutta method is of order p,

then:

R(z) = 1 + z +
1

2!
z2 +

1

3!
z3 + · · ·+ 1

p!
zp + O(zp+1). (2.31)

Consequently we can say that all explicit Runge-Kutta methods with p = s

possess the following stability function:

R(z) =
yn+1

yn

= 1 + z +
1

2!
z2 + · · ·+ 1

s!
zs. (2.32)

When we compare linear multistep methods with Runge-Kutta methods we

can see that in both cases implicit methods can have larger stability regions

than explicit methods. But as the order increases, for explicit linear multistep

methods the stability regions tend to decrease; while for Runge-Kutta methods

the opposite happens, as the order increases the stability regions become larger.

When deriving high order Runge-Kutta methods we often have many free

coefficients available. When p > 4 we can choose some of these coefficients to

improve the stability of our formulae. We will return to this point later.

In Figure 2.1 we have plotted the stability regions of the explicit Runge-

Kutta methods of orders p ≡ s = 1, 2, 3, 4.
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[r]

Figure 2.1: Stability of explicit Runge-Kutta methods of orders 1 to 4
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2.8 Interpolation

A numerical method for the integration of (1.1) typically finds values of y

and its derivative at a discrete set of points {xn}. Often, however, solution val-

ues are required at “off-step” points and to compute these it is most efficient to

develop an interpolating polynomial. When using Adams methods, solutions

at “off-step” points can be obtained simply by evaluating a natural underlying

polynomial at the appropriate point. This in turn means that the steplength of

integration used with these formulae is determined by accuracy requirements

alone and is practically independent of the distribution of the output points. In

contrast, explicit Runge-Kutta methods do not normally have such an interpo-

lating polynomial available and this means that most implementations of such

methods choose the stepsize of integration so as to hit all output points exactly.

This can, of course, lead to an extremely expensive integration if there are

many output points and this generally makes Runge-Kutta methods uncom-

petitive with Adams methods in this situation. Recently a lot of attention has

been given to developing codes that include interpolating polynomials [Dor-

mand86],[Gladwell],[Shampine85b],[Shampine86],[Shampine92],[Enright86].

With high order Runge-Kutta methods there is no natural interpolant and it

is a challenging problem to derive interpolants with the appropriate order. In

the case of block explicit Runge-Kutta methods going ν steps forward, we have

ν+1 solutions available: yn, yn+1,. . ., yn+ν . If we now fit a νth order interpolat-

ing polynomial P (x) through the points (xi, yi), i = n, n+1, . . . , n+ ν, we can

compute an order ν solution yτ at any intermediate point xτ as yτ = P (xτ ).

This is the procedure followed in [Cash85],[Cash86],[Cash89]. The ability

to derive high order interpolating polynomials is a big advantage of block ex-

plicit Runge-Kutta methods. Enright et al. [Enright86] describe a general

procedure to construct interpolants for Runge-Kutta formulae. They study

how many extra function evaluations are necessary to construct these polyno-

mials. The number of stages required for a C1-interpolant with various p(p−1)

Runge-Kutta formulae has been given by Verner [Verner93]. In particular he

found the following:
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p(p− 1) stages stages for a C1-interpolant of order p

6(5) 8 12

7(6) 10 16

8(7) 13 21

9(8) 16 26

We note from this table that the number of function evaluations required to

obtain the desired interpolants rises rapidly with order.

2.9 Main Codes Used at Present

Early codes based on p(p − 1) pairs and using local extrapolation were

developed from formulae derived by England and Fehlberg. Shampine and

Watts [Shampine76a] used a Fehlberg 5(4) pair with 6 stages in their code

RKF45. This was one of the first very widely used Runge-Kutta codes. Hull,

Enright and Jackson [Hull76] used a 6(5) pair with 8 stages. The code derived

was called DVERK. In the NAG library a 5(4) formula developed by Merson

is used. The subroutine is called D02PAF but note that the order 5 formula

becomes of order 3 when the equations are not linear differential equations

with constant coefficients. The codes RKF45, DO2PAF, XRK and DVERK

use error per step and local extrapolation.
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Chapter 3

Block Explicit Runge-Kutta Methods

3.1 Introduction

In this chapter we consider the derivation of block explicit Runge-Kutta

formulae. The aim is to derive methods which are more efficient than conven-

tional Runge-Kutta methods of the same order by deriving formulae which use

information over several integration steps. Thus in one sense these methods

could be regarded as multistep versions of Runge-Kutta methods. In an at-

tempt to derive a general class of formulae which include both Runge-Kutta

and linear multistep formulae, Butcher [Butcher66] proposed General Linear

Methods (GLM).

A general linear method can be written in the form (A,B, C) such that the

formula for y
(n)
i , i = 1, 2, ..., N is given by:

y
(n+1)
i =

N∑
j=1

aijy
(n)
j + hn

N∑
j=1

bijf(xj, y
(n+1)
j ) + hn

N∑
j=1

cijf(xj, y
(n)
j ), (3.1)

where A,B,C are N ×N matrices with elements aij, bij, cij, respectively.

In Chapter 2 we showed that if we define Yj = yn+hn

s∑
i=1

ajiki, j = 1, 2, ..., s,

then an s-stage Runge-Kutta method can be written in the form:

yn+1 = yn + hn

s∑
j=1

bjf(xn + cjhn, Yj). (3.2)

It can be seen that Runge-Kutta methods belong to the class of general

linear methods if we consider N = s + 1 and identify y
(n)
1 , y

(n)
2 , . . . , y

(n)
N with
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Y1, Y2, . . . , Ys, yn and if the matrices A, B and C are given by:

A =




0 . . . 0 1
...

. . .
...

...

0 . . . 0 1


 , B =




a11 a12 . . . a1s 0

a21 a22 . . . a2s 0
...

...
. . .

...
...

as1 as2 . . . ass 0

b1 b2 . . . bs 0




, C = 0.

If, in addition, we compute an embedded solution ȳn+1 defined by:

ȳn+1 = yn + hn

s∑
j=1

b̄jf(xn + cjhn, Yj), (3.3)

this corresponds to N = s + 2 with the matrices A, B now defined by:

A =




0 . . . 0 1 0

0 . . . 0 1 0
...

. . .
...

...
...

0 . . . 0 1 0




, B =




a11 a12 . . . a1s 0 0

a21 a22 . . . a2s 0 0
...

...
. . .

...
...

...

as1 as2 . . . ass 0 0

b1 b2 . . . bs 0 0

b̄1 b̄2 . . . b̄s 0 0




.

In this chapter we will focus our attention on block explicit Runge-Kutta

methods. These methods can be thought of in two different ways. Either

they can be regarded as Runge-Kutta formulae defined over more than one

steplength or they can be regarded as standard explicit Runge-Kutta formulae

with more than the minimum number of function evaluations. Of course these

methods are more expensive per step than standard methods but we hope for

better stability and better accuracy than with conventional methods. The two

major aims, improvement of accuracy and stability, have to be balanced against

the need to avoid expending unnecessary computational effort. The hope is

that because of the extra accuracy of these methods they will be competitive

with standard explicit Runge-Kutta formulae.

In what follows we will regard block explicit Runge-Kutta formulae as mul-

tistep formulae. Such formulae have all the characteristics of standard explicit

Runge-Kutta formulae except that they are no longer single step in nature in

the sense that a pth order block formula produces a pth order approximation to

the solution at several points instead of at one point only. These formulae are
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still self-starting and it is easy to change the steplength of integration. We also

hope to be able to change the order easily. The results obtained in [Cash83a]

indicate the superiority of the variable step/variable order approach over con-

ventional fixed order Runge-Kutta formulae. Block Runge-Kutta methods are

able to compute intermediate solutions at “off-step” points with relatively little

additional cost due to the fact that it is straightforward to derive an interpo-

lating polynomial. Block explicit Runge-Kutta formulae, with s-stages, have

the general form:

yn+i = yn + hn

s∑
j=1

bijkj, 1 ≤ i ≤ ν, (3.4)

where

kj = f(xn + cjhn, yn + hn

j−1∑
i=1

ajiki). (3.5)

For consistency we require:

s∑
j=1

bij = i, 1 ≤ i ≤ ν. (3.6)

Written in this form it is clear that our formulae are a combination of linear

multistep and Runge-Kutta methods. The first step of the block is a standard

explicit Runge-Kutta formula but, unlike with standard formulae, the second

solution yn+2 is computed using information from the interval [xn, xn+1] as

well as from [xn+1, xn+2]. However, while it is in a sense much more natural to

consider our formulae as block formulae it is easier to analyse them using the

one-step framework because we are then able to appeal to Butcher’s analysis.

Thus from now on when analysing the order of our methods we will regard them

as standard one-step Runge-Kutta methods using more than the minimum

number of function evaluations but having enhanced accuracy and stability

properties. In addition our formulae viewed in this way have the novel property

that they produce accurate approximations at certain points within the range

(xn, xn+1) as well as at xn+1.

We will consider block formulae of order p which integrate ν steps forward

using a total of s function evaluations and so it is natural to speak of them

as requiring s/ν function evaluations per step. At each point in the block we

have available a cheap estimate of the local truncation error in the solution of

lower order by use of the Fehlberg embedding approach.
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Some examples of block Runge-Kutta methods do exist in the literature

[Cash85],[Cash86],[Cash89] but the only one that has been analysed in any

great detail is a 6(4) formula given in [Cash89]. Experience has shown that for

low accuracy requirements it is often advantageous to use low order formulae

while for efficiency over a wide range of medium and strict tolerances it is

often advantageous to look for high order formulae. In this thesis we will

systematically examine formulae of orders 2 to 7. We stop at order 7 because

the derivation of formulae of order higher than 7 rapidly becomes more difficult

and we do not feel going beyond order 7 is a realistic aim for this thesis. As well

as deriving efficient block formulae we will also look at the problem of deriving

good embedded formulae for the purpose of error estimation as well as deriving

good interpolants. In the case of a block method going ν steps forward, we

have ν + 1 solutions available: yn, yn+1, . . . , yn+ν . In addition, if we construct

the block in a suitable way, we will have y′n, y
′
n+1, . . . , y

′
n+ν available as well.

We can now fit an interpolating polynomial of degree 2ν + 1 through these

data and, providing 2ν + 1 ≥ p which is the order of the method, we can

compute a pth order approximation at any point in the interval at no extra

cost by evaluating the interpolating polynomial at this point.

Associated with (3.4)−(3.5) we will derive an embedded formula of the

form:

ȳn+i = yn + hn

s∑
j=1

b̄ijkj, 1 ≤ i ≤ ν, (3.7)

where again
s∑

j=1

b̄ij = i, 1 ≤ i ≤ ν. (3.8)

This produces a lower order solution, ȳn+i, that is used for the purpose of local

error estimation. Such a method can be represented in a Butcher’s table in

the following way:

c A

bT

b̄T

In this thesis we confine our attention to the case of going two steps forward,

ν = 2, so in order to simplify the notation the b’s will appear with only one

subscript. It is of course possible to derive formulae with ν > 2 but we leave

this for future research.
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In deriving block formulae the hope is that we can choose the coefficients

so that we will get better stability and better accuracy than with conventional

methods. We will seek to get sufficient accuracy so that the modified method

is more efficient than standard methods even though it takes more function

evaluations per step. The block formula integrates forward over a step νh and

so, in order to be able to use Butcher’s analysis, it is convenient to “normalise”

the formula to a step h by dividing all the elements of the Butcher’s matrix

by a factor ν.

When comparing the theoretical properties of the block and standard Runge-

Kutta formulae of a given order we will also take into account the fact that

they use a different number of function evaluations. To compensate for this we

will introduce a scaling factor when comparing stability regions and accuracy.

We will come back to this point later. When deriving our formulae we will

look for positive values of the bi if possible since very negative values will lead

to non desirable bounds on the rounding error produced in a single step.

In what follows we will consider the case where hn ≡ h is fixed.

3.2 Accuracy Criteria

In this section we discuss how we compare the accuracy properties of the

conventional and block pth order Runge-Kutta formulae. We assume that the

conventional method of order p uses sc function evaluations per step and that

the block method of order p uses sb function evaluations per step. Since both

methods are of order p it follows that we can write their local truncation errors

in the form:

LTEconv = hp+1

Np∑
i=1

TiDi + O(hp+2),

LTEblock = hp+1

Np∑
i=1

T̂iDi + O(hp+2).

As explained previously, the Di are elementary differentials while the Ti and

T̂i are polynomials depending on the coefficients of the Runge-Kutta methods.

We now wish to derive a method to compare the local accuracies of these two
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formulae given that they require different numbers of function evaluations. In

a sense we will compare their accuracy per function evaluation. We will do this

by considering what happens when we use each method to integrate from xn

to xn+i using the same number of function evaluations. More specifically let

r = lcm(sc, sb). It then follows that the conventional method uses r function

evaluations to go
r

sc

steps forward each of length
sc

sb

h while the block method

uses r function evaluations to go
r

sb

steps forward of length h. Note that in this

case both methods have gone
r

sb

h forward using r functions. We compare the

accuracy of the methods by comparing the accuracies achieved at x̂ ≡ xn+
r

sb

h.

To do this we scale the two previous equations for the LTE to get:

LTEconv ≡ local error in the solution at x̂ using the conventional method,

LTEconv =
r

sc

(
sc

sb

h

)p+1 Np∑
i=1

TiDi + O(hp+2),

LTEblock ≡ local error in the solution at x̂ using the block method,

LTEblock =
r

sb

hp+1

Np∑
i=1

T̂iDi + O(hp+2).

In order for the block method to have better accuracy than the conventional

method we require that:

∣∣ LTEblock

∣∣ <
∣∣ LTEconv

∣∣

i.e. ∣∣∣∣∣
r

sb

hp+1

Np∑
i=1

T̂iDi

∣∣∣∣∣ <

∣∣∣∣∣
r

sc

(
sc

sb

h

)p+1 Np∑
i=1

TiDi

∣∣∣∣∣ .

This can be simplified to the requirement that

∣∣∣∣∣
Np∑
i=1

T̂iDi

∣∣∣∣∣ <

∣∣∣∣∣
(

sc

sb

)p Np∑
i=1

TiDi

∣∣∣∣∣ .

Since both these sums contain many terms we need to introduce a norm to

measure their size. We follow the approach of Shampine [Shampine86] and

measure the size of the local truncation error as:

||T || =
(

Np∑
i=1

T 2
i

)1/2

.
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Thus the accuracy requirement for our block method is:

||T̂ || <
(

sc

sb

)p

||T ||. (3.9)

In deriving our block formulae it is this accuracy requirement that we will

attempt to satisfy.

3.3 Stability Criteria

We now consider the absolute stability properties of our methods. All

conventional explicit Runge-Kutta methods have a stability polynomial of the

form (2.31). It immediately follows that all p-stage explicit Runge-Kutta for-

mulae of order p, for p = 1, 2, 3, 4, have the same interval of absolute stability

as shown in the following table:

order stability polynomial interval of absolute stability

1 1 + z (−2, 0)

2 1 + z + 1
2
z2 (−2, 0)

3 1 + z + 1
2
z2 + 1

6
z3 (−2.51, 0)

4 1 + z + 1
2
z2 + 1

6
z3 + 1

24
z4 (−2.78, 0)

The corresponding regions of absolute stability are well known and were

given in Chapter 2.

To compare the stability regions of the conventional and block methods we

scale them to take into consideration the different number of function eval-

uations used. We believe that this is the fairest way to compare them. If

we consider again the case where the conventional method of order p uses sc

function evaluations per step and the block method of order p uses sb func-

tion evaluations per step, we will require that the block method will have a

real interval of stability which is at least sb/sc times that of the conventional

method. Thus what we are doing in effect is to measure stability per function

evaluation. We would like to find nice round stability regions for the block

methods. Ideally we want them to inclose completely the stability regions of
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the conventional methods but we know from [Hairer91] that it is not possible

because of the following theorem:

Theorem 3.1 If R1(z) and R2(z) are the stability functions of degrees s1 and

s2 of two explicit Runge-Kutta methods of orders ≥ 1, then one scaled stability

domain can never completely contain another.

We have now established the aims of this investigation. What we wish

to do is to obtain high order block explicit Runge-Kutta formulae. These

should contain embedded formulae for the purpose of error estimation. They

should also generate accurate solutions at several points to allow interpolation.

In addition they should satisfy the accuracy and stability requirements just

described to make them competitive with standard methods. In what follows

we will derive block methods of increasing orders starting at order 2.

3.4 Order 2

A conventional explicit Runge-Kutta method of order 2 requires two function

evaluations per step and has the form:

k1 = f(xn, yn)

k2 = f(xn + c2h, yn + hc2k1)

yn+1 = yn + h(b1k1 + b2k2).

The corresponding Butcher’s table is:

0 0

c2 c2 0

b1 b2

(3.10)

For this method to be second order the coefficients have to satisfy the

following order relations:



b1 + b2 = 1

b2c2 =
1

2
.

The local truncation error is:

LTE = h3(T1D1 + T2D2) + O(h4),
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where the error terms are given by:

T1 =
2∑

i=1

bic
2
i −

1

3
= b2c

2
2 −

1

3

T2 =
2∑

i,j=1

biaijcj − 1

6
= −1

6
.

If we apply this formula to the test equation y′ = λy, and put z = λh, the

stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2. It is easy to show, using this

polynomial, that the interval of absolute stability of the standard second order

method is: (−2, 0).

Going two steps forward with a standard second order method takes four

function evaluations (this corresponds to applying the same method twice). To

rewrite this in the framework of a one-step formula we divide all the coefficients

by the number of steps, which in this case is two. The corresponding Butcher’s

table is:

0 0

c2

2

c2

2
0

1

2

b1

2

b2

2
0

1 + c2

2

b1

2

b2

2

c2

2
0

b1

2

b2

2

b1

2

b2

2

(3.11)

The stability polynomial associated with this is:
yn+1

yn

= (1 +
1

2
z +

1

8
z2)2.

This corresponds to the interval of absolute stability: (−4, 0).

The order relations in this case are:



b1 + b2 = 1

b2c2 =
1

2
.

We have used bold face for the variables that we choose to be defined by

each particular equation.
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The local truncation error is:

LTE = h3(T1D1 + T2D2) + O(h4),

where the error terms are given by:

T1 =
4∑

i=1

bic
2
i −

1

3
=

1

8
c2 − 1

12

T2 =
4∑

i,j=1

biaijcj − 1

6
= − 1

24
.

3.4.1 Block Formula of Order 2 with 3 Stages

We saw above that if we apply a standard second order explicit Runge-

Kutta method twice we obtain a two-step method which uses four function

evaluations. However there are only 3 free coefficients available since we have

used exactly the same formula twice. It is natural to ask whether we could

take the second step using a totally different formula and whether there would

be any advantage in doing this. We will seek to obtain improved efficiency

by examining a formula which uses only three functions to advance two steps.

This has the form:

0 0
c2

2

c2

2
0

c3 a31 a32 0

b̂1 b̂2 b̂3

(3.12)

For this formula the row-sum condition is: c3 = a31 + a32.

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 + tz3, where

t = b̂3a32
c2

2
. We wish to choose the coefficients so that the interval of absolute

stability is at least as good as the scaled stability interval:
3

4
(−4, 0) = (−3, 0).

This ensures that the block formula has a stability interval per function eval-

uation which is at least as good as that of the conventional formula.

Using Butcher’s analysis it follows that the conditions for (3.12) to be of

order 2 are:



b̂1 + b̂2 + b̂3 = 1

b̂2
c2

2
+ b̂3c3 =

1

2
.
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We have 7 parameters that remain to be determined. If we consider the

row-sum condition and the order conditions we get 3 equations to be solved

and this specifies 3 of the parameters. Thus we have just four parameters

left free: c2, c3, b̂3, a32, say. These will be chosen to satisfy the stability and

accuracy requirements described earlier.

The error terms associated with formula (3.12) are:

T̂1 =
3∑

i=1

b̂ic
2
i −

1

3
= b̂2

c2
2

4
+ b̂3c

2
3 −

1

3

T̂2 =
3∑

i,j=1

b̂iaijcj − 1

6
= b̂3a32

c2

2
− 1

6
= t− 1

6
.

The condition for accuracy, corresponding to (3.9), in this case is:

(
T̂ 2

1 + T̂ 2
2

) 1
2

<

(
4

3

)2 (
T 2

1 + T 2
2

) 1
2 . (3.13)

Thus what we are looking for is a Runge-Kutta formula which has an interval

of absolute stability at least (−3, 0) and which satisfies the accuracy condition

(3.13). Many such formulae have been found. In what follows we give an

example where the b̂i, ci ∈ [0, 1] and t =
329

5000
:

0 0

1

20

1

20
0

7

10
−59

50

47

25
0

1

10

1

5

7

10

(3.14)

Here the ratio between the right hand side and the left hand side of (3.13) is

equal to 1.4411. We are now in a position to clarify some of the remarks made

earlier. If we examine equation (3.14) we see that it is a standard Runge-Kutta

formula of order 2 requiring 3 function evaluations. However we know that we

can derive a second order formula with only 2 function evaluations. Therefore,

what we need to do is to ensure that (3.14) has sufficiently good accuracy and

stability so that it is still competitive with the standard formula.
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For the purpose of local error estimation we need to find an embedded for-

mula of order 1. We have at our disposal 3 function evaluations. Starting with

(3.14) we add a new row of b’s to get an embedded formula. The associated

stability polynomial is:
yn+1

yn

= 1 + z + w1z
2 + w2z

3, where w1 = b̄2
c2

2
+ b̄3c3

and w2 = b̄3a32
c2

2
. The order 1 condition,

3∑
i=1

b̄i = 1, gives us b̄1. We are now

left with 2 free parameters: b̄2 and b̄3. These will be determined by finding a

good stability region. Then we will check if the method also has good accuracy.

The error term in the embedded formula is given by T̄1 =
3∑

i=1

b̄ici − 1

2
. After

some numerical searching we choose w1 =
9

20
and w2 =

11

200
. The formula

obtained is:

0 0

1

20

1

20
0

7

10
−59

50

47

25
0

1

10

1

5

7

10

−37

94

38

47

55

94

(3.15)

From now on we will denote the 2-norm of the ith order error coefficients

of the embedded formula by ||T̄ (i)|| and by ||T̃ (i)|| the correspondent norm for

the embedded conventional formula.

If we consider as conventional embedded formula of order 1 the following
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formula:

0 0

1

20

1

20
0

1

2

1

4

1

4
0

21

20

1

4

1

4

1

20
0

1

4

1

4

1

4

1

4

(3.16)

Here ||T̃ (2)|| = 9

40
. We are now in a position to compare it with the one of the

block formula obtained. For the embedded formula (3.15): ||T̄ (2)|| = 1

20
. The

comparison is done using the condition:

||T̄ (p)|| < 2

(
1

2

)p

||T̃ (p)||. (3.17)

In this case the we have
1

20
< 2

(
1

2

)2
9

40
. The ratio between the right hand

side and the left hand side of the previous equation is equal to
9

4
; this shows

that the block formula is better. The plots of the stability regions of the three

methods are given in Figure 3.1, where the dotted line corresponds to the

conventional method, the continuous one to the block method and the small

dotted line to the embedded formula.

3.4.2 Block Formula of Order 2 with 4 Stages

Although we found a good formula in terms of stability and accuracy using

3 function evaluations, we will try to get even better results by using an extra

function evaluation. That is we investigate the possibility of going two steps
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[r]

Figure 3.1: Stability region of order 2 with 3 stages
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forward using 4 function evaluations. This Runge-Kutta formula has the form:

0 0
c2

2

c2

2
0

c3 a31 a32 0

c4 a41 a42 a43 0

b̂1 b̂2 b̂3 b̂4

(3.18)

For this formula the row-sum conditions are:

c3 = a31 + a32

c4 = a41 + a42 + a43.

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 + t1z

3 + t2z
4,

where t1 = b̂3a32
c2

2
+ b̂4(a42

c2

2
+ a43c3) and t2 = b̂4a43a32

c2

2
. As both the

block and conventional formulae use the same number of function evaluations

we do not need to scale the stability intervals when comparing them. We will

try to derive a modified method with a stability interval at least as good as

the conventional one.

Using Butcher’s analysis it follows that the conditions for (3.18) to be of

order 2 are:



b̂1 + b̂2 + b̂3 + b̂4 = 1

b̂2
c2

2
+ b̂3c3 + b̂4c4 =

1

2
.

We have 12 parameters that remain to be determined. If we consider the

row-sum conditions and the order conditions, four of these parameters are

defined. Now we just have 8 free parameters that are chosen to satisfy the

stability and accuracy requirements.

The error terms associated with (3.18) are:

T̂1 =
4∑

i=1

bic
2
i −

1

3
= b̂2

c2
2

4
+ b̂3c

2
3 + b̂4c

2
4 −

1

3

T̂2 =
4∑

i,j=1

biaijcj − 1

6
= b̂3a32

c2

2
+ b̂4(a42

c2

2
+ a43c3)− 1

6
= t1 − 1

6
.

The comparison for accuracy (3.9) in this case is:

(
T̂ 2

1 + T̂ 2
2

) 1
2

<
(
T 2

1 + T 2
2

) 1
2 . (3.19)
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After some experimentation we choose our formula with t1 =
3

20
and t2 =

1

64
which satisfies both the accuracy and the stability requirements. Our final

formula is:

0 0

1

20

1

20
0

1

5
− 1

10

3

10
0

7

10

123

140
−5

3

125

84
0

1

10

1

5
0

7

10

(3.20)

Here the ratio between the right hand side and the left hand side of (3.19) is

equal to 4.713.

For the purpose of local error estimation we seek an embedded formula of

order 1 using the four function evaluations that are available. We will add on to

(3.20) a new row of b’s to get the embedded formula. The associated stability

polynomial is:
yn+1

yn

= 1 + z + w1z
2 + w2z

3 + w3z
4, where w1 = b̄2

c2

2
+ b̄3c3 +

b̄4c4, w2 = b̄3a32
c2

2
+ b̄4(a42c2 + a43c3) and w3 = b̄4a43a32

c2

2
.

The order 1 condition,
4∑

i=1

b̄i = 1, gives us b̄1. We are now left with 3

free parameters: b̄2, b̄3 and b̄4. These will be determined by finding a good

stability region. Then we will check if the method also has good accuracy. The

error term in the embedded formula is given by T̄1 =
4∑

i=1

b̄ici − 1

2
. After some

numerical searching we choose w1 =
49

100
, w2 =

3

20
and w3 =

1

64
. The formula
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obtained is:

0 0

1

20

1

20
0

1

5
− 1

10

3

10
0

7

10

123

140
−5

3

125

84
0

1

10

1

5
0

7

10

3

10
0 0

7

10

(3.21)

The error term in the embedded formula is: ||T̄ (2)|| =
1

100
. The plots of the

stability regions of the three methods are given in Figure 3.2, where again the

dotted line corresponds to the conventional method, the continuous one to the

block method and the small dotted line to the embedded formula.
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[r]

Figure 3.2: Stability region of order 2 with 4 stages
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It is easily seen that the results obtained with four function evaluations are

better than those obtained with just three. We gain in real stability but lose a

little bit on the imaginary axis. It would have been ideal if we had the stability

region of the conventional method completely inclosed in the stability region

of the block method. This however it is not possible as we have shown earlier.

In terms of accuracy there are no doubts that the modified method is better.

3.5 Order 3

We now go on to consider the derivation of third order block methods. In

this case we are going to consider a slightly different approach as we will use

a known formula for the conventional method. We have chosen a 3(2) formula

from [Bogacki89] to compute the approximate solution yn+1 at the first point

of the block. This formula uses a FSAL technique in that it uses the first

evaluation of the next step for the embedded method and is given by:
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0 0

1

2

1

2
0

3

4
0

3

4
0

1
2

9

1

3

4

9
0

7

24

1

4

1

3

1

8

(3.22)

Using the same approach as in the order two case we will consider going two

steps forward but using the one-step formulation. The corresponding Butcher’s

table is:

0 0

1

4

1

4
0

3

8
0

3

8
0

1

2

1

9

1

6

2

9
0

3

4

1

9

1

6

2

9

1

4
0

7

8

1

9

1

6

2

9
0

3

8
0

1

9

1

6

2

9

1

9

1

6

2

9

(3.23)

It can be seen that this method uses six function evaluations per step. The

associated stability polynomial is:
yn+1

yn

= 1+z+
1

2
z2 +

1

6
z3 +

7

192
z4 +

1

192
z5 +
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1

2304
z6. Which corresponds to the interval of absolute stability: (−5.02, 0).

The norm of the coefficients of the local truncation error of the embedded

formula is: ||T̃ (3)|| =
√

5

48
∼= 0.466× 10−1.

The problem we have to consider now is what is the minimum number of

function evaluations necessary to derive an efficient block formula. We will try

to find a block formula which uses five function evaluations. We are saving one

function evaluation per step when compared with the conventional method.

Again we are going to consider the block formula as a one-step Runge-Kutta

formula, and so we will scale it so that we can apply Butcher’s analysis.

3.5.1 Block Formula of Order 3 with 5 Stages

The block formula we consider is:

0 0

1

4

1

4
0

3

8
0

3

8
0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

b̂1 b̂2 b̂3 b̂4 b̂5

(3.24)

We have 14 parameters to be determined. For this formula the row-sum

conditions are:

c4 = a41 + a42 + a43

c5 = a51 + a52 + a53 + a54.

The associated stability polynomial is:
yn+1

yn

= 1+z+
1

2
z2+

1

6
z3+t1z

4+t2z
5,

where t1 = b̂4a43a32c2 + b̂5a53a32c2 + b̂5a54(a42c2 +a43c3) and t2 = b̂5a54a43a32c2.

The scaled stability interval in this case is:
5

6
(−5.02, 0) ∼= (−4.18333, 0).
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Using Butcher’s analysis it follows that the conditions for (3.24) to be of

order 3 are:



b̂1 + b̂2 + b̂3 + b̂4 + b̂5 = 1

b̂2c2 + b̂3c3 + b̂4c4 + b̂5c5 =
1

2

b̂2c
2
2 + b̂3c

2
3 + b̂4c

2
4 + b̂5c

2
5 =

1

3

b̂3a32c2 + b̂4(a42c2 + a43c3) + b̂5(a52c2 + a53c3 + a54c4) =
1

6
.

The corresponding error terms are:

T̂1 =
5∑

i=1

b̂ic
3
i −

1

4

T̂2 =
5∑

i,j=1

b̂iciaijcj − 1

8

T̂3 =
5∑

i,j=1

b̂iaijc
2
j −

1

12

T̂4 =
5∑

i,j,k=1

b̂iaijajkck − 1

24
= t1 − 1

24
.

Following the approach considered in [Bogacki89] we will choose four of

the free coefficients so that the method is of order 4. This implies that t1 =
1

24
and that the condition (3.9) of better accuracy is automatically verified. We

now have just 4 free coefficients. These will be chosen to make the order 5

coefficients T̂i, i = 1, 2, . . . , 9 of the error term small and to get better stability

than the conventional method.
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An example found with b̂i, ci ∈ [0, 1], t1 =
1

24
and t2 =

41

10000
is given in

the table below:

0 0

1

4

1

4
0

3

8
0

3

8
0

4

5
− 40664

209375

1276

3125

122672

209375
0

1
347

120
−989

330
−194

255

8375

4488
0

11

120

32

165

128

425

1675

4488

1

25

(3.25)

This formula has ||T̂ (5)|| ∼= 0.0085.

As we have mentioned before, we are interested in obtaining an embedded

formula of order 2 for the purpose of error estimation. If we consider the

block formula (3.25) we will add a new row of b’s. The associated stability

polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 + w1z

3 + w2z
4 + w3z

5, where

w1 = b̄3a32c2 + b̄4(a42c2 + a43c3) + b̄5(a52c2 + a53c3 + a54c4),

w2 = b̄4a43a32c2 + b̄5(a53a32c2 + a54(a42c2 + a43c3)) and

w3 = b̄5a54a43a32c2.

To be an order 2 formula it has to satisfy the following order conditions:



b̄1 + b̄2 + b̄3 + b̄4 + b̄5 = 1

b̄2c2 + b̄3c3 + b̄4c4 + b̄5c5 =
1

2
.

With these two order conditions we can define b̄1 and b̄2, say. In this case

we have left just 3 free parameters: b̄3, b̄4, b̄5. These will be determined by

finding a good stability region. Then we will check if the method also has

good accuracy. The error terms are given by:

T̄1 =
5∑

i=1

b̄ic
2
i −

1

3
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T̄2 =
5∑

i,j=1

b̄iaijcj − 1

6
= w1 − 1

6
.

After some numerical searching we choose a formula where w1 =
17

100
, w2 =

1

24

and w3 =
41

1000
that is given by:

0 0

1

4

1

4
0

3

8
0

3

8
0

4

5
− 40664

209375

1276

3125

122672

209375
0

1
347

120
−989

330
−194

255

8375

4488
0

11

120

32

165

128

425

1675

4488

1

25

197

1800

116

825

1288

3825

1675

4488

1

25

(3.26)

For this formula ||T̄ (3)|| ∼= 0.118 × 10−4. The plots of the stability regions of

the three methods are given in Figure 3.3.

In the case of the order 2 formulae we found that we could find a good

formula using 3 function evaluations but we found an even better block formula

using 4 function evaluations. We now investigate whether this carries over to

third order formulae by examining a block formula with 6 stages.
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[r]

Figure 3.3: Stability region of order 3 with 5 stages
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3.5.2 Block Formula of Order 3 with 6 Stages

The formula which we will consider has the general form:

0 0

1

4

1

4
0

3

8
0

3

8
0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

(3.27)

We have 21 parameters to be determined. For this formula the row-sum

conditions are:

c4 = a41 + a42 + a43

c5 = a51 + a52 + a53 + a54

c6 = a61 + a62 + a63 + a64 + a65.

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

t1z
4 + t2z

5 + t3z
6, where t1 = b̂4a43a32c2 + b̂5(a53a32c2 + a54(a42c2 + a43c3)) +

b̂6(a63a32c2 +a64(a42c2 +a43c3)+a65(a52c2 +a53c3 +a54c4)), t2 = b̂5a54a43a32c2 +

b̂6(a64a43a32c2 + a65(a53a32c2 + a54(a42c2 + a43c3))) and t3 = b̂6a65a54a43a32c2.

Recall that the stability interval of the conventional method is: (−5.02, 0). As

we are using the same number of function evaluations as with the conventional

method there is no need to perform any scaling. This means that we will seek

a block method with an interval of absolute stability as least (−5.02, 0).

Using Butcher’s analysis it follows that the conditions for (3.27) to be of
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order 3 are:



b̂1 + b̂2 + b̂3 + b̂4 + b̂5 + b̂6 = 1

b̂2c2 + b̂3c3 + b̂4c4 + b̂5c5 + b̂6c6 =
1

2

b̂2c
2
2 + b̂3c

2
3 + b̂4c

2
4 + b̂5c

2
5 + b̂6c

2
6 =

1

3

b̂3a32c2 + b̂4(a42c2 + a43c3) + b̂5(a52c2 + a53c3 + a54c4) + b̂6

5∑
i=2

a6ici =
1

6
.

The corresponding error terms are:

T̂1 =
6∑

i=1

b̂ic
3
i −

1

4

T̂2 =
6∑

i,j=1

b̂iciaijcj − 1

8

T̂3 =
6∑

i,j=1

b̂iaijc
2
j −

1

12

T̂4 =
6∑

i,j,k=1

b̂iaijajkck − 1

24
= t1 − 1

24
.

Following the approach of [Bogacki89] we will choose four of the free

coefficients so that the method is of order 4. This implies that t1 =
1

24
and

that the condition of better accuracy is automatically satisfied. This means

that we just have 10 free coefficients at our disposal. These will to be chosen

to make the order 5 coefficients T̂i, i = 1, 2, . . . , 9 of the error term small and

to get better stability than the conventional method.

An example found with b̂i, ci ∈ [0, 1], t1 =
1

24
, t2 =

4

625
and t3 =

1

2500
is
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given in the table below:

0 0

1

4

1

4
0

3

8
0

3

8
0

1

2

2

5
−2

5

1

2
0

7

10

10425679

17769375
−2048576

1974375

7930427

7107750

128

3645
0

9

10
−121679348

479773125

48781612

53308125

866266321

959546250
−500325547

319848750

9

10
0

1238

9375

172

9375

3104

9375

8569

37500

1

50

27

100

(3.28)

For this formula ||T̂ (5)|| ∼= 0.2797× 10−2.

As we have explained before, we are interested in obtaining an embedded

formula of order 2 for the purpose of error estimation. If we consider the block

formula (3.28) we will add a new row of b’s. The corresponding stability polyno-

mial is:
yn+1

yn

= 1 + z +
1

2
z2+w1z

3+w2z
4+w3z

5+w4z
6, where w1 = b̄3a32c2+

b̄4(a42c2 + a43c3) + b̄5(a52c2 + a53c3 + a54c4) + b̄6(a62c2 + a63c3 + a64c4 + a65c5),

w2 = b̄4a43a32c2 + b̄5(a53a32c2 + a54(a42c2 + a43c3)) + b̄6(a63a32c2 + a64(a42c2 +

a43c3)+a65(a52c2+a53c3+a54c4)), w3 = b̄5(a54a43a32c2)+ b̄6(a64(a42c2+a43c3)+

a65

4∑
i=2

a5ici) and w4 = b̄6a65a54a43a32c2.

To be an order 2 formula it has to satisfy the following order relations:



b̄1 + b̄2 + b̄3 + b̄4 + b̄5 + b̄6 = 1

b̄2c2 + b̄3c3 + b̄4c4 + b̄5c5 + b̄6c6 =
1

2
.

We have 6 coefficients left to be determined. With these two order con-

ditions we can define b̄1 and b̄2, say. In this case we just have left 4 free

parameters: b̄3, b̄4, b̄5, b̄6. These will be determined by finding a good stability

region. Then we will check if the method also has good accuracy.
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The error terms are given by:

T̄1 =
6∑

i=1

b̄ic
2
i −

1

3

T̄2 =
6∑

i,j=1

b̄iaijcj − 1

6
= w1 − 1

6
.

After some numerical searching we choose a formula where w1 =
17

100
, w2 =

421

10000
, w3 =

4

625
and w4 =

1

2500
that is given by:

0 0

1

4

1

4
0

3

8
0

3

8
0

1

2

2

5
− 2

5

1

2
0

7

10

10425679

17769375
− 2048576

1974375

7930427

7107750

128

3645
0

9

10
− 121679348

479773125

48781612

53308125

866266321

959546250
− 500325547

319848750

9

10
0

1238

9375

172

9375

3104

9375

8569

37500

1

50

27

100

71448709057

1155009375000

40413713857

128334375000

122433793049

288752343750
− 529874581163

1540012500000

1065841

3900000

27

100

(3.29)

For this formula ||T̄ (3)|| ∼= 0.01300. The plots of the stability regions of the

three methods are given in Figure 3.4.

When comparing the results obtained with 5 and 6 stages we can see that

we have improved the real stability. In terms of embedded the new block

formula is slightly worse than the block formula with five stages but it is still

better than the conventional formula, as if we consider (3.17), 0.01300 <
1

4

√
5

48
.
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[r]

Figure 3.4: Stability region of order 3 with 6 stages
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3.6 Order 4

We now consider the derivation of a fourth order block method. We have

chosen a 4(3) formula from [Dormand84] to compute the approximate solu-

tion yn+1 at the first point of the block. This formula is denoted by RK4(3)5G

in [Dormand84]. It requires five function evaluations per step and can be

written as:

0 0

5 +
√

5

10

5 +
√

5

10
0

5−√5

10

√
5

10

5− 2
√

5

10
0

5 +
√

5

10
−
√

5

10
0

5 + 2
√

5

10
0

1 1
−5 + 2

√
5

2

−√5

2

5−√5

2
0

1

12
0

5

12

5

12

1

12

0 0
5 +

√
5

12

5−√5

12

1

6

(3.30)

Using the same approach as before we will consider going two steps forward

but using the one-step formulation to analyse the method. The corresponding
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Butcher’s table is:

0 0

5 +
√

5

20

5 +
√

5

20
0

5−√5

20

√
5

20

5− 2
√

5

20
0

5 +
√

5

20
−
√

5

20
0

5 + 2
√

5

20
0

1

2

1

2

−5 + 2
√

5

4
−
√

5

4

5−√5

4
0

1

2

1

24
0

5

24

5

24

1

24
0

15 +
√

5

20

1

24
0

5

24

5

24

1

24

5 +
√

5

20
0

15−√5

20

1

24
0

5

24

5

24

1

24

√
5

20

5− 2
√

5

20
0

15 +
√

5

20

1

24
0

5

24

5

24

1

24
−
√

5

20
0

5 + 2
√

5

20
0

1
1

24
0

5

24

5

24

1

24

1

2

−5 + 2
√

5

4
−
√

5

4

5−√5

4
0

1

24
0

5

24

5

24

1

24

1

24
0

5

24

5

24

1

24

(3.31)

As it is easily seen, this method uses ten function evaluations per step.

