
Database Evolution on an Orthogonal Persistent 

Programming System 
A Semi-Transparent Approach 

 

Rui Humberto R. Pereira 

Instituto Superior Contabilidade e Administração do Porto 

ISCAP/IPP 

Porto, Portugal 

rhp@iscap.ipp.pt 

J.Baltasar García Perez-Schofield 

Departamento de Informática 

Universidad de Vigo 

Vigo, España 

jbgarcia@uvigo.es

 

 
Abstract — In this paper the problem of the evolution of an 

object-oriented database in the context of orthogonal persistent 

programming systems is addressed. We have observed two 

characteristics in that type of systems that offer particular 

conditions to implement the evolution in a semi-transparent 

fashion. That transparency can further be enhanced with the 

obliviousness provided by the Aspect-Oriented Programming 

techniques. Was conceived a meta-model and developed a 

prototype to test the feasibility of our approach.  The system 

allows programs, written to a schema, access semi-transparently 

to data in other versions of the schema. 

Keywords: schema evolution; aspect-oriented programming; 

orthogonal persistence 

I.  INTRODUCTION 

Applications that need to persist their data use a well 
defined data model, termed schema, which has a specific 
interface to all data types that pertain to that underlying data 
model. This formalism leads to severe constraints in the 
changing process of the information systems and organizations 
itself. 

The schema of an application is not immutable due to 
several factors: The organizations processes are dynamic, 
consequently their requirements also are dynamic. People that 
analyses the organization requirements and build the 
applications make mistakes that must be corrected, sometimes 
later to the development process. Moreover, there are also the 
cases, when new features are added to the application, that 
require new changes at data model level. By all those reasons, 
frequent changes occur on the data structures, forcing to a 
constant redesign of the schema with an important impact on 
the application, with particular complexity on legacy ones. 

Traditionally, the database evolution problem has been 
dealt in object-oriented systems with three different 
approaches: 

• Schema evolution – The schema is simply converted 
from the old to the new.  

• Schema versioning – The schema is maintained in 
several versions. 

• Class versioning – Allows classes to have several 
versions. 

Whatever the chosen approach, any schema state must 
preserve both structural and behavioral consistency. Zicari [1] 
identified these two types of consistencies and the anomalies 
that may occur on the system in their absence. The structural 
consistency means that the schema must obey to a set of 
invariants [2][3]. The loss of the structural consistency during a 
schema change leads to the unavailability of the objects created 
under the old schema. The behavioral consistency refers to the 
dynamic part of the schema. Each method must respect their 
signature and must be aware of all static changes. Otherwise, 
problems may occur during the normal operation of the 
application under the new schema.  

 In OODBMS, schema changes are applied through a set of 
available primitives provided by the system. Several authors 
have proposed different taxonomies [2] [3] of modifications to 
their system schemas.  Depending on the evolution approach, 
changes on the application interface may occur requiring the 
programmer intervention.   

The orthogonal persistence [4] is characterized by three 
principles: (1) Type orthogonality - All objects can be 
persistent or transient irrespective of their types, sizes or any 
other property. (2) Persistence Identification – The form of 
identifying and persisting object is orthogonal, i.e., all objects 
are available from one, or more, common root, and all that is 
related to it, are accessed on the same way. (3) Persistence 
independence - The same code should be applicable for both 
transient objects and persistence objects. Due to these three 
principles, in orthogonal persistent programming systems 
applications are closely coupled with object database. On the 
other hand, in orthogonal persistent programming systems the 
schema is embedded in the application code. We argue that this 
paradigm of data persistence offers particular conditions to the 
development of new approaches of database evolution.  

The aspect-oriented programming (AOP) [5] consists in a 
programming technique that allows the separation of 
application concerns. In an object oriented context, a concern 
that is transversal to all objects could be segregated from those 
objects and put in a specialized object called Aspect, while the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47139962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


remaining concerns, that are specific from each object, will be 
still maintained in the object class. Applications and 
programmers are oblivious about them. The authors of other 
research works [6] have concluded that schema evolution and 
the instance adaptation are two concerns of the database 
evolution that could be modularized in aspects. In our research 
work we explore the AOP techniques to implement the 
database evolution concerns in an orthogonal persistent 
programming environment.  