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

31

3840
z5 +

7

5760
z6 +

13

92160
z7 +

1

81920
z8 +

1

1474560
z9 +

1

58982400
z10. Using

this polynomial it is easy to show that the interval of absolute stability of this

method is: (−11.78, 0). The norm of the coefficients of the local truncation

error of the embedded formula is: ||T̃ (4)|| ∼= 0.0430.

3.6.1 Block Formula of Order 4 with 8 Stages

The problem we have to consider now is what is the minimum number

of function evaluations necessary to derive an efficient two-step block formula

of order 4. We will start by trying to find a block formula which uses eight

function evaluations. Again we will consider the block formula as a one-step

Runge-Kutta formula and so we have to scale the coefficients so that we can
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apply Butcher’s analysis. The block formula we consider is:

0 0

5 +
√

5
20

5 +
√

5
20

0

5−√5
20

√
5

20
5− 2

√
5

20
0

5 +
√

5
20

−
√

5
20

0
5 + 2

√
5

20
0

1
2

1
2

−5 + 2
√

5
4

−
√

5
4

5−√5
4

0

1
2

1
24

0
5
24

5
24

1
24

0

c7 a71 a72 a73 a74 a75 a76 0

c8 a81 a82 a83 a84 a85 a86 a87 0

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8

(3.32)

In this formulation we have 23 parameters to be determined. For this

formula the row-sum conditions are:

c7 =
6∑

i=1

a7i (3.33)

c8 =
7∑

i=1

a8i. (3.34)

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4+

t5z
5+t6z

6+t7z
7+t8z

8, where t5 =
s∑

i,j,k,l=1

b̂iaijajkaklcl, t6 =
s∑

i,j,k,l,m=1

b̂iaijajkaklalmcm,

t7 =
s∑

i,j,k,l,m,n=1

b̂iaijajkaklalmamncn and t8 = b̂8a87a76a65a54a43a32c2. We wish to

choose the coefficients so that the interval of absolute stability is at least as

good as:
8

10
(−11.78, 0) ∼= (−9.424, 0) which reflects the fact that the block
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formula requires eight function evaluations per step while the conventional one

requires 10 functions.

Using Butcher’s analysis it follows that the conditions for (3.32) to be of

order 4 are:



8∑
i=1

b̂i = 1

8∑
i=1

b̂ici =
1

2
8∑

i=1

b̂ic
2
i =

1

3
8∑

i,j=1

b̂iaijcj =
1

6
8∑

i=1

b̂ic
3
i =

1

4
8∑

i,j=1

b̂iciaijcj =
1

8
8∑

i,j=1

b̂iaijc
2
j =

1

12
8∑

i,j,k=1

b̂iaijajkck =
1

24
.

The corresponding error terms are:

T̂1 =
8∑

i=1

b̂ic
4
i −

1

5

T̂2 =
8∑

i,j=1

b̂ic
2
i aijcj − 1

10

T̂3 =
8∑

i,j,k=1

b̂iaijcjaikck − 1

20

T̂4 =
8∑

i,j=1

b̂iciaijc
2
j −

1

15

T̂5 =
8∑

i,j=1

b̂iaijc
3
j −

1

20

T̂6 =
8∑

i,j=1

b̂iciaijajkck − 1

30
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T̂7 =
8∑

i,j,k=1

b̂iaijcjajkck − 1

40

T̂8 =
8∑

i,j,k=1

b̂iaijajkc
2
k −

1

60

T̂9 =
8∑

i,j,k,m=1

b̂iaijajkakmcm − 1

120
= t5 − 1

120
.

As we have so many free parameters we can make the method to be of

order 5 and in this case it automatically has better asymptotic accuracy than

the conventional one. This implies that t5 =
1

120
and that the condition of

better accuracy is automatically verified. We will choose the free coefficients

so that we get better stability than the conventional formula and to make the

order 6 coefficients of the error term small. As we have mentioned before, when

the order gets higher the order conditions become more difficult to solve and

there is a need to introduce simplifying assumptions. In order to derive an

order 4 block formula we will use the following simplifying assumptions. The

row-simplifying assumptions are:

i−1∑
j=2

aijcj =
1

2
c2
i , i = 7, 8 (3.35)

(for i = 3, 4, 5, 6 they are already satisfied) and

b̂2 = 0. (3.36)

The column-simplifying assumptions are:

8∑
i=1

b̂iaij = b̂j(1− cj), j = 2, 3, . . . , 8. (3.37)

If we subtract the order conditions (7) and (11) of Table 2.1 we get:

8∑
i=1

b̂i(1− ci)aijc
2
j =

1

60
. (3.38)

If we subtract the order conditions (8) and (12) of Table 2.1 we get:

8∑
i=1

b̂i(1− ci)aijajkck =
1

120
. (3.39)

The coefficients of the block method were found in the following way:

1) b̂2 = 0 is defined by equation (3.36); c8 = 1 is defined by equation (3.37)

81



3. Block Explicit Runge-Kutta Methods

when j = 8.

2) c7, b̂6 and b̂8 are chosen arbitrarily.

3) Solve the linear system of equations:
8∑

i=1

b̂ic
j
i =

1

j + 1
, j = 1, 2, 3, 4 for b̂3,

b̂4, b̂5, b̂7.

4) Set b̂1 = 1−
8∑

i=2

b̂i.

5) a75 and a76 are chosen arbitrarily.

6) a74 is given by (3.39).

7) a73 is given by (3.38).

8) a72 is given by (3.35) with i = 7.

9) a71 is given by the first of the row-sum conditions (3.33).

10) equations (3.37) with j = 2, 3, 4, 5, 6, 7 are solved for a82, a83, a84, a85, a86,

a87.

11) a81 is given by the second of the row-sum conditions (3.34).

By adopting this approach we were able to find formulae with the desired

accuracy. The choice of the free parameters was made by picking the “nicest”

stability region. By “nicest” we mean a stability region that is as round as

possible and going as far as possible in the real axis. The example chosen

has t5 =
1

120
, t6 =

10165 + 153
√

5

8908800
, t7 =

19

204800
and t8 =

69

23756800
which

produces the formula:

0 0

5 +
√

5

20

5 +
√

5

20
0

5−√5

20

√
5

20

5− 2
√

5

20
0

5 +
√

5

20
−
√

5

20
0

5 + 2
√

5

20
0

1

2

1

2

−5 + 2
√

5

4
−
√

5

4

5−√5

4
0

1

2

1

24
0

5

24

5

24

1

24
0

4

5
− 394

675

1293− 571
√

5

675

2(139 + 112
√

5)

675

−1015 + 347
√

5

675

1

10

23

50
0

1
79

348

−135 + 61
√

5

36

−205 + 289
√

5

522

3505− 2347
√

5

1044

833

2088

119

232

75

116
0

1

480
0

43 + 33
√

5

348

43− 33
√

5

348

2

15

3

10

225

928

3

40

(3.40)

For this formula ||T̂ (6)|| ∼= 0.14918× 10−2.
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The next task is to find a good embedded formula of order 3. If we

consider the block formula (3.40) we will add a new row of b’s. The corre-

sponding stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 + w4z

4 + w5z
5 +

w6z
6 + w7z

7 + w8z
8, where w4 =

8∑

i,j,k=1

b̄iaijajkck, w5 =
8∑

i,j,k,l=1

b̄iaijajkaklcl,

w6 =
8∑

i,j,k,l,m=1

b̄iaijajkaklalmcm, w7 =
8∑

i,j,k,l,m,n=1

b̄iaijajkaklalmamncn and

w8 =
8∑

i,j,k,l,m,n,o=1

b̄iaijajkaklalmamnanoco.

To be an order 3 formula it has to satisfy the following order relations:



8∑
i=1

b̄i = 1

8∑
i=1

b̄ici =
1

2
8∑

i=1

b̄ic
2
i =

1

3
8∑

i,j=1

b̄iaijcj =
1

6
.

We have 8 coefficients to be determined. With these four order conditions

we can define b̄1, b̄2, b̄3 and b̄5, say. In this case we just have left 4 free pa-

rameters: b̄4, b̄6, b̄7, b̄8. These will be determined by finding a good stability

region. Then we will check if the method has also good accuracy. The error

terms are given by:

T̄1 =
8∑

i=1

b̄ic
3
i −

1

4

T̄2 =
8∑

i,j=1

b̄iciaijcj − 1

8

T̄3 =
8∑

i,j=1

b̄iaijc
2
j −

1

12

T̄4 =
8∑

i,j,k=1

b̄iaijajkck − 1

24
= w4 − 1

24
.

After some numerical searching we choose a formula where

w4 =
213821 + 1817

√
5

5760000
, w5 =

5584021 + 57222
√

5

1002240000
, w6 =

226871 + 1224
√

5

445440000
,
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w7 =
10913

445440000
and w8 =

69

148480000
.
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This is given by:

0 0

5 +
√

5

20

5 +
√

5

20
0

5−√5

20

√
5

20

5− 2
√

5

20
0

5 +
√

5

20
−
√

5

20
0

5 + 2
√

5

20
0

1

2

1

2

−5 + 2
√

5

4
−
√

5

4

5−√5

4
0

1

2

1

24
0

5

24

5

24

1

24
0

4

5
− 394

675

1293− 571
√

5

675

2(139 + 112
√

5)

675

−1015 + 347
√

5

675

1

10

23

50
0

1
79

348

−135 + 61
√

5

36

−205 + 289
√

5

522

3505− 2347
√

5

1044

833

2088

119

232

75

116
0

1

480
0

43 + 33
√

5

348

43− 33
√

5

348

2

15

3

10

225

928

3

40

503

1200
0

−1760 + 37
√

5

6000

−1760− 37
√

5

6000

67

250

11

16

1

5

3

250

(3.41)

For this formula ||T̄ (4)|| ∼= 0.037539. The plots of the stability regions of the

three methods are given in Figure 3.5.

We use the FSAL technique, i.e.

a6i = bi, 1 ≤ i ≤ 5, (3.42)

to allow us to construct a quintic Hermite interpolating polynomial without the

need to compute extra function evaluations. We have available the following

data (xn, yn, k1), (xn+1/2, yn+1/2, k6) and (xn+1, yn+1, k9), where k1 = y′n, k6 =

y′n+1/2 and k9 = y′n+1, with y′n+i ≡ f(xn+i, yn+i), i = 0,
1

2
, 1. Note that k9 is

needed to start the integration at the next block (i.e. k9 of the current block

is k1 of the next block (FSAL)). The function k9 is only computed if the block

is successful, and of course, interpolation is only carried out after a successful

block. We wish to fit an interpolating polynomial of the form:

p(x) =
5∑

i=0

aix
i (3.43)

such that at x = xn+i, i = 0,
1

2
, 1, we have:

p(x) = yn+i

p′(x) = f(xn+i, yn+i).
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[r]

Figure 3.5: Stability region of order 4 with 8 stages
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Denoting the formulae to compute yn+1/2, yn+1 by:

yn+1/2 = yn + h

5∑
i=1

b1/2iki (3.44)

yn+1 = yn + h

8∑
i=1

b1iki (3.45)

it is straightforward to show that at x = xn + σh:

p(x) = yn +σhk1 + 4σ2[h
5∑

i=1

b1/2iki − 1

2
hk1]

+4σ2(σ − 1

2
)[hk6 − 4h

5∑
i=1

b1/2iki + hk1]

+4σ2(σ − 1

2
)2[h

8∑
i=1

b1iki − 2hk6 − hk1 + 4h
5∑

i=1

b1/2iki]

+4σ2(σ − 1

2
)2(σ − 1)[hk9 + 4hk6 + hk1 − 6h

8∑
i=1

b1iki].

(3.46)

Since we are controlling the error in a fourth order solution and our interpo-

lating polynomial is of order 5 we would expect it to give satisfactory approx-

imations at “off-step” points. This has been found to be the case in practice.

Numerical experiments with this formula have shown it to be very efficient

for the solution of non-stiff problems at low to moderate tolerances. In view

of this we will not investigate the possibility of deriving fourth order block

formulae with 9 function evaluations but instead go on to consider higher

order block formulae.

3.7 Order 5

A fifth order block explicit Runge-Kutta formula has already been consid-

ered in some detail in [Cash86]. In this section we use the general algorithm

presented in [Cash86] to derive alternative block explicit Runge-Kutta for-

mulae of order 5 with 9 stages. We have tried several standard formulae for

computing the solution at the first point in the block i.e. the well known

formula RKF45 as well as RK5(4)6M, RK5(4)7M and RK5(4)7S taken from

[Dormand80]. As an example we consider the formula RK5(4)6M given by:
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0 0

1
5

1
5

0

3
10

3
40

9
40

0

3
5

3
10

− 9
10

6
5

0

2
3

226
729

−25
27

880
729

55
729

0

1 −181
270

5
2

−266
297

−91
27

189
55

0

19
216

0
1000
2079

−125
216

81
88

5
56

31
540

0
190
297

−145
108

351
220

1
20

(3.47)

Using the same approach as before we will consider going two steps forward

with the standard formula (3.47) but using the one-step formulation to analyse

it. The corresponding Butcher’s table is:

0 0

1

10

1

10
0

3

20

3

80

9

80
0

3

10

3

20
− 9

20

3

5
0

1

3

113

729
− 25

54

440

729

55

1458
0

1

2
− 181

540

5

4
− 133

297
− 91

54

189

110
0

1

2

19

432
0

500

2079
− 125

432

81

176

5

112
0

3

5

19

432
0

500

2079
− 125

432

81

176

5

112

1

10
0

13

20

19

432
0

500

2079
− 125

432

81

176

5

112

3

80

9

80
0

4

5

19

432
0

500

2079
− 125

432

81

176

5

112

3

20
− 9

20

3

5
0

5

6

19

432
0

500

2079
− 125

432

81

176

5

112

113

729
− 25

54

440

729

55

1458
0

1
19

432
0

500

2079
− 125

432

81

176

5

112
− 181

540

5

4
− 133

297
− 91

54

189

110
0

19

432
0

500

2079
− 125

432

81

176

5

112

19

432
0

500

2079
− 125

432

81

176

5

112

(3.48)

As it is easily seen this method uses twelve function evaluations per step.

The associated stability polynomial is:
yn+1

yn

= 1+z+
1

2
z2+

1

6
z3+

1

24
z4+

1

120
z5+
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319

230400
z6 +

89

460800
z7 +

83

3686400
z8 +

1

460800
z9 +

1

5898240
z10 +

1

98304000
z11 +

1

2621440000
z12. Using this polynomial it is straightforward to show that the

interval of absolute stability of this formula is (−7.4, 0). The norm of the

coefficients of the local truncation error of the embedded formula is: ||T̃ (5)|| ∼=
0.527× 10−2.

3.7.1 Block Formula of Order 5 with 9 Stages

To derive our block formula of order 5 we will use the same number of

function evaluations as was used in [Cash86], that is 9 function evaluations.

The aim of investigating this approach is to find formulae with better accuracy

and stability than that given in [Cash86]. If we use the FSAL technique and
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add on two new stages we get:

0 0

1

10

1

10
0

3

20

3

80

9

80
0

3

10

3

20
− 9

20

3

5
0

1

3

113

729
−25

54

440

729

55

1458
0

1

2
−181

540

5

4
−133

297
−91

54

189

110
0

1

2

19

432
0

500

2079
−125

432

81

176

5

112
0

c8 a81 a82 a83 a84 a85 a86 a87 0

c9 a91 a92 a93 a94 a95 a96 a97 a98 0

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8 b̂9

(3.49)

In this formulation we have 26 parameters to be determined. For this

formula the row-sum conditions are:

c8 =
7∑

i=1

a8i (3.50)

c9 =
8∑

i=1

a9i. (3.51)

The associated stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 + t6z

6 + t7z
7 + t8z

8 + t9z
9, where t6 =

s∑

i,j,k,l,m=1

b̂iaijajkaklalmcm,
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t7 =
s∑

i,j,k,l,m,n=1

b̂iaijajkaklalmamncn, t8 =
s∑

i,j,k,l,m,n,o=1

b̂iaijajkaklalmamnanoco and

t9 = b̂9a98a87a76a65a54a43a32c2. We wish to choose the coefficients so that the

interval of absolute stability is at least as good as:
9

12
(−7.4, 0) ∼= (−5.55, 0)

since this reflects the fact that the conventional formula uses 12 function eval-

uations while the block one uses 9.

The conditions for (3.49) to be of order 5 are well known and given in

Table 2.1.

Since we have so many free parameters we can choose the method used to

compute the solutions at the second point of the block to have order 6 and in

this case it automatically has better asymptotic accuracy than the conventional

one. This implies that t6 =
1

720
. We will also choose the free coefficients so that

we get better stability than the conventional formula. Again we will have to

make use of simplifying assumptions to allow us to solve the order conditions.

The parameters of the block formula (3.49) were found following the pro-

cedure given in Cash [Cash86].

After some numerical searching we found t7 =
23947551443

152845056000000
,

t8 =
8602784557

407586816000000
, t9 =

7

3072000
which gives a formula with

||T̂ (7)|| ∼= 0.3595× 10−7.

The next step is to find a good embedded formula of order 4. The corre-

sponding stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 + w5z

5 +

w6z
6 + w7z

7 + w8z
8 + w9z

9, where w5 =
s∑

i,j,k,l=1

b̄iaijajkaklcl,

w6 =
s∑

i,j,k,l,m=1

b̄iaijajkaklalmcm, w7 =
s∑

i,j,k,l,m,n=1

b̄iaijajkaklalmamncn,

w8 =
s∑

i,j,k,l,m,n,o=1

b̄iaijajkaklalmamnanoco and w9 = b̄9a98a87a76a65a54a43a32c2.

We now have 9 coefficients to be determined. With the eight order 4 condi-

tions we can define: b̄1, b̄2, b̄3, b̄4, b̄5, b̄6, b̄7 and b̄8, say. In this case we just have

left 1 free parameter: b̄9. This will be determined by finding a good stability

region. Then we will check if the method also has good accuracy.
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[r]

Figure 3.6: Stability region of order 5 with 9 stages

After some numerical searching we choose a formula where

w5 =
316075738961

38448432000000
, w6 =

1426732478082853

1107314841600000000
,

w7 =
5929126322511311

38386914508800000000
, w8 =

189387703829

9478250496000000
, w9 =

67473

40505344000
.

This formula is given by (3.52) and for this formula ||T̄ (5)|| ∼= 0.4355 × 10−6.

We note that the new block formula has better accuracy and stability than the

conventional formula. The plots of the stability regions of the three methods

are given in Figure 3.6.

We use the FSAL technique, i.e.

a7i = bi, 1 ≤ i ≤ 6, (3.53)

to allow us to construct a quintic Hermite interpolating polynomial without the

need to compute extra function evaluations. We have available the following
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data (xn, yn, k1), (xn+1/2, yn+1/2, k7) and (xn+1, yn+1, k10), where k1 = y′n, k7 =

y′n+1/2 and k10 = y′n+1, with y′n+i ≡ f(xn+i, yn+i), i = 0,
1

2
, 1. Note that k10 is

needed to start the integration at the next block (i.e. k10 of the current block

is k1 of the next block (FSAL)). The function k10 is only computed if the block

is successful, and of course, interpolation is only carried out after a successful

block. We now examine the quality of our interpolating polynomial. We wish

to fit an interpolating polynomial of the form:

p(x) =
5∑

i=0

aix
i (3.54)

such that at x = xn+i, i = 0,
1

2
, 1, we have:

p(x) = yn+i

p′(x) = f(xn+i, yn+i).

Denoting the formulae to compute yn+1/2, yn+1 by:

yn+1/2 = yn + h

6∑
i=1

b1/2iki (3.55)

yn+1 = yn + h

9∑
i=1

b1iki (3.56)

it is straightforward to show that at x = xn + σh:

p(x) = yn +σhk1 + 4σ2[h
6∑

i=1

b1/2iki − 1

2
hk1]

+4σ2(σ − 1

2
)[hk7 − 4h

6∑
i=1

b1/2iki + hk1]

+4σ2(σ − 1

2
)2[h

9∑
i=1

b1iki − 2hk7 − hk1 + 4h
6∑

i=1

b1/2iki]

+4σ2(σ − 1

2
)2(σ − 1)[hk10 + 4hk7 + hk1 − 6h

9∑
i=1

b1iki].

(3.57)

Denoting the 2-norm of the local error coefficients of (3.57) by T6(σ) it is

instructive to plot the quantity:

R =
T6(σ)

T6(
1
2
)

(3.58)
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[r]

Figure 3.7: Interpolation error for order 5

for σ in the range [0, 1]. For further discussion of this see [Cash86]. Recall

that the interpolant is of order 5 while the global error in the solution is also

of order 5. However the integration is advanced at order 6 and the stepsize of

integration is chosen for the order 4 formula. The plot of (3.58) for σ ∈ [0, 1]

is given in Figure 3.7.

We have incorporated the block 5(4) formula described in this section in a

FORTRAN program and we give the results obtained in the next chapter.
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3.8 Order 6

In this section we describe the derivation of an explicit block 6(5) Runge-

Kutta formula. We will base our block formula on a standard 6(5) pair requir-

ing eight function evaluations per step. Such methods have been investigated

in detail by Verner and Sharp [Verner91b] and they have found one of the

most efficient 6(5) formulae to be that given in the next table.
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0 0

1

12

1

12
0

2

15

2

75

8

75
0

1

5

1

20
0

3

20
0

8

15

88

135
0 − 112

45

64

27
0

13

19
− 408551

260642
0

3426735

521284
− 650026

130321

347139

521284
0

19

20

1296313

565760
0 − 48507

5120

3310503

400384
− 761805

748544

197436315

223814656
0

1
103039

16796
0 − 105

4

8856

391
− 13797

3655

53582508

22075469
− 1792

9595
0

1385

23712
0 0

515

1656

2511

9632

17332693

93496104

4352

17271
− 17

252

1249

23712
0 0

61

184

1269

6880

8731507

31165368

4352

28785
0 0

(3.59)

Using the same approach as before we will consider going two steps forward

with the standard formula (3.59) but using the one-step formulation to anal-

yse it. The method uses sixteen function evaluations per step. The associated

stability polynomial is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

2171

10944000
z7+

347

14008320
z8+

2873

1050624000
z9+

281

1050624000
z10+

97

4202496000
z11+

1759

1008599040000
z12 +

23

201719808000
z13 +

12089

1916338176000000
z14 +

67

239542272000000
z15+

1

119771136000000
z16. Using this polynomial it is straight-

forward to show that the interval of absolute stability of this formula is (−8.73, 0).

The norm of the coefficients of the local truncation error of the embedded for-

mula is: ||T̃ (6)|| ∼= 0.149× 10−2.

3.8.1 Block Formula of Order 6 with 12 Stages

Considering (3.59) as the formula to compute the solution at the first point

of the block we now add on an extra row such that:

a9i = bi, 1 ≤ i ≤ 8. (3.60)

This ensures that k9 ≡ y′n+1/2 and it allows us to derive a Hermite polyno-

mial through the data (yn, yn+1/2, yn+1, y
′
n, y′n+1/2, y

′
n+1) for use as a fifth order
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interpolating polynomial. The question now remains as to how many extra

functions are needed to complete a block 6(5) formula. We have tried deriv-

ing formulae with both 10 and 11 function evaluations and found the order

conditions to be inconsistent. However a block formula is possible with 12

function evaluations and in what follows we explain how such a formula can

be derived. The order conditions for an order 6 formula are well known and

can be found in Table 2.1. In order to be able to solve these equations we

have found it necessary to make the usual simplifying assumptions. It turns

out that, after these simplifying assumptions have been made, we still have

sufficient free parameters to make the second formula in the block (i.e. the one

used to compute the solution at xn+1) of order 7. In this case it automatically

has better asymptotic accuracy than the conventional one. In terms of sta-

bility we will look for an interval of absolute stability that is at least as good

as:
12

16
(−8.73, 0) ∼= (−6.55, 0). Thus as a direct extension of the approach

considered earlier, the block formula will be 6(5) at the first step and 7(5) at

the second step with a free fifth order interpolating polynomial. To derive our

formula of order 7 we need to solve a total of 78 nonlinear algebraic equations.

In what follows we will describe a simple general procedure which allows us to

solve these equations.

1) Make the simplifying assumptions:

b̂2 = b̂3 = 0

ai2 = 0, i = 10, 11, 12∑
i

b̂iciai3 = 0

∑
i

b̂iaij = b̂j(1− cj), 1 ≤ j ≤ 12.

2) Set c12 = 1. Choose b̂4, b̂5, b̂9, c10, c11 arbitrarily.

3) Solve the linear equations
6∑

i=1

b̂ic
j
i =

1

j + 1
, j = 1, 2, 3, 4, 5, 6 for b̂6, b̂7, b̂8,

b̂10, b̂11, b̂12.

Set b̂1 = 1−
12∑
i=2

b̂i.

4) Choose a10,3, a11,3, a12,3 to satisfy:
∑

i

b̂iai3 = 0,
∑

i

b̂iciai3 = 0,
∑

i

b̂ic
2
i ai3 =

0.

5) Choose a10,8 and a10,9 arbitrarily and solve:
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∑
i

a10,ici =
1

2
c2
i

∑
i

a10,ic
2
i =

1

3
c3
i

∑
i

b̂i(1− ci)(ci − c11)aijc
3
j =

1

168
− c11

120∑
ij

b̂i(1− ci)(ci − c11)aijaj3 = 0

for a10,4, a10,5, a10,6, a10,7.

Set a10,1 = c10 −
9∑

i=3

a10,i.

6) Choose a11,8 arbitrarily.

Solve

∑
i

a11,ici =
1

2
c2
11

∑
i

a11,ic
2
i =

1

3
c3
11

∑
i

a11,ic
3
i =

1

b11(c11 − 1)

(
1

24
− b̂i(1− ci)c

3
i −

10∑
j=1

b̂j(cj − 1)ajic
3
i

)

∑
ij

b̂i(1− ci)aijaj3 = 0

∑
ij

b̂i(1− ci)aijc
4
j =

1

210
∑

ijk

b̂i(1− ci)aijajkc
3
k =

1

840

for a11,10, a11,9, a11,7, a11,6, a11,5, a11,4.

Set a11,1 = c11 −
10∑
i=3

a11,i.

7) Set a12,j = [b̂j(1− cj)−
11∑

k=j+1

b̂kakj]/b̂12, j = 4, 5, . . . , 10

a12,11 = b̂11(1− c11)/b̂12

a12,1 = c12 −
11∑

j=3

a12,j.

This defines all the coefficients of our main formula of order 7. It is important

to note that all the equations which need to be solved are linear so it is simple

to construct a computer program to carry out this general procedure.
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Having obtained the main formula we can derive an embedded formula of

order 5 in the following way:

1) Choose b̄4, b̄9, b̄12 arbitrarily.

Set b̄2 = b̄3 = 0.

2) Solve:

∑
i

b̄ic
j
i =

1

j + 1
, j = 1, 2, 3, 4

∑
i

b̄iai3 = 0

∑
ij

b̄iaijc
3
j =

1

20

for b̄5, b̄6, b̄7, b̄8, b̄10, b̄11.

Put b̄1 = 1−
12∑
i=2

b̄i.

Using this approach we have developed the block formula (3.61), where

a10,1 = − 15514400620094897541

146323163457536000000
, a10,3 =

14894129938336353

29620073574400000
, a10,4 = − 1115465796694125137

5109462691584000000
,

a10,5 =
2570129433088854921

127366316369920000000
, a10,6 =

4715356027351248054167

96158384701380352000000
, a10,7 = − 261974217902055743

8326306814835000000
,

a11,1 =
45043408253882515066518381

18347755643649694995200000
, a11,3 = − 27917699597648811

13580628435200000
, a11,4 = − 1506088107154654995594000251

298986706338826001440000000
,

a11,5 = − 8259724559381291201457887499

2445516266521375718300000000
, a11,6 = − 32220126226752270243394813467141

4726537326891457620284268800000
,

a11,7 = − 245211708686956024569238294

60903053823901059014453125
, a11,9 =

49383719169866734171599

9099595410312095696000
, a11,10 =

39388790671769555952

2843623565722529905
,

a12,1 = − 1019761775615731879569301491872119

74627838689488457066330149783296
, a12,3 =

1354611699555

185033261984
,

a12,4 =
6975021330674121332266184865803

193031971419054713509400972224
, a12,5 =

201256172007798122954183274296301

10104804069067038046318207415552
,

a12,6 =
63908462135618415595781597790625

1588918512078788463336823077824
, a12,7 =

5234832269273922385292285155580

251649696435574725016671512023
,

a12,8 = − 3988339351014871459225909175

2098173602381029494667401872
, a12,9 = − 896812812789916578125

33651744427453381544
, a12,10 = − 12290247871952800000000

149630077900640928651
,

a12,11 =
206630455251489062500

215773357006517336541
, b̂1 =

15570496384

257777690625
, b̂6 = − 11242116232463771

41967407100937500
,

b̂7 = − 54840487616

194961524625
, b̂8 =

408061607

11965275000
, b̂10 =

592401471488000

1290745082732553
, b̂11 =

16975785544000

68176788371811
,

b̂12 =
11564578874

306736171875
, b̄1 = − 835201624659198460204559

34713141956439124815000000
,

b̄5 =
1017751370513896071

6514327279724200000
, b̄6 =

49794680976565711400765612263

383704456051829135363595000000
,

b̄7 = − 37330322369529825525437

281294170179680815395000
, b̄8 =

7028842195201371181033

201410122330496065000000
,

b̄10 = − 2020332036756821187243464

8846484592512498482993925
, b̄11 =

10579467130236170324548567

39572833674995279521619400
.

If we denote by ||T̄ (6)|| the 2-norm of the sixth order error coefficients of

the fifth order embedded formula, and similarly for ||T̄ (7)||, we have:

||T̄ (6)|| ∼= 0.3848× 10−4 (3.62)

||T̄ (7)|| ∼= 0.8927× 10−4. (3.63)
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If we compare the norms of the error coefficients of the conventional embedded

methods and for the block one taking into account the number of function

evaluations we can see that the block method is better. That is from (3.17)

0.3848× 10−4 <
1

32
0.149× 10−2.

The stability polynomial of (3.61) is given by:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

1

5040
z7 + t8z

8 + t9z
9 + t10z

10 + t11z
11 + t12z

12 where

t8 =
2946653115863302012161227347

130251653287964194390508160000000
, t9 =

575019705456366763941826487

271357611016592071646892000000000
,

t10 =
2416954365804905612083830349

13025165328796419439050816000000000
, t11 =

287254211438861

23874888645878860800000
, t12 =

3760360903

10971915737995800000
.

Similarly the stability polynomial of the embedded formula is:
yn+1

yn

= 1 + z +

1

2
z2+

1

6
z3+

1

24
z4+

1

120
z5+w6z

6+w7z
7+w8z

8+w9z
9+w10z

10+w11z
11+w12z

12

where

w6 =
7009720887340857621639192551

5036131621243879342938393600000
,

w7 =
17179258985771627442908701698103665042884443

87700454598755911235606176220951178240000000000
,

w8 =
47822392642194935658788261616851110298714111

2192511364968897780890154405523779456000000000000
,

w9 =
17952852596111441688929459321041236101031331

8770045459875591123560617622095117824000000000000
,

w10 =
277969671489666781486198267172254921

575221456645817893769307161579724800000000
,

w11 =
21794484201703114763191297129

2009416516876307857832419046400000000
,

w12 =
301306438074681

1023013030594582798937600
.

The regions of absolute stability of the three formulae are given in Fig-

ure 3.8. Again we see that the block formula has superior accuracy and sta-

bility to the conventional one.

We use the FSAL technique, i.e.

a9i = bi, 1 ≤ i ≤ 8, (3.64)

to allow us to construct a quintic Hermite interpolating polynomial without the

need to compute extra function evaluations. We have available the following

data (xn, yn, k1), (xn+1/2, yn+1/2, k9) and (xn+1, yn+1, k13), where k1 = y′n, k9 =

y′n+1/2 and k13 = y′n+1, with y′n+i ≡ f(xn+i, yn+i), i = 0,
1

2
, 1. Note that k13 is

needed to start the integration at the next block (i.e. k13 of the current block

is k1 of the next block (FSAL)). The function k13 is only computed if the block

is successful, and of course, interpolation is only carried out after a successful

block. We now examine the quality of our interpolating polynomial. We wish
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[r]

Figure 3.8: Stability region of order 6 with 12 stages
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to fit an interpolating polynomial of the form:

p(x) =
5∑

i=0

aix
i (3.65)

such that at x = xn+i, i = 0,
1

2
, 1, we have:

p(x) = yn+i

p′(x) = f(xn+i, yn+i).

Denoting the formulae to compute yn+1/2, yn+1 by:

yn+1/2 = yn + h

8∑
i=1

b1/2iki (3.66)

yn+1 = yn + h

12∑
i=1

b1iki (3.67)

it is straightforward to show that at x = xn + σh:

p(x) = yn +σhk1 + 4σ2[h
8∑

i=1

b1/2iki − 1

2
hk1]

+4σ2(σ − 1

2
)[hk9 − 4h

8∑
i=1

b1/2iki + hk1]

+4σ2(σ − 1

2
)2[h

12∑
i=1

b1iki − 2hk9 − hk1 + 4h
8∑

i=1

b1/2iki]

+4σ2(σ − 1

2
)2(σ − 1)[hk13 + 4hk9 + hk1 − 6h

12∑
i=1

b1iki].

(3.68)

Denoting the 2-norm of the local error coefficients of (3.68) by T̂6(σ) and TE

the error in the embedded order 5 formula, it is instructive to plot the quantity:

R =
T̂6(σ)

TE
(3.69)

for σ in the range [0, 1] and TE = 0.46875× 10−4. Recall that the interpolant

is of order 5 while the global error in the solution is also of order 5. The plot

of (3.69) for σ ∈ [0, 1] is given in Figure 3.9. By looking at Figure 3.9 we can

see that the ratio (3.69) is zero for σ = 1/2 which can be explained by the fact

that the method is of order 7 on the second step.

We have incorporated the block 6(5) formula described in this section in a

FORTRAN program and we give the results obtained in the next chapter.
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[r]

Figure 3.9: Interpolation error for order 6
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3.9 Order 7

Finally in this section we consider the derivation of a block 7(6) Runge-

Kutta formula. As in the previous sections we will use a standard formula for

the first step in the block. Again we use a 7(6) formula suggested by Verner

and Sharp [Verner91b] which is given by (3.70).

Using the same approach as before we will consider going two steps forward

with the standard formula (3.70) but using the one-step formulation to analyse

it. The method uses twenty two function evaluations per step. The interval of

absolute stability of this formula is (−9.2, 0). The norm of the coefficients of

the local truncation error of the embedded formulae is: ||T̃ (7)|| ∼= 0.277×10−3.

3.9.1 Block Formula of Order 7 with 16 Stages

Considering (3.70) as the formula to compute the solution at the first point

of the block we now add an extra row so that:

a12,i = bi, 1 ≤ i ≤ 11. (3.71)

This will serve as a step towards getting an interpolating polynomial. It is

now not appropriate to use a fifth order Hermite polynomial as our interpolant

since the embedded formula has order 6. Thus we need to generate one more

pair of data of the required order. We are again faced with the problem of

determining the minimum number of function evaluations which will allow us

to derive a block formula. It was quickly found that the order relations become

inconsistent with either 13 or 14 stages and we were not able to find an efficient

formula with 15 stages. Hence we sought a block formula with 16 stages. After

making the standard simplifying assumptions we found that we were able to

make the main formula at the second step of the block of order 8. In this case

it automatically has better asymptotic accuracy than the conventional one. In

terms of stability we will look for an interval of absolute stability that is at

least as good as:
16

22
(−9.2, 0) ∼= (−6.69, 0). This leaves us 200 equations to

solve in the unknowns and in what follows we will describe a general approach

which will both solve these equations and allow us to derive an interpolating
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polynomial.

1) Set c16 = 1, choose c13 , c14 , c15 arbitrarily.

2) Set b̂2 = b̂3 = b̂4 = b̂5 = 0.

Choose b̂6, b̂7, b̂9, b̂11 arbitrarily.

Solve
∑

i

b̂ic
j
i =

1

j + 1
, j = 1, 2, . . . , 7 for b̂8, b̂10, b̂12, b̂13, b̂14, b̂15, b̂16.

Set b̂1 = 1−
16∑
i=2

b̂i.

3) Set ai2 = 0, i = 13, 14, 15, 16 and a14,j = 0, j = 3, 4, 5.

4) Choose a13,j, a15,j, a16,j, 3 ≤ j ≤ 5 to satisfy:

∑
ij

b̂iaij = 0

∑
ij

b̂iciaij = 0

∑
ij

b̂ic
2
i aij = 0.

5) Choose a13,10, a13,11, a13,12 arbitrarily.

Define a13,6, a13,7, a13,8, a13,9 as the solution of:

∑
i

a13,ici =
1

2
c2
13

∑
i

a13,ic
2
i =

1

3
c3
13

∑
i

a13,ic
3
i =

1

4
c4
13

∑
ij

b̂i(c15 − ci)(1− ci)aijc
4
j =

c15

210
− 1

280

where in the last equation we use a14,jc
4
j =

1

5
c5
14.

Set a13,1 = c3 −
12∑
i=3

a13,i.

6) Choose a14,10, a14,11, a14,12, a14,13 arbitrarily.

Define a14,6, a14,7, a14,8, a14,9 as the solution of:
∑

i

a14,ic
j
i =

cj+1
14

j + 1
,

j = 1, 2, 3, 4.

Put a14,1 = c14 −
13∑
i=2

a14,i.

This gives a solution at xn + c14h which is fifth order. We use hk14, which
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is sixth order accurate, as the extra piece of information needed to derive an

order 6 interpolating polynomial.

7) Choose a15,11 arbitrarily.

Choose a15,6, a15,7, a15,8, a15,9, a15,10, a15,12, a15,13, a15,14 to satisfy:

∑
i

a15,ic
j
i =

cj
15

j + 1
, j = 1, 2, 3

∑
ij

b̂i(1− ci)aijc
4
j =

1

210
∑
ij

b̂i(1− ci)aijc
5
j =

1

336∑
ij

b̂i(1− ci)aijaj4 = 0

∑
ij

b̂i(1− ci)aijaj5 = 0

∑

ijk

b̂i(1− ci)aijajkc
4
k =

1

1680
.

Set a15,1 = c15 −
14∑
i=2

a15,i.

8) Set a16,i = [b̂i(1− ci)−
14∑

j=1

b̂j+1aj+1,i]/b̂16 for i = 6, 7, . . . , 14.

Set a16,1 = c16 −
15∑
i=2

a16,i.

This gives the main formula of order 8 for use in the second step of the block.

The derivation of a satisfactory embedded method proved elusive and we

eventually decided to investigate this problem further using a FSAL approach.

In this approach we evaluate f(xn+1, yn+1) and use this in the error estimating

formula. The process for obtaining an embedded formula is now as follows:

1) Choose b̄2 = b̄3 = b̄4 = b̄5 = 0; b̄11, b̄13, b̄16, b̄17 are arbitrary.

2) Solve:
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∑
i

b̄ic
j
i =

1

j + 1
, j = 1, 2, 3, 4, 5

∑
ij

b̄iaijc
4
j =

1

30
∑

ijk

b̄iaijajkc
3
k =

1

120
∑
ij

b̄iaijaj3 = 0

for b̄6, b̄7, b̄8, b̄9, b̄10, b̄12, b̄14, b̄15.

Put b̄1 = 1−
17∑
i=2

b̄i.

Using this approach we have developed the 7(6) formula given by (3.72), where

c9 =
237

617
, a91 = − 4333962560861949

57227634421028480
, a94 = − 27356602518987831

22891053768411392
, a95 = − 5577622585179759

14306908605257120
,

a96 =
4440533975079489

22891053768411392
, a97 =

2074327658036397

1788363575657140
, a98 =

308892413477097

447090893914285
, c10 =

11

24
,

a10,1 =
1815462473

351645204480
, a10,4 = − 777713915

1780482048
, a10,5 = − 257595283

1112801280
, a10,6 = − 979078639

27894218752
, a10,7 =

545934213

1214808064
,

a10,8 =
8188786287

16673472512
, a10,9 =

1751987622862169

811027050254336
, c11 =

1

2
, a11,1 =

327182831

686807040
, a11,4 =

7216785

1159168
,

a11,5 =
1512153

724480
, a11,6 =

49732231

54480896
, a11,7 = − 3029901427

605031360
, a11,8 = − 9462199113

2768056960
,

a11,9 = − 978946598211850411

887810363554111872
, a11,10 =

18304

56049
, c12 =

1

2
, a12,1 =

79217

3185280
, a12,6 =

17449

210560
,

a12,7 =
29672

233835
, a12,8 =

9178839

68467840
, a12,9 =

2262011668669933529

47104143493869221760
, a12,10 =

144896

1961715
, a12,11 =

283

30030
,

a13,1 = − 16503122408637426677

109648565258856000000
, a13,4 =

24555474755981397

185060869635200000
, a13,5 =

4610947253184729

23132608704400000
,

a13,6 =
145645901889159194799

43489304364272000000
, a13,7 =

103573641759666357783

160988498702183750000
, a13,8 = − 204550745468344851807

129976345157847500000
,

a13,9 = − 1612208699761528921182290701

644853018980887474933500000
, a14,1 =

72164600657

30336000000
, a14,6 = − 92105097257

6016000000
,

a14,7 = − 76919966307

11135000000
, a14,8 =

7437900253617

575360000000
, a14,9 =

17767337197914206641

2854539666816000000
, c15 =

9

10
,

a15,1 = − 18838714840418524990382629657

2580054938309736648949760000
, a15,4 =

289165772537125353

310125225342400000
, a15,5 =

1437011962705341

38765653167800000
,

a15,6 =
123212497129116514623272201073

3488566803813510428672000000
, a15,7 =

135383657408601045877075644539

6456979946885544983920000000
,

a15,8 = − 12273779868834760615374262570809

333640591130675093125120000000
, a15,9 = − 572132403289242553128797419327915332007

8662708413820027965813008740556800000
,

a15,10 = − 388437364400036611380569

221169448835273653000000
, a15,12 = − 677475438499160866047

128065691276939000000
, a15,13 =

143326519697888343

163924084834481920
,

a15,14 =
18086781996351

35450710388080
, a16,4 = − 196238220767379

114600302474240
, a16,5 = − 1963131649839

14325037809280
,

a16,6 = − 288562310516196559164561361

10151875367468537897779200
, a16,7 = − 254918544967545154070726573

11274049090767503606227200
,

a16,8 =
52020562695681700924420855113

131611984226148262358466560
, a16,9 = − 293155315322366424159250797417253432079

58232429521412295450728661552938188800
,

a16,10 =
248662283826691565124769

42137679167509885621200
, a16,11 = − 25409998768951

21924141346800
, a16,12 =

5054663354626003

709860038346096
,

a16,13 = − 322108096988125

501077674126656
, a16,14 = − 1780880625

499240469
, a16,15 =

41762532500

168389489169
,

b̂1 =
146385607

4598415360
, b̂8 =

68604171399

328548147200
, b̂10 =

434785856

3143124985
, b̂12 =

685403

7257600
,

b̂13 =
239624375

2013548544
, b̂14 =

862373125

4951425024
, b̂15 =

803125625

8446975488
, b̂16 =

1929059

50319360
,

b̄1 =
1655185626226806853089092657

45979086882909209356800000000
, b̄6 = − 5260181875887495939571

39975341707791050000000
, b̄7 =

40780549337809515925271

370594715008906575000000
,

b̄8 =
1388745561198239373879212247099

6597146087828361523744000000000
, b̄9 =

126558157169211507187885557673943

595593689498269186530599970000000
,
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b̄10 =
155434837957709352022489693

7630585229601587484850781250
, b̄12 =

965490517645254411979891

11022987841127064000000000
,

b̄14 =
2749813988117521591057411

15040646449461056286720000
, b̄15 =

3049610597201809751405423

34211826902749245995520000
.

Again denoting the 2-norm of the seventh order error coefficients of the

embedded formula by ||T̄ (7)|| and similarly for ||T̄ (8)||, we have:

||T̄ (7)|| ∼= 0.47099× 10−5 (3.73)

||T̄ (8)|| ∼= 0.90102× 10−5. (3.74)

If we compare ||T̄ (7)|| and the scaled ||T̃ (7)|| using (3.17) we can see that the

block method has slightly worse accuracy, but if we take into the number of

function evaluations we can see that the block method is better.

The stability polynomial of (3.72) is given by:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

1

5040
z7 +

1

40320
z8 + t9z

9 + t10z
10 + t11z

11 + t12z
12 +

t13z
13 + t14z

14 + t15z
15 + t16z

16, where

t9 =
2956495693948759414382062974899534609

1149721021792062794912966941978342195200000
,

t10 =
57119301224445593017607353058862910481/242426889737869240755934172337147582873600000

242426889737869240755934172337147582873600000
,

t11 =
16149773190975359245258495744507324577

745019222121256691103602578401965742489600000
,

t12 =
10205887914691155087060717819143139491

7187244260463888078881813109289551868723200000
,

t13 =
5684634476904456344926771552140275819

122183152427886097340990822857922381768294400000
,

t14 =
1931191664898246540045349

934228619082280484138640086138880000
,

t15 =
1221376616886944221

12072818096166774555249463001088
,

t16 =
7145326289585

3610138266186826514876596224
.

Similarly the stability polynomial of the embedded formula is given by:
yn+1

yn

=

1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 + w7z

7 + w8z
8 + w9z

9 + w10z
10 +

w11z
11 + w12z

12 + w13z
13 + w14z

14 + w15z
15 + w16z

16 + w17z
17, where

w7 =
68935169103120591433599851320584799694302772669237669

347007579349255754432280164557766169784536268800000000000
= 0.00019865609054532727845,

w8 =
16886297638591549069105857214050102330793898133769950940387

682258133665947724779977697987180447894219761123328000000000000
= 0.000024750599231198822256,

w9 =
315323837589232019036510052162508050860027658938208236891

122734267431969431971001279002984842478325248032768000000000000
= 2.56915891695865101011× 10

−6
,

w10 =
154154179042289646908562606377451119645183441829344548315969

649509743249982233990538768483795786395297212589408256000000000000
= 2.37339286506990922619× 10

−7
,

w11 =
98682922768976836227240459157946582224783263550167827906

46393553089284445285038483463128270456806943756386304000000000000
= 2.12708266984986987253× 10

−8
,

w12 =
903549852585175553871523457953392598548661395252713051377

649509743249982233990538768483795786395297212589408256000000000000
= 1.39112594071959715537× 10

−9
,

w13 =
4382205581722325724160738944379146263811039281977

8470415197352917378377861816068844550915589406720000000000
= 5.173542830688872555× 10

−11
,
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[r]

Figure 3.10: Stability region of order 7 with 16 stages

w14 =
1482797468124650939042960945425092550523190323

677633215788233390270228945285507564073247152537600000000
= 2.18820068670901572197× 10

−12
,

w15 =
66199580176796393237025088880424772349

679869988048914318377691550486608506058178560000000
= 9.7370940533462053705× 10

−14
,

w16 = − 216206040385060736501051

264649754588333885872442884629725184000
= −8.1695159975255607927× 10

−16
,

w17 = − −1429065257917

90253456654670662871914905600
= −1.58339116404695081203× 10

−17
.

The regions of absolute stability of the three formulae are given in Figure 3.10.

In what follows we will base our interpolating polynomial on the following

data (xn, yn, y
′
n), (xn+1/2, yn+1/2, y

′
n+1/2), (xn+1, yn+1, y

′
n+1), (xn+c14h, y

′
n+c14

). We

need extra data because we want an interpolating polynomial of order 6. When

the block method was derived this was taken into account and we pointed out

that the solution at xn+c14h is of order 5 and consequently that hk14 is of or-

der 6. As an interpolating polynomial for use with this formulae we used the
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3. Block Explicit Runge-Kutta Methods

following sixth order polynomial:

p(x) = yn +σhk1 + 4σ2[h
11∑
i=1

b1/2iki − 1

2
hk1]

+4σ2(σ − 1

2
)[hk12 − 4h

11∑
i=1

b1/2iki + hk1]

+4σ2(σ − 1

2
)2[h

16∑
i=1

b1iki − 2hk12 − hk1 + 4h
11∑
i=1

b1/2iki]

+4σ2(σ − 1

2
)2(σ − 1)[hk17 + 4hk12 − hk1 − 6h

16∑
i=1

b1iki]

+σ2(σ − 1

2
)2(σ − 1)2[α],

(3.75)

where α is a complicated expression that can be obtained by the condition

p′(xn+c14h) = y′n+c14
. A theoretical investigation of the polynomial shows that

its accuracy is sometimes poor and we feel more work needs to be done to

derive a really good interpolating polynomial. This is borne out by the results

given in the next chapter.
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3. Block Explicit Runge-Kutta Methods

[l]

0 0

1

10

1

10
0

3

20

3

80

9

80
0

3

10

3

20
− 9

20

3

5
0

1

3

113

729
− 25

54

440

729

55

1458
0

1

2
− 181

540

5

4
− 133

297
− 91

54

189

110
0

1

2

19

432
0

500

2079
− 125

432

81

176

5

112
0

39

50

5127870379

111925000000
− 3008889

11192500

1

4

24241166971

4477000000
− 671546919267

111925000000
− 37436178987

111925000000

117021996

69953125
0

1
148673568911

293233374720

185135

435116
− 10453369921

25657920288
− 1251502231253

58646674944

2993530119

116779520

101178152323

45614080512
− 1535355

217558

108109375

106024464
0

47531

852930
0

2806400

16395939

34025

367416

1

10

11891

119070

2

21

31796875

100304568

9889

144585

48843143

817903008
0

37739453

908344206

288489667

251662464
− 824645

949344

3

20

1

20

25492320125

68703852672

1

20

(3.52)
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3. Block Explicit Runge-Kutta Methods

[l]

0 0

1

24

1

24
0

1

15

1

75

4

75
0

1

10

1

40
0

3

40
0

4

15

44

135
0 − 56

45

32

27
0

13

38
− 408551

521284
0

3426735

1042568
− 325013

130321

347139

1042568
0

19

40

1296313

1131520
0 − 48507

10240

3310503

800768
− 761805

1497088

197436315

447629312
0

1

2

103039

33592
0 − 105

8

4428

391
− 13797

7310

26791254

22075469
− 896

9595
0

1

2

1385

47424
0 0

515

3312

2511

19264

17332693

186992208

2176

17271
− 17

504
0

93

400
a10,1 0 a10,3 a10,4 a10,5 a10,6 a10,7

7

800

3

400
0

171

200
a11,1 0 a11,3 a11,4 a11,5 a11,6 a11,7

87

200
a11,9 a11,10 0

1 a12,1 0 a12,3 a12,4 a12,5 a12,6 a12,7 a12,8 a12,9 a12,10 a12,11 0

b̂1 0 0
9

1000
0 b̂6 b̂7 b̂8

7

10
b̂10 b̂11 b̂12

b̄1 0 0
653

2000
b̄5 b̄6 b̄7 b̄8

219

500
b̄10 b̄11

81

2500

(3.61)
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3. Block Explicit Runge-Kutta Methods

[l]

0 0

1

12

1

12
0

4

27

4

243

32

243
0

2

9

1

18
0

1

6
0

5

9

5

9
0 − 25

12

25

12
0

2

3

1

15
0 0

1

3

4

15
0

1

6

319

3840
0 0

161

1536
− 41

960

11

512
0

4

9

245

5184
0 0

1627

10368

151

1296
− 445

10368

1

6
0

474

617
− 4333962560861949

28613817210514240
0 0 − 27356602518987831

11445526884205696
− 5577622585179759

7153454302628560

4440533975079489

11445526884205696

2074327658036397

894181787828570

617784826954194

447090893914285
0

11

12

1815462473

175822602240
0 0 − 777713915

890241024
− 257595283

556400640
− 979078639

13947109376

545934213

607404032

8188786287

8336736256

1751987622862169

4055013525127168
0

1
327182831

343403520
0 0

7216785

579584

1512153

362240

49732231

27240448
− 3029901427

302515680
− 9462199113

1384028480
− 978946598211850411

443905181777055936

36608

56049
0

79217

1592640
0 0 0 0

17449

105280

59344

233835

9178839

34233920

2262011668669933529

23552071746934610880

289792

1961715

283

15015

40147

834240
0 0 0 0

11521

45120

5216

20043

1193373

4890560
− 89418178782857

7842847734576960

1883648

9248085

(3.70)
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3. Block Explicit Runge-Kutta Methods

[l]

0 0

1

24

1

24
0

2

27

2

243

16

243
0

1

9

1

36
0

1

12
0

5

18

5

18
0 − 25

24

25

24
0

1

3

1

30
0 0

1

6

2

15
0

1

12

319

7680
0 0

161

3072
− 41

1920

11

1024
0

2

9

245

10368
0 0

1627

20736

151

2592
− 445

20736

1

12
0

c9 a91 0 0 a94 a95 a96 a97 a98 0

c10 a10,1 0 0 a10,4 a10,5 a10,6 a10,7 a10,8 a10,9 0

c11 a11,1 0 0 a11,4 a11,5 a11,6 a11,7 a11,8 a11,9 a11,10 0

c12 a12,1 0 0 0 0 a12,6 a12,7 a12,8 a12,9 a12,10 a12,11 0

3

5
a13,1 0 0 a13,4 a13,5 a13,6 a13,7 a13,8 a13,9 0 0

1

2
0

4

5
a14,1 0 0 0 0 a14,6 a14,7 a14,8 a14,9

1

20

1

4

5

4
− 1

16
0

c15 a15,1 0 0 a15,4 a15,5 a15,6 a15,7 a15,8 a15,9 a15,10 0 a15,12 a15,13 a15,14 0

1 0 0 0 a16,4 a16,5 a16,6 a16,7 a16,8 a16,9 a16,10 a16,11 a16,12 a16,13 a16,14 a16,15 0

b̂1 0 0 0 0 0
1

10
b̂8 0 b̂10 0 b̂12 b̂13 b̂14 b̂15 b̂16

b̄1 0 0 0 0 b̄6 b̄7 b̄8 b̄9 b̄10
7

200
b̄12

929

8000
b̄14 b̄15

63

200000

1

125

(3.72)
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Chapter 4

Numerical Results

4.1 Introduction

In this section we present numerical results to compare some of the algo-

rithms derived in the previous sections. The algorithms which will be mainly

of interest to us are:

1) the block 5(4) formula (3.52)

2) the block 5(4) formula derived in [Cash89]

3) the block 6(5) formula (3.61). The code to implement this appears in the

Appendix

and

4) the block 7(6) formula (3.72).

We have written general purpose codes for all of these four formulae and

in this section we will examine the performance of these codes. We examine

first the interpolation properties of our formulae by considering a simple test

problem. Following [Cash89] we consider the numerical integration of

y′ = −y, y(0) = 1, 0 ≤ x ≤ 20 (4.1)

and ask for output at the points x = 1, 2, . . . , 20. Since the steplengths of

integration chosen in the various codes will not normally hit these output

points exactly this will test the interpolation capabilities of the codes. We ran

this problem with error tolerances 10−6 and 10−10 and the results obtained are

given in the following tables.
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4. Numerical Results

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678795×10−1 −3.678795×10−1 2.62×10−8 −2.40× 10−8 37

2.0 1.353353×10−1 −1.353351×10−1 5.16×10−8 2.00× 10−7 55

3.0 4.978713×10−2 −4.978697×10−2 6.35×10−8 1.03× 10−7 73

4.0 1.831575×10−2 −1.831575×10−2 1.08×10−7 −1.07× 10−7 91

5.0 6.738049×10−3 −6.738057×10−3 1.02×10−7 −1.10× 10−7 100

6.0 2.478879×10−3 −2.478875×10−3 1.27×10−7 −1.23× 10−7 109

7.0 9.122050×10−4 −9.122993×10−4 3.23×10−7 −4.17× 10−7 123

8.0 3.364938×10−4 −3.350651×10−4 1.03×10−6 3.98× 10−7 123

9.0 1.238228×10−4 −1.236102×10−4 4.13×10−7 −2.00× 10−7 132

10.0 4.572067×10−5 −4.563094×10−5 3.21×10−7 −2.31× 10−7 141

11.0 1.689637×10−5 −1.630331×10−5 1.95×10−7 3.98× 10−7 141

12.0 6.495237×10−6 −6.454500×10−6 3.51×10−7 −3.10× 10−7 150

13.0 2.390270×10−6 −2.347949×10−6 1.30×10−7 −8.76× 10−8 150

14.0 9.998818×10−7 −9.627178×10−7 1.68×10−7 −1.31× 10−7 150

15.0 3.865091×10−7 −3.809986×10−7 8.06×10−8 −7.51× 10−8 159

16.0 1.435180×10−7 −9.403426×10−8 3.10×10−8 1.85× 10−8 159

17.0 1.768391×10−7 7.471149×10−8 1.35×10−7 1.16× 10−7 159

18.0 9.516586×10−8 −9.446951×10−8 7.99×10−8 −7.92× 10−8 168

19.0 3.519033×10−8 −3.257032×10−8 2.96×10−8 −2.70× 10−8 168

20.0 1.684292×10−8 −1.684292×10−8 1.48×10−8 −1.48× 10−8 168

Table 4.1a: Results obtained by (3.52) with Tol = 10−6

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678794×10−1 −3.678794×10−1 5.28×10−13 −6.96× 10−12 172

2.0 1.353353×10−1 −1.353353×10−1 4.48×10−13 2.69× 10−12 316

3.0 4.978707×10−2 −4.978707×10−2 3.20×10−13 −5.04× 10−13 460

4.0 1.831564×10−2 −1.831564×10−2 2.39×10−13 4.57× 10−13 577

5.0 6.737947×10−3 −6.737947×10−3 2.13×10−13 −1.92× 10−13 685

6.0 2.478752×10−3 −2.478752×10−3 2.15×10−13 1.08× 10−12 766

7.0 9.118820×10−4 −9.118820×10−4 2.34×10−13 −1.26× 10−13 838

8.0 3.354626×10−4 −3.354626×10−4 2.97×10−13 −9.63× 10−13 901

9.0 1.234098×10−4 −1.234098×10−4 3.40×10−13 −3.40× 10−13 946

10.0 4.539993×10−5 −4.539993×10−5 4.62×10−13 2.42× 10−12 982

11.0 1.670170×10−5 −1.670170×10−5 4.94×10−13 −4.69× 10−13 1018

12.0 6.144213×10−6 −6.144213×10−6 6.07×10−13 −5.63× 10−13 1045

13.0 2.260330×10−6 −2.260326×10−6 8.97×10−13 3.45× 10−12 1063

14.0 8.315299×10−7 −8.315246×10−7 1.15×10−12 4.08× 10−12 1081

15.0 3.059034×10−7 −3.059034×10−7 1.05×10−12 −1.07× 10−12 1099

16.0 1.125371×10−7 −1.125285×10−7 1.93×10−12 6.65× 10−12 1108

17.0 4.140283×10−8 −4.139225×10−8 3.45×10−12 7.13× 10−12 1117

18.0 1.523356×10−8 −1.521483×10−8 3.58×10−12 1.52× 10−11 1126

19.0 5.607641×10−9 −5.610920×10−9 4.84×10−12 −8.12× 10−12 1135

20.0 2.075757×10−9 −2.075757×10−9 1.46×10−11 −1.46× 10−11 1135

Table 4.1b: Results obtained by (3.52) with Tol = 10−10
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4. Numerical Results

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678795×10−1 −3.678798×10−1 3.86×10−8 −4.05× 10−7 37

2.0 1.353353×10−1 −1.353356×10−1 4.02×10−8 −3.35× 10−7 55

3.0 4.978717×10−2 −4.978717×10−2 9.72×10−8 −1.05× 10−7 73

4.0 1.831566×10−2 −1.831568×10−2 2.19×10−8 −4.61× 10−8 82

5.0 6.738002×10−3 −6.737588×10−3 5.53×10−8 3.59× 10−7 91

6.0 2.478839×10−3 −2.478353×10−3 8.67×10−8 3.99× 10−7 100

7.0 9.119403×10−4 −9.115701×10−4 5.83×10−8 3.12× 10−7 109

8.0 3.354782×10−4 −3.354545×10−4 1.56×10−8 8.15× 10−9 118

9.0 1.234819×10−4 −1.236060×10−4 7.21×10−8 −1.96× 10−7 127

10.0 4.548547×10−5 −4.513088×10−5 8.55×10−8 2.69× 10−7 127

11.0 1.673939×10−5 −1.682914×10−5 3.77×10−8 −1.27× 10−7 136

12.0 6.207683×10−6 −5.947948×10−6 6.35×10−8 1.96× 10−7 136

13.0 2.332549×10−6 −2.374541×10−6 7.22×10−8 −1.14× 10−7 145

14.0 8.302290×10−7 −8.401229×10−7 −1.30×10−9 −8.59× 10−9 145

15.0 3.831348×10−7 −1.770379×10−7 7.72×10−8 1.29× 10−7 145

16.0 1.789708×10−7 −1.928159×10−7 6.64×10−8 −8.03× 10−8 154

17.0 4.811991×10−8 −8.040055×10−8 6.72×10−9 −3.90× 10−8 154

18.0 1.130332×10−8 6.470540×10−9 −3.93×10−9 2.17× 10−8 154

19.0 5.190446×10−8 6.092684×10−8 4.63×10−8 6.65× 10−8 154

20.0 7.225827×10−8 −7.225827×10−8 7.02×10−8 −7.02× 10−8 154

Table 4.1c: Results obtained by [Cash89] with Tol = 10−6

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678794×10−1 −3.678794×10−1 1.11×10−12 −3.11× 10−11 145

2.0 1.353353×10−1 −1.353353×10−1 8.39×10−13 1.91× 10−11 262

3.0 4.978707×10−2 −4.978707×10−2 4.60×10−13 3.62× 10−13 379

4.0 1.831564×10−2 −1.831564×10−2 3.63×10−13 5.99× 10−12 478

5.0 6.737947×10−3 −6.737947×10−3 2.75×10−13 −4.49× 10−12 568

6.0 2.478752×10−3 −2.478752×10−3 2.68×10−13 −5.08× 10−12 640

7.0 9.118820×10−4 −9.118820×10−4 4.09×10−13 7.91× 10−12 694

8.0 3.354626×10−4 −3.354626×10−4 2.37×10−13 −2.51× 10−12 748

9.0 1.234098×10−4 −1.234098×10−4 5.81×10−13 7.31× 10−12 784

10.0 4.539993×10−5 −4.539993×10−5 2.92×10−13 2.96× 10−12 820

11.0 1.670170×10−5 −1.670169×10−5 5.62×10−13 6.66× 10−12 847

12.0 6.144213×10−6 −6.144214×10−6 3.08×10−13 −1.48× 10−12 874

13.0 2.260330×10−6 −2.260328×10−6 3.31×10−13 1.84× 10−12 892

14.0 8.315290×10−7 −8.315298×10−7 3.22×10−13 −1.09× 10−12 910

15.0 3.059037×10−7 −3.059045×10−7 1.42×10−12 −2.17× 10−12 928

16.0 1.125357×10−7 −1.125381×10−7 5.57×10−13 −2.91× 10−12 937

17.0 4.139972×10−8 −4.140079×10−8 3.38×10−13 −1.42× 10−12 946

18.0 1.523039×10−8 −1.523193×10−8 4.11×10−13 −1.95× 10−12 955

19.0 5.603930×10−9 −5.605182×10−9 1.13×10−12 −2.39× 10−12 964

20.0 2.062401×10−9 −2.062401×10−9 1.25×10−12 −1.25× 10−12 964

Table 4.1d: Results obtained by [Cash89] with Tol = 10−10
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4. Numerical Results

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678793×10−1 −3.678795×10−1 −1.75×10−7 −7.08× 10−8 37

2.0 1.353351×10−1 −1.353344×10−1 −1.98×10−7 8.69× 10−7 49

3.0 4.978699×10−2 −4.978690×10−2 −8.07×10−8 1.71× 10−7 61

4.0 1.831558×10−2 −1.831568×10−2 −6.37×10−8 −3.63× 10−8 73

5.0 6.737884×10−3 −6.737725×10−3 −6.35×10−8 2.22× 10−7 85

6.0 2.478642×10−3 −2.478600×10−3 −1.11×10−7 1.52× 10−7 97

7.0 9.117892×10−4 −9.117479×10−4 −9.28×10−8 1.34× 10−7 97

8.0 3.354227×10−4 −3.355305×10−4 −3.99×10−8 −6.78× 10−8 109

9.0 1.233262×10−4 −1.234051×10−4 −8.36×10−8 4.74× 10−9 121

10.0 4.536499×10−5 −4.547018×10−5 −3.49×10−8 −7.02× 10−8 121

11.0 1.663181×10−5 −1.667836×10−5 −6.99×10−8 2.33× 10−8 133

12.0 6.120112×10−6 −6.101551×10−6 −2.41×10−8 4.27× 10−8 133

13.0 2.204480×10−6 −2.333517×10−6 −5.58×10−8 −7.32× 10−8 133

14.0 7.846551×10−7 −8.012427×10−7 −4.69×10−8 3.03× 10−8 145

15.0 2.883335×10−7 −2.790063×10−7 −1.76×10−8 2.69× 10−8 145

16.0 1.016587×10−7 −1.320843×10−7 −1.09×10−8 −1.95× 10−8 145

17.0 −2.905544×10−9 −6.673656×10−8 −4.43×10−8 −2.53× 10−8 145

18.0 −9.989863×10−9 9.998449×10−9 −2.52×10−8 2.52× 10−8 157

19.0 −3.675084×10−9 3.701829×10−9 −9.28×10−9 9.30× 10−9 157

20.0 −1.324905×10−9 1.324905×10−9 −3.39×10−9 3.39× 10−9 157

Table 4.1e: Results obtained by (3.61) with Tol = 10−6

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678794×10−1 −3.678794×10−1 −2.84×10−11 −1.18× 10−9 85

2.0 1.353353×10−1 −1.353353×10−1 −3.89×10−11 5.49× 10−10 145

3.0 4.978707×10−2 −4.978707×10−2 −3.75×10−11 3.96× 10−10 205

4.0 1.831564×10−2 −1.831564×10−2 −1.35×10−11 −7.34× 10−10 253

5.0 6.737947×10−3 −6.737947×10−3 −2.71×10−11 4.39× 10−10 289

6.0 2.478752×10−3 −2.478753×10−3 −2.53×10−11 −4.22× 10−10 325

7.0 9.118820×10−4 −9.118820×10−4 −7.22×10−12 −7.38× 10−11 349

8.0 3.354626×10−4 −3.354628×10−4 −1.34×10−11 −1.99× 10−10 373

9.0 1.234098×10−4 −1.234097×10−4 −1.09×10−11 1.30× 10−10 397

10.0 4.539992×10−5 −4.539989×10−5 −1.08×10−11 4.30× 10−11 409

11.0 1.670168×10−5 −1.670160×10−5 −1.59×10−11 1.00× 10−10 433

12.0 6.144205×10−6 −6.144222×10−6 −7.22×10−12 −9.21× 10−12 445

13.0 2.260322×10−6 −2.260352×10−6 −7.44×10−12 −2.29× 10−11 457

14.0 8.315214×10−7 −8.315064×10−7 −7.28×10−12 2.23× 10−11 469

15.0 3.058877×10−7 −3.058801×10−7 −1.46×10−11 2.22× 10−11 481

16.0 1.125223×10−7 −1.125169×10−7 −1.29×10−11 1.83× 10−11 481

17.0 4.139414×10−8 −4.140620×10−8 −5.24×10−12 −6.82× 10−12 493

18.0 1.521844×10−8 −1.523044×10−8 −1.15×10−11 −4.64× 10−13 505

19.0 5.598568×10−9 −5.609182×10−9 −4.23×10−12 −6.39× 10−12 505

20.0 2.051466×10−9 −2.051466×10−9 −9.69×10−12 9.69× 10−12 517

Table 4.1f: Results obtained by (3.61) with Tol = 10−10
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x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678743×10−1 −3.679115×10−1 −5.11×10−6 −3.20× 10−5 33

2.0 1.353352×10−1 −1.353403×10−1 −8.51×10−8 −5.03× 10−6 49

3.0 4.978691×10−2 −4.977954×10−2 −1.59×10−7 7.52× 10−6 65

4.0 1.831097×10−2 −1.831538×10−2 −4.67×10−6 2.54× 10−7 81

5.0 6.735659×10−3 −6.713698×10−3 −2.29×10−6 2.42× 10−5 81

6.0 2.478795×10−3 −2.480126×10−3 4.31×10−8 −1.37× 10−6 97

7.0 9.092017×10−4 −9.383050×10−4 −2.68×10−6 −2.64× 10−5 113

8.0 3.349487×10−4 −3.451567×10−4 −5.14×10−7 −9.69× 10−6 113

9.0 1.230634×10−4 −1.360633×10−4 −3.46×10−7 −1.27× 10−5 129

10.0 4.346781×10−5 −3.186505×10−5 −1.93×10−6 1.35× 10−5 129

11.0 8.874360×10−6 −1.930213×10−5 −7.83×10−6 −2.60× 10−6 129

12.0 1.242496×10−6 −2.060702×10−5 −4.90×10−6 −1.45× 10−5 145

13.0 1.796438×10−8 8.051153×10−6 −2.24×10−6 1.03× 10−5 145

14.0 −3.797029×10−6 −1.219377×10−5 −4.63×10−6 −1.14× 10−5 145

15.0 −1.301559×10−6 1.422742×10−5 −1.61×10−6 1.45× 10−5 145

16.0 −2.962715×10−6 −2.368309×10−6 −3.08×10−6 −2.26× 10−6 161

17.0 −1.163415×10−6 3.496337×10−6 −1.20×10−6 3.54× 10−6 161

18.0 −5.821986×10−7 −2.815079×10−6 −5.97×10−7 −2.80× 10−6 161

19.0 −3.314375×10−6 1.785070×10−7 −3.32×10−6 1.84× 10−7 161

20.0 1.948512×10−8 −1.948512×10−8 1.74×10−8 −1.74× 10−8 161

Table 4.1g: Results obtained by (3.72) with Tol = 10−6

x y dy/dx Error in y Error in dy/dx No. of func. evals.

1.0 3.678793×10−1 −3.678797×10−1 −1.36× 10−7 −2.38× 10−7 65

2.0 1.353352×10−1 −1.353355×10−1 −7.27× 10−8 −2.47× 10−7 97

3.0 4.978703×10−2 −4.978700×10−2 −3.52× 10−8 7.32× 10−8 129

4.0 1.831562×10−2 −1.831563×10−2 −1.74× 10−8 5.30× 10−9 161

5.0 6.737940×10−3 −6.737929×10−3 −6.55× 10−9 1.84× 10−8 177

6.0 2.478749×10−3 −2.478745×10−3 −3.12× 10−9 7.58× 10−9 193

7.0 9.118808×10−4 −9.118793×10−4 −1.13× 10−9 2.70× 10−9 225

8.0 3.354621×10−4 −3.354611×10−4 −5.18×10−10 1.57× 10−9 241

9.0 1.234096×10−4 −1.234094×10−4 −2.01×10−10 4.53× 10−10 257

10.0 4.539982×10−5 −4.539978×10−5 −1.05×10−10 1.49× 10−10 257

11.0 1.670165×10−5 −1.670171×10−5 −5.03×10−11 −1.34× 10−11 273

12.0 6.144190×10−6 −6.144136×10−6 −2.27×10−11 7.66× 10−11 289

13.0 2.260318×10−6 −2.260292×10−6 −1.15×10−11 3.78× 10−11 289

14.0 8.315186×10−7 −8.314925×10−7 −1.01×10−11 3.62× 10−11 305

15.0 3.058899×10−7 −3.058966×10−7 −1.24×10−11 5.76× 10−12 305

16.0 1.125251×10−7 −1.125199×10−7 −1.01×10−11 1.53× 10−11 321

17.0 4.139533×10−8 −4.140511×10−8 −4.05×10−12 −5.74× 10−12 321

18.0 1.522141×10−8 −1.522961×10−8 −8.57×10−12 3.66× 10−13 321

19.0 5.598881×10−9 −5.611355×10−9 −3.92×10−12 −8.56× 10−12 337

20.0 2.055029×10−9 −2.055029×10−9 −6.12×10−12 6.12× 10−12 337

Table 4.1h: Results obtained by (3.72) with Tol = 10−10
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It can be seen from these results that the behaviour of the interpolants as-

sociated with the first three methods is very satisfactory. For these methods,

the maximum error in y and y′ is always at about the level of the requested

tolerance. Furthermore, as would be expected, the 6(5) formula is considerably

more efficient than the 5(4) codes at a tolerance of 10−10. The performance of

the interpolant associated with (3.72) is disappointing as would be expected

from the remarks at the end of the previous chapter. Although the results

given by the interpolant were often satisfactory, there were occasions particu-

larly when the requested tolerance was 10−10, that unacceptably large errors

occurred. This confirms the theoretical analysis of the previous section which

showed that the interpolants for the fifth and sixth order formulae were sat-

isfactory whereas further investigations of an interpolant for the order seven

formula is required. However if we simply look at the results at x = 20 we

see that (3.72) performs very well and is easily the most efficient formula at a

tolerance of 10−10.

Our second set of numerical results was obtained by running the four codes

on the DETEST test set. The DETEST package can be used to test almost any

initial value code and reports numerous statistics which allow a preliminary

comparison of different codes on a large set of test problems. Although it is very

difficult to compare different codes, the performance of a code on the DETEST

test set is widely seen as a reasonable indication of its performance. A first

version of DETEST, which is used for non-stiff problems, is described in Hull

et al. [Hull72]. Further numerical testing was described in [Enright76]. The

testing program was further extended to deal with stiff problems by Enright

et al. [Enright75]. A final version, which contains options for both the stiff

and non-stiff case, was given by Enright and Pryce [Enright87] and this is

the version we shall use.
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4.2 The Problems

The DETEST package contains five classes of test problems which are

labeled A-E as follows:

A - linear with real eigenvalues

B - linear with non real eigenvalues

C - nonlinear coupling

D - nonlinear with real eigenvalues

E - nonlinear with non real eigenvalues

Each of these subclasses contains five problems, making a total of 25 problems

in all, and we shall label these A1, A2, . . . , A5 and similarly for the other

classes.

4.3 The Output

DETEST contains various options which control the level of detail in the

output. In our testing we set the options so as to compare the computational

effort required to obtain a given global error. As well as measuring the time

taken to achieve a task (efficiency) we also wanted to measure how well the

task was achieved (reliability).

One difficulty with the comparison of codes is that most initial value codes

attempt to control the local error whereas a user is often interested in the

global error. The way in which DETEST deals with this problem is as fol-

lows: the user specifies a sequence of local errors (in our experiments we used

10−2, 10−3, . . . , 10−9) and DETEST runs the problems with these local errors

recording the time taken, functions required, number of steps, the global error

obtained together with various statistics on the reliability. A least squares fit

is then applied to this data and this allows an estimate of the work required

to obtain the maximum global error of say 10−2, 10−3, 10−4 which is output as

“Expected Accuracy”. Also given is the predicted local tolerance that should

be imposed to obtain this global accuracy and this appears as “Log10 Tol”.
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In this way we are able to compare the performance of different codes in their

attempts to achieve a specified global accuracy. The cost statistics are the

“Time”, that is the total time, in seconds, necessary to solve the problems.

The machine used was an IBM RS6000; “FCN Calls” is the number of func-

tion evaluations used to solve the problems. “No. of Steps” is the number of

steps taken to solve the problems. “Maximum Loc Err” is the maximum local

error per step expressed in units of the tolerance; “Fraction deceived” is the

fraction of steps on which the true local error per step exceeded the tolerance;

“Fraction bad deceived” is the fraction of steps on which the true local error

exceeded five times the tolerance. In what follows we give the efficiency statis-

tics of the four codes we are comparing. We start with the block 5(4) code

based on the formula (3.52).
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Table 4.2: Results on DETEST for block 5(4)

formula (3.52)
Expected Accuracy log10 Tol Time FCN Calls No. of Steps

A1 10−3 −2.80 .002 69 7

10−4 −3.84 .003 94 9

10−5 −4.88 .003 120 12

10−6 −5.92 .005 164 17

10−7 −6.96 .005 248 26

10−8 −8.00 .008 361 40

10−9 −9.04 .014 544 60

10−10 −10.08 .024 848 93

A2 10−5 −2.93 .002 62 6

10−6 −3.98 .002 81 8

10−7 −5.04 .003 119 13

10−8 −6.09 .005 169 18

10−9 −7.14 .007 253 28

10−10 −8.20 .012 392 43

10−11 −9.25 .017 592 65

A3 10−2 −2.26 .006 175 15

10−3 −3.04 .008 250 21

10−4 −3.83 .010 321 30

10−5 −4.61 .013 482 44

10−6 −5.40 .018 666 61

10−7 −6.18 .026 877 83

10−8 −6.97 .035 1178 114

10−9 −7.76 .046 1621 164

10−10 −8.54 .064 2217 227

10−11 −9.33 .087 3059 317

A4 10−3 −2.38 .003 51 4

10−4 −3.32 .002 70 5

10−5 −4.26 .004 98 9

10−6 −5.20 .005 136 13

10−7 −6.14 .007 192 18

10−8 −7.08 .010 260 26

10−9 −8.02 .013 377 39

10−10 −8.96 .020 557 57

10−11 −9.90 .029 801 85

A5 10−4 −2.58 .003 56 6

10−5 −3.64 .002 75 8

10−6 −4.69 .003 112 11

10−7 −5.74 .005 159 16

10−8 −6.80 .006 235 25

10−9 −7.85 .010 359 38

10−10 −8.91 .015 552 59

10−11 −9.96 .021 834 91

Table 4.2a: Results for (3.52) on Class A
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

B1 10−2 −2.37 .012 362 32

10−3 −3.46 .017 534 49

10−4 −4.55 .025 812 78

10−5 −5.63 .039 1238 120

10−6 −6.72 .058 1852 188

10−7 −7.81 .093 2866 304

10−8 −8.90 .137 4392 471

B2 10−3 −2.66 .006 170 14

10−4 −3.74 .006 183 16

10−5 −4.82 .007 194 19

10−6 −5.90 .010 241 24

10−7 −6.98 .012 319 34

10−8 −8.06 .019 482 53

10−9 −9.14 .029 748 83

B3 10−2 −1.92 .003 61 6

10−3 −2.81 .003 85 8

10−4 −3.70 .003 96 10

10−5 −4.59 .005 126 13

10−6 −5.48 .007 174 18

10−7 −6.37 .009 246 26

10−8 −7.26 .013 351 37

10−9 −8.15 .018 493 53

10−10 −9.04 .026 698 75

10−11 −9.93 .037 1019 112

B4 10−2 −2.52 .008 205 22

10−3 −3.49 .013 310 34

10−4 −4.46 .021 474 52

10−5 −5.43 .030 707 78

10−6 −6.41 .044 1069 118

10−7 −7.38 .069 1668 185

10−8 −8.35 .104 2532 281

10−9 −9.32 .160 3821 424

B5 10−2 −2.10 .007 167 15

10−3 −2.95 .008 235 21

10−4 −3.81 .011 279 30

10−5 −4.66 .015 396 43

10−6 −5.52 .022 562 62

10−7 −6.37 .033 811 90

10−8 −7.23 .048 1194 132

10−9 −8.09 .066 1735 192

10−10 −8.94 .093 2436 270

10−11 −9.80 .145 3631 403

Table 4.2b: Results for (3.52) on Class B
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

C1 10−3 −2.68 .008 90 9

10−4 −3.61 .010 113 12

10−5 −4.54 .013 151 16

10−6 −5.48 .018 206 22

10−7 −6.41 .026 299 33

10−8 −7.34 .038 446 49

10−9 −8.27 .057 652 72

10−10 −9.20 .082 955 106

C2 10−2 −1.92 .038 429 33

10−3 −2.90 .042 476 35

10−4 −3.89 .033 366 35

10−5 −4.88 .039 427 39

10−6 −5.87 .043 480 41

10−7 −6.85 .049 534 50

10−8 −7.84 .061 681 68

10−9 −8.83 .085 915 95

10−10 −9.82 .125 1302 140

C3 10−2 −1.97 .027 181 14

10−3 −2.86 .027 168 16

10−4 −3.75 .025 194 17

10−5 −4.65 .026 215 19

10−6 −5.54 .029 232 22

10−7 −6.44 .035 276 28

10−8 −7.33 .047 365 39

10−9 −8.22 .066 501 55

10−10 −9.12 .094 720 79

10−11 −10.01 .134 1058 117

C4 10−2 −1.99 .117 193 15

10−3 −2.89 .107 174 16

10−4 −3.78 .114 182 17

10−5 −4.67 .124 210 19

10−6 −5.57 .136 232 22

10−7 −6.46 .169 278 28

10−8 −7.36 .224 368 39

10−9 −8.25 .300 507 56

10−10 −9.14 .431 730 81

10−11 −10.04 .625 1068 118

C5 10−2 −2.11 .024 37 4

10−3 −3.00 .031 45 4

10−4 −3.89 .042 62 6

10−5 −4.78 .054 85 9

10−6 −5.67 .072 109 12

10−7 −6.56 .100 153 16

10−8 −7.45 .147 225 24

10−9 −8.35 .212 323 35

10−10 −9.24 .302 459 50

Table 4.2c: Results for (3.52) on Class C
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