In the next section we will debate the particularities of 
orthogonal persistent programming systems and how they can 
be applied on the database evolution.  Then, we briefly present 
our research prototype and meta-model giving emphasis to the 
schema evolution and instance adaptation problem. In the 
section IV other related works are presented and discussed.  
Finally, the future work and conclusions are presented. 

II. SCHEMA EVOLUTION IN PERSISTENT ENVIRONMENTS 

Applications have embedded in their code the schema. In 
an object-oriented application, that runs in an orthogonal 
persistent programming environment, that schema is 
propagated to the database after the first start. Besides, the 
closely coupled approach between this type of application and 
the database, while interacting with the data, can turn that 
schema propagation in a transparent mechanism. These two 
characteristics, which have been observed in that kind of 
applications, shape their schema evolution problem. The 
orthogonal persistent environment is capable of dealing with 
the first appearance of an object in order to represent them in 
the database.  We consider this obliviousness in the initial 
schema propagation to the database metadata layer a simple 
problem, since the system reflection capability could provide 
the required information about the persistent objects. However, 
the same does not happen when that schema, shared by the 
application run-time, as well the database, is changed by the 
programmer in the application source code. The structural and 
semantic differences between the two schema versions 
compromise the application compatibility leading to its 
inoperance. Those differences cannot be transparently inferred 
by the system, requiring additional information provided by the 
programmer.  

Considering the above two characteristics observed in 
orthogonal persistent programming systems, we can conclude 
that in this kind of systems the schema evolution happens in 
the application and it is propagated to the database in a semi-
transparent way. That contrasts with other systems where 
application and database are decoupled components. In such 
systems, the schema application evolves and simultaneous a set 
of schema evolution primitives must be applied to the database 
in order to reconcile these components.  

In orthogonal persistent programming environments, the 
structural and behavioral consistency of the schema embedded 
in the application, which is propagated to the metadata layer of 
the database, is validated at compile-time by the compiler of 
the programming language. This fact, grants a consistent 
representation of the schema in the database.  However, when 
the schema is changed on the application there are then two 
versions of the schema: the new on the application, replicated 
to the database, and the old one yet on the database. All three 

schema evolution approaches previously presented can be 
accommodated on this situation in order to solve the presented 
problem.  

Relatively to the other part of the evolution of the database, 
instance adaptation, no relevant aspect has been identified that 
characterizes orthogonal systems in contrast to other kind of 
systems. The objects created under the older schema version 
must be adapted to the application interface by the system 
using conversion functions.   

III. PROPOSED APPROACH 

The developed system [7][8][9] is an aspect-oriented 
framework capable of providing a Java application with 
persistence services. In this research prototype we explore the 
AOP techniques to inject the required persistence behavior in 
the objects of an application.  Both application and 
programmer stay oblivious [10] about the persistence concern. 
We argue that our approach applied in our system provides 
programmers with a powerful tool to an efficient and error 
prone application development. A full description about the 
system persistence capabilities can be found in  [7][8][9].  

Our last research work focused the database evolution as a 
part of the persistence concern. Thus, we have extended our 
system with schema evolution and instance adaptation 
facilities. Despite we use an object-oriented database, the 
DB4Objects [11], that already provides some schema evolution 
mechanisms, we have reduced its role to a simple object 
repository. To support the evolution of the schema in our 
system, we conceive a meta-model to support the database 
meta-objects that compose his metadata layer and the 
application objects. The main goal of our work is to explore the 
aspect-orientation of database evolution aspects in order to 
obtain a transparent, pluggable and flexible system. 

A. Meta-model 

Our meta-model and prototype apply the class versioning 
approach due to the following reasons: versioning allows both 
backdate and update application compatibility while class 
versioning has a better granularity than schema versioning. 