D1 10−1 −2.35 .008 191 18

10−2 −3.16 .012 249 25

10−3 −3.97 .015 329 35

10−4 −4.78 .023 466 51

10−5 −5.58 .031 646 71

10−6 −6.39 .044 916 101

10−7 −7.20 .063 1315 146

10−8 −8.01 .089 1869 207

10−9 −8.81 .121 2610 289

10−10 −9.62 .178 3781 420

D2 10−1 −2.08 .012 252 20

10−2 −2.96 .013 293 26

10−3 −3.83 .019 395 37

10−4 −4.71 .026 539 54

10−5 −5.59 .036 753 76

10−6 −6.47 .050 1054 110

10−7 −7.35 .070 1505 163

10−8 −8.23 .101 2191 238

10−9 −9.11 .151 3196 342

10−10 −9.99 .224 4733 506

D3 10−1 −2.15 .015 342 27

10−2 −3.07 .019 425 37

10−3 −3.99 .027 604 52

10−4 −4.91 .037 790 76

10−5 −5.83 .051 1057 108

10−6 −6.75 .070 1499 162

10−7 −7.68 .103 2243 247

10−8 −8.60 .152 3285 364

10−9 −9.52 .231 4923 546

D4 10−1 −2.77 .026 555 47

10−2 −3.69 .035 767 66

10−3 −4.61 .047 1014 93

10−4 −5.54 .065 1413 132

10−5 −6.46 .087 1894 192

10−6 −7.38 .122 2925 288

10−7 −8.31 .181 3878 429

D5 100 −2.58 .036 804 69

10−1 −3.72 .052 1188 102

10−2 −4.85 .079 1736 156

10−3 −5.99 .116 2586 236

10−4 −7.13 .161 3482 380

Table 4.2d: Results for (3.52) on Class D
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

E1 10−2 −2.25 .005 102 11

10−3 −3.16 .007 144 15

10−4 −4.07 .010 197 21

10−5 −4.98 .015 287 31

10−6 −5.89 .019 409 45

10−7 −6.80 .029 610 67

10−8 −7.71 .045 925 102

10−9 −8.62 .063 1346 149

10−10 −9.53 .095 2007 222

E2 10−3 −2.67 .017 462 42

10−4 −3.60 .024 655 62

10−5 −4.53 .035 961 94

10−6 −5.46 .051 1418 138

10−7 −6.39 .071 2025 203

10−8 −7.32 .105 2962 306

10−9 −8.25 .160 4411 458

10−10 −9.18 .231 6305 668

E3 10−3 −2.20 .015 249 25

10−4 −3.36 .026 411 43

10−5 −4.53 .051 683 73

10−6 −5.69 .075 1103 119

10−7 −6.85 .111 1811 198

10−8 −8.01 .184 3038 334

10−9 −9.17 .309 4960 548

E4 10−3 −2.47 .001 32 3

10−4 −3.32 .002 36 3

10−5 −4.17 .003 57 5

10−6 −5.03 .002 72 7

10−7 −5.88 .003 95 9

10−8 −6.73 .005 119 12

10−9 −7.58 .006 163 18

10−10 −8.44 .008 229 25

10−11 −9.29 .011 318 35

E5 10−4 −2.75 .002 59 4

10−5 −3.67 .004 84 6

10−6 −4.58 .005 87 8

10−7 −5.50 .005 104 11

10−8 −6.42 .006 156 17

10−9 −7.33 .009 234 25

10−10 −8.25 .016 345 38

10−11 −9.17 .021 501 55

10−12 −10.08 .035 732 81

Table 4.2e: Results for (3.52) on Class E
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Table 4.3: Results on DETEST for the existing

block 5(4) formula in [Cash89]
Expected Accuracy log10 Tol Time FCN Calls No. of Steps

A1 10−3 −2.20 .002 56 6

10−4 −3.20 .002 69 7

10−5 −4.19 .002 96 10

10−6 −5.19 .004 124 13

10−7 −6.18 .005 167 18

10−8 −7.18 .006 243 26

10−9 −8.18 .009 350 38

10−10 −9.17 .013 511 56

A2 10−3 −2.73 .001 43 4

10−4 −3.56 .002 51 5

10−5 −4.38 .002 65 7

10−6 −5.21 .002 87 9

10−7 −6.04 .003 110 12

10−8 −6.86 .005 140 15

10−9 −7.69 .005 188 20

10−10 −8.52 .007 249 27

10−11 −9.34 .010 335 37

A3 10−1 −2.62 .003 152 14

10−2 −3.54 .006 221 20

10−3 −4.45 .010 320 29

10−4 −5.37 .013 460 41

10−5 −6.28 .017 637 59

10−6 −7.20 .026 892 86

10−7 −8.11 .037 1324 128

10−8 −9.03 .054 1913 183

10−9 −9.94 .078 2715 275

A4 10−3 −2.78 .001 35 3

10−4 −3.73 .002 53 5

10−5 −4.67 .003 78 8

10−6 −5.62 .003 109 11

10−7 −6.56 .005 157 16

10−8 −7.51 .008 230 24

10−9 −8.45 .012 337 35

10−10 −9.40 .018 497 52

A5 10−3 −2.39 .001 40 4

10−4 −3.50 .001 55 6

10−5 −4.62 .003 75 8

10−6 −5.74 .003 101 11

10−7 −6.85 .003 155 17

10−8 −7.97 .007 232 25

10−9 −9.08 .010 362 39

Table 4.3a: Results for [Cash89] on Class A
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

B1 100 −2.04 .008 267 25

10−1 −2.93 .010 318 28

10−2 −3.82 .013 438 39

10−3 −4.72 .019 578 55

10−4 −5.61 .027 794 76

10−5 −6.50 .035 1101 110

10−6 −7.39 .049 1574 163

10−7 −8.28 .072 2301 240

B2 10−2 −1.92 .005 113 11

10−3 −2.83 .004 121 12

10−4 −3.75 .005 136 14

10−5 −4.66 .006 164 17

10−6 −5.58 .009 210 21

10−7 −6.49 .010 261 27

10−8 −7.41 .013 347 38

10−9 −8.32 .019 490 54

10−10 −9.24 .026 687 76

B3 10−2 −2.52 .002 64 7

10−3 −3.32 .002 81 8

10−4 −4.12 .004 104 11

10−5 −4.92 .005 133 14

10−6 −5.72 .005 168 18

10−7 −6.52 .008 222 24

10−8 −7.32 .012 299 33

10−9 −8.12 .016 399 44

10−10 −8.92 .021 540 59

10−11 −9.71 .026 760 83

B4 10−1 −2.90 .007 190 19

10−2 −3.92 .011 255 27

10−3 −4.94 .013 363 40

10−4 −5.96 .021 552 59

10−5 −6.97 .035 860 92

10−6 −7.99 .057 1338 143

10−7 −9.01 .095 2265 225

10−8 −10.03 .152 3531 354

B5 10−1 −2.49 .005 150 13

10−2 −3.37 .007 201 18

10−3 −4.24 .010 258 24

10−4 −5.11 .014 358 35

10−5 −5.98 .018 453 46

10−6 −6.85 .024 620 68

10−7 −7.72 .034 916 101

10−8 −8.60 .053 1356 146

10−9 −9.47 .080 2019 216

Table 4.3b: Results for [Cash89] on Class B
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Expected Accuracy log10 Tol Time FCN Calls No. of Steps

C1 10−2 −1.92 .007 77 7

10−3 −2.85 .007 81 8

10−4 −3.77 .008 102 11

10−5 −4.69 .013 146 16

10−6 −5.61 .019 196 21

10−7 −6.54 .025 274 30

10−8 −7.46 .036 403 44

10−9 −8.38 .053 582 64

10−10 −9.30 .077 841 93

C2 10−2 −2.60 .024 285 28

10−3 −3.52 .026 295 30

10−4 −4.45 .027 313 31

10−5 −5.37 .030 333 33

10−6 −6.30 .033 366 39

10−7 −7.22 .044 443 47

10−8 −8.14 .068 602 65

10−9 −9.07 .077 795 86

10−10 −9.99 .100 1137 125

C3 10−2 −2.18 .018 144 14

10−3 −3.03 .017 140 14

10−4 −3.88 .024 161 16

10−5 −4.73 .025 181 18

10−6 −5.58 .031 212 21

10−7 −6.43 .036 251 26

10−8 −7.27 .044 316 35

10−9 −8.12 .062 435 48

10−10 −8.97 .075 580 64

10−11 −9.82 .100 843 93

C4 10−2 −1.99 .095 145 14

10−3 −2.87 .085 140 14

10−4 −3.75 .092 158 16

10−5 −4.63 .108 179 18

10−6 −5.51 .125 209 21

10−7 −6.39 .143 249 26

10−8 −7.26 .178 315 34

10−9 −8.14 .252 439 48

10−10 −9.02 .370 592 65

10−11 −9.90 .517 869 96

C5 10−2 −2.80 .023 35 3

10−3 −3.79 .037 51 5

10−4 −4.79 .046 69 7

10−5 −5.79 .062 94 10

10−6 −6.78 .093 142 15

10−7 −7.78 .145 216 23

10−8 −8.77 .210 318 35

10−9 −9.77 .334 487 54

Table 4.3c: Results for [Cash89] on Class C
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

D1 100 −2.30 .008 161 16

10−1 −3.17 .008 187 20

10−2 −4.05 .014 268 29

10−3 −4.93 .018 387 42

10−4 −5.80 .026 548 60

10−5 −6.68 .038 805 89

10−6 −7.55 .058 1204 133

10−7 −8.43 .083 1743 193

10−8 −9.31 .118 2524 280

D2 100 −2.44 .009 185 17

10−1 −3.33 .013 247 24

10−2 −4.23 .017 344 34

10−3 −5.12 .023 477 48

10−4 −6.01 .032 649 68

10−5 −6.91 .042 918 101

10−6 −7.80 .065 1386 153

10−7 −8.70 .095 2009 223

10−8 −9.59 .142 2999 333

D3 101 −1.95 .012 265 20

100 −2.85 .013 307 25

10−1 −3.74 .016 360 33

10−2 −4.64 .021 463 45

10−3 −5.54 .030 656 63

10−4 −6.44 .043 932 91

10−5 −7.33 .059 1289 135

10−6 −8.23 .081 1798 198

10−7 −9.13 .125 2601 286

10−8 −10.02 .185 3830 425

D4 101 −2.11 .017 360 27

100 −3.08 .017 382 35

10−1 −4.05 .024 527 47

10−2 −5.01 .033 709 66

10−3 −5.98 .044 962 91

10−4 −6.94 .065 1435 137

10−5 −7.91 .087 1976 205

10−6 −8.88 .135 2901 303

Table 4.3d: Results for [Cash89] on Class D

131



4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

E1 10−2 −2.72 .005 92 10

10−3 −3.61 .007 132 14

10−4 −4.50 .010 194 21

10−5 −5.38 .014 279 30

10−6 −6.27 .019 403 44

10−7 −7.16 .028 589 65

10−8 −8.05 .039 867 96

10−9 −8.94 .059 1243 138

10−10 −9.82 .084 1870 207

E2 10−1 −2.03 .010 300 27

10−2 −3.04 .017 482 39

10−3 −4.05 .022 594 55

10−4 −5.06 .029 845 77

10−5 −6.07 .048 1289 112

10−6 −7.08 .062 1707 169

10−7 −8.09 .092 2595 263

10−8 −9.10 .141 3948 397

E3 10−2 −2.82 .012 213 22

10−3 −3.82 .019 308 33

10−4 −4.83 .028 453 49

10−5 −5.84 .044 694 72

10−6 −6.85 .064 1025 111

10−7 −7.85 .100 1620 176

10−8 −8.86 .165 2583 271

10−9 −9.87 .240 4072 428

E4 10−3 −2.72 .002 28 3

10−4 −3.62 .002 42 4

10−5 −4.51 .002 55 5

10−6 −5.41 .002 72 7

10−7 −6.30 .003 100 10

10−8 −7.20 .004 138 14

10−9 −8.09 .007 193 19

10−10 −8.99 .010 251 26

10−11 −9.88 .013 355 38

E5 10−2 −2.43 .002 35 3

10−3 −3.37 .002 50 4

10−4 −4.30 .002 60 5

10−5 −5.24 .002 74 6

10−6 −6.17 .005 111 9

10−7 −7.10 .007 137 13

10−8 −8.04 .008 184 20

10−9 −8.97 .012 276 30

10−10 −9.90 .021 434 48

Table 4.3e: Results for [Cash89] on Class E
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4. Numerical Results

Table 4.4: Results on DETEST for block 6(5)

formula (3.61)
Expected Accuracy log10 Tol Time FCN Calls No. of Steps

A1 10−3 −2.11 .002 63 5

10−4 −3.09 .003 86 7

10−5 −4.08 .002 99 8

10−6 −5.06 .003 134 11

10−7 −6.04 .003 159 13

10−8 −7.03 .007 218 18

10−9 −8.01 .007 289 24

10−10 −8.99 .010 372 30

10−11 −9.97 .013 513 42

A2 10−4 −1.95 .002 60 4

10−5 −3.02 .003 73 6

10−6 −4.09 .003 99 8

10−7 −5.17 .003 125 10

10−8 −6.24 .004 156 12

10−9 −7.31 .006 215 17

10−10 −8.39 .008 297 24

10−11 −9.46 .012 404 33

A3 10−2 −2.55 .007 220 14

10−3 −3.50 .009 289 19

10−4 −4.44 .010 356 25

10−5 −5.38 .011 448 33

10−6 −6.32 .016 640 45

10−7 −7.26 .024 868 63

10−8 −8.20 .034 1184 86

10−9 −9.14 .045 1604 117

10−10 −10.08 .061 2129 164

A4 10−3 −2.73 .002 50 3

10−4 −3.73 .003 67 4

10−5 −4.72 .003 94 6

10−6 −5.71 .005 127 8

10−7 −6.71 .004 168 11

10−8 −7.70 .007 215 15

10−9 −8.69 .011 292 21

10−10 −9.69 .014 400 30

A5 10−3 −1.92 .002 48 3

10−4 −2.99 .002 60 4

10−5 −4.07 .002 85 7

10−6 −5.14 .003 102 8

10−7 −6.21 .003 140 11

10−8 −7.29 .004 189 15

10−9 −8.36 .007 267 22

10−10 −9.44 .010 370 30

Table 4.4a: Results for (3.61) on Class A
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

B1 10−2 −2.99 .015 522 32

10−3 −4.10 .020 646 44

10−4 −5.20 .027 874 62

10−5 −6.31 .037 1149 83

10−6 −7.42 .051 1639 121

10−7 −8.52 .072 2265 172

B2 10−3 −2.57 .004 122 9

10−4 −3.50 .005 134 10

10−5 −4.43 .006 152 12

10−6 −5.35 .007 181 15

10−7 −6.28 .008 224 18

10−8 −7.20 .011 296 24

10−9 −8.13 .016 388 32

10−10 −9.05 .020 503 41

10−11 −9.98 .027 680 56

B3 10−3 −2.20 .003 65 5

10−4 −3.18 .003 89 7

10−5 −4.17 .004 115 9

10−6 −5.15 .007 152 12

10−7 −6.14 .007 199 15

10−8 −7.12 .010 258 20

10−9 −8.11 .012 343 27

10−10 −9.09 .017 457 37

10−11 −10.08 .024 645 51

B4 10−1 −2.51 .009 199 16

10−2 −3.35 .011 262 21

10−3 −4.18 .014 347 28

10−4 −5.02 .018 448 37

10−5 −5.86 .024 579 48

10−6 −6.70 .034 785 65

10−7 −7.53 .050 1063 88

10−8 −8.37 .062 1411 117

10−9 −9.21 .072 1868 155

10−10 −10.05 .096 2521 210

B5 10−3 −2.83 .009 254 16

10−4 −3.79 .014 329 22

10−5 −4.76 .018 425 30

10−6 −5.72 .020 545 40

10−7 −6.68 .027 690 53

10−8 −7.64 .037 912 74

10−9 −8.60 .048 1225 102

10−10 −9.56 .068 1713 142

Table 4.4b: Results for (3.61) on Class B
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

C1 10−3 −2.51 .008 91 7

10−4 −3.47 .010 113 9

10−5 −4.44 .012 148 12

10−6 −5.41 .016 188 15

10−7 −6.37 .022 243 20

10−8 −7.34 .030 329 27

10−9 −8.31 .039 449 37

10−10 −9.27 .053 599 49

C2 10−2 −2.01 .025 302 21

10−3 −2.94 .027 313 21

10−4 −3.86 .024 296 20

10−5 −4.78 .027 307 21

10−6 −5.70 .031 339 24

10−7 −6.62 .036 377 28

10−8 −7.55 .045 450 35

10−9 −8.47 .055 557 44

10−10 −9.39 .068 707 57

C3 10−3 −2.19 .017 127 9

10−4 −3.17 .020 149 11

10−5 −4.16 .021 166 12

10−6 −5.14 .025 191 15

10−7 −6.12 .029 222 17

10−8 −7.11 .036 275 22

10−9 −8.09 .046 370 30

10−10 −9.07 .062 482 40

10−11 −10.06 .090 671 55

C4 10−3 −2.47 .086 144 10

10−4 −3.44 .096 160 11

10−5 −4.40 .108 181 13

10−6 −5.36 .117 194 15

10−7 −6.33 .138 224 18

10−8 −7.29 .180 292 24

10−9 −8.26 .242 388 32

10−10 −9.22 .296 511 42

C5 10−3 −2.74 .030 45 3

10−4 −3.70 .038 57 4

10−5 −4.66 .051 76 6

10−6 −5.62 .066 99 8

10−7 −6.59 .091 137 11

10−8 −7.55 .125 189 15

10−9 −8.51 .167 253 21

10−10 −9.47 .235 351 29

Table 4.4c: Results for (3.61) on Class C
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

D1 10−1 −2.27 .008 186 13

10−2 −3.23 .012 247 18

10−3 −4.19 .016 300 24

10−4 −5.16 .020 419 34

10−5 −6.12 .028 570 47

10−6 −7.08 .039 821 68

10−7 −8.04 .054 1170 97

10−8 −9.00 .075 1598 133

10−9 −9.96 .121 2314 192

D2 10−1 −2.77 .014 307 19

10−2 −3.68 .018 373 25

10−3 −4.60 .022 463 34

10−4 −5.52 .029 630 45

10−5 −6.44 .039 850 62

10−6 −7.36 .052 1100 85

10−7 −8.28 .068 1473 117

10−8 −9.20 .098 2043 162

D3 10−1 −2.74 .020 422 25

10−2 −3.73 .024 548 34

10−3 −4.71 .031 723 46

10−4 −5.70 .041 949 61

10−5 −6.68 .057 1236 83

10−6 −7.67 .074 1585 115

10−7 −8.65 .104 2185 159

10−8 −9.64 .138 2937 225

D4 100 −2.39 .026 547 32

10−1 −3.41 .032 683 42

10−2 −4.42 .040 896 56

10−3 −5.44 .053 1201 75

10−4 −6.45 .073 1596 101

10−5 −7.47 .099 2098 142

10−6 −8.49 .130 2874 197

D5 101 −2.08 .036 822 47

100 −3.07 .042 917 60

10−1 −4.06 .057 1225 77

10−2 −5.05 .068 1567 101

10−3 −6.04 .096 2072 131

10−4 −7.03 .123 2830 182

10−5 −8.02 .167 3674 253

Table 4.4d: Results for (3.61) on Class D
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

E1 10−2 −2.35 .006 105 8

10−3 −3.33 .007 136 11

10−4 −4.30 .009 187 15

10−5 −5.28 .011 249 20

10−6 −6.25 .016 331 27

10−7 −7.23 .022 462 38

10−8 −8.20 .032 647 53

10−9 −9.18 .043 893 74

E2 10−2 −2.44 .014 480 31

10−3 −3.33 .018 578 40

10−4 −4.22 .026 773 54

10−5 −5.11 .041 1151 74

10−6 −5.99 .050 1434 93

10−7 −6.88 .068 1884 125

10−8 −7.77 .085 2346 168

10−9 −8.65 .111 3141 224

10−10 −9.54 .146 4099 306

E3 10−2 −2.21 .015 257 19

10−3 −3.22 .022 387 27

10−4 −4.23 .030 517 37

10−5 −5.24 .040 677 52

10−6 −6.25 .060 966 72

10−7 −7.26 .078 1351 105

10−8 −8.27 .113 1898 150

10−9 −9.28 .169 2629 212

E4 10−3 −2.03 .003 47 3

10−4 −3.05 .000 38 3

10−5 −4.08 .003 72 5

10−6 −5.10 .002 75 6

10−7 −6.13 .005 99 7

10−8 −7.15 .004 124 9

10−9 −8.18 .005 162 12

10−10 −9.20 .007 225 17

E5 10−4 −2.81 .003 57 3

10−5 −3.93 .003 81 4

10−6 −5.05 .005 109 7

10−7 −6.17 .007 166 9

10−8 −7.29 .007 177 11

10−9 −8.42 .010 213 15

10−10 −9.54 .013 279 21

Table 4.4e: Results for (3.61) on Class E
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4. Numerical Results

Table 4.5: Results on DETEST for block 7(6)

formula (3.72)
Expected Accuracy log10 Tol Time FCN Calls No. of Steps

A1 10−4 −2.58 .003 99 6

10−5 −3.57 .003 122 7

10−6 −4.57 .004 147 9

10−7 −5.56 .004 179 11

10−8 −6.56 .004 219 13

10−9 −7.55 .007 285 17

10−10 −8.55 .009 356 22

10−11 −9.54 .012 454 28

A2 10−4 −2.16 .003 67 4

10−5 −3.27 .003 85 5

10−6 −4.37 .002 102 6

10−7 −5.48 .004 120 7

10−8 −6.59 .005 147 9

10−9 −7.70 .005 194 12

10−10 −8.81 .008 260 16

10−11 −9.92 .010 346 21

A3 10−2 −1.91 .009 222 11

10−3 −2.94 .005 255 14

10−4 −3.98 .010 329 18

10−5 −5.01 .008 371 23

10−6 −6.05 .017 580 32

10−7 −7.08 .024 788 45

10−8 −8.12 .030 1027 60

10−9 −9.15 .036 1319 79

A4 10−4 −2.61 .003 58 3

10−5 −3.89 .003 79 4

10−6 −5.18 .002 105 6

10−7 −6.47 .006 160 8

10−8 −7.76 .008 225 12

10−9 −9.05 .012 301 17

A5 10−4 −2.37 .002 70 4

10−5 −3.52 .002 89 5

10−6 −4.66 .004 107 6

10−7 −5.81 .004 138 8

10−8 −6.96 .003 175 10

10−9 −8.11 .007 231 14

10−10 −9.26 .009 309 18

Table 4.5a: Results for (3.72) on Class A
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

B1 10−1 −2.40 .017 526 26

10−2 −3.33 .018 580 30

10−3 −4.26 .023 728 38

10−4 −5.19 .027 828 48

10−5 −6.12 .034 1041 59

10−6 −7.05 .043 1278 76

10−7 −7.97 .056 1669 101

10−8 −8.90 .066 2084 127

B2 10−3 −2.49 .008 178 10

10−4 −3.34 .008 192 11

10−5 −4.19 .009 212 12

10−6 −5.04 .010 251 15

10−7 −5.90 .010 256 15

10−8 −6.75 .013 305 19

10−9 −7.60 .015 378 23

10−10 −8.46 .019 468 29

10−11 −9.31 .024 578 36

B3 10−4 −2.79 .005 109 6

10−5 −3.81 .006 138 8

10−6 −4.83 .007 171 10

10−7 −5.85 .008 231 13

10−8 −6.87 .010 282 16

10−9 −7.89 .013 360 21

10−10 −8.91 .016 427 26

10−11 −9.93 .021 566 35

B4 10−2 −2.85 .011 263 16

10−3 −3.88 .016 343 21

10−4 −4.91 .018 455 28

10−5 −5.94 .025 585 36

10−6 −6.98 .038 811 50

10−7 −8.01 .050 1139 71

10−8 −9.04 .061 1495 93

10−9 −10.07 .097 2073 129

B5 10−2 −2.64 .008 207 12

10−3 −3.60 .011 272 16

10−4 −4.56 .015 358 22

10−5 −5.51 .018 450 28

10−6 −6.47 .024 572 35

10−7 −7.43 .031 753 47

10−8 −8.39 .039 974 60

10−9 −9.35 .051 1265 79

Table 4.5b: Results for (3.72) on Class B
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

C1 10−4 −2.75 .012 125 7

10−5 −3.78 .014 153 9

10−6 −4.80 .019 199 12

10−7 −5.83 .023 248 15

10−8 −6.85 .032 325 20

10−9 −7.88 .042 421 26

10−10 −8.90 .052 533 33

10−11 −9.93 .069 722 45

C2 10−3 −2.82 .045 453 22

10−4 −3.79 .045 451 24

10−5 −4.76 .047 492 25

10−6 −5.73 .042 467 25

10−7 −6.70 .045 497 27

10−8 −7.67 .056 570 33

10−9 −8.64 .070 679 40

10−10 −9.61 .083 820 49

C3 10−3 −2.26 .027 203 11

10−4 −3.14 .030 207 11

10−5 −4.03 .033 236 13

10−6 −4.92 .038 264 14

10−7 −5.81 .038 267 15

10−8 −6.69 .044 304 18

10−9 −7.58 .051 376 23

10−10 −8.47 .062 461 28

10−11 −9.36 .077 569 35

C4 10−3 −2.24 .133 203 11

10−4 −3.13 .137 207 11

10−5 −4.02 .159 235 13

10−6 −4.91 .173 263 14

10−7 −5.80 .188 279 16

10−8 −6.68 .197 309 19

10−9 −7.57 .277 376 23

10−10 −8.46 .333 461 28

10−11 −9.35 .375 569 35

C5 10−3 −2.10 .034 50 3

10−4 −3.22 .047 68 4

10−5 −4.34 .061 86 5

10−6 −5.46 .073 104 6

10−7 −6.57 .086 131 8

10−8 −7.69 .121 178 11

10−9 −8.81 .160 231 14

10−10 −9.93 .213 315 19

Table 4.5c: Results for (3.72) on Class C
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

D1 10−1 −2.44 .013 252 15

10−2 −3.25 .016 313 19

10−3 −4.07 .019 394 24

10−4 −4.89 .026 499 31

10−5 −5.71 .031 603 37

10−6 −6.53 .041 767 47

10−7 −7.35 .051 992 61

10−8 −8.17 .060 1256 78

10−9 −8.98 .079 1531 95

10−10 −9.80 .105 2012 125

D2 10−1 −2.57 .016 345 18

10−2 −3.45 .020 441 24

10−3 −4.33 .028 590 31

10−4 −5.21 .036 689 38

10−5 −6.09 .038 735 44

10−6 −6.97 .047 938 58

10−7 −7.85 .064 1258 78

10−8 −8.73 .083 1593 99

10−9 −9.61 .106 2098 131

D3 100 −1.96 .020 384 20

10−1 −2.88 .026 501 26

10−2 −3.79 .027 605 32

10−3 −4.71 .038 762 41

10−4 −5.62 .047 936 51

10−5 −6.54 .054 1129 63

10−6 −7.46 .065 1349 81

10−7 −8.37 .082 1655 103

10−8 −9.29 .108 2152 134

D4 100 −2.45 .033 702 33

10−1 −3.46 .037 812 40

10−2 −4.47 .046 971 50

10−3 −5.49 .055 1135 61

10−4 −6.50 .069 1429 79

10−5 −7.51 .085 1760 102

10−6 −8.53 .115 2206 133

D5 101 −2.09 .045 995 44

100 −3.32 .052 1037 54

10−1 −4.55 .074 1486 77

10−2 −5.77 .102 2022 101

10−3 −7.00 .111 2410 132

Table 4.5d: Results for (3.72) on Class D
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4. Numerical Results

Expected Accuracy log10 Tol Time FCN Calls No. of Steps

E1 10−2 −2.06 .007 115 7

10−3 −3.02 .005 161 10

10−4 −3.98 .008 207 12

10−5 −4.93 .015 268 16

10−6 −5.89 .016 329 20

10−7 −6.85 .022 431 26

10−8 −7.80 .028 590 36

10−9 −8.76 .038 759 47

10−10 −9.72 .052 1007 62

E2 10−1 −2.01 .015 457 24

10−2 −2.89 .018 558 29

10−3 −3.78 .029 741 39

10−4 −4.67 .034 906 50

10−5 −5.56 .040 1089 61

10−6 −6.44 .049 1415 79

10−7 −7.33 .066 1808 103

10−8 −8.22 .089 2202 132

10−9 −9.11 .114 2898 169

10−10 −10.00 .142 3703 222

E3 10−2 −2.00 .015 267 15

10−3 −3.10 .021 336 19

10−4 −4.20 .027 466 27

10−5 −5.31 .038 635 38

10−6 −6.41 .051 848 51

10−7 −7.51 .070 1193 72

10−8 −8.61 .095 1696 100

10−9 −9.71 .137 2366 141

E4 10−3 −2.38 .002 49 3

10−4 −3.38 .002 55 3

10−5 −4.38 .002 71 4

10−6 −5.37 .003 86 5

10−7 −6.37 .004 102 6

10−8 −7.37 .005 124 7

10−9 −8.37 .006 156 9

10−10 −9.37 .008 194 12

E5 10−3 −2.06 .002 49 3

10−4 −3.10 .003 52 3

10−5 −4.14 .004 87 4

10−6 −5.19 .005 123 6

10−7 −6.23 .006 131 6

10−8 −7.28 .008 161 8

10−9 −8.32 .008 169 9

10−10 −9.37 .009 210 12

Table 4.5e: Results for (3.72) on Class E
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4. Numerical Results

Table 4.6: Results on DETEST over all groups
log10 Tol Time FCN Calls No. of Steps Maximum loc err Fraction deceived Fraction bad deceived

−2.00 .376 4765 417 1.234 .002 .000

−3.00 .437 6172 571 .903 .000 .000

−4.00 .541 8339 799 1.133 .001 .000

−5.00 .741 11798 1174 1.337 .002 .000

−6.00 .973 16802 1679 1.056 .001 .000

−7.00 1.378 23894 2563 1.279 .001 .000

−8.00 2.095 36818 4007 1.183 .000 .000

−9.00 3.106 54688 5970 .996 .000 .000

−10.00 4.858 85334 9387 1.211 .000 .000

Table 4.6a: Summary of results on DETEST for the block 5(4) method

log10 Tol Time FCN Calls No. of Steps Maximum loc err Fraction deceived Fraction bad deceived

−2.00 .283 3700 339 20.962 .195 .038

−3.00 .310 4575 428 27.496 .149 .031

−4.00 .411 6019 588 12.865 .116 .010

−5.00 .535 8150 815 5.831 .096 .001

−6.00 .729 11527 1145 4.790 .054 .000

−7.00 1.001 16483 1710 1.952 .005 .000

−8.00 1.488 24616 2629 5.366 .001 .000

−9.00 2.266 37219 3915 .748 .000 .000

−10.00 3.431 56719 6124 .399 .000 .000

Table 4.6b: Summary of results on DETEST for the block 5(4) existing

method
log10 Tol Time FCN Calls No. of Steps Maximum loc err Fraction deceived Fraction bad deceived

−2.00 .330 4970 328 9.481 .043 .003

−3.00 .400 6130 422 4.367 .021 .000

−4.00 .495 7804 547 4.090 .031 .000

−5.00 .614 10246 734 6.742 .018 .001

−6.00 .791 13446 953 5.754 .009 .001

−7.00 1.068 18173 1317 .716 .000 .000

−8.00 1.452 24142 1848 .428 .000 .000

−9.00 1.953 33633 2523 .372 .000 .000

−10.00 2.728 44882 3613 .324 .000 .000

Table 4.6c: Summary of results on DETEST for the block 6(5) method

log10 Tol Time FCN Calls No. of Steps Maximum loc err Fraction deceived Fraction bad deceived

−2.00 .479 6293 329 10.542 .046 .006

−3.00 .519 6943 385 4.210 .034 .000

−4.00 .635 8893 495 4.615 .016 .000

−5.00 .786 11043 627 3.436 .011 .000

−6.00 .901 13411 762 1.987 .009 .000

−7.00 1.089 16957 996 1.908 .006 .000

−8.00 1.484 21741 1324 1.357 .002 .000

−9.00 1.841 27731 1693 2.132 .001 .000

−10.00 2.484 37441 2311 .329 .000 .000

Table 4.6d: Summary of results on DETEST for the block 7(6) method
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4. Numerical Results

We examine first of all the reliability of the four block methods. We can

measure this by examining the columns “Fraction deceived” and “Fraction bad

deceived”. As explained earlier, this is a measure of the fraction of the total

number of accepted steps for which the local error estimate was greater than

the true local error, five times the true local error, respectively. As can be

seen all four block methods are very reliable. The number of steps on which

the code was badly deceived in particular is very small. However out of all

the codes the new 5(4) code is by far the most reliable. The maximum local

error is only 1.337 times the true error and the fraction of steps on which the

code is deceived is very small. At the stricter tolerances the new 6(5) and

7(6) codes are also extremely reliable. These results certainly indicate that

the block codes have the desired level of reliability.

The performance of the codes on the DETEST set is exactly what would

be expected. Overall the performances of the two block 5(4) methods are very

similar. One particular formula is better on one class of problems while the

other formula is better on another class. Generally the 6(5) block formula is

better than the 5(4) formulae at moderate and strict tolerances. Finally the

7(6) formula is generally better than the 6(5) formula for very strict tolerances.

This bears out what is generally held to be true in that high order methods

are often preferable for strict tolerances. We feel that the new codes that

we have developed are extremely competitive with existing codes, c.f. the

numerical results given in [Cash89], and we are at present putting these codes

in NETLIB for general use.
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Chapter 5

Global Error Estimation

5.1 Introduction

Codes for solving initial value problems typically attempt to keep an esti-

mate of the local truncation error less than a user defined maximum. However

the user is often more interested in the size of the global error, that is the dif-

ference between the true solution of the initial value problem and the solution

generated by the code. Unfortunately there is often no proportionality between

the specified local error and the global error actually obtained. For this reason

it is difficult to estimate the global error cheaply and reliably. One obvious

way of estimating global error is by extrapolation. However this can be expen-

sive often tripling the overall cost. A second approach, proposed by Dormand

and Prince [Dormand84], [Dormand89b], [Dormand85], [Dormand86],

[Dormand89a], involves integrating an error equation using a Runge-Kutta

triple. In what follows we will describe these approaches and show that the

Dormand and Prince approach is often very reliable and produces global error

estimates with a reasonable cost.
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5. Global Error Estimation

5.2 Existing Methods

In [Dormand89a] a survey of recent advances in global error estimation is

given. In what follows we will give a short description of some of the methods

used to estimate the global error when solving a problem of the form (1.1) by

an embedded explicit Runge-Kutta pair p(q), where p > q. The global error

at xn is given by:

εn = yn − y(xn), n = 0, 1, . . . (5.1)

where yn is the numerical approximation to the true solution y(xn) of the

initial value problem at x = xn. We start of by considering the Richardson

extrapolation technique.

1. The classical method of global error estimation is Richardson extrap-

olation. In this technique, two separate solutions are computed one with a

stepsize h and the other with a step h/2. Suppose that we are using an ex-

plicit Runge-Kutta method of order p and denote the solutions obtained with

step h and h/2 by yh, yh/2 respectively. Assuming that the principal local

truncation error of the numerical method is:

LTE = hp+1φp + O(hp+2) (5.2)

we have after k + 1 steps

y(xk+1)− yh
k+1 = (k + 1)hp+1 φp + O(hp+2) (5.3)

y(xk+1)− y
h/2
k+1 = 2(k + 1)

(
h

2

)p+1

φp + O(hp+2). (5.4)

From relations (5.3) and (5.4) we have:

y
h/2
k+1 − yh

k+1 =

(
1− 1

2p

)
(k + 1)hp+1φp.

So

y(xk+1)− yh
k+1 =

2p(y
h/2
k+1 − yh

k+1)

2p − 1
. (5.5)

This technique is expensive as we need to compute two completely separate so-

lutions. If the basic pth order Runge-Kutta method uses s function evaluations

per step then the total cost of this technique is 3s functions per step.
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5. Global Error Estimation

The second global error estimation technique that we wish to consider is

due to Zadunaisky [zad76].

2. The Zadunaisky technique to estimate the global error is summarised

in [Dormand84]. We denote the problem (1.1) that we wish to solve by the

“main problem” and carry out the following steps:

(a) use an order p Runge-Kutta method to solve the main problem (MP) on

an interval I = [x0, xN ], giving a numerical solution yi at xi, i = 0, 1, . . . , N .

(b) Construct a neighbouring problem (NP), with known true solution yh(x),

which is in some sense close to the MP.

(c) Using the same order p method and step sequence as in (a), solve the NP

giving a numerical solution yhi at xi, i = 0, 1, . . . , N .

(d) At any point xn ∈ I calculate the global error

εhn = yhn − yh(xn) (5.6)

for the NP and use this as an estimate of εn, the global error in the MP.

There are many ways in which the neighbouring problem can be con-

structed. Normally these are based on approximating y(x) by an interpolating

polynomial. For example we could take as the NP:

y′h(x) = f(x, yh(x)) + dh(x) (5.7)

where dh(x) ≡ P ′(x)−f(x, P (x)) and P (x) is a polynomial in x. The important

point to write about (5.7) is that it has a known true solution yh(x) = P (x).

The analysis given by Zadunaisky shows that the known global error commit-

ted in integrating (5.7) is a good approximation to the global error committed

in integrating the main equation. There are many ways of defining the poly-

nomial, P (x), and among those that have been suggested are:

(i) interpolation of yi values;

(ii) interpolation of fi values;

(iii) interpolation using yi and fi values, over a block of ν steps for i = 0, 1, . . . , N .

There are several problems with the Zadunaisky approach. One is the need

to integrate both the (MP) and (NP) using exactly the same step sequence and

error control. Another is the fact that the interpolating polynomials, being of

high degree and defined over several past steps, are often highly oscillatory.

Practical experience shows that Zadunaisky’s approach often produces poor
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5. Global Error Estimation

results when the interpolating polynomial has high degree. To avoid these

drawbacks an alternative approach was proposed by Dormand and Prince.

3. The Dormand and Prince approach, [Dormand86], [Dormand89a]

consists of using an embedded pair of explicit Runge-Kutta formulae together

with a third dense formula which is used to provide a continuous solution. We

write these three formulae as:

yn+1 = yn + hn

s∑
i=1

biki (5.8)

ȳn+1 = yn + hn

s̄∑
i=1

b̄iki (5.9)

y∗n+σ = yn + σhn

s∗∑
i=1

b∗i ki (5.10)

where ki = f(xn + cihn, yn + hn

i−1∑
j=1

aijkj), i = 1, 2, . . . ,Max(s, s∗), σ ∈ (0, 1).

Formula (5.10) can be used to provide estimates y∗n+σ of y(xn + σhn) for any

point σ in the range [0,1]. We will assume that the main formula (5.8) is of

order p, the embedded formula (5.9) is of order q while the dense formula (5.10)

is of order p∗. The way in which these three formulae are used is as follows.

(i) Use formulae (5.8), (5.9) to integrate the initial value problem (1.1) so as to

obtain an estimate ŷn+1 of y(xn+1) which satisfies the local error criterion.

(ii) Use the dense formula (5.10) to obtain the required non-mesh point values

y∗n+σ needed to compute the interpolating polynomial P (x).

(iii) Use an error integrator to integrate the neighbouring problem

ε′h(x) = P ′(x)− f [P (x)− εh(x)] (5.11)

to give the global error estimate εh(x).

An analysis of the accuracy requirements of the error integrator has been

carried out by Dormand and Prince. Suppose that the order of (5.10) is p∗,

the degree of the interpolant is m and the order of (5.8) is p. Then certain

additional accuracy requirements need to be satisfied by an error integrator

of order p if it is to provide asymptotically correct estimates of the global

error. The form taken by these accuracy requirements is that coefficients of

certain higher order differentials should vanish. Denoting the order m of the
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5. Global Error Estimation

p m̄ hp hp+1

1 τ
(3)
1 τ

(3)
i , i=1,2; τ

(4)
i , i=1,3

2 2 τ
(j)
1 , j=3,4,5 τ

(3)
i , i=1,2; τ

(4)
i , i=1,3; τ

(5)
i , i=1,5; τ

(6)
7

3 τ
(j)
1 , j=3,. . . ,7 too many to include

1 τ
(4)
1 τ

(4)
i , i=1,3; τ

(5)
i , i=1,5

3 2 τ
(j)
1 , j=4,5 τ

(4)
i , i=1,3; τ

(5)
i , i=1,5; τ

(6)
7

3 τ
(j)
1 , j=4,. . . ,7 too many to include

1 τ
(5)
i , i=1,5 τ

(5)
i , i=1,4,5,8; τ

(6)
i , i=1,6,7,15

4 2 τ
(5)
1 τ

(5)
i , i=1,5; τ

(6)
i , i=1,7

3 τ
(j)
1 , j=5,6,7 too many to include

1 τ
(6)
i , i=1,6,7,15 too many to include

5 2 τ
(6)
1 τ

(6)
i , i=1,7; τ

(7)
i , i=1,11

3 τ
(6)
1 , τ

(7)
1 τ

(6)
i , i=1,7; τ

(7)
i , i=1,11; τ

(8)
15

1 τ
(7)
i , i=1,10,11,29 too many to include

6 2 τ
(7)
i , i=1,11 τ

(7)
i , i=1,10,11,29; τ

(8)
i , i=1,14,15,53

3 τ
(7)
1 τ

(7)
i , i=1,11; τ

(8)
i , i=1,15

4 τ
(j)
1 , j=7,8,9 τ

(7)
i , i=1,11; τ

(8)
i , i=1,15; τ

(9)
i , i=1,22; τ

(10)
30

Table 5.1: Extra order conditions that must be satisfied for each order p

to obtain asymptotically correct global error estimates

interpolating polynomial by m = 2m̄ + 1 these accuracy conditions are given

in Table 5.1. In Table 5.1 we give two columns of elementary differentials.

The first, under the heading hp, lists those elementary differentials that need

to vanish in order for the first term of the global error to be estimated. The

second column gives the differentials that need to vanish for the second term

of the global error to be estimated.
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5. Global Error Estimation

5.3 Cost of the Global Error Estimation

In what follows we will compare the cost of two of the methods we have

proposed for global error estimation − namely Richardson extrapolation and

the Dormand and Prince approach. We will measure the cost initially by

counting the number of function evaluations. Let NS and NR be the number

of steps which are successful and the number of rejected steps respectively. Also

let s be the number of stages of the main formula, s∗ the number of stages

of the dense formula and s̄ the number of stages of the estimator formula.

We will assume that a FSAL technique is used so that the last stage in the

error estimator formula is the first stage of the main formula. Under these

conditions the cost in terms of the number of function evaluations of applying

the integrator to compute the main solution (i.e. without the error estimator)

is:
Main Solution CM = (s− 1)(NS + NR) + 1

Richardson Extrapolation CE = 2(s− 1)NS

Dormand and Prince CDP = s∗NS.
Note that the error estimate is not applied at failed steps. The cost of the

Dormand and Prince method comes from the s∗ − s stages to compute the

interpolant. We note that the direct method of Dormand and Prince is cheaper

than the extrapolation method as a method of error estimation if the cost of

function evaluations dominates the total computational cost. This is normally

the case with problems of practical interest. However the Dormand and Prince

approach also involves the evaluation of P (x) and P ′(x) where P (x) denotes the

polynomial given by the dense formula. In cases where function evaluations

are cheap these evaluations of P (x) will be a significant part of the overall

computational cost.
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5. Global Error Estimation

5.4 Global Error Estimation for

Block Methods

In this section we will extend the approach of Dormand and Prince to

block Runge-Kutta methods. We will consider the case where we solve the

initial value problem (1.1) by one of the explicit block formulae described in

Chapter 3 and we wish to derive a global error estimator. The neighbouring

problem will be defined by means of the interpolating polynomial associated

with the particular block formula we are using. The global error integrator

needs to satisfy certain extra order conditions to make the global error estimate

asymptotically correct and these conditions are given in Table 5.1. Here p is the

order of the main method, m is the degree of the polynomial, τ
(i)
j represent the

order conditions where the superscript represents the order and the subscript

represents one of the elementary differentials of each order. Using the free

parameters we will try to find methods that have a good stability region and

good accuracy. We have applied this technique to the block methods derived

in Chapter 3 for orders 3, 4 and 5 and in what follows we give the global error

estimators that we have derived.

5.4.1 Order 3 with 5 Stages

In what follows we will consider a third order block formula with five stages:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

b1 b2 b3 b4 b5

(5.12)

which will be used for the purpose of global error estimation. The stability

polynomial associated with (5.12) is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 + u4z

4 + u5z
5,

where u4 = b4a43a32c2+b5(a53a32c2+a54(a42c2+a43c3)) and u5 = b5a54a43a32c2.
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5. Global Error Estimation

We have 18 free parameters to be determined. The row-sum conditions are:

c3 =
2∑

i=1

a3i (5.13)

c4 =
3∑

i=1

a4i (5.14)

c5 =
4∑

i=1

a5i. (5.15)

We want the method (5.12) to be of order 3 so it has to satisfy the following

order conditions: τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(3)
2 . By looking at Table 5.1 with p = 3 and

m̄ = 2 we also have to satisfy τ
(4)
1 , τ

(5)
1 , τ

(4)
3 , τ

(5)
5 , and τ

(6)
7 in order to be able

to obtain an asymptotically correct global error estimate which estimates the

first two terms of the global error. To solve these equations the free parameters

were chosen in the following way:

1) choose c2, c3, c4 and c5 arbitrarily;

2) solve τ
(i)
1 with i = 1, 2, 3, 4, 5 for bi;

3) choose a42, a52 and a53 arbitrarily;

4) solve τ
(5)
5 for a54;

5) solve τ
(4)
3 for a43;

6) solve τ
(3)
2 for a32;

7) solve the row-sum conditions for a31, a41 and a51;

8) evaluate u4 and u5;

9) make sure that τ
(6)
7 is satisfied;

10) try to choose the free coefficients so that the square root of the sum of

the squares of τ
(4)
2 and τ

(4)
4 should be as small as possible.

The formula found using this approach is given below.

0 0

1
10

1
10

0

1
1067
272

−795
272

0

4
5

−2723
1350

29
10

− 56
675

0

2
5

−183
98

19
10

0
18
49

0

1
32

100
576

17
324

75
224

175
432

(5.16)
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[r]

Figure 5.1: Stability region of order 3 with 5 stages

Here u4 =
48029

1233792
, u5 =

53

14688
and

√
(τ

(4)
2 )2 + (τ

(4)
4 )2 ∼= 0.00703. The graph

of the stability regions of the block method of order 3 (3.26) and of (5.16) is

given in Figure 5.1.

5.4.2 Order 3 with 6 Stages

In the previous section we derived a global error estimator with 5 stages.

In what follows we consider if there is an advantage to be gained in allowing

the error estimator to have 6 stages. We consider an error estimator of the
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5. Global Error Estimation

form:
0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

b1 b2 b3 b4 b5 b6

(5.17)

The stability polynomial associated with (5.17) is:
yn+1

yn

= 1+ z +
1

2
z2 +

1

6
z3 +

u4z
4 + u5z

5 + u6z
6, where u4 =

s∑

i,j,k=1

biaijajkck, u5 =
s∑

i,j,k,l=1

biaijajkaklcl and

u6 = b6a65a54a43a32c2. We have 25 free parameters to be determined. The

row-sum conditions are:

c3 =
2∑

i=1

a3i (5.18)

c4 =
3∑

i=1

a4i (5.19)

c5 =
4∑

i=1

a5i (5.20)

c6 =
5∑

i=1

a6i. (5.21)

We want the method to be of order 3 so it has to satisfy the following order

conditions: τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(3)
2 . By looking at Table 5.1 with p = 3 and m̄ = 2

we also have to satisfy τ
(4)
1 , τ

(5)
1 , τ

(4)
3 , τ

(5)
5 , and τ

(6)
7 . The parameters were

chosen in the following way:

1) choose c2, c3, c4, c5, c6 and b6 arbitrarily;

2) solve τ
(i)
1 with i = 1, 2, 3, 4, 5 for bi;

3) choose a42, a52, a53, a62, a63 and a64 arbitrarily;

4) solve τ
(6)
7 for a65;

5) solve τ
(5)
5 for a54;

6) solve τ
(4)
3 for a43;

7) solve τ
(3)
2 for a32;

8) solve the row-sum conditions for a31, a41, a51 and a61;

9) evaluate u4, u5 and u6;
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10) try to choose the free coefficients so that the square root of the sum of

the squares of τ
(4)
2 and τ

(4)
4 should be as small as possible.

The formula found is:

0 0

1
10

1
10

0

1
4

1
4

0 0

1
2

1667
7332

0
1999
7332

0

3
4

133
2560

0
1
2

507
2560

0

1
109
270

0 −1
2

4
5

8
27

0

−173
90

625
117

−224
45

47
15

−512
585

3
10

(5.22)

Here u4 =
860737

35193600
, u5 =

25987

21657600
, u6 = 0 and

√
(τ

(4)
2 )2 + (τ

(4)
4 )2 ∼= 0.555×

10−3. The graph of the stability regions of the block method of order 3 (3.29)

and of (5.22) is given in Figure 5.2. As can be seen, by allowing one additional

function evaluation we can find formulae which are considerably more accurate

and which have much better stability regions than formulae with five functions.

Hence (5.22) will be the third order method of choice.

5.4.3 Order 4 with 7 Stages

In this section we will consider the derivation of an error estimator for use

with a fourth order block formula. We will consider first of all a formula of the

form:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

c7 a71 a72 a73 a74 a75 a76 0

b1 b2 b3 b4 b5 b6 b7

(5.23)

155



5. Global Error Estimation

[r]

Figure 5.2: Stability region of order 3 with 6 stages
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The stability polynomial associated with (5.23) is:
yn+1

yn

= 1+ z +
1

2
z2 +

1

6
z3 +

1

24
z4 + u5z

5 + u6z
6 + u7z

7, where u5 =
7∑

i,j,k,l=1

biaijajkaklcl = τ
(5)
9 ,

u6 =
7∑

i,j,k,l,m=1

biaijajkaklalmcm and u7 =
7∑

i,j,k,l,m,n=1

biaijajkaklalmamncn . We

have 33 free parameters to be determined. The row-sum conditions are:

c3 =
2∑

i=1

a3i (5.24)

c4 =
3∑

i=1

a4i (5.25)

c5 =
4∑

i=1

a5i (5.26)

c6 =
5∑

i=1

a6i (5.27)

c7 =
6∑

i=1

a7i. (5.28)

We want the method to be of order 4 so it has to satisfy the following order

conditions: τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(3)
2 , τ

(4)
1 , τ

(4)
2 , τ

(4)
3 , τ

(4)
4 . By looking at Table 5.1

with p = 4 and m̄ = 2 we also have to satisfy τ
(5)
1 , τ

(5)
5 , τ

(6)
1 , and τ

(6)
7 to obtain a

formula which estimates the first two terms of the global error. We will use the

usual row and column-simplifying assumptions. The parameters were chosen

in the following way:

1) set b2 = 0 and c7 = 1;

2) choose c2, c3, c4, c5 and c6 arbitrarily;

3) solve τ
(i)
1 with i = 1, 2, 3, 4, 5 for b1, b3, b4, b5, b6 and b7;

4) choose a43, a53, a54, a63, a64 and a65 arbitrarily;

5) solve
∑

j

aijcj =
1

2
c2
i with i = 3, 4, 5, 6 for a32, a42, a52 and a62;

6) solve the simplifying assumptions of the form
s∑

i=1

biaij = bj(1 − cj) with

j = 3, 4, 5, 6 for a7j;

7) get a72 from
∑

j

aijcj =
1

2
c2
i for i = 7;

8) solve the row-sum conditions for a31, a41, a51, a61 and a71;

9) evaluate u5, u6 and u7;
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10) try to choose the free coefficients so that the square root of the sum of

the squares of τ
(5)
2 , τ

(5)
3 , τ

(5)
4 , τ

(5)
6 , τ

(5)
7 , τ

(5)
8 and τ

(5)
9 should be as small as

possible.

The formula found is:

0 0

1
10

1
10

0

1
5

0
1
5

0

2
5

− 3
10

3
5

1
10

0

3
5

−11
25

23
25

−1
5

8
25

0

4
5

67
250

− 78
125

7
10

39
250

3
10

0

1
359
190

−221
95

25
38

23
190

− 5
38

15
19

0

19
288

0
25
96

25
144

25
144

25
96

19
288

(5.29)

Here u5 =
59

10000
, u6 =

2867

7200000
, u7 =

1

100000
and

√√√√(
9∑

i=1

τ
(5)
i )2 ∼= 0.004243.

The graph of the stability regions of the block method of order 4 (3.41) and of

(5.29) is given in Figure 5.3.

5.4.4 Order 4 with 8 Stages

As in the third order case we will consider whether there is any advantage

to be gained by allowing our global error estimator to have one extra function

evaluation. With this in mind we consider:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

c7 a71 a72 a73 a74 a75 a76 0

c8 a81 a82 a83 a84 a85 a86 a87 0

b1 b2 b3 b4 b5 b6 b7 b8

(5.30)
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[r]

Figure 5.3: Stability region of order 4 with 7 stages
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The stability polynomial associated with (5.30) is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 + u5z

5 + u6z
6 + u7z

7 + u8z
8, where u5 =

7∑

i,j,k,l=1

biaijajkaklcl = τ
(5)
9 ,

u6 =
8∑

i,j,k,l,m=1

biaijajkaklalmcm, u7 =
8∑

i,j,k,l,m,n=1

biaijajkaklalmamncn and

u8 =
8∑

i,j,k,l,m,n,o=1

biaijajkaklalmamnanoco. We have 42 free parameters to be

determined. The row-sum conditions are:

c3 =
2∑

i=1

a3i (5.31)

c4 =
3∑

i=1

a4i (5.32)

c5 =
4∑

i=1

a5i (5.33)

c6 =
5∑

i=1

a6i (5.34)

c7 =
6∑

i=1

a7i (5.35)

c8 =
7∑

i=1

a8i. (5.36)

We want the method to be of order 4 so it has to satisfy the following order

conditions: τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(3)
2 , τ

(4)
1 , τ

(4)
2 , τ

(4)
3 , τ

(4)
4 . By looking at Table 5.1

with p = 4 and m̄ = 2 we also have to satisfy τ
(5)
1 , τ

(5)
5 , τ

(6)
1 , and τ

(6)
7 to obtain a

formula which estimates the first two terms of the global error. We will use the

usual row- and column-simplifying assumptions. The parameters were chosen

in the following way:

1) set b2 = 0 and c8 = 1;

2) choose c2, c3, c4, c5, c6, c7 and b8 arbitrarily;

3) solve τ
(i)
1 with i = 1, 2, 3, 4, 5 for b1, b3, b4, b5, b6 and b7;

4) choose a43, a53, a54, a63, a64, a65, a73, a74 and a75 arbitrarily;

5) solve
∑

j

aijcj =
1

2
c2
i with i = 3, . . . , 7 for ai2;

6) solve
∑

i

biaij = bj(1− cj) with j = 3, . . . , 7 for a8j;
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7) solve
∑

j

aijcj =
1

2
c2
i with i = 8 for aj2;

8) solve the row-sum conditions for aj1 with j = 1, . . . , 8;

9) evaluate u5, u6, u7 and u8;

10) try to choose the free coefficients so that the square root of the sum of

the squares of τ
(5)
2 , τ

(5)
3 , τ

(5)
4 , τ

(5)
6 , τ

(5)
7 , τ

(5)
8 and τ

(5)
9 should be as small as

possible.

The formula found is:

0 0

1
10

1
10

0

1
5

0
1
5

0

2
5

− 47
200

47
100

33
200

0

3
5

−3
5

4
5

3
10

1
10

0

4
5

− 9
10

7
5

0 0
3
10

0

9
10

−33
4

201
20

0 0 −3
5

− 3
10

0

1 − 93697
133650

−12686
22275

3877
2475

6056
4455

−3449
2970

2617
4455

− 1088
13365

0

2197
32400

0
179
720

31
150

16
135

247
720

− 136
2025

33
400

(5.37)

Here u5 =
276659

45000000
, u6 =

126637

27000000
, u7 =

33169

2000000000
, u8 =

187

937500000
and√√√√(

9∑
i=1

τ
(5)
i )2 ∼= 0.00364. The graph of the stability regions of the block method

of order 4 (3.41) and of (5.37) is given in Figure 5.4. In this case we see that

there is little to be gained by allowing one extra function evaluation. Hence we

regard (5.29) as our method of choice as a fourth order global error estimator.
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[r]

Figure 5.4: Stability region of order 4 with 8 stages
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5.4.5 Order 5 with 8 Stages

We will now consider a general order 5 formula in eight stages given by:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

c7 a71 a72 a73 a74 a75 a76 0

c8 a81 a82 a83 a84 a85 a86 a87 0

b1 b2 b3 b4 b5 b6 b7 b8

(5.38)

The stability polynomial associated with (5.38) is:
yn+1

yn

= 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +u6z

6 +u7z
7 +u8z

8, where u6 =
8∑

i,j,k,l,m=1

biaijajkaklalmcm,

u7 =
8∑

i,j,k,l,m,n=1

biaijajkaklalmamncn and u8 =
8∑

i,j,k,l,m,n,o=1

biaijajkaklalmamnanoco.

We have 42 free parameters to be determined. The row-sum conditions are:

c3 =
2∑

i=1

a3i (5.39)

c4 =
3∑

i=1

a4i (5.40)

c5 =
4∑

i=1

a5i (5.41)

c6 =
5∑

i=1

a6i (5.42)

c7 =
6∑

i=1

a7i (5.43)

c8 =
7∑

i=1

a8i. (5.44)

The condition that the method should be of order 5 is that it has to satisfy the

following order conditions: τ
(1)
1 , τ

(2)
1 , τ

(3)
1 , τ

(3)
2 , τ

(4)
1 , τ

(4)
2 , τ

(4)
3 , τ

(4)
4 , τ

(5)
1 , τ

(5)
2 ,
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τ
(5)
3 , τ

(5)
4 , τ

(5)
5 , τ

(5)
6 , τ

(5)
7 , τ

(5)
8 , τ

(5)
9 . By looking at Table 5.1 with p = 5 and m̄ = 2

we also have to satisfy τ
(6)
1 , τ

(6)
7 , τ

(7)
1 , and τ

(7)
11 if the global error estimator is

to give an asymptotically correct estimate of the first two terms in the global

error. We will use the usual row- and column-simplifying assumptions. The

parameters were chosen in the following way:

1) set b2 = 0 and c8 = 1;

2) choose c2, c3, c4, c5, c6, c7, a42, a5,2, a6,2, a54, a64, a65 and a75 arbitrarily;

3) solve τ
(i)
1 with i = 1, 2, 3, 4, 5, 6, 7 for b1, b3, b4, b5, b6, b7 and b8;

4) solve
∑

j

aijcj =
1

2
c2
i with i = 3 for a32, with i = 4, 5, 6 for ai3;

5) solve
∑

i

biciai2 = 0 for a72;

6) solve
∑
ij

bi(1− ci)aijc
2
j =

1

60
for a76;

7) solve
∑

i

biaij = bj(1− cj) with j = 3, . . . , 7 for a8j;

8) solve
∑

j

aijcj =
1

2
c2
i with i = 8 for a82;

9) solve the row-sum conditions for aj1 with j = 1, . . . , 8;

10) evaluate u6, u7 and u8;

11) try to choose the free coefficients so that the square root of the sum of

the squares of τ
(6)
i , with i = 1, 20 should be as small as possible.
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Using this approach we found the following formula:

0 0

1
20

1
20

0

1
10

0
1
10

0

1
5

0 0
1
5

0

2
5

−2
5

0
4
5

0 0

3
5

−3
5

0 1 0
1
5

0

4
5

31441
25350

−1408
4225

−26232
21125

7
10

− 3
10

93127
126750

0

1 −45477
15218

1408
1087

142833
38045

−7965
2174

73719
15218

−246621
76090

7605
7609

0

23
2016

0
880
3969

− 25
2016

1075
3024

65
1008

4225
14112

1087
18144

(5.45)

Here u6 =
53777

58800000
, u7 =

93127

2646000000
, u8 = 0 and

√√√√(
20∑
i=1

τ
(6)
i )2 ∼= 0.253 ×

10−5. The graph of the stability regions of the block method of order 5 (3.52)

and of (5.45) is given in Figure 5.5.

In the next chapter we will examine the performance of the various global

error estimators derived in this chapter by applying them to some test prob-

lems.
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[r]

Figure 5.5: Stability region of order 5 with 8 stages
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Chapter 6

Numerical Results

In this chapter we present some numerical results to compare certain of the

global error estimation algorithms derived in the previous chapters. In partic-

ular we will consider the order 4 and 5 formulae derived earlier for the purpose

of global error estimation. We have written a code which implements our block

formulae and the associated global error estimator. This code runs each algo-

rithm for nine different problems giving statistics concerning the global error

and the cost involved. For each of the nine problems we present a table with

the tolerance, the end point of integration, the true solution, the global error,

the estimated error, the difference and the ratio between the global error and

the estimated error, the number of function evaluations, the number of steps

and the number of rejected steps involved in the process. The nine problems

used are:

Problem 1: y′ = −y, y(0) = 1.

Problem 2: y′ = −1

2
y3, y(0) = 1.

Problem 3: y′ = y cos x, y(0) = 1.

Problem 4: y′ =
y

4
(1− y

2
), y(0) = 1.

Problem 5: y′ = (y − sin x) + cos x, y(0) = 0.
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Problem 6: 



y′1 = y2, y1(0) = 30

y′2 =
4

125
− 2

5
y2

2, y2(0) = 0.

Problem 7: 



y′1 = y2, y1(0) = 0

y′2 =

√
1 + y2

2

25− x
, y2(0) = 0.

Problem 8: 



y′1 = y2 − x2

5
, y1(0) = 0

y′2 = −y1 +
2

5
x, y2(0) = 1.

Problem 9: 



y′1 = y3, y1(0) = 1

y′2 = y4, y2(0) = 0

y′3 = − y1

(
√

y2
1 + y2

2)
3
, y3(0) = 0

y′4 = − y2

(
√

y2
1 + y2

2)
3
, y4(0) = 1.

6.1 Results for Order 4 with 7 Stages

For the order 4 main formula we have used (3.41) derived in Chapter 3.

For the error estimator we have used (5.29) obtained in Chapter 5. The results

are given in the following 9 tables for each of the problems.

Problem 1
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 5.00 .6717× 10−02 −.2063× 10−04 −.1736× 10−04 .3273× 10−05 .84 91 6 0

1.0× 10−04 5.00 .6736× 10−02 −.1938× 10−05 −.1746× 10−05 .1922× 10−06 .90 151 10 0

1.0× 10−05 5.00 .6738× 10−02 −.1546× 10−06 −.1459× 10−06 .8789× 10−08 .94 241 16 0

1.0× 10−06 5.00 .6738× 10−02 −.8448× 10−08 −.8187× 10−08 .2604× 10−09 .97 391 26 0

1.0× 10−07 5.00 .6738× 10−02 −.5260× 10−09 −.5170× 10−09 .9077× 10−11 .98 661 44 0

1.0× 10−08 5.00 .6738× 10−02 −.3335× 10−10 −.3301× 10−10 .3346× 10−12 .99 1156 77 0

1.0× 10−09 5.00 .6738× 10−02 −.1968× 10−11 −.1957× 10−11 .1118× 10−13 .99 2026 135 0

1.0× 10−10 5.00 .6738× 10−02 −.1132× 10−12 −.1128× 10−12 .3742× 10−15 1.00 3571 238 0

1.0× 10−11 5.00 .6738× 10−02 −.6544× 10−14 −.6525× 10−14 .1892× 10−16 1.00 6339 422 1
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Problem 2
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3015× 10+00 −.5873× 10−05 −.6028× 10−05 −.1553× 10−06 1.03 121 8 0

1.0× 10−04 10.00 .3015× 10+00 −.5123× 10−06 −.5214× 10−06 −.9022× 10−08 1.02 181 12 0

1.0× 10−05 10.00 .3015× 10+00 −.3733× 10−07 −.3774× 10−07 −.4091× 10−09 1.01 286 19 0

1.0× 10−06 10.00 .3015× 10+00 −.2701× 10−08 −.2719× 10−08 −.1795× 10−10 1.01 481 32 0

1.0× 10−07 10.00 .3015× 10+00 −.1661× 10−09 −.1667× 10−09 −.6403× 10−12 1.00 796 53 0

1.0× 10−08 10.00 .3015× 10+00 −.1025× 10−10 −.1028× 10−10 −.2260× 10−13 1.00 1366 91 0

1.0× 10−09 10.00 .3015× 10+00 −.6067× 10−12 −.6076× 10−12 −.8899× 10−15 1.00 2386 159 0

1.0× 10−10 10.00 .3015× 10+00 −.3531× 10−13 −.3525× 10−13 .5727× 10−16 1.00 4209 280 1

1.0× 10−11 10.00 .3015× 10+00 −.1998× 10−14 −.2028× 10−14 −.2973× 10−16 1.01 7449 496 1

Problem 3
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2492× 10+01 .3790× 10−03 .3676× 10−03 −.1143× 10−04 .97 675 38 13

1.0× 10−04 20.00 .2492× 10+01 .1291× 10−04 .1255× 10−04 −.3625× 10−06 .97 1135 66 18

1.0× 10−05 20.00 .2492× 10+01 −.2531× 10−06 −.2609× 10−06 −.7828× 10−08 1.03 1857 112 22

1.0× 10−06 20.00 .2492× 10+01 −.1062× 10−06 −.1062× 10−06 .1041× 10−10 1.00 3095 194 23

1.0× 10−07 20.00 .2492× 10+01 −.6980× 10−08 −.6987× 10−08 −.6969× 10−11 1.00 5278 339 24

1.0× 10−08 20.00 .2492× 10+01 −.6833× 10−09 −.6835× 10−09 −.2329× 10−12 1.00 9187 598 27

1.0× 10−09 20.00 .2492× 10+01 −.4898× 10−10 −.4902× 10−10 −.3992× 10−13 1.00 16080 1057 28

1.0× 10−10 20.00 .2492× 10+01 −.3751× 10−11 −.3719× 10−11 .3217× 10−13 .99 28296 1873 25

1.0× 10−11 20.00 .2492× 10+01 −.3473× 10−12 −.2646× 10−12 .8268× 10−13 .76 50099 3326 26

Problem 4
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .1773× 10+02 −.2210× 10−03 −.2408× 10−03 −.1981× 10−04 1.09 122 7 2

1.0× 10−04 20.00 .1773× 10+02 −.8469× 10−05 −.9295× 10−05 −.8254× 10−06 1.10 190 11 3

1.0× 10−05 20.00 .1773× 10+02 −.5907× 10−06 −.6416× 10−06 −.5088× 10−07 1.09 318 19 4

1.0× 10−06 20.00 .1773× 10+02 −.3723× 10−07 −.3937× 10−07 −.2135× 10−08 1.06 521 32 5

1.0× 10−07 20.00 .1773× 10+02 −.2264× 10−08 −.2369× 10−08 −.1047× 10−09 1.05 843 54 4

1.0× 10−08 20.00 .1773× 10+02 −.1414× 10−09 −.1454× 10−09 −.4046× 10−11 1.03 1450 95 3

1.0× 10−09 20.00 .1773× 10+02 −.8836× 10−11 −.9086× 10−11 −.2506× 10−12 1.03 2538 167 4

1.0× 10−10 20.00 .1773× 10+02 −.5080× 10−12 −.5116× 10−12 −.3533× 10−14 1.01 4458 295 4

1.0× 10−11 20.00 .1773× 10+02 −.3553× 10−13 −.3052× 10−13 .5012× 10−14 .86 7878 523 4

Problem 5
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 −.6515× 10+04 −.6516× 10+04 −.6444× 10+04 .7197× 10+02 .99 506 31 5

1.0× 10−04 20.00 −.4039× 10+03 −.4049× 10+03 −.3953× 10+03 .9589× 10+01 .98 868 53 9

1.0× 10−05 20.00 −.2438× 10+02 −.2529× 10+02 −.2481× 10+02 .4744× 10+00 .98 1476 93 10

1.0× 10−06 20.00 −.9893× 10+00 −.1902× 10+01 −.1877× 10+01 .2538× 10−01 .99 2473 160 9

1.0× 10−07 20.00 .8096× 10+00 −.1033× 10+00 −.1025× 10+00 .8140× 10−03 .99 4357 284 12

1.0× 10−08 20.00 .9067× 10+00 −.6280× 10−02 −.6248× 10−02 .3149× 10−04 .99 7628 501 14

1.0× 10−09 20.00 .9126× 10+00 −.3897× 10−03 −.3884× 10−03 .1275× 10−05 1.00 13417 888 12

1.0× 10−10 20.00 .9129× 10+00 −.2464× 10−04 −.2454× 10−04 .1035× 10−06 1.00 23745 1576 13

1.0× 10−11 20.00 .9129× 10+00 −.1591× 10−05 −.1451× 10−05 .1404× 10−06 .91 42083 2798 14
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Problem 6
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3134× 10+02 −.2048× 10−03 −.2027× 10−03 .2153× 10−05 .99

.2295× 10+00 −.1472× 10−04 −.1499× 10−04 −.2730× 10−06 1.02 54 3 1

1.0× 10−04 10.00 .3134× 10+02 −.1150× 10−04 −.1143× 10−04 .6831× 10−07 .99

.2295× 10+00 −.9778× 10−06 −.1002× 10−05 −.2373× 10−07 1.02 92 5 2

1.0× 10−05 10.00 .3134× 10+02 −.8474× 10−06 −.8445× 10−06 .2896× 10−08 1.00

.2295× 10+00 −.5444× 10−07 −.5534× 10−07 −.9022× 10−09 1.02 122 7 2

1.0× 10−06 10.00 .3134× 10+02 −.6413× 10−07 −.6390× 10−07 .2308× 10−09 1.00

.2295× 10+00 −.3877× 10−08 −.3934× 10−08 −.5660× 10−10 1.01 182 11 2

1.0× 10−07 10.00 .3134× 10+02 −.4822× 10−08 −.4802× 10−08 .1934× 10−10 1.00

.2295× 10+00 −.2855× 10−09 −.2894× 10−09 −.3972× 10−11 1.01 294 19 1

1.0× 10−08 10.00 .3134× 10+02 −.2210× 10−09 −.2203× 10−09 .6536× 10−12 1.00

.2295× 10+00 −.1680× 10−10 −.1695× 10−10 −.1467× 10−12 1.01 497 32 2

1.0× 10−09 10.00 .3134× 10+02 −.1299× 10−10 −.1296× 10−10 .2990× 10−13 1.00

.2295× 10+00 −.9942× 10−12 −.9993× 10−12 −.5131× 10−14 1.01 834 55 1

1.0× 10−10 10.00 .3134× 10+02 −.7390× 10−12 −.7289× 10−12 .1002× 10−13 .99

.2295× 10+00 −.5770× 10−13 −.5784× 10−13 −.1323× 10−15 1.00 1441 96 0

1.0× 10−11 10.00 .3134× 10+02 −.4263× 10−13 −.3761× 10−13 .5026× 10−14 .88

.2295× 10+00 −.3414× 10−14 −.3383× 10−14 .3126× 10−16 .99 2551 170 0

Problem 7
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .2385× 10+01 −.4466× 10−04 −.4290× 10−04 .1761× 10−05 .96

.5333× 10+00 .3817× 10−05 .3762× 10−05 −.5463× 10−07 .99 61 4 0

1.0× 10−04 10.00 .2385× 10+01 −.1462× 10−05 −.1431× 10−05 .3100× 10−07 .98

.5333× 10+00 .1442× 10−06 .1428× 10−06 −.1449× 10−08 .99 76 5 0

1.0× 10−05 10.00 .2385× 10+01 −.1024× 10−06 −.1012× 10−06 .1206× 10−08 .99

.5333× 10+00 .9363× 10−08 .9305× 10−08 −.5854× 10−10 .99 121 8 0

1.0× 10−06 10.00 .2385× 10+01 −.4905× 10−08 −.4873× 10−08 .3249× 10−10 .99

.5333× 10+00 .4665× 10−09 .4648× 10−09 −.1708× 10−11 1.00 211 14 0

1.0× 10−07 10.00 .2385× 10+01 −.2785× 10−09 −.2775× 10−09 .1024× 10−11 1.00

.5333× 10+00 .2612× 10−10 .2607× 10−10 −.5466× 10−13 1.00 361 24 0

1.0× 10−08 10.00 .2385× 10+01 −.1585× 10−10 −.1582× 10−10 .3225× 10−13 1.00

.5333× 10+00 .1472× 10−11 .1470× 10−11 −.1774× 10−14 1.00 631 42 0

1.0× 10−09 10.00 .2385× 10+01 −.8984× 10−12 −.8982× 10−12 .1801× 10−15 1.00

.5333× 10+00 .8293× 10−13 .8288× 10−13 −.5602× 10−16 1.00 1111 74 0

1.0× 10−10 10.00 .2385× 10+01 −.5107× 10−13 −.5081× 10−13 .2647× 10−15 .99

.5333× 10+00 .4774× 10−14 .4678× 10−14 −.9641× 10−16 .98 1951 130 0

1.0× 10−11 10.00 .2385× 10+01 −.3109× 10−14 −.2782× 10−14 .3269× 10−15 .89

.5333× 10+00 .1110× 10−15 .2666× 10−15 .1556× 10−15 2.40 3466 231 0

Problem 8
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 −.5441× 10+00 −.1007× 10−03 −.1406× 10−03 −.3984× 10−04 1.40

.1916× 10+02 −.5662× 10−03 −.5603× 10−03 .5854× 10−05 .99 227 14 2

1.0× 10−04 10.00 −.5440× 10+00 −.1273× 10−04 −.1438× 10−04 −.1654× 10−05 1.13

.1916× 10+02 −.3636× 10−04 −.3581× 10−04 .5505× 10−06 .98 369 24 1

1.0× 10−05 10.00 −.5440× 10+00 −.1046× 10−05 −.1107× 10−05 −.6079× 10−07 1.06

.1916× 10+02 −.2288× 10−05 −.2259× 10−05 .2883× 10−07 .99 632 41 2

1.0× 10−06 10.00 −.5440× 10+00 −.7012× 10−07 −.7212× 10−07 −.2006× 10−08 1.03

.1916× 10+02 −.1325× 10−06 −.1313× 10−06 .1137× 10−08 .99 1090 71 3

1.0× 10−07 10.00 −.5440× 10+00 −.4484× 10−08 −.4553× 10−08 −.6948× 10−10 1.02

.1916× 10+02 −.7835× 10−08 −.7792× 10−08 .4305× 10−10 .99 1877 124 2

1.0× 10−08 10.00 −.5440× 10+00 −.2847× 10−09 −.2874× 10−09 −.2700× 10−11 1.01

.1916× 10+02 −.4753× 10−09 −.4736× 10−09 .1687× 10−11 1.00 3294 219 1

1.0× 10−09 10.00 −.5440× 10+00 −.1652× 10−10 −.1661× 10−10 −.8963× 10−13 1.01

.1916× 10+02 −.2692× 10−10 −.2685× 10−10 .7053× 10−13 1.00 5829 388 1

1.0× 10−10 10.00 −.5440× 10+00 −.9331× 10−12 −.9521× 10−12 −.1892× 10−13 1.02

.1916× 10+02 −.1492× 10−11 −.1523× 10−11 −.3082× 10−13 1.02 10329 688 1

1.0× 10−11 10.00 −.5440× 10+00 −.7538× 10−13 −.5453× 10−13 .2085× 10−13 .72

.1916× 10+02 −.6750× 10−13 −.8633× 10−13 −.1883× 10−13 1.28 18339 1222 1
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Problem 9
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2519× 10+00 .3202× 10−01 .3169× 10−01 −.3221× 10−03 .99

.9329× 10+00 −.9846× 10−02 −.9755× 10−02 .9100× 10−04 .99

−.9697× 10+00 .9095× 10−02 .9032× 10−02 −.6310× 10−04 .99

.3631× 10+00 .3432× 10−01 .3372× 10−01 −.6025× 10−03 .98 581 36 5

1.0× 10−04 20.00 .2214× 10+00 .1533× 10−02 .1539× 10−02 .6072× 10−05 1.00

.9423× 10+00 −.4419× 10−03 −.4451× 10−03 −.3213× 10−05 1.01

−.9784× 10+00 .4133× 10−03 .4136× 10−03 .3274× 10−06 1.00

.3305× 10+00 .1659× 10−02 .1664× 10−02 .4630× 10−05 1.00 939 62 1

1.0× 10−05 20.00 .2200× 10+00 .7610× 10−04 .7641× 10−04 .3070× 10−06 1.00

.9427× 10+00 −.2181× 10−04 −.2193× 10−04 −.1279× 10−06 1.01

−.9787× 10+00 .2063× 10−04 .2068× 10−04 .4698× 10−07 1.00

.3289× 10+00 .8277× 10−04 .8308× 10−04 .3144× 10−06 1.00 1659 110 1

1.0× 10−06 20.00 .2199× 10+00 .4078× 10−05 .4087× 10−05 .9629× 10−08 1.00

.9427× 10+00 −.1161× 10−05 −.1165× 10−05 −.4016× 10−08 1.00

−.9788× 10+00 .1114× 10−05 .1116× 10−05 .1509× 10−08 1.00

.3288× 10+00 .4444× 10−05 .4454× 10−05 .1024× 10−07 1.00 2934 195 1

1.0× 10−07 20.00 .2199× 10+00 .2253× 10−06 .2256× 10−06 .2896× 10−09 1.00

.9427× 10+00 −.6384× 10−07 −.6397× 10−07 −.1237× 10−09 1.00

−.9788× 10+00 .6188× 10−07 .6193× 10−07 .4376× 10−10 1.00

.3288× 10+00 .2456× 10−06 .2459× 10−06 .3127× 10−09 1.00 5214 347 1

1.0× 10−08 20.00 .2199× 10+00 .1259× 10−07 .1260× 10−07 .8740× 10−11 1.00

.9427× 10+00 −.3556× 10−08 −.3560× 10−08 −.3818× 10−11 1.00

−.9788× 10+00 .3468× 10−08 .3469× 10−08 .1266× 10−11 1.00

.3288× 10+00 .1372× 10−07 .1373× 10−07 .9524× 10−11 1.00 9264 617 1

1.0× 10−09 20.00 .2199× 10+00 .7059× 10−09 .7063× 10−09 .3600× 10−12 1.00

.9427× 10+00 −.1991× 10−09 −.1992× 10−09 −.1455× 10−12 1.00

−.9788× 10+00 .1948× 10−09 .1949× 10−09 .6278× 10−13 1.00

.3288× 10+00 .7696× 10−09 .7700× 10−09 .3906× 10−12 1.00 16464 1097 1

1.0× 10−10 20.00 .2199× 10+00 .3955× 10−10 .3966× 10−10 .1144× 10−12 1.00

.9427× 10+00 −.1114× 10−10 −.1117× 10−10 −.3023× 10−13 1.00

−.9788× 10+00 .1092× 10−10 .1096× 10−10 .3262× 10−13 1.00

.3288× 10+00 .4312× 10−10 .4324× 10−10 .1184× 10−12 1.00 29259 1950 1

1.0× 10−11 20.00 .2199× 10+00 .2296× 10−11 .2224× 10−11 −.7208× 10−13 .97

.9427× 10+00 −.6526× 10−12 −.6262× 10−12 .2644× 10−13 .96

−.9788× 10+00 .6311× 10−12 .6148× 10−12 −.1628× 10−13 .97

.3288× 10+00 .2506× 10−11 .2425× 10−11 −.8140× 10−13 .97 52014 3467 1

6.2 Results for Order 4 with 8 Stages

For the order 4 main formula we have used (3.41) derived in Chapter 3.

For the error estimator we have used (5.37) obtained in Chapter 5. The results

are given in the following 9 tables for each of the problems.