Our meta-model has three types of objects: (1) objects, (2) 
meta-objects, (3) meta-classes. The objects are the application 
entities.  These objects are instances of the versioned classes 
represented in our model through a meta-object. In turn, the 
meta-objects are instances of meta-classes. In order to achieve 
a simple and efficient model, we have defined a small set of 
meta-classes which are built-in our system. We consider the 
model simplicity a key issue to performance, since it avoids 
meta-objects updates and reads. The Class Version Meta-
Object (CVMO) supports each class in his version. If a class 
has several versions, there are as many CVMOs as the number 
of versions. The Instance Meta-Object (IMO) supports the 
object instances in all versions. To represent the objects 
relationships we use Attribute Meta-Objects and Root Meta-
Objects (RMO). The former was defined under the assumption 
that objects refer other objects through their attributes. The 
RMOs, are the root object database start points to all remaining 
objects, where each one supports a root object [4].  The 



following diagram exemplifies the use of these meta-objects in 
the scenario of a 1-n relationship. 

 

Figure 1 - Meta-model 
 

The meta-model supports two types of class relationships: 
The class inherence lattice and the class version derivation 
path. To reduce the resulting complexity of the combination of 
those two class dimensions, we explore the reflective 
capabilities of the programming language to obtain the class 
inherence lattice. The version derivation path can reach a high 
level of complexity. That information is relevant only to 
support the semantic differences among the classes. If the 
instance conversion process could be supported only by default 
conversion functions, that derivation path information is 
useless. In our approach, we take advantage of the data schema 
that is embedded in the application and the closely coupled 
interaction between application and the database system 
manager. At run-time, at the first appearance of a new class, 
the schema manager in the framework core detects that new 
class, or a new version of an existing class, proceeding to the 
creation of the corresponding CVMO. An integral copy of the 
class is saved in that meta-object. If the class has some super-
class, that same work is done recursively until the root of the 
inherence lattice is reached. This procedure grants a full 
representation of the schema in both dimensions: inherence 
lattice and version derivation path. 

All information about data domain integrity could be 
defined in Java annotations [12] which are preserved in the 
CVMO and accessible through reflection. In Java, and other 
modern object-oriented languages, the referential integrity 
information is maintained at run-time through the objects 
attributes. Our approach transparently propagates the objects 
relationships to the database preserving that information. All 
references to objects are deleted in the run-time and then on the 
database. The memory garbage collector removes effectively 
from the memory the unreferenced objects. In our system we 
have implemented a DB garbage collector that does the same 
tasks inside the database.   

To support those semantic differences we have conceived 
the Update/Backdate Meta-Object (UBMO) that implements 
the conversion function over two or more class versions. 

Finally, the Aspect Meta-Object (AspMO) supports AOP 
aspects. These aspects could be application aspects or DBMS 
aspects. In the first case, our meta-model allows that aspects 
could be persistent in the same way that objects can. In our 
approach, the aspects and objects are distinct entities in the 
database until the moment that they are instantiated to be 
delivered to the application. In that moment, the database 
weaver merges object and aspect. This approach provides 
applications with an integrated and consistent aspect-oriented 
environment. On the other hand, there are several database 
management concerns that could also be modularized as 
aspects. That DBMS aspects can turn the system highly 
pluggable and customizable [13]. 

The object identity has two layer identifiers. The Logical 
Object Identifier (LOID) identifies an object despites his 
version. In turn, the Object Identifier (OID) has the real 
reference to the stored object. Since it may be necessary to 
preserve more than one version object, an application object 
has a LOID and may have more than one OID. The root objects 
are identified by their keys, an arbitrary text string.  

B. The aspect-oriented framework 

The developed system implements the meta-model 
previously presented, allowing parallel versions of the schema. 
Application with different versions of the schema can run 
sharing the same data. 

The system is composed by four components: 

• Preprocessor – This component is optional allowing 
some dynamic typing features that are not compliant 
with standard Java compiler rules. More information 
about this module can be found here [8].  

• Framework Core – In this component is implemented 
the interface used by the application through the 

CPersistentRoot class and all basic services like 
object cache, classloader, DB garbage collector, 
persistence manager, schema manager and default 
instance adaptation code.  