Problem 1
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 5.00 .6717× 10−02 −.2063× 10−04 −.1831× 10−04 .2316× 10−05 .89 97 6 0

1.0× 10−04 5.00 .6736× 10−02 −.1938× 10−05 −.1786× 10−05 .1525× 10−06 .92 161 10 0

1.0× 10−05 5.00 .6738× 10−02 −.1546× 10−06 −.1469× 10−06 .7738× 10−08 .95 257 16 0

1.0× 10−06 5.00 .6738× 10−02 −.8448× 10−08 −.8200× 10−08 .2479× 10−09 .97 417 26 0

1.0× 10−07 5.00 .6738× 10−02 −.5260× 10−09 −.5170× 10−09 .9033× 10−11 .98 705 44 0

1.0× 10−08 5.00 .6738× 10−02 −.3335× 10−10 −.3301× 10−10 .3411× 10−12 .99 1233 77 0

1.0× 10−09 5.00 .6738× 10−02 −.1968× 10−11 −.1957× 10−11 .1157× 10−13 .99 2161 135 0

1.0× 10−10 5.00 .6738× 10−02 −.1132× 10−12 −.1128× 10−12 .3920× 10−15 1.00 3809 238 0

1.0× 10−11 5.00 .6738× 10−02 −.6544× 10−14 −.6523× 10−14 .2167× 10−16 1.00 6761 422 1
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Problem 2
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3015× 10+00 −.5873× 10−05 −.6098× 10−05 −.2249× 10−06 1.04 129 8 0

1.0× 10−04 10.00 .3015× 10+00 −.5123× 10−06 −.5251× 10−06 −.1274× 10−07 1.02 193 12 0

1.0× 10−05 10.00 .3015× 10+00 −.3733× 10−07 −.3790× 10−07 −.5656× 10−09 1.02 305 19 0

1.0× 10−06 10.00 .3015× 10+00 −.2701× 10−08 −.2725× 10−08 −.2442× 10−10 1.01 513 32 0

1.0× 10−07 10.00 .3015× 10+00 −.1661× 10−09 −.1669× 10−09 −.8613× 10−12 1.01 849 53 0

1.0× 10−08 10.00 .3015× 10+00 −.1025× 10−10 −.1029× 10−10 −.3020× 10−13 1.00 1457 91 0

1.0× 10−09 10.00 .3015× 10+00 −.6067× 10−12 −.6078× 10−12 −.1136× 10−14 1.00 2545 159 0

1.0× 10−10 10.00 .3015× 10+00 −.3531× 10−13 −.3525× 10−13 .5350× 10−16 1.00 4489 280 1

1.0× 10−11 10.00 .3015× 10+00 −.1998× 10−14 −.2016× 10−14 −.1741× 10−16 1.01 7945 496 1

Problem 3
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2492× 10+01 .3790× 10−03 .3600× 10−03 −.1902× 10−04 .95 713 38 13

1.0× 10−04 20.00 .2492× 10+01 .1291× 10−04 .1236× 10−04 −.5548× 10−06 .96 1201 66 18

1.0× 10−05 20.00 .2492× 10+01 −.2531× 10−06 −.2640× 10−06 −.1088× 10−07 1.04 1969 112 22

1.0× 10−06 20.00 .2492× 10+01 −.1062× 10−06 −.1062× 10−06 −.2520× 10−11 1.00 3289 194 23

1.0× 10−07 20.00 .2492× 10+01 −.6980× 10−08 −.6989× 10−08 −.9570× 10−11 1.00 5617 339 24

1.0× 10−08 20.00 .2492× 10+01 −.6833× 10−09 −.6836× 10−09 −.3107× 10−12 1.00 9785 598 27

1.0× 10−09 20.00 .2492× 10+01 −.4898× 10−10 −.4902× 10−10 −.4101× 10−13 1.00 17137 1057 28

1.0× 10−10 20.00 .2492× 10+01 −.3751× 10−11 −.3719× 10−11 .3201× 10−13 .99 30169 1873 25

1.0× 10−11 20.00 .2492× 10+01 −.3473× 10−12 −.2648× 10−12 .8244× 10−13 .76 53425 3326 26

Problem 4
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .1773× 10+02 −.2210× 10−03 −.2444× 10−03 −.2342× 10−04 1.11 129 7 2

1.0× 10−04 20.00 .1773× 10+02 −.8469× 10−05 −.9353× 10−05 −.8832× 10−06 1.10 201 11 3

1.0× 10−05 20.00 .1773× 10+02 −.5907× 10−06 −.6462× 10−06 −.5547× 10−07 1.09 337 19 4

1.0× 10−06 20.00 .1773× 10+02 −.3723× 10−07 −.3956× 10−07 −.2334× 10−08 1.06 553 32 5

1.0× 10−07 20.00 .1773× 10+02 −.2264× 10−08 −.2378× 10−08 −.1139× 10−09 1.05 897 54 4

1.0× 10−08 20.00 .1773× 10+02 −.1414× 10−09 −.1457× 10−09 −.4397× 10−11 1.03 1545 95 3

1.0× 10−09 20.00 .1773× 10+02 −.8836× 10−11 −.9110× 10−11 −.2748× 10−12 1.03 2705 167 4

1.0× 10−10 20.00 .1773× 10+02 −.5080× 10−12 −.5129× 10−12 −.4911× 10−14 1.01 4753 295 4

1.0× 10−11 20.00 .1773× 10+02 −.3553× 10−13 −.3122× 10−13 .4307× 10−14 .88 8401 523 4

Problem 5
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 −.6515× 10+04 −.6516× 10+04 −.6596× 10+04 −.7952× 10+02 1.01 537 31 5

1.0× 10−04 20.00 −.4039× 10+03 −.4049× 10+03 −.3979× 10+03 .6929× 10+01 .98 921 53 9

1.0× 10−05 20.00 −.2438× 10+02 −.2529× 10+02 −.2485× 10+02 .4355× 10+00 .98 1569 93 10

1.0× 10−06 20.00 −.9893× 10+00 −.1902× 10+01 −.1877× 10+01 .2487× 10−01 .99 2633 160 9

1.0× 10−07 20.00 .8096× 10+00 −.1033× 10+00 −.1025× 10+00 .8304× 10−03 .99 4641 284 12

1.0× 10−08 20.00 .9067× 10+00 −.6280× 10−02 −.6247× 10−02 .3274× 10−04 .99 8129 501 14

1.0× 10−09 20.00 .9126× 10+00 −.3897× 10−03 −.3883× 10−03 .1332× 10−05 1.00 14305 888 12

1.0× 10−10 20.00 .9129× 10+00 −.2464× 10−04 −.2455× 10−04 .9237× 10−07 1.00 25321 1576 13

1.0× 10−11 20.00 .9129× 10+00 −.1591× 10−05 −.1467× 10−05 .1240× 10−06 .92 44881 2798 14
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Problem 6
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3134× 10+02 −.2048× 10−03 −.2010× 10−03 .3868× 10−05 .98

.2295× 10+00 −.1472× 10−04 −.1535× 10−04 −.6292× 10−06 1.04 57 3 1

1.0× 10−04 10.00 .3134× 10+02 −.1150× 10−04 −.1139× 10−04 .1077× 10−06 .99

.2295× 10+00 −.9778× 10−06 −.1014× 10−05 −.3585× 10−07 1.04 97 5 2

1.0× 10−05 10.00 .3134× 10+02 −.8474× 10−06 −.8437× 10−06 .3688× 10−08 1.00

.2295× 10+00 −.5444× 10−07 −.5558× 10−07 −.1142× 10−08 1.02 129 7 2

1.0× 10−06 10.00 .3134× 10+02 −.6413× 10−07 −.6385× 10−07 .2756× 10−09 1.00

.2295× 10+00 −.3877× 10−08 −.3943× 10−08 −.6651× 10−10 1.02 193 11 2

1.0× 10−07 10.00 .3134× 10+02 −.4822× 10−08 −.4799× 10−08 .2274× 10−10 1.00

.2295× 10+00 −.2855× 10−09 −.2900× 10−09 −.4530× 10−11 1.02 313 19 1

1.0× 10−08 10.00 .3134× 10+02 −.2210× 10−09 −.2202× 10−09 .7503× 10−12 1.00

.2295× 10+00 −.1680× 10−10 −.1697× 10−10 −.1650× 10−12 1.01 529 32 2

1.0× 10−09 10.00 .3134× 10+02 −.1299× 10−10 −.1295× 10−10 .3296× 10−13 1.00

.2295× 10+00 −.9942× 10−12 −.9999× 10−12 −.5723× 10−14 1.01 889 55 1

1.0× 10−10 10.00 .3134× 10+02 −.7390× 10−12 −.7290× 10−12 .9961× 10−14 .99

.2295× 10+00 −.5770× 10−13 −.5786× 10−13 −.1589× 10−15 1.00 1537 96 0

1.0× 10−11 10.00 .3134× 10+02 −.4263× 10−13 −.3776× 10−13 .4870× 10−14 .89

.2295× 10+00 −.3414× 10−14 −.3390× 10−14 .2369× 10−16 .99 2721 170 0

Problem 7
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .2385× 10+01 −.4466× 10−04 −.4233× 10−04 .2335× 10−05 .95

.5333× 10+00 .3817× 10−05 .3746× 10−05 −.7103× 10−07 .98 65 4 0

1.0× 10−04 10.00 .2385× 10+01 −.1462× 10−05 −.1421× 10−05 .4084× 10−07 .97

.5333× 10+00 .1442× 10−06 .1423× 10−06 −.1900× 10−08 .99 81 5 0

1.0× 10−05 10.00 .2385× 10+01 −.1024× 10−06 −.1008× 10−06 .1581× 10−08 .98

.5333× 10+00 .9363× 10−08 .9287× 10−08 −.7637× 10−10 .99 129 8 0

1.0× 10−06 10.00 .2385× 10+01 −.4905× 10−08 −.4863× 10−08 .4248× 10−10 .99

.5333× 10+00 .4665× 10−09 .4642× 10−09 −.2225× 10−11 1.00 225 14 0

1.0× 10−07 10.00 .2385× 10+01 −.2785× 10−09 −.2772× 10−09 .1336× 10−11 1.00

.5333× 10+00 .2612× 10−10 .2605× 10−10 −.7126× 10−13 1.00 385 24 0

1.0× 10−08 10.00 .2385× 10+01 −.1585× 10−10 −.1581× 10−10 .4178× 10−13 1.00

.5333× 10+00 .1472× 10−11 .1469× 10−11 −.2338× 10−14 1.00 673 42 0

1.0× 10−09 10.00 .2385× 10+01 −.8984× 10−12 −.8983× 10−12 .1165× 10−15 1.00

.5333× 10+00 .8293× 10−13 .8282× 10−13 −.1100× 10−15 1.00 1185 74 0

1.0× 10−10 10.00 .2385× 10+01 −.5107× 10−13 −.5115× 10−13 −.8098× 10−16 1.00

.5333× 10+00 .4774× 10−14 .4633× 10−14 −.1411× 10−15 .97 2081 130 0

1.0× 10−11 10.00 .2385× 10+01 −.3109× 10−14 −.3099× 10−14 .9945× 10−17 1.00

.5333× 10+00 .1110× 10−15 .2278× 10−15 .1168× 10−15 2.05 3697 231 0

Problem 8
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 −.5441× 10+00 −.1007× 10−03 −.1428× 10−03 −.4204× 10−04 1.42

.1916× 10+02 −.5662× 10−03 −.5485× 10−03 .1770× 10−04 .97 241 14 2

1.0× 10−04 10.00 −.5440× 10+00 −.1273× 10−04 −.1441× 10−04 −.1682× 10−05 1.13

.1916× 10+02 −.3636× 10−04 −.3552× 10−04 .8426× 10−06 .98 393 24 1

1.0× 10−05 10.00 −.5440× 10+00 −.1046× 10−05 −.1108× 10−05 −.6194× 10−07 1.06

.1916× 10+02 −.2288× 10−05 −.2252× 10−05 .3626× 10−07 .98 673 41 2

1.0× 10−06 10.00 −.5440× 10+00 −.7012× 10−07 −.7218× 10−07 −.2064× 10−08 1.03

.1916× 10+02 −.1325× 10−06 −.1312× 10−06 .1311× 10−08 .99 1161 71 3

1.0× 10−07 10.00 −.5440× 10+00 −.4484× 10−08 −.4556× 10−08 −.7219× 10−10 1.02

.1916× 10+02 −.7835× 10−08 −.7788× 10−08 .4762× 10−10 .99 2001 124 2

1.0× 10−08 10.00 −.5440× 10+00 −.2847× 10−09 −.2875× 10−09 −.2826× 10−11 1.01

.1916× 10+02 −.4753× 10−09 −.4735× 10−09 .1829× 10−11 1.00 3513 219 1

1.0× 10−09 10.00 −.5440× 10+00 −.1652× 10−10 −.1661× 10−10 −.9376× 10−13 1.01

.1916× 10+02 −.2692× 10−10 −.2685× 10−10 .7381× 10−13 1.00 6217 388 1

1.0× 10−10 10.00 −.5440× 10+00 −.9331× 10−12 −.9521× 10−12 −.1900× 10−13 1.02

.1916× 10+02 −.1492× 10−11 −.1523× 10−11 −.3110× 10−13 1.02 11017 688 1

1.0× 10−11 10.00 −.5440× 10+00 −.7538× 10−13 −.5434× 10−13 .2105× 10−13 .72

.1916× 10+02 −.6750× 10−13 −.8675× 10−13 −.1925× 10−13 1.29 19561 1222 1
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Problem 9
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2519× 10+00 .3202× 10−01 .3119× 10−01 −.8290× 10−03 .97

.9329× 10+00 −.9846× 10−02 −.9668× 10−02 .1777× 10−03 .98

−.9697× 10+00 .9095× 10−02 .8847× 10−02 −.2486× 10−03 .97

.3631× 10+00 .3432× 10−01 .3325× 10−01 −.1074× 10−02 .97 617 36 5

1.0× 10−04 20.00 .2214× 10+00 .1533× 10−02 .1534× 10−02 .9800× 10−06 1.00

.9423× 10+00 −.4419× 10−03 −.4441× 10−03 −.2181× 10−05 1.00

−.9784× 10+00 .4133× 10−03 .4119× 10−03 −.1371× 10−05 1.00

.3305× 10+00 .1659× 10−02 .1659× 10−02 −.2532× 10−06 1.00 1001 62 1

1.0× 10−05 20.00 .2200× 10+00 .7610× 10−04 .7636× 10−04 .2549× 10−06 1.00

.9427× 10+00 −.2181× 10−04 −.2193× 10−04 −.1210× 10−06 1.01

−.9787× 10+00 .2063× 10−04 .2065× 10−04 .2656× 10−07 1.00

.3289× 10+00 .8277× 10−04 .8303× 10−04 .2636× 10−06 1.00 1769 110 1

1.0× 10−06 20.00 .2199× 10+00 .4078× 10−05 .4087× 10−05 .9245× 10−08 1.00

.9427× 10+00 −.1161× 10−05 −.1165× 10−05 −.4130× 10−08 1.00

−.9788× 10+00 .1114× 10−05 .1115× 10−05 .1219× 10−08 1.00

.3288× 10+00 .4444× 10−05 .4453× 10−05 .9908× 10−08 1.00 3129 195 1

1.0× 10−07 20.00 .2199× 10+00 .2253× 10−06 .2256× 10−06 .2962× 10−09 1.00

.9427× 10+00 −.6384× 10−07 −.6398× 10−07 −.1324× 10−09 1.00

−.9788× 10+00 .6188× 10−07 .6192× 10−07 .3974× 10−10 1.00

.3288× 10+00 .2456× 10−06 .2459× 10−06 .3215× 10−09 1.00 5561 347 1

1.0× 10−08 20.00 .2199× 10+00 .1259× 10−07 .1260× 10−07 .9277× 10−11 1.00

.9427× 10+00 −.3556× 10−08 −.3560× 10−08 −.4182× 10−11 1.00

−.9788× 10+00 .3468× 10−08 .3469× 10−08 .1228× 10−11 1.00

.3288× 10+00 .1372× 10−07 .1373× 10−07 .1015× 10−10 1.00 9881 617 1

1.0× 10−09 20.00 .2199× 10+00 .7059× 10−09 .7063× 10−09 .3921× 10−12 1.00

.9427× 10+00 −.1991× 10−09 −.1992× 10−09 −.1612× 10−12 1.00

−.9788× 10+00 .1948× 10−09 .1949× 10−09 .6572× 10−13 1.00

.3288× 10+00 .7696× 10−09 .7700× 10−09 .4259× 10−12 1.00 17561 1097 1

1.0× 10−10 20.00 .2199× 10+00 .3955× 10−10 .3967× 10−10 .1224× 10−12 1.00

.9427× 10+00 −.1114× 10−10 −.1118× 10−10 −.3261× 10−13 1.00

−.9788× 10+00 .1092× 10−10 .1096× 10−10 .3470× 10−13 1.00

.3288× 10+00 .4312× 10−10 .4325× 10−10 .1268× 10−12 1.00 31209 1950 1

1.0× 10−11 20.00 .2199× 10+00 .2296× 10−11 .2228× 10−11 −.6772× 10−13 .97

.9427× 10+00 −.6526× 10−12 −.6274× 10−12 .2514× 10−13 .96

−.9788× 10+00 .6311× 10−12 .6159× 10−12 −.1513× 10−13 .98

.3288× 10+00 .2506× 10−11 .2429× 10−11 −.7684× 10−13 .97 55481 3467 1

6.3 Results for Order 5 with 8 Stages

For the order 5 main formula we have used (3.52) derived in Chapter 3.

For the error estimator we have used (5.45) obtained in Chapter 5. The results

are given in the following 9 tables for each of the problems.

Problem 1
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 5.00 .6881× 10−02 .1426× 10−03 .1663× 10−03 .2367× 10−04 1.17 69 4 0

1.0× 10−04 5.00 .6767× 10−02 .2946× 10−04 .3295× 10−04 .3490× 10−05 1.12 86 5 0

1.0× 10−05 5.00 .6743× 10−02 .4582× 10−05 .4936× 10−05 .3536× 10−06 1.08 120 7 0

1.0× 10−06 5.00 .6738× 10−02 .1890× 10−06 .1909× 10−06 .1843× 10−08 1.01 171 10 0

1.0× 10−07 5.00 .6738× 10−02 .1353× 10−07 .1346× 10−07 −.7141× 10−10 .99 273 16 0

1.0× 10−08 5.00 .6738× 10−02 .7489× 10−09 .7414× 10−09 −.7521× 10−11 .99 409 24 0

1.0× 10−09 5.00 .6738× 10−02 .4148× 10−10 .4110× 10−10 −.3759× 10−12 .99 613 36 0

1.0× 10−10 5.00 .6738× 10−02 .2921× 10−11 .2900× 10−11 −.2052× 10−13 .99 970 57 0

1.0× 10−11 5.00 .6738× 10−02 .1736× 10−12 .1727× 10−12 −.8475× 10−15 1.00 1497 88 0
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Problem 2
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3015× 10+00 .4907× 10−05 .3192× 10−05 −.1715× 10−05 .65 103 6 0

1.0× 10−04 10.00 .3015× 10+00 .5707× 10−06 .4384× 10−06 −.1324× 10−06 .77 120 7 0

1.0× 10−05 10.00 .3015× 10+00 .8511× 10−07 .7057× 10−07 −.1454× 10−07 .83 171 10 0

1.0× 10−06 10.00 .3015× 10+00 .9423× 10−08 .8281× 10−08 −.1142× 10−08 .88 239 14 0

1.0× 10−07 10.00 .3015× 10+00 .8246× 10−09 .7561× 10−09 −.6852× 10−10 .92 324 19 0

1.0× 10−08 10.00 .3015× 10+00 .6625× 10−10 .6253× 10−10 −.3721× 10−11 .94 494 29 0

1.0× 10−09 10.00 .3015× 10+00 .5083× 10−11 .4895× 10−11 −.1883× 10−12 .96 732 43 0

1.0× 10−10 10.00 .3015× 10+00 .3584× 10−12 .3497× 10−12 −.8649× 10−14 .98 1140 67 0

1.0× 10−11 10.00 .3015× 10+00 .2463× 10−13 .2425× 10−13 −.3828× 10−15 .98 1769 104 0

Problem 3
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2493× 10+01 .1619× 10−02 −.2393× 10−02 −.4012× 10−02 -1.48 362 17 8

1.0× 10−04 20.00 .2492× 10+01 .1973× 10−03 .7895× 10−04 −.1184× 10−03 .40 524 26 9

1.0× 10−05 20.00 .2492× 10+01 .5331× 10−05 .3994× 10−05 −.1337× 10−05 .75 807 40 14

1.0× 10−06 20.00 .2492× 10+01 .1790× 10−06 −.1816× 10−06 −.3606× 10−06 -1.01 1252 63 20

1.0× 10−07 20.00 .2492× 10+01 .4910× 10−09 −.3630× 10−07 −.3679× 10−07 -73.94 1841 95 25

1.0× 10−08 20.00 .2492× 10+01 −.6031× 10−09 −.3271× 10−08 −.2668× 10−08 5.42 2761 147 29

1.0× 10−09 20.00 .2492× 10+01 −.8577× 10−11 −.1002× 10−09 −.9165× 10−10 11.69 4147 228 30

1.0× 10−10 20.00 .2492× 10+01 −.1735× 10−12 −.4248× 10−11 −.4075× 10−11 24.48 6376 357 34

1.0× 10−11 20.00 .2492× 10+01 −.9853× 10−13 −.3353× 10−12 −.2368× 10−12 3.40 9783 559 31

Problem 4
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .1773× 10+02 −.3086× 10−02 −.2216× 10−02 .8697× 10−03 .72 95 5 1

1.0× 10−04 20.00 .1773× 10+02 −.6208× 10−03 −.4403× 10−03 .1805× 10−03 .71 121 6 2

1.0× 10−05 20.00 .1773× 10+02 .3888× 10−05 .6482× 10−05 .2595× 10−05 1.67 138 7 2

1.0× 10−06 20.00 .1773× 10+02 −.1820× 10−06 −.6151× 10−07 .1205× 10−06 .34 215 11 3

1.0× 10−07 20.00 .1773× 10+02 −.1576× 10−07 −.1058× 10−07 .5184× 10−08 .67 335 17 5

1.0× 10−08 20.00 .1773× 10+02 −.1688× 10−08 −.1410× 10−08 .2779× 10−09 .84 453 25 3

1.0× 10−09 20.00 .1773× 10+02 −.1260× 10−09 −.1143× 10−09 .1166× 10−10 .91 709 39 5

1.0× 10−10 20.00 .1773× 10+02 −.1234× 10−10 −.1180× 10−10 .5408× 10−12 .96 1057 60 4

1.0× 10−11 20.00 .1773× 10+02 −.1329× 10−11 −.1289× 10−11 .4038× 10−13 .97 1644 94 5

Problem 5
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 −.9930× 10+04 −.9931× 10+04 −.1997× 10+04 .7934× 10+04 .20 283 15 3

1.0× 10−04 20.00 .8209× 10+03 .8200× 10+03 .1647× 10+04 .8271× 10+03 2.01 437 23 5

1.0× 10−05 20.00 .5603× 10+02 .5512× 10+02 .8225× 10+02 .2714× 10+02 1.49 669 34 10

1.0× 10−06 20.00 .2050× 10+02 .1959× 10+02 .2265× 10+02 .3062× 10+01 1.16 949 51 9

1.0× 10−07 20.00 .2882× 10+01 .1969× 10+01 .2143× 10+01 .1739× 10+00 1.09 1400 77 10

1.0× 10−08 20.00 .1044× 10+01 .1311× 10+00 .1376× 10+00 .6419× 10−02 1.05 2062 117 8

1.0× 10−09 20.00 .9282× 10+00 .1527× 10−01 .1581× 10−01 .5365× 10−03 1.04 3203 182 12

1.0× 10−10 20.00 .9139× 10+00 .9705× 10−03 .9907× 10−03 .2021× 10−04 1.02 4937 284 12

1.0× 10−11 20.00 .9130× 10+00 .7013× 10−04 .7107× 10−04 .9409× 10−06 1.01 7691 446 12
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Problem 6
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3134× 10+02 .2027× 10−03 .1736× 10−03 −.2907× 10−04 .86

.2295× 10+00 −.1805× 10−04 .4763× 10−04 .6568× 10−04 -2.64 52 3 0

1.0× 10−04 10.00 .3134× 10+02 .1583× 10−04 .2170× 10−04 .5869× 10−05 1.37

.2295× 10+00 −.4714× 10−05 −.2401× 10−05 .2313× 10−05 .51 69 4 0

1.0× 10−05 10.00 .3134× 10+02 −.1919× 10−05 −.1693× 10−05 .2265× 10−06 .88

.2295× 10+00 .4539× 10−06 .5795× 10−06 .1256× 10−06 1.28 69 4 0

1.0× 10−06 10.00 .3134× 10+02 −.1048× 10−06 −.8398× 10−07 .2086× 10−07 .80

.2295× 10+00 .2729× 10−07 .3050× 10−07 .3205× 10−08 1.12 95 5 1

1.0× 10−07 10.00 .3134× 10+02 −.1785× 10−08 −.4515× 10−09 .1333× 10−08 .25

.2295× 10+00 .7713× 10−09 .9346× 10−09 .1633× 10−09 1.21 129 7 1

1.0× 10−08 10.00 .3134× 10+02 −.4571× 10−11 .6835× 10−10 .7292× 10−10 -14.95

.2295× 10+00 .4110× 10−10 .4807× 10−10 .6971× 10−11 1.17 180 10 1

1.0× 10−09 10.00 .3134× 10+02 .1417× 10−10 .1876× 10−10 .4591× 10−11 1.32

.2295× 10+00 .1151× 10−11 .1489× 10−11 .3373× 10−12 1.29 265 15 1

1.0× 10−10 10.00 .3134× 10+02 .1611× 10−11 .1837× 10−11 .2260× 10−12 1.14

.2295× 10+00 .3140× 10−13 .5811× 10−13 .2671× 10−13 1.85 384 22 1

1.0× 10−11 10.00 .3134× 10+02 .1925× 10−12 .2055× 10−12 .1296× 10−13 1.07

.2295× 10+00 −.3278× 10−14 −.1186× 10−14 .2092× 10−14 .36 571 33 1

Problem 7
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .2385× 10+01 −.1373× 10−03 −.1224× 10−03 .1489× 10−04 .89

.5333× 10+00 .1195× 10−04 .1806× 10−04 .6109× 10−05 1.51 52 3 0

1.0× 10−04 10.00 .2385× 10+01 −.1769× 10−04 −.1422× 10−04 .3476× 10−05 .80

.5333× 10+00 .2031× 10−05 .2721× 10−05 .6897× 10−06 1.34 69 4 0

1.0× 10−05 10.00 .2385× 10+01 −.9310× 10−06 −.8455× 10−06 .8548× 10−07 .91

.5333× 10+00 .1127× 10−06 .1344× 10−06 .2179× 10−07 1.19 78 4 1

1.0× 10−06 10.00 .2385× 10+01 −.6816× 10−07 −.6479× 10−07 .3365× 10−08 .95

.5333× 10+00 .8437× 10−08 .9503× 10−08 .1066× 10−08 1.13 86 5 0

1.0× 10−07 10.00 .2385× 10+01 −.400× 10−08 −.3887× 10−08 .1129× 10−09 .97

.5333× 10+00 .5100× 10−09 .5495× 10−09 .3952× 10−10 1.08 120 7 0

1.0× 10−08 10.00 .2385× 10+01 −.2469× 10−09 −.2429× 10−09 .4004× 10−11 .98

.5333× 10+00 .3179× 10−10 .3331× 10−10 .1515× 10−11 1.05 171 10 0

1.0× 10−09 10.00 .2385× 10+01 −.1821× 10−10 −.1809× 10−10 .1220× 10−12 .99

.5333× 10+00 .2227× 10−11 .2296× 10−11 .6903× 10−13 1.03 273 16 0

1.0× 10−10 10.00 .2385× 10+01 −.1053× 10−11 −.1048× 10−11 .5152× 10−14 1.00

.5333× 10+00 .1334× 10−12 .1359× 10−12 .2566× 10−14 1.02 409 24 0

1.0× 10−11 10.00 .2385× 10+01 −.6521× 10−13 −.6501× 10−13 .2032× 10−15 1.00

.5333× 10+00 .8335× 10−14 .8435× 10−14 .1006× 10−15 1.01 630 37 0

Problem 8
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 −.5466× 10+00 −.2601× 10−02 −.2070× 10−02 .5310× 10−03 .80

.1916× 10+02 −.2224× 10−02 −.1552× 10−02 .6727× 10−03 .70 155 8 2

1.0× 10−04 10.00 −.5443× 10+00 −.3051× 10−07 −.2721× 10−03 .3298× 10−04 .89

.1916× 10+02 −.9344× 10−04 −.6366× 10−04 .2978× 10−04 .68 232 12 3

1.0× 10−05 10.00 −.5440× 10+00 −.2244× 10−04 −.2124× 10−04 .1205× 10−05 .95

.1916× 10+02 .2744× 10−07 .1041× 10−05 .1013× 10−05 37.93 343 18 4

1.0× 10−06 10.00 −.5440× 10+00 −.1911× 10−05 −.1852× 10−05 .5839× 10−07 .97

.1916× 10+02 .4695× 10−06 .5185× 10−06 .4903× 10−07 1.10 496 27 4

1.0× 10−07 10.00 −.5440× 10+00 −.1287× 10−06 −.1265× 10−06 .2182× 10−08 .98

.1916× 10+02 .4940× 10−07 .5156× 10−07 .2158× 10−08 1.04 725 41 3

1.0× 10−08 10.00 −.5440× 10+00 −.9202× 10−08 −.9106× 10−08 .9673× 10−10 .99

.1916× 10+02 .4640× 10−08 .4748× 10−08 .1078× 10−09 1.02 1107 64 2

1.0× 10−09 10.00 −.5440× 10+00 −.5994× 10−09 −.5955× 10−09 .3852× 10−11 .99

.1916× 10+02 .3469× 10−09 .3517× 10−09 .4787× 10−11 1.01 1693 99 1

1.0× 10−10 10.00 −.5440× 10+00 −.3827× 10−10 −.3812× 10−10 .1525× 10−12 1.00

.1916× 10+02 .2453× 10−10 .2473× 10−10 .2042× 10−12 1.01 2653 156 0

1.0× 10−11 10.00 −.5440× 10+00 −.2368× 10−11 −.2362× 10−11 .5836× 10−14 1.00

.1916× 10+02 .1601× 10−11 .1609× 10−11 .8227× 10−14 1.01 4200 247 0
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Problem 9
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2537× 10+00 .3384× 10−01 .3008× 10−01 −.3758× 10−02 .89

.9338× 10+00 −.8913× 10−02 −.8051× 10−02 .8621× 10−03 .90

−.9673× 10+00 .1148× 10−01 .1014× 10−01 −.1341× 10−02 .88

.3669× 10+00 .3815× 10−01 .3228× 10−01 −.5870× 10−02 .85 412 21 6

1.0× 10−04 20.00 .2225× 10+00 .2627× 10−02 .2792× 10−02 .1645× 10−03 1.06

.9422× 10+00 −.5280× 10−03 −.5455× 10−03 −.1754× 10−04 1.03

−.9778× 10+00 .9372× 10−03 .9927× 10−03 .5548× 10−04 1.06

.3316× 10+00 .2831× 10−02 .2904× 10−02 .7320× 10−04 1.03 600 31 8

1.0× 10−05 20.00 .2201× 10+00 .1764× 10−03 .1835× 10−03 .7043× 10−05 1.04

.9427× 10+00 −.3178× 10−04 −.3186× 10−04 −.7344× 10−07 1.00

−.9787× 10+00 .6589× 10−04 .6870× 10−04 .2808× 10−05 1.04

.3290× 10+00 .1865× 10−03 .1889× 10−03 .2394× 10−05 1.01 863 47 7

1.0× 10−06 20.00 .2199× 10+00 .7858× 10−05 .8183× 10−05 .3246× 10−06 1.04

.9427× 10+00 −.1158× 10−05 −.1191× 10−05 −.3257× 10−07 1.03

−.9788× 10+00 .3193× 10−05 .3301× 10−05 .1074× 10−06 1.03

.3288× 10+00 .8154× 10−05 .8314× 10−05 .1603× 10−06 1.02 1331 74 8

1.0× 10−07 20.00 .2199× 10+00 .4038× 10−06 .4181× 10−06 .1425× 10−07 1.04

.9427× 10+00 −.4266× 10−07 −.4428× 10−07 −.1623× 10−08 1.04

−.9788× 10+00 .1805× 10−06 .1850× 10−06 .4511× 10−08 1.02

.3288× 10+00 .4107× 10−06 .4181× 10−06 .7345× 10−08 1.02 1965 115 1

1.0× 10−08 20.00 .2199× 10+00 .1711× 10−07 .1761× 10−07 .5056× 10−09 1.03

.9427× 10+00 −.6528× 10−09 −.7120× 10−09 −.5915× 10−10 1.09

−.9788× 10+00 .8852× 10−08 .9005× 10−08 .1521× 10−09 1.02

.3288× 10+00 .1712× 10−07 .1736× 10−07 .2437× 10−09 1.01 3121 183 1

1.0× 10−09 20.00 .2199× 10+00 .7438× 10−09 .7623× 10−09 .1848× 10−10 1.02

.9427× 10+00 .4401× 10−10 .4188× 10−10 −.2131× 10−11 .95

−.9788× 10+00 .4603× 10−09 .4657× 10−09 .5367× 10−11 1.01

.3288× 10+00 .7284× 10−09 .7366× 10−09 .8222× 10−11 1.01 4923 289 1

1.0× 10−10 20.00 .2199× 10+00 .3350× 10−10 .3419× 10−10 .6906× 10−12 1.02

.9427× 10+00 .6283× 10−11 .6205× 10−11 −.7739× 10−13 .99

−.9788× 10+00 .2522× 10−10 .2541× 10−10 .1955× 10−12 1.01

.3288× 10+00 .3191× 10−10 .3219× 10−10 .2836× 10−12 1.01 7796 458 1

1.0× 10−11 20.00 .2199× 10+00 .1572× 10−11 .1599× 10−11 .2632× 10−13 1.02

.9427× 10+00 .5404× 10−12 .5375× 10−12 −.2872× 10−14 .99

−.9788× 10+00 .1439× 10−11 .1447× 10−11 .7317× 10−14 1.01

.3288× 10+00 .1447× 10−11 .1457× 10−11 .1011× 10−13 1.01 12352 726 1

In deriving these results we have used an order 5 global error estimator

with a block 6(4) formula. This block formula is 5(4) at the first step and 6(4)

at the second step of the block. However the global error estimator that we

have derived is appropriate for a 5(4) formula. In view of this we would expect

the global error to sometimes be overestimated since the global error with a

6(4) formula will often be less than with a 5(4) formula. The numerical results

that we have presented bear out theses expectations. It would be of interest

to see how our global error estimator behaves on a block 5(4) formula which

is 5(4) on both steps and this we do in the next section.
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6.4 Results for Order 5 with 9 Stages

In this section we will derive a new block 5(4) pair. We will use the same

approach as we did in Chapter 3 with the only difference that we will use the

free coefficients to make the formula at the second step in the block 5(4) rather

than 6(4). The parameters were chosen in the following way:

1) set b̂2 = 0 and c9 = 1;

2) choose c8, b̂6, b̂8, b̂9 arbitrarily;

3) solve the order conditions of the form
9∑

i=1

b̂ic
j
i =

1

j + 1
, j = 0, 1, 2, 3, 4

for b̂1, b̂3, b̂4, b̂5, b̂7;

4) choose a85, a86, a87 arbitrarily;

5) a84 is given by
9∑

i=1

b̂i(1− ci)aijajkck =
1

120
;

6) a83 is given by
9∑

i=1

b̂i(1− ci)aijc
2
j =

1

60
;

7) a82 is given by
i−1∑
j=2

aijcj =
1

2
c2
i with i = 8;

8) a81 is given by the row-sum condition c8 =
7∑

i=1

a8i;

9) a9j are obtained from
9∑

i=1

b̂iaij = b̂j(1− cj), for j = 2, 3, . . . , 8;

10) a91 is given by the row-sum condition c9 =
8∑

i=1

a9i.

The b̄ of the embedded formula were obtained by:

11) setting b̄2 = 0;

12) choosing b̄6, b̄7, b̄8, b̄9 arbitrarily;

13) solving the order conditions of the form
9∑

i=1

b̄ic
j
i =

1

j + 1
, j = 0, 1, 2, 3

for b̄1, b̄3, b̄4, b̄5.
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The formula found is:
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0
500
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5
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0

7
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105

−113
35

479
252

0 0 0 0

1
44159
75600

−331
70

36437
72765

746587
15120

−1528551
30800

617
3920

1343
350

9
10

0

1169
6750

0 − 7648
10395

1877
270

−9153
1375

1
10

1343
1750

3
10

1
10

587
270

0 −3392
297

1541
27

−5481
110

1 1 1 0

(6.1)

For the global error estimator we have used (5.45) obtained in Chapter 5.

The results are given in the following 9 tables for each of the test problems

described earlier in this chapter.

Problem 1
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 5.00 .6731× 10−02 −.6796× 10−05 −.7436× 10−05 −.6398× 10−06 1.09 154 9 0

1.0× 10−04 5.00 .6737× 10−02 −.4934× 10−06 −.5109× 10−06 −.1748× 10−07 1.04 205 12 0

1.0× 10−05 5.00 .6738× 10−02 −.4292× 10−07 −.4359× 10−07 −.6752× 10−09 1.02 324 19 0

1.0× 10−06 5.00 .6738× 10−02 −.4049× 10−08 −.4075× 10−08 −.2661× 10−10 1.01 528 31 0

1.0× 10−07 5.00 .6738× 10−02 −.2541× 10−09 −.2546× 10−09 −.5782× 10−12 1.00 868 51 0

1.0× 10−08 5.00 .6738× 10−02 −.1647× 10−10 −.1649× 10−10 −.1283× 10−13 1.00 1480 87 0

1.0× 10−09 5.00 .6738× 10−02 −.1067× 10−11 −.1067× 10−11 −.2859× 10−15 1.00 2585 152 0

1.0× 10−10 5.00 .6738× 10−02 −.6173× 10−13 −.6173× 10−13 −.5330× 10−17 1.00 4523 266 0

1.0× 10−11 5.00 .6738× 10−02 −.3650× 10−14 −.3650× 10−14 −.1027× 10−18 1.00 800 470 1
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Problem 2
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3015× 10+00 −.2217× 10−05 −.2252× 10−05 −.3538× 10−07 1.02 154 9 0

1.0× 10−04 10.00 .3015× 10+00 −.3815× 10−06 −.3848× 10−06 −.3333× 10−08 1.01 222 13 0

1.0× 10−05 10.00 .3015× 10+00 −.4319× 10−07 −.4337× 10−07 −.1727× 10−09 1.00 307 18 0

1.0× 10−06 10.00 .3015× 10+00 −.4767× 10−08 −.4775× 10−08 −.8321× 10−11 1.00 477 28 0

1.0× 10−07 10.00 .3015× 10+00 −.4022× 10−09 −.4025× 10−09 −.2733× 10−12 1.00 749 44 0

1.0× 10−08 10.00 .3015× 10+00 −.3039× 10−10 −.3039× 10−10 −.7475× 10−14 1.00 1225 72 0

1.0× 10−09 10.00 .3015× 10+00 −.2082× 10−11 −.2082× 10−11 −.1784× 10−15 1.00 2092 123 0

1.0× 10−10 10.00 .3015× 10+00 −.1304× 10−12 −.1304× 10−12 −.3729× 10−17 1.00 3605 212 0

1.0× 10−11 10.00 .3015× 10+00 −.7844× 10−14 −.7844× 10−14 −.7318× 10−19 1.00 6317 371 1

Problem 3
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2490× 10+01 −.1353× 10−02 −.1209× 10−02 .1441× 10−03 .89 645 31 13

1.0× 10−04 20.00 .2491× 10+01 −.1861× 10−03 −.1882× 10−03 −.2081× 10−05 1.01 960 49 14

1.0× 10−05 20.00 .2492× 10+01 −.1512× 10−04 −.1527× 10−04 −.1491× 10−06 1.01 1507 78 20

1.0× 10−06 20.00 .2492× 10+01 −.3886× 10−06 −.3971× 10−06 −.8489× 10−08 1.02 2394 127 26

1.0× 10−07 20.00 .2492× 10+01 .2867× 10−07 .2822× 10−07 −.4510× 10−09 .98 3909 214 30

1.0× 10−08 20.00 .2492× 10+01 .3811× 10−08 .3772× 10−08 −.3823× 10−10 .99 6624 370 37

1.0× 10−09 20.00 .2492× 10+01 .5696× 10−09 .5682× 10−09 −.1416× 10−11 1.00 11411 650 40

1.0× 10−10 20.00 .2492× 10+01 .1976× 10−09 .1975× 10−09 −.1067× 10−12 1.00 19911 1150 40

1.0× 10−11 20.00 .2492× 10+01 .4287× 10−10 .4286× 10−10 −.1187× 10−13 1.00 34909 2037 31

Problem 4
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .1773× 10+02 −.5497× 10−03 −.5742× 10−03 −.2450× 10−04 1.04 146 8 1

1.0× 10−04 20.00 .1773× 10+02 −.1045× 10−03 −.1075× 10−03 −.2939× 10−05 1.03 214 12 1

1.0× 10−05 20.00 .1773× 10+02 −.1028× 10−04 −.1038× 10−04 −.1010× 10−06 1.01 299 17 1

1.0× 10−06 20.00 .1773× 10+02 −.1097× 10−05 −.1101× 10−05 −.3867× 10−08 1.00 487 27 3

1.0× 10−07 20.00 .1773× 10+02 −.1196× 10−06 −.1198× 10−06 −.1824× 10−09 1.00 784 45 2

1.0× 10−08 20.00 .1773× 10+02 −.5904× 10−08 −.5906× 10−08 −.1533× 10−11 1.00 1328 77 2

1.0× 10−09 20.00 .1773× 10+02 −.4568× 10−09 −.4568× 10−09 −.2835× 10−13 1.00 2306 134 3

1.0× 10−10 20.00 .1773× 10+02 −.4222× 10−10 −.4222× 10−10 −.5629× 10−15 1.00 4014 235 2

1.0× 10−11 20.00 .1773× 10+02 −.3495× 10−11 −.3495× 10−11 −.9514× 10−18 1.00 7066 414 3

Problem 5
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 −.2543× 10+05 −.2543× 10+05 −.2711× 10+05 −.1672× 10+04 1.07 489 25 7

1.0× 10−04 20.00 −.2510× 10+04 −.2511× 10+04 −.2590× 10+04 −.7906× 10+02 1.03 975 52 10

1.0× 10−05 20.00 −.1977× 10+03 −.1986× 10+03 −.2012× 10+03 −.2672× 10+01 1.01 1637 92 8

1.0× 10−06 20.00 −.1177× 10+02 −.1269× 10+02 −.1276× 10+02 −.7258× 10−01 1.01 2677 150 14

1.0× 10−07 20.00 .2159× 10+00 −.6970× 10+00 −.6985× 10+00 −.1524× 10−02 1.00 4692 268 15

1.0× 10−08 20.00 .8798× 10+00 −.3315× 10−01 −.3318× 10−01 −.2408× 10−04 1.00 8091 469 13

1.0× 10−09 20.00 .9115× 10+00 −.1444× 10−02 −.1445× 10−02 −.3141× 10−06 1.00 14272 831 16

1.0× 10−10 20.00 .9129× 10+00 −.6495× 10−04 −.6496× 10−04 −.3916× 10−08 1.00 25184 1475 12

1.0× 10−11 20.00 .9129× 10+00 −.2692× 10−05 −.2692× 10−05 −.2933× 10−10 1.00 44667 2620 14
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Problem 6
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .3134× 10+02 .5288× 10−04 .5314× 10−04 .2604× 10−06 1.00

.2295× 10+00 −.3542× 10−04 −.3666× 10−04 −.1244× 10−05 1.04 78 4 1

1.0× 10−04 10.00 .3134× 10+02 .3648× 10−04 .3775× 10−04 .1264× 10−05 1.03

.2295× 10+00 −.1048× 10−04 −.1092× 10−04 −.4434× 10−06 1.04 78 4 1

1.0× 10−05 10.00 .3134× 10+02 .1077× 10−05 .1104× 10−05 .2685× 10−07 1.02

.2295× 10+00 −.7585× 10−06 −.7667× 10−06 −.8191× 10−08 1.01 95 5 1

1.0× 10−06 10.00 .3134× 10+02 .2248× 10−06 .2261× 10−06 .1305× 10−08 1.01

.2295× 10+00 −.8853× 10−07 −.8908× 10−07 −.5421× 10−09 1.01 155 8 2

1.0× 10−07 10.00 .3134× 10+02 .3895× 10−08 .3897× 10−08 .1968× 10−11 1.00

.2295× 10+00 −.7166× 10−08 −.7178× 10−08 −.1254× 10−10 1.00 223 12 2

1.0× 10−08 10.00 .3134× 10+02 −.1122× 10−08 −.1122× 10−08 −.7365× 10−12 1.00

.2295× 10+00 −.4792× 10−09 −.4794× 10−09 −.1942× 10−12 1.00 376 21 2

1.0× 10−09 10.00 .3134× 10+02 −.1877× 10−09 −.1877× 10−09 −.3292× 10−13 1.00

.2295× 10+00 −.3415× 10−10 −.3415× 10−10 −.3093× 10−14 1.00 631 36 2

1.0× 10−10 10.00 .3134× 10+02 −.1952× 10−10 −.1952× 10−10 −.9820× 10−15 1.00

.2295× 10+00 −.2193× 10−11 −.2193× 10−11 −.2713× 10−16 1.00 1098 64 1

1.0× 10−11 10.00 .3134× 10+02 −.1676× 10−11 −.1676× 10−11 −.2962× 10−16 1.00

.2295× 10+00 −.1370× 10−12 −.1370× 10−12 .9340× 10−19 1.00 1939 114 0

Problem 7
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 .2385× 10+01 −.1942× 10−04 −.1912× 10−04 .2962× 10−06 .98

.5333× 10+00 .3334× 10−05 .3366× 10−05 .3184× 10−07 1.01 69 4 0

1.0× 10−04 10.00 .2385× 10+01 −.2894× 10−05 −.2876× 10−05 .1733× 10−07 .99

.5333× 10+00 .5081× 10−06 .5105× 10−06 .2437× 10−08 1.00 69 4 0

1.0× 10−05 10.00 .2385× 10+01 −.5111× 10−06 −.5103× 10−06 .7397× 10−09 1.00

.5333× 10+00 .7741× 10−07 .7760× 10−07 .1900× 10−09 1.00 103 6 0

1.0× 10−06 10.00 .2385× 10+01 −.5158× 10−07 −.5155× 10−07 .3486× 10−10 1.00

.5333× 10+00 .8554× 10−08 .8563× 10−08 .8582× 10−11 1.00 137 8 0

1.0× 10−07 10.00 .2385× 10+01 −.1250× 10−07 −.1250× 10−07 .2881× 10−11 1.00

.5333× 10+00 .1832× 10−08 .1834× 10−08 .1080× 10−11 1.00 188 11 0

1.0× 10−08 10.00 .2385× 10+01 −.4802× 10−08 −.4801× 10−08 .8477× 10−12 1.00

.5333× 10+00 .6964× 10−09 .6967× 10−09 .3264× 10−12 1.00 300 16 3

1.0× 10−09 10.00 .2385× 10+01 −.4700× 10−10 −.4697× 10−10 .2875× 10−13 1.00

.5333× 10+00 .2240× 10−10 .2240× 10−10 .2918× 10−14 1.00 555 31 3

1.0× 10−10 10.00 .2385× 10+01 .2430× 10−12 .2437× 10−12 .7281× 10−15 1.00

.5333× 10+00 .1151× 10−11 .1151× 10−11 .5099× 10−16 1.00 1014 58 3

1.0× 10−11 10.00 .2385× 10+01 .5864× 10−13 .5865× 10−13 .7529× 10−17 1.00

.5333× 10+00 .3462× 10−13 .3462× 10−13 .4120× 10−18 1.00 1864 108 3

Problem 8
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 10.00 −.5440× 10+00 −.2711× 10−04 −.2481× 10−04 .2303× 10−05 .92

.1916× 10+02 −.3124× 10−03 −.2963× 10−03 .1611× 10−04 .95 317 17 3

1.0× 10−04 10.00 −.5440× 10+00 −.6010× 10−05 −.5893× 10−05 .1171× 10−06 .98

.1916× 10+02 −.2102× 10−04 −.2065× 10−04 .3676× 10−06 .98 478 27 2

1.0× 10−05 10.00 −.5440× 10+00 −.5910× 10−06 −.5870× 10−06 .4031× 10−08 .99

.1916× 10+02 −.1433× 10−05 −.1424× 10−05 .9318× 10−08 .99 792 46 1

1.0× 10−06 10.00 −.5440× 10+00 −.4272× 10−07 −.4262× 10−07 .9700× 10−10 1.00

.1916× 10+02 −.8494× 10−07 −.8476× 10−07 .1868× 10−09 1.00 1353 79 1

1.0× 10−07 10.00 −.5440× 10+00 −.2771× 10−08 −.2769× 10−08 .2107× 10−11 1.00

.1916× 10+02 −.4976× 10−08 −.4972× 10−08 .3707× 10−11 1.00 2382 139 2

1.0× 10−08 10.00 −.5440× 10+00 −.1658× 10−09 −.1658× 10−09 .4022× 10−13 1.00

.1916× 10+02 −.2812× 10−09 −.2811× 10−09 .6708× 10−13 1.00 4192 246 1

1.0× 10−09 10.00 −.5440× 10+00 −.9740× 10−11 −.9739× 10−11 .7621× 10−15 1.00

.1916× 10+02 −.1602× 10−10 −.1602× 10−10 .1236× 10−14 1.00 7430 437 0

1.0× 10−10 10.00 −.5440× 10+00 −.5523× 10−12 −.5523× 10−12 .1362× 10−16 1.00

.1916× 10+02 −.8927× 10−12 −.8927× 10−12 .2173× 10−16 1.00 13176 775 0

1.0× 10−11 10.00 −.5440× 10+00 −.3127× 10−13 −.3127× 10−13 .2434× 10−18 1.00

.1916× 10+02 −.5005× 10−13 −.5005× 10−13 .3849× 10−18 1.00 23436 1378 1
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Problem 9
Tolerance End Numerical Global Estimated Difference Ratio No. of No. of No. of

Point Solution Error Error F. Eval. Steps Reject.

1.0× 10−03 20.00 .2245× 10+00 .4630× 10−02 .4383× 10−02 −.2466× 10−03 .95

.9409× 10+00 −.1789× 10−02 −.1760× 10−02 .2883× 10−04 .98

−.9779× 10+00 .8647× 10−03 .7630× 10−03 −.1017× 10−03 .88

.3344× 10+00 .5618× 10−02 .5380× 10−02 −.2374× 10−03 .96 726 40 5

1.0× 10−04 20.00 .2207× 10+00 .7761× 10−03 .7664× 10−03 −.9698× 10−05 .99

.9425× 10+00 −.2414× 10−03 −.2395× 10−03 .1950× 10−05 .99

−.9786× 10+00 .1920× 10−03 .1887× 10−03 −.3284× 10−05 .98

.3297× 10+00 .8707× 10−03 .8609× 10−03 −.9759× 10−05 .99 1098 64 1

1.0× 10−05 20.00 .2199× 10+00 .6191× 10−04 .6172× 10−04 −.1917× 10−06 1.00

.9427× 10+00 −.1793× 10−04 −.1788× 10−04 .4500× 10−07 1.00

−.9787× 10+00 .1654× 10−04 .1648× 10−04 −.5773× 10−07 1.00

.3289× 10+00 .6807× 10−04 .6788× 10−04 −.1927× 10−06 1.00 1889 110 2

1.0× 10−06 20.00 .2199× 10+00 .3917× 10−05 .3914× 10−05 −.3481× 10−08 1.00

.9427× 10+00 −.1111× 10−05 −.1110× 10−05 .8853× 10−09 1.00

−.9788× 10+00 .1072× 10−05 .1071× 10−05 −.9735× 10−09 1.00

.3288× 10+00 .4285× 10−05 .4281× 10−05 −.3497× 10−08 1.00 3317 194 2

1.0× 10−07 20.00 .2199× 10+00 .2286× 10−06 .2286× 10−06 −.6198× 10−10 1.00

.9427× 10+00 −.6433× 10−07 −.6432× 10−07 .1623× 10−10 1.00

−.9788× 10+00 .6318× 10−07 .6317× 10−07 −.1685× 10−10 1.00

.3288× 10+00 .2497× 10−06 .2496× 10−06 −.6234× 10−10 1.00 5867 344 2

1.0× 10−08 20.00 .2199× 10+00 .1307× 10−07 .1307× 10−07 −.1100× 10−11 1.00

.9427× 10+00 −.3664× 10−08 −.3664× 10−08 .2924× 10−12 1.00

−.9788× 10+00 .3632× 10−08 .3632× 10−08 −.2941× 10−12 1.00

.3288× 10+00 .1427× 10−07 .1427× 10−07 −.1107× 10−11 1.00 10423 612 2

1.0× 10−09 20.00 .2199× 10+00 .7411× 10−09 .7411× 10−09 −.1949× 10−13 1.00

.9427× 10+00 −.2072× 10−09 −.2072× 10−09 .5224× 10−14 1.00

−.9788× 10+00 .2064× 10−09 .2064× 10−09 −.5166× 10−14 1.00

.3288× 10+00 .8085× 10−09 .8085× 10−09 −.1962× 10−13 1.00 18498 1087 2

1.0× 10−10 20.00 .2199× 10+00 .4176× 10−10 .4176× 10−10 −.3433× 10−15 1.00

.9427× 10+00 −.1166× 10−10 −.1166× 10−10 .9229× 10−16 1.00

−.9788× 10+00 .1165× 10−10 .1165× 10−10 −.9058× 10−16 1.00

.3288× 10+00 .4556× 10−10 .4556× 10−10 −.3453× 10−15 1.00 32906 1934 3

1.0× 10−11 20.00 .2199× 10+00 .2354× 10−11 .2354× 10−11 −.6101× 10−17 1.00

.9427× 10+00 −.6570× 10−12 −.6570× 10−12 .1644× 10−17 1.00

−.9788× 10+00 .6573× 10−12 .6573× 10−12 −.1605× 10−17 1.00

.3288× 10+00 .2568× 10−11 .2568× 10−11 −.6138× 10−17 1.00 58474 3438 3

It can be seen that the results obtained with this global error estimator

are excellent. Often the global error is correctly estimated to at least two

decimal places. The underlying numerical results are also very efficient with

there being very few rejected steps. We feel that this is an excellent method

of global error estimation which should be an option in subroutine libraries.
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Chapter 7

An Alternative Approach to Stability

7.1 Introduction

In this chapter we will study a different concept of stability that was

first considered by Higham and Hall [Hall88], [Higham91], [Higham90],

[Higham89]. This theory can be used to determine whether a Runge-Kutta

algorithm will perform smoothly when stability rather than accuracy restricts

the stepsize. In the case of stiff problems we use formulae with very large

stability regions which means that the stepsize is normally not restricted by

stability requirements. Indeed when dealing with stiff problems it is normal

to use formulae with infinite regions of absolute stability and in this case

stability concepts such as A- and L-stability are appropriate. In the case of

mildly stiff problems we use explicit methods since these seem to be the most

efficient and in this case the stepsize is often limited by stability. When the

algorithm attempts to use a step that is outside the stability region of the

method then the error estimator will normally indicate a failure and another

step is attempted which is hopefully inside the stability region. We consider

the case where we wish to solve an initial value problem using a pair of explicit

Runge-Kutta formulae of orders p(p− 1). The solution obtained by the main

order p method is given by:

yn+1 = yn + h

s∑
i=1

biki, (7.1)

and the solution obtained by the embedded order p− 1 method is given by:

ȳn+1 = yn + h

s∑
i=1

b̄iki. (7.2)
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The new stability concept which we will describe is again based on the scalar

test equation (1.15). If we apply the main method of order p (7.1) to the scalar

test equation y′ = λy we obtain yn+1 = R(z)yn, where z = λh. If we do the

same with the embedded method we get ȳn+1 = R̄(z)yn. If we now evaluate

the difference E(z) = R(z) − R̄(z) and define errn = E(z)yn, we can control

the stepsize using:

hn+1 = hnSF

(
TOL

|errn|
)α

(7.3)

where TOL is a local tolerance given by the user and α =
1

p
. Equation (7.3)

defines the normal way of choosing the stepsize where SF is a safety factor,

often equal to about 0.9, to account for the fact that we have neglected certain

high order terms. Let us define the matrix

C =

[
1 u

−α 1− αv

]
, (7.4)

where u = Re

(
R′(z)

R(z)
z

)
and v = Re

(
E ′(z)

E(z)
z

)
. We are now in a position to

state the proposition (see [Hairer91]) below:

Theorem 7.1 The step control mechanism (7.3) is stable for z = λh on the

boundary of the stability region iff the spectral radius of C in (7.4) satisfies:

ρ(C) < 1.

If this inequality is satisfied the method is called SC-stable at z.

The matrix C is independent of the given differential equation and of the given

tolerance. It is therefore a characteristic of the numerical method and the

boundary of its stability region. In what follows we will examine the possibility

of deriving block SC-stable methods. A convenient test problem for testing the

performances of SC-stable methods is:

y′1 = −2000(y1 cos x + y2 sin x + 1), y1(0) = 1

y′2 = −2000(−y1 sin x + y2 cos x + 1), y2(0) = 0
(7.5)

for 0 ≤ x ≤ 1.57. For this range of x the eigenvalues of the Jacobian of (7.5)

move slowly on a large circle from −2000 to ±2000i. For such a problem

the eigenvalues have a sufficiently large modulus that for most tolerances the
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stepsize will be restricted by stability rather than by accuracy. In such cir-

cumstances we expect an SC-stable method to be superior to one which does

not have this stability property. In what follows we will derive some SC-stable

methods and test them on the problem (7.5).

7.2 Order 2 with 3 Stages

We will consider a general 2(1) pair of formulae using three function

evaluations given by:

0 0

c2 c2 0

c3 a31 a32 0

b1 b2 b3

b̄1 b̄2 b̄3

(7.6)

The stability polynomial of the main order 2 formula is: R(z) = 1 + z +
1

2
z2 +

tz3, where t = b3a32c2. It immediately follows that R′(z) = 1 + z + 3tz2.

Similarly, for the embedded order 1 formula, R̄(z) = 1 + z + w2z
2 + w3z

3,

where w2 = b̄2c2 + b̄3c3 and w3 = b̄3a32c2. Now we can evaluate the difference

E(z) = R(z) − R̄(z) = (
1

2
− w2)z

2 + (t − w3)z
3. The first derivative is:

E ′(z) = 2(
1

2
− w2)z + 3(t − w3)z

2. If we take into consideration the order

conditions and the row-sum conditions that the methods have satisfy if they are

to have the required orders we have 6 free parameters left at our disposal. After

some numerical searching we derived the method with t =
329

5000
, w1 =

1893

4700
,

w2 =
77

2000
, which give improved regions of SC-stability:

0 0

7
200

7
200

0

493
700

−1387
700

94
35

0

1
10

1
5

7
10

−503
188

307
94

77
188

(7.7)
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7. An Alternative Approach to Stability

When we apply this method to solve problem (7.5) we obtained 321 rejections

when we considered SF = 0.9 and 156 when SF = 0.8, in both cases the

tolerance used was TOL = 10−6. We wish to compare this performance with

that of a standard Runge-Kutta method.

As a conventional Runge-Kutta formula we consider the following 2(1)

pair:

0 0

1
2

1
2

0

0 1

1 0

(7.8)

When we use this pair to solve the same problem (7.5) we have 198 rejections

for SF = 0.8 and 437 for SF = 0.9. This shows that we have a smaller number

of rejections, in both cases, than when we used the block formulae. The graph

of the stability regions of the order 2 method (7.7) is given in Figure 7.1, where

the dotted line corresponds to the absolute stability region and the thick line

to the SC-stability region. Although we have reduced the number of rejections

by a small amount the small decrease is disappointing. Hence we will again

consider a 2(1) pair but now with four function evaluations to see if we get a

more dramatic decrease in the number of rejections.

7.3 Order 2 with 4 Stages

We will consider a general 2(1) pair of formulae using four function evalu-

ations given by:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

b1 b2 b3 b4

b̄1 b̄2 b̄3 b̄4

(7.9)

The stability polynomial of the main order 2 formula is: R(z) = 1 + z +
1

2
z2 + t3z

3 + t4z
4, where t3 = b3a32c2 + b4(a42c2 + a43c3) and t4 = b4a43a32c2.
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Figure 7.1: Stability region of (7.7)
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Differentiating this expression we obtain R′(z) = 1+z+3t3z
2+4t4z

3. Similarly,

for the embedded order 1 formula, R̄(z) = 1+z+w2z
2+w3z

3+w4z
4, where w2 =

b̄2c2 + b̄3c3 + b̄4c4, w3 = b̄3a32c2 + b̄4(a42c2 +a43c3) and w4 = b̄4a43a32c2. Now we

can evaluate the difference E(z) = R(z)−R̄(z) = (
1

2
−w2)z

2+(t3−w3)z
3+(t4−

w4)z
4. The first derivative is: E ′(z) = 2(

1

2
−w2)z +3(t3−w3)z

2 +4(t4−w4)z
3.

We have 11 free parameters at our disposal. After some numerical searching

we found the following block 2(1) formula with t1 =
3

20
, t2 =

1

64
, w1 =

49

100
,

w2 =
3

20
, w3 =

1

64
:

0 0

1
20

1
20

0

1
5

− 1
10

3
10

0

7
10

123
140

−5
3

125
84

0

1
10

1
5

0
7
10

3
10

0 0
7
10

(7.10)

When we applied this method to solve problem (7.5) we obtained 1 rejection

for both the cases SF = 0.8 and SF = 0.9 when the tolerance used was

TOL = 10−6. When we use the conventional method (7.8) to solve the same

problem (7.5) we have 198 rejections for SF = 0.8 and 437 for SF = 0.9. This

gives a very large decrease in the number of rejections and is a much better

result than was obtained in the case of three functions evaluations. The graph

of the stability region of the order 2 method (7.10) is given in Figure 7.2, where

again the dotted line corresponds to the absolute stability region and the thick

line to the SC-stability region.

188



7. An Alternative Approach to Stability

-6 -5 -4 -3 -2 -1 0

1

2

3

4

5

6

Figure 7.2: Stability region of (7.10)
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7.4 Order 3 with 5 Stages

We now consider a general 3(2) pair of formulae using five function evalu-

ations given by:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

b1 b2 b3 b4 b5

b̄1 b̄2 b̄3 b̄4 b̄5

(7.11)

The stability polynomial of the main order 3 formula is: R(z) = 1 + z +
1

2
z2 +

1

6
z3 + t4z

4 + t5z
5, where t4 = b4a43a32c2 + b5(a53a32c2 + a54(a42c2 + a43c3))

and t5 = b5a54a43a32c2. Differentiating this expression we obtain R′(z) =

1 + z +
1

2
z2 + 4t4z

3 + 5t5z
4. Similarly for the embedded order 2 formula,

R̄(z) = 1 + z +
1

2
z2 + w3z

3 + w4z
4 + w5z

5, where w3 =
5∑

ij=1

b̄iaijcj, w4 =

5∑

ijk=1

b̄iaijajkck and w5 =
5∑

ijkl=1

b̄iaijajkaklcl. Now if we evaluate the difference

we obtain E(z) = R(z) − R̄(z) = (
1

6
− w3)z

3 + (t4 − w4)z
4 + (t5 − w5)z

5.

The first derivative is: E ′(z) = 3(
1

6
− w3)z

2 + 4(t4 − w4)z
3 + 5(t5 − w5)z

4.

We have 18 free parameters at our disposal. After some numerical searching

we found a block formula with t4 =
450899

14112000
, t5 =

54899

23520000
, w3 =

10891

75600
,
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7. An Alternative Approach to Stability

w4 =
54899

3528000
, w5 = 0. This is given by:

0 0

1
4

1
4

0

3
8

425
4704

1339
4704

0

4
5

− 40664
209375

1276
3125

122672
209375

0

1
347
120

−989
330

−194
255

8375
4488

0

17
120

− 1
165

196
425

1675
4488

3
100

− 19
1800

248
825

1288
3825

1675
4488

0

(7.12)

When we apply this method to solve problem (7.5) we obtained 87 rejections

when we consider SF = 0.8 and 191 when SF = 0.9 in both cases the tolerance

used was TOL = 10−6. If we consider as a conventional Runge-Kutta formula

the 3(2) pair that we have used in Chapter 3 as the first step of our block

formula (3.22), when we use this pair to solve the same problem (7.5) we have

275 rejections for SF = 0.8 and 409 for SF = 0.9. This shows that we have a

smaller number of rejections, in both cases, when we used the block formulae.

The graph of the stability region of the order 3 method (7.12) is given in

Figure 7.3, where the dotted line corresponds to the absolute stability region

and the thick line to the SC-stability region.
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Figure 7.3: Stability region of (7.12)
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7.5 Order 3 with 6 Stages

Finally we will consider a general 3(2) pair of formulae using six function

evaluations given by:

0 0

c2 c2 0

c3 a31 a32 0

c4 a41 a42 a43 0

c5 a51 a52 a53 a54 0

c6 a61 a62 a63 a64 a65 0

b1 b2 b3 b4 b5 b6

b̄1 b̄2 b̄3 b̄4 b̄5 b̄6

(7.13)

The stability polynomial of the main order 3 formula is: R(z) = 1 + z +
1

2
z2 +

1

6
z3 + t4z

4 + t5z
5 + t6z

6, where t4 =
6∑

i,j,k=1

biaijajkck, t5 =
6∑

i,j,k,l=1

biaijajkaklcl

and t6 = b6a65a54a43a32c2. Differentiating this expression we obtain R′(z) =

1+z+
1

2
z2 +4t4z

3 +5t5z
4 +6t6z

5. Similarly for the embedded order 2 formula,

R̄(z) = 1 + z +
1

2
z2 + w3z

3 + w4z
4 + w5z

5 + w6z
6, where w3 =

6∑
ij=1

b̄iaijcj,

w4 =
6∑

ijk=1

b̄iaijajkck, w5 =
6∑

ijkl=1

b̄iaijajkaklcl and w6 =
6∑

ijklm=1

b̄iaijajkaklalmcm.

Now we can evaluate the difference E(z) = R(z)− R̄(z) = (
1

6
− w3)z

3 + (t4 −
w4)z

4 +(t5−w5)z
5 +(t6−w6)z

6. The first derivative is: E ′(z) = 3(
1

6
−w3)z

2 +

4(t4 − w4)z
3 + 5(t5 − w5)z

4 + 6(t6 − w6)z
5. We have 25 free parameters at

our disposal. After some numerical searching we found a block formula with

t4 =
1

24
, t5 =

4

625
, t6 =

1

2500
, w3 =

17

100
, w4 =

421

10000
, w5 =

4

625
, w6 =

1

2500
.
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This is given by:

0 0

1

4

1

4
0

3

8
0

3

8
0

1

2

2

5
− 2

5

1

2
0

7

10

10425679

17769375
− 2048576

1974375

7930427

7107750

128

3645
0

9

10
− 121679348

479773125

48781612

53308125

866266321

959546250
− 500325547

319848750

9

10
0

1238

9375

172

9375

3104

9375

8569

37500

1

50

27

100

71448709057

1155009375000

40413713857

128334375000

122433793049

288752343750
− 529874581163

1540012500000

1065841

3900000

27

100

(7.14)

When we apply this method to solve problem (7.5) we have obtained 8 rejec-

tions when we consider SF = 0.8 and 9 when SF = 0.9 in both cases the

tolerance used was TOL = 10−6. This shows that we have a much smaller

number of rejections, in both cases, when we used the block formulae. The

graph of the stability region of the order 3 method (7.14) is given in Figure 7.4,

where the dotted line corresponds to the absolute stability region and the thick

line to the SC-stability region.

These results show that by using a block approach we can find formulae

with slightly improved regions of SC-stability which are very efficient for mildly

stiff problems. By considering blocks with more functions we could find even

higher order SC-stable formulae and we leave this as a topic for future re-

search. However it should be said that the improvements in SC-stability are

disappointing although the numerical results obtained are considerably better.

More work is needed to understand this.
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Figure 7.4: Stability region of (7.14)
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Appendix A

Code to Implement Block 6(5) formula

(3.61)

C PROGRAM RUN (INPUT,OUTPUT,RESULT,TAPE5=INPUT,TAPE6=RESULT)

C

C PROGRAM TO INTEGRATE DY/DT=-Y, Y(0)=1 IN THE RANGE 0.LE.T.LE.20

C WITH OUTPUT REQUIRED AT T=1.0,2.0,.....,19.0,20.0.

C

C THE DIMENSION STATEMENT HAS BEEN SET UP FOR 10 DIFFERENTIAL

C EQUATIONS.

C

DIMENSION Y(10),YP(10),WORK(116),IWORK(5)

EXTERNAL FCN

open(1,file=’65.res’)

iout=1

C

C SET INPUT PARAMETERS TO SUBROUTINE BRKF56

C

NEQN = 1

Y(1) = 1.0E+0

T = 0.0E+0

IFLAG = -1

DEL = 1.0E+0

K = 1

TOUT = K*DEL

TEND = 20.0E+0

RELERR = 1.E-11

ABSERR = 1.E-10

WRITE(IOUT, 50)

C

C INPUT PARAMETERS SET.

C

10 CALL BRKF56 (FCN,NEQN,Y,T,TOUT,TEND,YP,RELERR,ABSERR,IFLAG,WORK,

* IWORK)
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A. Code to Implement Block 6(5) formula (3.61)

IF (IFLAG.LE.2) GO TO 30

C

C IF IFLAG IS GREATER THAN 2 WE HAVE AN INPUT ERROR.

C

WRITE (IOUT,20) IFLAG,NEQN,IWORK(1),T,TOUT,RELERR,ABSERR

20 FORMAT (1X,’FAILURE’,5X,’IFLAG,NEQN,NUM F EVAL = ’,2I5,I10/

* 13X,’T,TOUT = ’,2F13.4,/13X,’RELERR,ABSERR = ’,1P2E10.1)

IF (IFLAG .EQ. 3) THEN

WRITE (IOUT,25)

25 FORMAT (1X,’RELATIVE ERROR TOLERANCE INCREASED TO CONTINUE’)

GO TO 10

ELSE

STOP

END IF

30 CONTINUE

IF (T.LT.TOUT) GO TO 10

C

C THE INTEGRATION HAS PASSED THE OUTPUT POINT T=TOUT.

C

A = EXP(-T)

B = -A

E1 = Y(1)-A

E2 = YP(1)-B

C

C E1 AND E2 ARE THE ERRORS IN THE INTERPOLATED SOLUTION

C AND DERIVATIVE

C

WRITE (IOUT,60) T,Y(1),YP(1),E1,E2,IWORK(1)

C

C SET NEW VALUE OF THE OUTPUT POINT.

C

K = K + 1

TOUT = K*DEL

IF(ABS(TOUT-TEND).LT.ABSERR) TOUT=TEND

IF (T.NE.TEND) GO TO 10

50 FORMAT(5X,1HT, 11X, 6H Y, 14X,

* 10H DY/DT, 6X, 10HERROR IN Y, 3X,

* 14HERROR IN DY/DT)

60 FORMAT (1X,F8.4,1P2E20.10,2E10.2,I6)

END

SUBROUTINE FCN (T,Y,YP)

DIMENSION Y(1),YP(1)

YP(1) = -Y(1)

RETURN

END

SUBROUTINE BRKF56(FCN,NEQN,Y,T,TOUT,TEND,YP,RELERR,ABSERR,IFLAG,

* WORK,IWORK)

C

C BLOCK FEHLBERG FIFTH-SIXTH ORDER RUNGE-KUTTA METHOD ADVANCING

C A BLOCK OF TWO EQUAL STEPS. THE FORMULA AT THE FIRST STEP IS
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C 6(5) WHILE AT THE SECOND STEP IT IS 7(5).

C

C BRKF56 IS PRIMARILY DESIGNED TO SOLVE NON-STIFF AND MILDLY STIFF

C INITIAL VALUE ORDINARY DIFFERENTIAL EQUATIONS WHEN DERIVATIVE

C EVALUATIONS ARE INEXPENSIVE. BRKF56 USES INTERPOLATION TO PRODUCE

C OUTPUT AT ’OFF-STEP POINTS’ EFFICIENTLY. BRKF SHOULD GENERALLY

C NOT BE USED WHEN THE USER IS DEMANDING HIGH ACCURACY. IN SUCH

C CASES A GOOD ADAMS CODE WILL OFTEN BE MORE EFFICIENT.

C

C***********************************************************************

C ABSTRACT

C***********************************************************************

C

C SUBROUTINE BRKF56 INTEGRATES A SYSTEM OF NEQN FIRST ORDER

C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM

C

C DY(I)/DT = FCN(T,Y(1),Y(2),...,Y(NEQN))

C

C WHERE THE Y(I) ARE KNOWN AT TIME T.

C TYPICALLY THE SUBROUTINE IS USED TO INTEGRATE FROM T TO TEND

C (WHILE RETURNING ANSWERS AT SPECIFIED OUTPUT POINTS TOUT), BUT

C IT CAN ALSO BE USED AS A ONE-BLOCK INTEGRATOR TO ADVANCE THE

C SOLUTION A SINGLE BLOCK STEP IN THE DIRECTION OF TEND. ON RETURN

C THE PARAMETERS IN THE CALL LIST ARE SET FOR CONTINUING THE

C INTEGRATION. THE USER HAS ONLY TO CALL BRKF56 AGAIN (AND PERHAPS

C DEFINE A NEW VALUE FOR TOUT). ACTUALLY, BRKF56 IS AN INTERFACING

C ROUTINE WHICH CALLS SUBROUTINE RKFC FOR THE SOLUTION. SUBROUTINE

C RKFC COMPUTES AN APPROXIMATE SOLUTION OVER ONE BLOCK OF LENGTH 2H.

C BRKF IS PARTICULARLY USEFUL WHEN OUTPUT IS REQUIRED AT MANY

C ’OFF-STEP POINTS’ SINCE THE OUTPUT VALUES CAN BE OBTAINED BY

C INTERPOLATION. THIS IS IN CONTRAST TO MANY OTHER RUNGE-KUTTA

C PROGRAMS WHICH CHOOSE THE STEP SEQUENCE SO AS TO HIT ALL OUTPUT

C POINTS EXACTLY AND SO BECOME INEFFICIENT WHEN OUTPUT IS REQUIRED

C AT MANY POINTS WITHIN A STEP.

C BRKF56 USES THE (6,5); (7,5) BLOCK FORMULA DESCRIBED IN

C J.R. CASH and I. VIEIRA,

C BLOCK 6(5) AND 7(6) EXPLICIT RUNGE-KUTTA FORMULAE (TO APPEAR).

C

C THE PARAMETERS REPRESENT-

C FCN -- SUBROUTINE FCN(T,Y,YP) TO EVALUATE DERIVATIVES

C YP(I)=DY(I)/DT

C NEQN -- NUMBER OF DIFFERENTIAL EQUATIONS TO BE INTEGRATED.

C Y(*) -- APPROXIMATION TO THE SOLUTION VECTOR AT T.

C T -- INDEPENDENT VARIABLE.

C TOUT -- THE NEXT POINT WHERE INTERMEDIATE OUTPUT IS

C REQUIRED. APPROXIMATE SOLUTIONS AT THESE POINTS

C WILL BE OBTAINED BY INTERPOLATION.

C TEND -- END OF THE INTEGRATION RANGE. THIS WILL BE HIT EXACTLY.

C YP(*) -- APPROXIMATION TO THE DERIVATIVE VECTOR DY/DT AT T.

C RELERR,ABSERR -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR
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C LOCAL ERROR TEST. AT THE NTH POINT OF EACH BLOCK (N=1,2)

C THE CODE REQUIRES THAT

C ABS(LOCAL ERROR)/N .LE. RELERR*ABS(Y) + ABSERR

C FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS

C IFLAG -- INDICATOR FOR STATUS OF INTEGRATION.

C WORK(*) -- ARRAY TO HOLD INFORMATION INTERNAL TO BRKF56 WHICH

C IS NECESSARY FOR SUBSEQUENT CALLS. MUST BE DIMENSIONED

C AT LEAST 6+11*NEQN

C IWORK(*) -- INTEGER ARRAY USED TO HOLD INFORMATION INTERNAL TO

C BRKF56 WHICH IS NECESSARY FOR SUBSEQUENT CALLS. MUST BE

C DIMENSIONED AT LEAST 5

C

C

C***********************************************************************

C FIRST CALL TO BRKF56

C***********************************************************************

C

C SUBROUTINE RKFC CONTAINS A MACHINE-DEPENDENT PARAMETER U.

C THE SINGLE-PRECISION VERSION OF THIS PACKAGE CONTAINS A VALUE

C SUITABLE FOR AN RS6000, AND THE DOUBLE-PRECISION VERSION ALSO CONTAINS

C A VALUE SUITABLE FOR AN RS6000. IF THE PACKAGE IS RUN ON ANY

C OTHER MACHINE, THE USER SHOULD FIRST RESET U, WHICH IS DEFINED IN

C A DATA STATEMENT, CLEARLY MARKED IN SUBROUTINE RKFC. APPROPRIATE

C VALUES OF U FOR OTHER MAJOR MACHINES ARE SPECIFIED IN THE COMMENTS

C OF RKFC.

C

C THE USER MUST PROVIDE STORAGE IN HIS CALLING PROGRAM FOR THE ARRAYS

C IN THE CALL LIST - Y(NEQN) , YP(NEQN) , WORK(6+11*NEQN)

C IWORK(5), DECLARE FCN IN AN EXTERNAL STATEMENT, SUPPLY SUBROUTINE

C FCN(T,Y,YP) AND INITIALIZE THE FOLLOWING PARAMETERS-

C

C NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED. (NEQN .GE. 1)

C Y(*) -- VECTOR OF INITIAL CONDITIONS.

C T -- STARTING POINT OF INTEGRATION , MUST BE A VARIABLE.

C TOUT -- OUTPUT POINT AT WHICH SOLUTION, AND POSSIBLY THE

C DERIVATIVE, IS DESIRED.

C TEND -- END OF THE RANGE OF INTEGRATION. IF THE SOLUTION IS

C REQUIRED ONLY AT TEND THEN THE USER SHOULD SET TOUT=TEND.

C RELERR,ABSERR -- RELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES

C WHICH MUST BE NON-NEGATIVE. RELERR MUST BE A VARIABLE WHILE

C ABSERR MAY BE A CONSTANT. THE CODE SHOULD NORMALLY NOT BE

C USED WITH RELATIVE ERROR CONTROL SMALLER THAN ABOUT 1.E-8,

C UNLESS AN APPROPRIATE NONZERO ABSOLUTE TOLERANCE IS GIVEN.

C TO AVOID LIMITING PRECISION DIFFICULTIES THE CODE REQUIRES

C RELERR TO BE LARGER THAN AN INTERNALLY COMPUTED RELATIVE

C ERROR PARAMETER WHICH IS MACHINE DEPENDENT. IN PARTICULAR,

C PURE ABSOLUTE ERROR IS NOT PERMITTED. IF A SMALLER THAN

C ALLOWABLE VALUE OF RELERR IS ATTEMPTED, BRKF56 INCREASES

C RELERR APPROPRIATELY AND RETURNS CONTROL TO THE USER BEFORE

C CONTINUING THE INTEGRATION.
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C IFLAG -- +1,-1 INDICATOR TO INITIALIZE THE CODE FOR EACH NEW

C PROBLEM. NORMAL INPUT IS +1. THE USER SHOULD SET IFLAG=-1

C ONLY WHEN ONE-BLOCK INTEGRATOR CONTROL IS ESSENTIAL. IN

C THIS CASE, BRKF56 ATTEMPTS TO ADVANCE THE SOLUTION A

C SINGLE BLOCK IN THE DIRECTION OF TEND EACH TIME IT IS

C CALLED. SINCE THIS MODE OF OPERATION RESULTS IN EXTRA

C COMPUTING OVERHEAD, IT SHOULD BE AVOIDED UNLESS NEEDED.

C

C

C***********************************************************************

C OUTPUT FROM BRKF56

C***********************************************************************

C

C Y(*) -- COMPUTED SOLUTION APPROXIMATION AT T.

C T -- VALUE OF THE INDEPENDENT VARIABLE WHERE THE SOLUTION IS

C REPORTED.

C IFLAG = 2 -- SUCCESSFUL RETURN. EITHER THE INTEGRATION REACHED

C T=TEND OR A SUCCESSFUL INTERPOLATION HAS BEEN

C PERFORMED AT T=TOUT. IF T.EQ.TEND THEN THE

C INTEGRATION IS FINISHED. IF NOT, THE CODE SHOULD BE

C CALLED WITH THE NEXT VALUE OF TOUT AND WITH IFLAG=+2

C FOR NORMAL INTEGRATION OR IFLAG=-2 FOR ONE-BLOCK

C INTEGRATION.

C =-2 -- A SINGLE SUCCESSFUL BLOCK IN THE DIRECTION OF TEND

C HAS BEEN TAKEN. NORMAL MODE FOR CONTINUING

C INTEGRATION ONE BLOCK AT A TIME.

C = 3 -- INTEGRATION WAS NOT COMPLETED BECAUSE RELATIVE ERROR

C TOLERANCE WAS TOO SMALL. RELERR HAS BEEN INCREASED

C APPROPRIATELY FOR CONTINUING.

C = 4 -- INTEGRATION WAS NOT COMPLETED BECAUSE MORE THAN

C 18000 DERIVATIVE EVALUATIONS WERE NEEDED. THIS

C IS APPROXIMATELY 1500 BLOCKS.

C = 5 -- INTEGRATION WAS NOT COMPLETED BECAUSE SOLUTION

C VANISHED MAKING A PURE RELATIVE ERROR TEST

C IMPOSSIBLE. MUST USE NON-ZERO ABSERR TO CONTINUE.

C USING THE ONE-BLOCK INTEGRATION MODE FOR ONE BLOCK

C IS A GOOD WAY TO PROCEED.

C = 6 -- INTEGRATION WAS NOT COMPLETED BECAUSE REQUESTED

C ACCURACY COULD NOT BE ACHIEVED USING SMALLEST

C ALLOWABLE STEPSIZE. USER MUST INCREASE THE ERROR

C TOLERANCE BEFORE CONTINUED INTEGRATION CAN BE

C ATTEMPTED.

C = 7 -- INVALID INPUT PARAMETERS

C THIS INDICATOR OCCURS IF ANY OF THE FOLLOWING IS

C SATISFIED - NEQN .LE. 0

C T=TEND

C RELERR OR ABSERR .LT. 0.

C ABS(IFLAG) .LT. 1 OR .GT.7

C WORK(*),IWORK(*) -- INFORMATION WHICH IS USUALLY OF NO INTEREST

C TO THE USER BUT NECESSARY FOR SUBSEQUENT CALLS.
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C WORK(1),...,WORK(NEQN) CONTAIN THE SOLUTION VECTOR

C AND WORK(NEQN+1),...,WORK(2*NEQN) CONTAIN THE

C DERIVATIVE VECTOR AT THE END POINT (WHICH IS ITSELF

C CONTAINED IN WORK(2*NEQN+1)) OF THE BLOCK STEP JUST

C COMPUTED. WORK(2*NEQN+2) CONTAINS THE STEPSIZE H

C JUST USED. (THIS IS THE STEPSIZE BEING USED BY THE

C INTERPOLANT OVER THIS BLOCK.) WORK(2*NEQN+3)

C CONTAINS THE STEPSIZE H TO BE ATTEMPTED ON THE NEXT

C BLOCK. IWORK(1) CONTAINS THE DERIVATIVE EVALUATION

C COUNTER.

C

C

C***********************************************************************

C SUBSEQUENT CALLS TO BRKF56

C***********************************************************************

C

C SUBROUTINE BRKF56 RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE

C THE INTEGRATION. AFTER THE CODE REPORTS A SUCCESSFUL SOLUTION AT

C TOUT (INDICATED BY IFLAG=2), THE USER NEEDS TO DEFINE A NEW TOUT

C BEFORE SIMPLY CALLING BRKF56 AGAIN TO CONTINUE IN THE NORMAL MODE.

C (BUT THE USER MUST FIRST RESET IFLAG TO -2 TO CONTINUE IN THE

C ONE-BLOCK INTEGRATOR MODE.)