• Aspects – There are three types of aspects: At the 
application, management system and database level. 
The former are the application persistence aspect and 
data integrity aspect. These aspects use the framework 
core services. The second types are the management 
aspects and pluggable modules that could be 
developed. The management aspects currently 
implemented are the storage aspect that implements the 
low level object persistence, the instance adaptation 
aspect and the DB integrity aspect. At the third level 
we have plans to store specific application aspects 
inside the AspMO meta-objects.     

• Database – It is the object and meta-object repository. 



C. Schema evolution 

The two previous characteristics referred above, observed 
in orthogonal persistent programming systems (for instance, 
the system presented here), are able to free the programmer, 
under certain conditions, of replicating the schema changes in 
the database. That is, when the changes obey a set of 
invariants, the default conversion functions can deal with the 
instance adaptation avoiding any additional information. In this 
scenario our system transparently replicates the new version of 
the schema to the database. 

1) Invariants for a transparent schema evolution 

• The name of the class must be the same. 

• The name of the attribute must be the same. 

• The type of an attribute can be modified but to a 
compatible type. 

• The semantic of the attribute must be preserved. 

• An attribute can be moved to a super-class or to a 
sub class, but must maintain the name. In this 
case, additionally the type can also be altered to a 
compatible type. 

Other changes to the schema can be freely applied: A new 
class, the drop of a class or attribute. For the new attributes, 
the programmer can introduce directly in the application 
code an annotation that defines the default value of that 
attribute in each version. 

2) Additional schema information 
Our goal is to make the schema evolution as transparent as 
possible. To achieve that goal we have defined a set of 
special annotations that can complete the schema 
information directly in the application code. Currently, we 
are developing those defined annotations: 

@Aof4oopConstraintCheck(expression) 

@Aof4oopConstraintNotNull(message) 

@Aof4oopDefault(value) 

@Aof4oopVersionAlias(alias) 

The following listing gives an example of use of these 
annotations. 

 

Figure 2 - Class example 
 

The system is capable of automatically define the name of 
the versioned class, through a hash function, however, the 
annotations in lines 1 and 11 defines alias to their versions 
facilitating the future class version identification as showed in 
Figure 3. The annotations in lines 4, 6, 8 and 15, define the 
domain integrity policies.  

In the example, we also can see the version “B” of the class 

Student that has a new attribute called studentType. In 
the previous version “A” of the class, this attribute does not 
exist. The annotation, in line 16, defines the default value of 
this attribute when objects instances are converted to that class 
version. This type of annotation extends the system default 
conversion functions with some user defined policies. When 
they are not enough, the programmer can introduce user 
defined functions in the specialized meta-objects UBMO of our 
meta-model. In the next listing we show an example of a 
semantic conversion of the person weight from kilograms in 
old version to pounds in the new. 

 

Figure 3 - User defined function 
 

These update/backdate user defined functions can be simple 
or complex [14].  

3) Class version identification 
From the point of view of an application the classes have 

only one version, their own. However, the user defined 
conversion functions must see any version of the class. Both 
code, application and conversion function, run inside the same 
environment (the virtual machine). To allow this simultaneous 
existence of all class versions, the system schema manager 

creates a copy of each version of the class. The class Person 

in version A is Person$A. In the framework scope only those 
classes are used. Before the object delivery to the application, it 
is renamed to the known name. The application classes are 
available in their classpath (usually the file system) while the 
versioned classes are obtained from the database, inside the 
CVMO meta-objects, through the special framework 
classloader.  

D. Instance adaptation 

The objects resident in the repository are created under a 
schema version. However, they must be available to any 
application in their schema. Using the historical information 
about the class, the framework emulates the required class 
version by the application, even its current version. That is, in 
the object repository the objects are stored in their renamed 

version. An application that uses a class Person on version A 

has their objects stored as Person$A. This approach in fact 
requires the emulation in all operations of reading or writing. 
Yet, the approach allows the coexistence of the same class in 
more than one version in the run-time environment accessible 
by the conversion function.  



On write operations the classes are converted to version of 
the corresponding class version of the application. This lazy 
conversion puts the class in most pertinent version accelerating 
the emulation [15] process requiring only the renaming of the 
object class.  The instance adaptation was implemented as an 
aspect in terms of AOP. This means that a future alternative 
approach can easily replace this one, turning the framework 
into a highly customizable system. 