C IF THE INTEGRATION WAS NOT COMPLETED BUT THE USER STILL WANTS TO

C CONTINUE (IFLAG=3,4), HE JUST CALLS BRKF56 AGAIN. IN THE CASE

C IFLAG=3 THE RELERR PARAMETER HAS BEEN ADJUSTED APPROPRIATELY FOR

C CONTINUING THE INTEGRATION. IN THE CASE OF IFLAG=4 THE FUNCTION

C COUNTER WILL BE RESET TO 0 AND ANOTHER 18000 FUNCTION EVALUATIONS

C ARE ALLOWED.

C HOWEVER,IN THE CASE IFLAG=5, THE USER MUST FIRST ALTER THE ERROR

C CRITERION TO USE A POSITIVE VALUE OF ABSERR BEFORE INTEGRATION CAN

C PROCEED. IF HE DOES NOT,EXECUTION IS TERMINATED.

C ALSO,IN THE CASE IFLAG=6, IT IS NECESSARY FOR THE USER TO RESET

C IFLAG TO 2 (OR -2 WHEN THE ONE-BLOCK INTEGRATION MODE IS BEING

C USED) AS WELL AS INCREASING EITHER ABSERR,RELERR OR BOTH BEFORE

C THE INTEGRATION CAN BE CONTINUED. IF THIS IS NOT DONE, EXECUTION

C WILL BE TERMINATED. THE OCCURRENCE OF IFLAG=6 INDICATES A TROUBLE

C SPOT(SOLUTION IS CHANGING RAPIDLY,SINGULARITY MAY BE PRESENT) AND

C IT OFTEN IS INADVISABLE TO CONTINUE.

C IF IFLAG=7 IS OBTAINED, INTEGRATION CAN NOT BE CONTINUED UNLESS

C THE INVALID INPUT PARAMETERS ARE CORRECTED.

C IT SHOULD BE NOTED THAT THE ARRAYS WORK,IWORK CONTAIN INFORMATION

C REQUIRED FOR SUBSEQUENT INTEGRATION. ACCORDINGLY, WORK AND IWORK

C SHOULD NOT BE ALTERED.

C

C

C***********************************************************************

C USER CALLS TO THE INTERPOLANT ROUTINE EXTRA

C***********************************************************************

C

C SUBROUTINE EXTRA CAN ALSO BE CALLED BY THE USER, IN CONJUNCTION
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C WITH USAGE OF BRKF56, TO PROVIDE APPROXIMATE SOLUTIONS AT ’OFF-STEP

C POINTS’ BY USE OF THE INTERPOLATING POLYNOMIAL. WHILE BRKF56

C HANDLES THE USUAL SITUATIONS, IT CAN BE HELPFUL TO THE USER TO BE

C ABLE TO ACCESS THE INTERPOLANT DIRECTLY, SUCH AS WHEN DOING ROOT

C FINDING. ALSO, IT IS POSSIBLE THAT THE USER MAY HAVE SOME NEED FOR

C EXTRAPOLATING OUTSIDE OF THE BLOCK STEP ON WHICH THE UNDERLYING

C INTERPOLANT IS BASED. BRKF56 WILL NOT DO THIS.

C THE FORM OF THE USAGE CALL IS

C

C CALL EXTRA ( NEQN, WORK(6*NEQN+4), WORK(NEQN+1), WORK(2*NEQN+1),

C WORK(2*NEQN+2), WORK(2*NEQN+4), WORK(3*NEQN+4),

C WORK(4*NEQN+4), WORK(5*NEQN+4), TEX, YEX, YPEX )

C

C WHERE YEX AND YPEX ARE THE SOLUTION VECTOR AND DERIVATIVE VECTOR

C APPROXIMATIONS DEFINED BY THE INTERPOLANT AT THE POINT TEX, AND

C WORK IS THE WORKING ARRAY SET UP BY BRKF56.

C***********************************************************************

C

LOGICAL ENDPNT,BLKOUT

DIMENSION Y(NEQN),YP(NEQN),WORK(*),IWORK(5)

EXTERNAL FCN

C

C COMPUTE INDICES FOR THE SPLITTING OF THE WORK ARRAY

C

KW = 1

KWP = KW + NEQN

KX = KWP + NEQN

KHI = KX + 1

KH = KHI + 1

KY1 = KH + 1

KY2 = KY1 + NEQN

KF1 = KY2 + NEQN

KF2 = KF1 + NEQN

KF3 = KF2 + NEQN

KF4 = KF3 + NEQN

KF5 = KF4 + NEQN

KF6 = KF5 + NEQN

KF7 = KF6 + NEQN

KSR = KF7 + NEQN

KSA = KSR + 1

KT = KSA + 1

C K ? = KT + 1

C THE WORK SPACE TOTALS 6 + 11*NEQN .

C

IF (ABS(IFLAG) .NE. 1) THEN

ENDPNT = (IWORK(4) .EQ. -1)

BLKOUT = (IWORK(5) .EQ. -1)

END IF

C

C***********************************************************************
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C THIS INTERFACING ROUTINE MERELY RELIEVES THE USER OF A LONG

C CALLING LIST VIA THE SPLITTING APART OF TWO WORKING STORAGE

C ARRAYS. IF THIS IS NOT COMPATIBLE WITH THE USERS COMPILER,

C HE MUST USE RKFC DIRECTLY.

C***********************************************************************

C

CALL RKFC (FCN,NEQN,Y,T,TOUT,TEND,YP,RELERR,ABSERR,IFLAG,WORK(KW),

* WORK(KWP),WORK(KX),WORK(KHI),WORK(KH),WORK(KY1),WORK(KY2),

* WORK(KF1),WORK(KF2),WORK(KF3),WORK(KF4),

* WORK(KF5),WORK(KF6),WORK(KF7),WORK(KSR),

* WORK(KSA),WORK(KT),IWORK(1),IWORK(2),IWORK(3),ENDPNT,BLKOUT)

IWORK(4) = 0

IF (ENDPNT) IWORK(4) = -1

IWORK(5) = 0

IF (BLKOUT) IWORK(5) = -1

RETURN

END

SUBROUTINE RKFC (FCN,NEQN,Y,T,TOUT,TEND,YP,RELERR,ABSERR,IFLAG,

* W,WP,X,HINT,H,Y1,Y2,F1,F2,F3,F4,

* F5,F6,F7,SAVRE,SAVAE,

* TOLD,NFE,JFLAG,KFLAG,ENDPNT,BLKOUT)

C

C TWO STEP BLOCK RUNGE-KUTTA FEHLBERG METHOD.

C A STANDARD 6(5) FORMULA IS USED AT THE FIRST POINT IN THE BLOCK

C AND A 7(5) FORMULA IS USED AT THE SECOND POINT.

C

LOGICAL HFAILD,ENDPNT,INTERP,BLKOUT

DIMENSION Y(NEQN),YP(NEQN),Y1(NEQN),Y2(NEQN),F1(NEQN),F2(NEQN),

* F3(NEQN),F4(NEQN),F5(NEQN),F6(NEQN),F7(NEQN),

* W(NEQN),WP(NEQN)

EXTERNAL FCN

PARAMETER( C2=1.E+0/12.E+0, C3=2.E+0/15.E+0, C4=1.E+0/5.E+0,

* C5=8.E+0/15.E+0, C6=13.E+0/19.E+0, C7=19.E+0/20.E+0,

* C8=1.E+0,C9=1.0E+0,C10=0.465E+0,c11=1.71E+0,C12=2.0E+0)

PARAMETER( A21=C2 )

PARAMETER( A31=2.E+0/75.E+0, A32=8.E+0/75.E+0 )

PARAMETER( A41=1.E+0/20.E+0, A42=0.E+0, A43=3.E+0/20.E+0 )

PARAMETER( A51=88.E+0/135.E+0, A52=0.E+0,

* A53=-112.E+0/45.E+0, A54=64.E+0/27.E+0 )

PARAMETER( A61=-408551.E+0/260642.E+0, A62=0.E+0,

* A63=3426735.E+0/521284.E+0,A64=-650026.E+0/130321.E+0,

* A65=347139.E+0/521284.E+0 )

PARAMETER( A71=1296313.E+0/565760.E+0, A72=0.E+0,

* A73=-48507.E+0/5120.E+0, A74=3310503.E+0/400384.E+0,

* A75=-761805.E+0/748544.0E+0,

* A76=197436315.E+0/223814656.E+0 )

PARAMETER( A81=103039.E+0/16796.E+0, A82=0.E+0,A83=-105.E+0/4.E+0,

* A84=8856.E+0/391.E+0, A85=-13797.E+0/3655.0E+0,
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* A86=53582508.E+0/22075469.E+0, A87=-1792.E+0/9595.E+0 )

PARAMETER( B1B=1385.E+0/23712.E+0, B3B=0.E+0,

* B4B=515.E+0/1656.E+0, B5B=2511.E+0/9632.E+0,

* B6B=17332693.E+0/93496104.E+0,

* B7B=4352.E+0/17271.E+0, B8B=-17.E+0/252.E+0 )

PARAMETER( ERC11=B1B-1249.0E+0/23712.0E+0,ERC13=0.0E+0 ,

* ERC14=B4B-61.0E+0/184.0E+0,ERC15=B5B-1269.E+0/6880.E+0,

* ERC16=B6B-8731507.0E+0/31165368.0E+0,

* ERC17=B7B-4352.0E+0/28785.0E+0,ERC18=B8B)

C

C THE ABOVE DEFINE THE COEFFICIENTS FOR BRKF67 USED TO GENERATE

C THE SOLUTION AT THE FIRST BLOCK POINT. BELOW ARE ADDITIONAL

C COEFFICIENTS NEEDED TO GENERATE THE SOLUTION AT THE SECOND BLOCK

C POINT.

C

PARAMETER( B1=31140992768.E+0/257777690625.E+0,

* B2=0.E+0, B3=0.E+0,

* B4=9.E+0/500.E+0,

* B5=0.E+0,

* B6=-11242116232463771.E+0/20983703550468750.E+0,

* B7=-109680975232.E+0/194961524625.E+0,

* B8=408061607.E+0/5982637500.E+0,

* B9=7.E+0/5.E+0,

* B10=1184802942976000.E+0/1290745082732553.E+0,

* B11=33951571088000.E+0/68176788371811.E+0,

* B12=23129157748.E+0/306736171875.E+0 )

PARAMETER( A91=1385.E+0/23712.E+0, A92=0.E+0, A93=0.E+0,

* A94=515.E+0/1656.E+0,

* A95=2511.E+0/9632.E+0, A96=17332693.E+0/93496104.E+0,

* A97=4352.E+0/17271.E+0, A98=-17.E+0/252.E+0 )

PARAMETER( A101=-15514400620094897541.E+0/

* 73161581728768000000.E+0,

* A102=0.E+0,

* A103=14894129938336353.E+0/14810036787200000.E+0,

* A104=-1115465796694125137.E+0/2554731345792000000.E+0,

* A105=2570129433088854921.E+0/63683158184960000000.E+0,

* A106=4715356027351248054167.E+0/

* 48079192350690176000000.E+0,

* A107=-261974217902055743.E+0/4163153407417500000.E+0,

* A108=7.E+0/400.E+0, A109=3.E+0/200.E+0 )

PARAMETER( A111=45043408253882515066518381.E+0/

* 9173877821824847497600000.E+0,

* A112=0.E+0,

* A113=-27917699597648811.E+0/6790314217600000.E+0,

* A114=-1506088107154654995594000251.E+0/

* 149493353169413000720000000.E+0,

* A115=-8259724559381291201457887499.E+0/

* 1222758133260687859150000000.E+0,

* A116=-32220126226752270243394813467141.E+0/

* 2363268663445728810142134400000.E+0,
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* A117=-490423417373912049138476588.E+0/

* 60903053823901059014453125.E+0,

* A118=87.E+0/100.E+0,

* A119=49383719169866734171599.E+0/

* 4549797705156047848000.E+0,

* A1110=78777581343539111904.E+0/2843623565722529905.E+0)

PARAMETER( A121=-1019761775615731879569301491872119.E+0/

* 37313919344744228533165074891648.E+0,

* A122=0.E+0,

* A123=1354611699555.E+0/92516630992.E+0,

* A124=6975021330674121332266184865803.E+0/

* 96515985709527356754700486112.E+0,

* A125=201256172007798122954183274296301.E+0/

* 5052402034533519023159103707776.E+0,

* A126=63908462135618415595781597790625.E+0/

* 794459256039394231668411538912.E+0,

* A127=10469664538547844770584570311160.E+0/

* 251649696435574725016671512023.E+0,

* A128=-3988339351014871459225909175.E+0/

* 1049086801190514747333700936.E+0,

* A129=-896812812789916578125.E+0/

* 16825872213726690772.E+0,

* A1210=-24580495743905600000000.E+0/

* 149630077900640928651.E+0,

* A1211=413260910502978125000.E+0/

* 215773357006517336541.E+0 )

C

C NEXT WE DEFINE COEFFICIENTS FOR THE ERROR ESTIMATE FORMULA.

C

PARAMETER( ERC21=B1+835201624659198460204559.E+0/

* 17356570978219562407500000.E+0,

* ERC24=B4-653.E+0/1000.E+0,

* ERC25=B5-1017751370513896071.E+0/3257163639862100000.E+0,

* ERC26=B6-49794680976565711400765612263.E+0/

* 191852228025914567681797500000.E+0,

* ERC27=B7+37330322369529825525437.E+0/

* 140647085089840407697500.E+0,

* ERC28=B8-7028842195201371181033.E+0/

* 100705061165248032500000.E+0,

* ERC29=B9-219.E+0/250.E+0,

* ERC210=B10+4040664073513642374486928.E+0/

* 8846484592512498482993925.E+0,

* ERC211=B11-10579467130236170324548567.E+0/

* 19786416837497639760809700.E+0,

* ERC212=B12-81.E+0/1250.E+0)

C

C IN WHAT FOLLOWS WE GIVE DECIMAL APPROXIMATIONS TO THE

C COEFFICIENTS NEEDED TO COMPUTE THE SOLUTION OVER THE SECOND

C STEP OF THE BLOCK.
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C PARAMETER( B1=.6040280811830318E-01 *2.0E+0,

C * B3=0.E+0,

C * B4=18.E+0/1000.E+0,

C * B5=0.E+0,

C * B6=-0.2678773126348223E+0 *2.0E+0,

C * B7=-.2812887708059000E+0*2.0E+0,

C * B8=.3410382252257749E-01 *2.0E+0,

C * B9=0.6999999993294478E+0*2.0E+0,

C * B10=.4589608586644637E+0 *2.0E+0,

C * B11=.2489965565907767E+0*2.0E+0,

C * B12=.3770203821515350E-01*2.0E+0 )

C PARAMETER( A91=1385.E+0/23712.E+0, A92=0.E+0, A93=0.E+0,

C * A94=515.E+0/1656.E+0,

C * A95=2511.E+0/9632.E+0, A96=17332693.E+0/93496104.E+0,

C * A97=4352.E+0/17271.E+0, A98=-17.E+0/252.E+0 )

C PARAMETER( A101=-.1060283313668945*2.0E+0,

C * A102=0.E+0,

C * A103=.5028390666228310E+0*2.0E+0,

C * A104=-.2183137239644424E+0*2.0E+0,

C * A105=.2017903668165691E-01*2.0E+0,

C * A106=.4903738749274709E-01*2.0E+0,

C * A107=-.3146343546589802E-01*2.0E+0,

C * A108=7.E+0/400.E+0, A109=3.E+0/200.E+0 )

C PARAMETER( A111=2.454981901744750E+0*2.0E+0,

C * A112=0.E+0,

C * A113=-2.055700074490705E+0*2.0E+0,

C * A114=-5.037307978015044E+0*2.0E+0,

C * A115=-3.377497272161788E+0*2.0E+0,

C * A116=-6.816856414875826E+0*2.0E+0,

C * A117=-4.026262930441851E+0*2.0E+0,

C * A118=87.E+0/100.E+0,

C * A119=5.427023606512188E+0 *2.0E+0,

C * A1110=13.85161916172827E+0*2.0E+0 )

C PARAMETER( A121=-13.66462958579018E+0*2.0E+0,

C * A122=0.E+0,

C * A123=7.320908944413973E+0*2.0E+0,

C * A124=36.13402129703147E+0*2.0E+0,

C * A125=19.91688010637204E+0*2.0E+0,

C * A126=40.22135923602411E+0*2.0E+0,

C * A127=20.80206065944549E+0*2.0E+0,

C * A128=-1.900862411510558E+0 *2.0E+0,

C * A129=-26.64981642636537E+0*2.0E+0,

C * A1210=-82.13754911021002E+0 *2.0E+0,

C * A1211=.9576272905890594E+0*2.0E+0 )

C

C NEXT WE DEFINE COEFFICIENTS FOR THE ERROR ESTIMATE FORMULA.

C

C PARAMETER( ERC21=B1+.2406009878306810E-01*2.0E+0,

C * ERC24=B4-653.E+0/1000.E+0,

C * ERC25=-.1562327629983161E+0*2.0E+0,
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C * ERC26=B6-.1297735307587656E+0*2.0E+0,

C * ERC27=B7+.1327091971902782E+0*2.0E+0,

C * ERC28=B8-.3489816056431624E-01*2.0E+0,

C * ERC29=B9-219.E+0/250.E+0,

C * ERC210=B10+.2283768204767345E+0*2.0E+0,

C * ERC211=B11-.2673416621286829E+0*2.0E+0,

C * ERC212=B12-81.E+0/1250.E+0)

C THE COEFFICIENTS OF THE RUNGE-KUTTA FORMULA ARE NOW SET.

C

C***********************************************************************

C

C THE COMPUTER UNIT ROUNDOFF ERROR U IS THE SMALLEST POSITIVE VALUE

C REPRESENTABLE IN THE MACHINE SUCH THAT 1.+ U .GT. 1.

C VALUES TO BE USED ARE

C U = 9.5E-7 FOR IBM 360/370

C U = 1.2E-7 FOR DEC VAX (SINGLE PRECISION)

C U = 1.5E-8 FOR UNIVAC 1108

C U = 7.5E-9 FOR PDP-10

C U = 7.1E-15 FOR CDC 6000 SERIES

C U = 2.2D-16 FOR IBM 360/370 (DOUBLE PRECISION)

C U = 2.8D-17 FOR DEC VAX (DOUBLE PRECISION)

C

C DATA U / .60E-7 /

DATA U / 3.6E-15 /

C

C***********************************************************************

C

C REMIN IS A TOLERANCE THRESHOLD WHICH IS ALSO DETERMINED BY THE

C INTEGRATION METHOD. IN PARTICULAR, A SIXTH ORDER METHOD WILL

C GENERALLY NOT BE CAPABLE OF DELIVERING ACCURACIES NEAR LIMITING

C PRECISION ON COMPUTERS WITH LONG WORDLENGTHS. THIS DOES NOT HAVE TO

C BE CHANGED FOR DIFFERENT MACHINES.

C

DATA REMIN / 1.E-12 /

C

C***********************************************************************

C

C THE EXPENSE IS CONTROLLED BY RESTRICTING THE NUMBER

C OF FUNCTION EVALUATIONS TO BE APPROXIMATELY MAXNFE.

C

DATA MAXNFE / 18000 /

C

C***********************************************************************

C

C

C CHECK INPUT PARAMETERS

C

C

IF (NEQN.LT.1) GO TO 10
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IF ((RELERR.LT.0.0E+0).OR.(ABSERR.LT.0.0E+0)) GO TO 10

IF (T.EQ.TEND) GO TO 10

MFLAG = ABS(IFLAG)

IF (MFLAG .EQ. 1) THEN

TOLD = T

IF (TOUT .EQ. T) GO TO 20

IF (SIGN(1.0E+0,TEND-T) .NE. SIGN(1.0E+0,TOUT-T)) GO TO 10

ELSE

IF (TOUT .EQ. TOLD) GO TO 20

IF (SIGN(1.0E+0,TEND-TOLD) .NE. SIGN(1.0E+0,TOUT-TOLD))

* GO TO 10

END IF

IF ((MFLAG.GE.1).AND.(MFLAG.LE.7)) GO TO 20

C

C INVALID INPUT, RETURN

C

10 IFLAG = 7

RETURN

C

C IS THIS THE FIRST CALL? IF SO JUMP TO 70.

C

20 IF (MFLAG.EQ.1) GO TO 70

C

C CHECK CONTINUATION POSSIBILITIES

C

IF (MFLAG.NE.2) GO TO 30

C

C IFLAG = +2 OR -2

C

IF (KFLAG.LT.3) GO TO 70

IF (KFLAG.EQ.3) GO TO 60

IF (KFLAG.EQ.4) GO TO 50

IF ((KFLAG.EQ.5).AND.(ABSERR.EQ.0.0E+0)) GO TO 40

IF ((KFLAG.EQ.6).AND.(RELERR.LE.SAVRE).AND.(ABSERR.LE.SAVAE))

* GO TO 40

GO TO 70

C

C IFLAG = 3,4,5,6 OR 7

C

30 IF (IFLAG.EQ.3) GO TO 60

IF (IFLAG.EQ.4) GO TO 50

IF ((IFLAG.EQ.5).AND.(ABSERR.GT.0.0E+0)) GO TO 60

C

C INTEGRATION CANNOT BE CONTINUED SINCE USER DID NOT RESPOND TO

C THE INSTRUCTIONS PERTAINING TO IFLAG=5,6 OR 7

C

40 STOP

C

C

C***********************************************************************
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C

C RESET FUNCTION EVALUATION COUNTER

C

50 NFE = 0

IF (MFLAG.EQ.2) GO TO 70

C

C RESET FLAG VALUE FROM PREVIOUS CALL

C

60 IFLAG = JFLAG

IF (KFLAG.EQ.3) MFLAG = ABS(IFLAG)

C

C SAVE INPUT IFLAG AND SET CONTINUATION FLAG VALUE FOR SUBSEQUENT

C INPUT CHECKING

C

70 JFLAG = IFLAG

KFLAG = 0

C

C SAVE RELERR AND ABSERR FOR CHECKING INPUT ON SUBSEQUENT CALLS

C

SAVRE = RELERR

SAVAE = ABSERR

C

C RESTRICT RELATIVE ERROR TOLERANCE TO BE AT LEAST AS LARGE AS

C 2U+REMIN TO AVOID LIMITING PRECISION DIFFICULTIES ARISING FROM

C IMPOSSIBLE ACCURACY REQUESTS. IF TOLERANCE TOO SMALL, INCREASE

C AND RETURN.

C

RER = 2.0E+0*U+REMIN

IF (RELERR .LT. RER) THEN

C

C RELATIVE ERROR TOLERANCE TOO SMALL

C

RELERR = RER

IFLAG = 3

KFLAG = 3

RETURN

END IF

C

U26 = 26.0E+0*U

IF (MFLAG.NE.1) GO TO 100

C

C***********************************************************************

C

C INITIALIZATION --

C DEFINE INTEGRATION INDEPENDENT VARIABLE X

C EVALUATE INITIAL DERIVATIVES

C SET UP WORKING ARRAYS FOR INTEGRATION VARIABLES

C SET COUNTER FOR FUNCTION EVALUATIONS,NFE

C ESTIMATE STARTING STEPSIZE

C
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X = T

ENDPNT = .FALSE.

BLKOUT = .FALSE.

A = T

CALL FCN (A,Y,YP)

NFE = 1

DO 80 N = 1, NEQN

W(N) = Y(N)

WP(N) = YP(N)

80 CONTINUE

C

C COMPUTE INITIAL STEPLENGTH.

C

DT = TOUT - T

IF (DT .EQ. 0.0E+0) DT = TEND - T

H = ABS(DT)

TOLN = 0.0E+0

DO 90 K = 1, NEQN

TOL = RELERR*ABS(Y(K))+ABSERR

IF (TOL.LE.0.0E+0) GO TO 90

TOLN = TOL

YPK = ABS(YP(K))

IF (YPK*H**6.GT.TOL) H = (TOL/YPK)**0.167E+0

90 CONTINUE

IF (TOLN.LE.0.0E+0) H = 0.0E+0

H = MAX(H,U26*MAX(ABS(T),ABS(DT)))

JFLAG = SIGN(2,IFLAG)

H = SIGN(H,DT)

C

C INITIAL STEPLENGTH NOW COMPUTED. COMPUTE FIRST SOLUTION.

C

C***********************************************************************

C

100 CONTINUE

C

C TO AVOID PREMATURE UNDERFLOW IN THE ERROR TOLERANCE FUNCTION,

C SCALE THE ERROR TOLERANCES.

C

SCALE = 2.0E+0/RELERR

AE = SCALE*ABSERR

C

C SET SAFETY FACTOR FOR STEPSIZE ADJUSTMENT, BASED ON TOLERANCES.

C

TOLER = MAX(ABSERR,RELERR)

SF = 0.85E+0

IF (TOLER .GE. 1.E-5) SF = 0.8E+0

IF (TOLER .LE. 1.E-9) SF = 0.9E+0

C

C RESTORE INTEGRATION VARIABLE TO END OF LAST BLOCK STEP TAKEN
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C AND SET THE SIGN OF THE DIRECTION OF INTEGRATION.

C

T = X

DTSIGN = SIGN(1.0E+0,TEND-T)

C

C HAVE WE ALREADY INTEGRATED PAST THE PRESENT DATA OUTPUT POINT?

C IF SO JUMP TO 390 AND PERFORM INTERPOLATION.

C IF NOT, SEE IF WE HAVE REACHED THE END POINT OF INTEGRATION.

C IF NOT, SEE IF RESULTS AT THE END OF THE BLOCK STEP NEED TO BE

C REPORTED.

C

IF ((TOUT-T)*DTSIGN .LE. 0.0E+0) THEN

IF (TOUT .EQ. T) THEN

IFLAG = 2

ENDPNT = .FALSE.

GO TO 400

ELSE

GO TO 390

END IF

END IF

IF (ENDPNT) THEN

IFLAG = 2

ENDPNT = .FALSE.

GO TO 400

END IF

IF (IFLAG .EQ. -2 .AND. BLKOUT) THEN

BLKOUT = .FALSE.

GO TO 400

END IF

C

C***********************************************************************

C***********************************************************************

C BLOCK BY BLOCK INTEGRATION

C

150 CONTINUE

C

C SEE IF WE ARE TOO CLOSE TO THE END POINT. IF SO, DO LINEAR

C EXTRAPOLATION AND RETURN.

C

IF (ABS(TEND-T) .LE. U26*ABS(T)) THEN

IF (DTSIGN*(TEND-TOUT) .GT. 0.0E+0) THEN

DT = TOUT - T

ENDPNT = .FALSE.

T = TOUT

ELSE

DT = TEND - T

ENDPNT = .TRUE.

T = TEND

X = TEND

END IF
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DO 160 K = 1, NEQN

Y(K) = W(K)+DT*WP(K)

160 CONTINUE

CALL FCN (T,Y,YP)

NFE = NFE+1

IF (ENDPNT) THEN

DO 170 N=1,NEQN

W(N) = Y(N)

WP(N) = YP(N)

170 CONTINUE

ENDPNT = .FALSE.

END IF

IFLAG = 2

RETURN

END IF

C

C

C SET SMALLEST ALLOWABLE STEPSIZE AND STEP FAILURE FLAG.

C ADJUST STEPSIZE IF NECESSARY TO HIT THE END POINT OF INTEGRATION.

C

HMIN = U26*ABS(T)

HFAILD = .FALSE.

HSTOP = 0.5E+0*(TEND-T)

IF (ABS(HSTOP) .LE. ABS(H)) THEN

ENDPNT = .TRUE.

H = HSTOP

END IF

C

C***********************************************************************

C CORE INTEGRATOR FOR A SINGLE BLOCK

C***********************************************************************

C THE TOLERANCES HAVE BEEN SCALED TO AVOID PREMATURE UNDERFLOW IN

C COMPUTING THE ERROR TOLERANCE FUNCTION ERRTOL.

C TO AVOID PROBLEMS WITH ZERO CROSSINGS,RELATIVE ERROR IS MEASURED

C USING THE AVERAGE OF THE MAGNITUDES OF THE SOLUTION AT THE

C BEGINNING AND END POINTS OF A BLOCK.

C TO DISTINGUISH THE VARIOUS ARGUMENTS, H IS NOT PERMITTED

C TO BECOME SMALLER THAN 26 UNITS OF ROUNDOFF IN T.

C PRACTICAL LIMITS ON THE CHANGE IN THE STEPSIZE ARE ENFORCED TO

C SMOOTH THE STEPSIZE SELECTION PROCESS AND TO AVOID EXCESSIVE

C CHATTERING ON PROBLEMS HAVING DISCONTINUITIES.

C***********************************************************************

C

C

C TEST NUMBER OF DERIVATIVE FUNCTION EVALUATIONS.

C IF OKAY,TRY TO ADVANCE THE INTEGRATION FROM T TO T+H

C

200 IF (NFE .GT. MAXNFE) THEN

C

C TOO MUCH WORK
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C

IFLAG = 4

KFLAG = 4

GO TO 400

END IF

C

C ADVANCE AN APPROXIMATE SOLUTION OVER ONE STEP OF LENGTH H

C

DO 210 N = 1, NEQN

Y1(N) = W(N)+A21*H*WP(N)

210 CONTINUE

CALL FCN (T+C2*H,Y1,F2)

DO 220 N = 1, NEQN

Y1(N) = W(N)+H*(A31*WP(N)+A32*F2(N))

220 CONTINUE

CALL FCN (T+C3*H,Y1,F3)

DO 230 N = 1, NEQN

Y1(N) = W(N)+H*(A41*WP(N)+A43*F3(N))

230 CONTINUE

CALL FCN (T+C4*H,Y1,F4)

DO 240 N = 1, NEQN

Y1(N) = W(N)+H*(A51*WP(N)+A53*F3(N)+A54*F4(N))

240 CONTINUE

CALL FCN (T+C5*H,Y1,F5)

DO 241 N = 1,NEQN

Y1(N)=W(N)+H*(A61*WP(N)+A63*F3(N)+A64*F4(N)

+ +A65*F5(N))

241 continue

CALL FCN (T+C6*H,Y1,F6)

DO 242 N=1,NEQN

Y1(N)=W(N)+h*(A71*WP(N)+A73*F3(N)+A74*F4(N)+

+ A75*F5(N)+A76*F6(N))

242 continue

CALL FCN (T+C7*H,Y1,Y)

DO 250 N = 1, NEQN

Y1(N) = W(N)+H*(A81*WP(N)+A83*F3(N)+A84*F4(N)+

* A85*f5(N)+A86*F6(N)+A87*Y(N))

250 CONTINUE

CALL FCN (T+C8*H,Y1,YP)

NFE = NFE+7

EEOET = 0.0E+0

DO 270 N = 1, NEQN

Y1(N) = W(N)+H*(B1B*WP(N)+B4B*F4(N)+B5B*F5(N)+

* B6B*F6(N)+B7B*Y(N)+B8B*YP(N))

ERRTOL = ABS(W(N))+ABS(Y1(N))+AE

IF (ERRTOL .LE. 0.0E+0) THEN

C

C INAPPROPRIATE ERROR TOLERANCE

C

IFLAG = 5
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KFLAG = 5

GO TO 400

END IF

EZ = ABS(H*(ERC11*WP(N)+ERC14*F4(N)+ERC15*F5(N)+

* ERC16*F6(N)+ERC17*Y(N)+B8B*YP(N)))

EEOET = MAX(EEOET,EZ/ERRTOL)

270 CONTINUE

ESTTOL = EEOET*SCALE

C

C CHECK THE ERROR ESTIMATE. IF STEPLENGTH HAS FAILED FOR FIRST STEP

C IN THE BLOCK, GO AND COMPUTE A SMALLER STEP FOR A RE-TRY.

C

IF (ESTTOL .GT. 1.0E+0) GO TO 320

C

C

C INTEGRATION SUCCESSFUL FOR FIRST STEP. NOW INTEGRATE OVER

C THE SECOND STEP IN THE BLOCK

C

CALL FCN (T+H,Y1,F1)

DO 290 N = 1, NEQN

Y2(N) = W(N)+H*(A101*WP(N)+A103*F3(N)+A104*F4(N)+

* A105*F5(N)+A106*F6(N)+A107*Y(N)+A108*YP(N)+A109*f1(N))

290 CONTINUE

CALL FCN (T+C10*H,Y2,F7)

DO 300 N = 1, NEQN

Y2(N) = W(N)+H*(A111*WP(N)+A113*F3(N)+A114*F4(N)+

* A115*F5(N)+A116*F6(N)+A117*Y(N)+A118*YP(N)+A119*F1(N)

* +A1110*F7(N))

300 CONTINUE

CALL FCN (T+C11*H,Y2,F2)

DO 301 N=1,NEQN

Y2(N)=W(N)+H*(A121*WP(N)+A123*F3(N)+A124*F4(N)+A125*

+ F5(N)+A126*F6(N)+A127*Y(N)+A128*YP(N)+A129*F1(N)+A1210*F7(N)

+ +A1211*F2(N))

301 CONTINUE

CALL FCN(T+2*H,Y2,F3)

NFE = NFE+4

EEOET = 0.0E+0

DO 310 N = 1, NEQN

EE = ABS(H*(ERC21*WP(N)+ERC24*F4(N)+ERC25*F5(N)+

* ERC26*F6(N)+ERC27*Y(N)+ERC28*YP(N)+ERC29*F1(N)

* + ERC210*F7(N)+ERC211*F2(N)+ERC212*F3(N)))

Y2(N) = W(N)+H*(B1*WP(N)+B4*F4(N)+B5*F5(N)+B6*F6(N)+

* B7*Y(N)+B8*YP(N)+B9*F1(N)+B10*F7(N)+B11*F2(N)

* + B12*F3(N))

IF (ERRTOL .LE. 0.0E+0) THEN

C

C INAPPROPRIATE ERROR TOLERANCE

C

IFLAG = 5
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KFLAG = 5

GO TO 400

END IF

EEOET = MAX(EEOET,EE/ERRTOL)

310 CONTINUE

ESTTOL = EEOET*SCALE

DO 315 N = 1, NEQN

Y1(N) = B1B*WP(N)+B4B*F4(N)+B5B*F5(N)+

* B6B*F6(N)+B7B*Y(N)+B8B*YP(N)

F3(N) = B1*WP(N)+B4*F4(N)+B5*F5(N)+B6*F6(N)+

* B7*Y(N)+B8*YP(N)+B9*F1(N)+B10*F7(N)+

* B11*F2(N)+B12*F3(N)

315 CONTINUE

C

C CHECK THE ERROR ESTIMATE OVER THE SECOND STEP OF THE BLOCK.

C

IF (ESTTOL .LE. 1.0E+0) GO TO 330

C

C UNSUCCESSFUL BLOCK

C REDUCE THE STEPSIZE , TRY AGAIN

C THE DECREASE IS LIMITED TO A FACTOR OF ABOUT 1/10

C

320 HFAILD = .TRUE.

S = 0.1E+0

ENDPNT = .FALSE.

IF (ESTTOL.LT.1.0E+6) S = SF/ESTTOL**0.167E+0

H = S*H

IF (ABS(H) .LT. HMIN) THEN

C

C REQUESTED ERROR UNATTAINABLE AT SMALLEST ALLOWABLE STEPSIZE

C

IFLAG = 6

KFLAG = 6

GO TO 400

END IF

GO TO 200

C

C SUCCESSFUL BLOCK. CHECK FOR NEED TO INTERPOLATE.

C STORE SOLUTION AT T+2*H.

C

330 T = T+2.0E+0*H

IF (ENDPNT) T = TEND

TOLD = X

X = T

HINT = H

INTERP = .FALSE.

IF ((T-TOUT)*DTSIGN .GE. 0.0E+0) INTERP = .TRUE.

IF (INTERP) THEN

DO 340 N=1,NEQN

SWAP = W(N)
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W(N) = Y2(N)

Y2(N) = SWAP

F2(N) = WP(N)

340 CONTINUE

ELSE

DO 350 N=1,NEQN

W(N) = Y2(N)

350 CONTINUE

END IF

C

A = T

CALL FCN (A,W,WP)

NFE = NFE+1

C

C CHOOSE NEXT STEPSIZE

C THE INCREASE IS LIMITED TO A FACTOR OF ABOUT 10

C IF STEP FAILURE HAS JUST OCCURED, NEXT STEP IS NOT ALLOWED

C TO INCREASE.

C

S = 10.0E+0

IF (ESTTOL.GT.1.E-6) S = SF/ESTTOL**0.167E+0

IF (HFAILD) S = MIN(S,1.0E+0)

H = SIGN(MAX(S*ABS(H),HMIN),H)

C

C HAVE WE INTEGRATED PAST AN OUTPUT POINT?

C IF SO, CALL THE INTERPOLATION ROUTINE AT T=TOUT.

C IF NOT, SEE IF WE ARE AT THE END POINT OF INTEGRATION.

C OTHERWISE, CHECK IF USER WANTS SOLUTIONS AT THE END OF THE BLOCK

C STEP, OR ELSE CONTINUE THE INTEGRATION.

C

IF (INTERP) GO TO 390

IF (ENDPNT) THEN

IFLAG = 2

ENDPNT = .FALSE.

GO TO 400

END IF

IF (IFLAG .LT. 0) THEN

IFLAG = -2

GO TO 400

ELSE

GO TO 150

END IF

C

C INTERPOLATE TO GET DATA AT OFF-STEP POINT AND RETURN.

C

C THE SECOND OF THE THREE CHANGES NEEDED TO MAKE THE INTERPOLANT

C DERIVATIVE MORE STABLE IS TO REPLACE STATEMENT 390 BY THE

C VERSION IN THE COMMENT STATEMENT BELOW

C

C 390 CALL EXTRA (NEQN,W,WP,X,HINT,Y1,Y2,F1,F2,TOUT,Y,YP)
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390 CALL EXTRA (NEQN,F3,WP,X,HINT,Y1,Y2,F1,F2,TOUT,Y,YP)

T = TOUT

IF (IFLAG .LT. 0 .AND. TOUT .NE. X) BLKOUT = .TRUE.

IFLAG = 2

RETURN

C

C RETURN WITH THE SOLUTION AT THE END OF THE LAST SUCCESSFUL

C BLOCK STEP.

C

400 DO 410 N=1,NEQN

Y(N) = W(N)

YP(N) = WP(N)

410 CONTINUE

RETURN

C

END

SUBROUTINE EXTRA (NEQN,YINC2,F2,T,H,YINC1,Y,F1,F,TEX,YEX,YPEX)

C

C T IS THE INDEPENDENT VARIABLE;

C Y IS THE VALUE AT T-2H; THE VALUES AT T-H AND T ARE

C Y + H*YINC1 AND Y + H*YINC2 RESPECTIVELY;

C F,F1 AND F2 ARE THE DERIVATIVES AT T-2H, T-H AND T.

C TEX IS THE POINT WHERE THE OUTPUT IS REQUIRED;

C YEX WILL HOLD THE APPROXIMATE SOLUTION AT TEX AND YPEX WILL

C HOLD THE DERIVATIVE APPROXIMATION AT THIS POINT.

C

DIMENSION Y(NEQN),YINC1(NEQN),YINC2(NEQN),F(NEQN),F1(NEQN),

* F2(NEQN),YEX(NEQN),YPEX(NEQN)

C

C PERFORM QUINTIC INTERPOLATION BASED ON THE VALUES

C Y(N),Y(N)+H*YINC1(N),Y(N)+H*YINC2(N),F(N),F1(N),F2(N) AT THE

C POINTS T-2H, T-H, T. THIS POLYNOMIAL IS EVALUATED AT THE POINT

C TEX TO OBTAIN THE APPROXIMATE VALUE OF Y(TEX) AND THIS IS STORED

C IN THE ARRAY YEX. THE DERIVATIVE OF THE INTERPOLATING POLYNOMIAL

C IS ALSO EVALUATED AT TEX TO OBTAIN AN APPROXIMATION TO DY/DT

C AT THIS POINT AND THIS APPROXIMATION IS STORED IN YPEX.

C

C

SIG = (TEX-T)/H+2.0E+0

DO 10 N = 1, NEQN

HF = H*F(N)

HF1 = H*F1(N)

HF2 = H*F2(N)

A1 = 2.0E+0*(HF2+HF)-6.0E+0*H*YINC2(N)+8.0E+0*HF1

A2 = H*YINC2(N)+4.0E+0*H*YINC1(N)-4.0E+0*HF1-2.0E+0*HF

A3 = HF1+HF-2.0E+0*H*YINC1(N)

A4 = H*YINC1(N)-HF
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YEX(N) = ((((A1*0.125E+0*(SIG-2.0E+0)+0.25E+0*A2)*(SIG-1.0E+0)+

* A3)*(SIG-1.0E+0)+A4)*SIG+HF)*SIG+Y(N)

YPEX(N) = ((((0.625E+0*A1*SIG+(A2-2.0E+0*A1))*SIG+(1.875E+0*A1-

* 1.5E+0*A2+3.0E+0*A3))*SIG+(0.5E+0*(A2-A1)-

* 2.0E+0*(A3-A4)))*SIG+HF)/H

10 CONTINUE

RETURN

END
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