The used emulation process suffers of the same problem 
that screening [16] technique requiring in some cases the 
maintaining of more than one object copy. In the Figure 1 we 

illustrate this scenario with a class Course that exists in three 
versions and requires the maintenance of the version A and one 
of the other two versions, B or C, since any these last two can 
be generated from each other. 

IV. RELATED WORK 

The PJama System [17][18][19] is an experimental 
persistent programming, like our system, based in the Java 
language programming and in same principles of orthogonal 
persistence and reachability. To support persistence, the 
standard Java Virtual Machine (JVM) was modified. In this 
point, PJama contrasts with ours since we do not apply any 
change to the Java platform. The fact of the system being 
aspect-oriented enabled the access to the strategic joint point of 
the system, thus avoiding any JVM modification. 

The PJama system does only support one schema 
versioning process at a time, while the application is offline. 
The schema evolution occurs outside the store in the 
application. After that, the programmer rebuilds the application 
and passes a list of the changed classes to an evolution tool that 
performs the adaptation of the existing data. Once again, differs 
from our system since it does not transparently detect the new 
versions of the class nor produces all required metadata or does 
not perform any instance adaptation.  

The concept of default and custom conversion is also 
present in this system. On custom conversion, the programmer 
must write their own conversion functions by following a 
convention of method signature. 

This research work addresses the development of a 
persistent store coupled to the Java virtual machine while our 
work focus the modularization of the application persistence 
concern and database evolution concerns in AOP aspects.   

In SADES [20] system the concept of aspect-oriented 
database [6] was tested. The authors of this research work have 
identified a set of database concerns that could be modularized 
in order to obtain a customizable and pluggable system. They 
applied AOP techniques to implement database evolution 
concerns in the SADES system and later in AspOEv [13]. 

The main focus of this research work was to demonstrate 
that the aspect-orientation of the database provides means of, in 
each case, apply the most adjusted strategies of schema 
evolution or instance adaptation, contrasting with other 
proposals where those strategies are fixed. 

To support schema evolution and instance adaptation 
concerns, the authors of those systems have proposed a meta-
model based in the same three types of entities that we now 

also propose. The main difference between this older proposal 
and the one presented here is focused on the type of meta-
objects and on what both models try to represent. Rashid et al 
[21] meta-model represents the application data structures. A 
meta-object can be a class, a member or even a parameter. In 
our opinion, on a multi-versioned schema the resulting 
complexity of this model is huge. In this meta-model, the meta-
objects are separated in different virtual spaces so that object 
relationships can be inter or intra space. One innovative type 
of meta-object in this approach is the aspect meta-object that 
represents an application entity aspect or a database aspect. 
These aspects can also persist to the several application 
executions. Our meta-model also has this type of meta-object 
in which we have been inspired.    

The AspOEv framework provides its own language, Vejal 
[22], which is Java enriched with versioned type semantics as 
well as aspect-oriented features. This language consists in a 
powerful tool to construct user defined conversion functions.  
Vejal integrates aspect capabilities within its versioned type 
system. However, we argue that our approach, based in 
renamed classes, provides the same semantics richness while 
avoids the introduction of a new language. On the other hand, 
Vejal must be interpreted while in our system we use native 
code.  

Kuppuswami et al [23], also explored the AOP techniques 
proposing a flexible instance adaptation approach. In this work, 
the authors developed a system that supports instance 
adaptation with two aspects: (1) The Update/backdate Aspects 
that implements the concern of emulation of object versioning. 
The object is retrieved from the store in their physical version 
and then it is converted to the expected interface of the 
application. (2) The second aspect is a Selective Lazy 
Conversion Aspect.  This aspect is responsible for physically 
converting the stored objects when they are accessed and the 
need of conversion is determined. This aspect operates the 
conversion under a deferred approach to avoid the disturbance 
on the normal system functioning. On the other hand, this 
aspect is selective about the instances to be converted. In some 
cases, when necessary, the physical conversion occurs and on 
other cases the objects are kept indefinitely in their version. For 
any object instance that remains in an older version, its 
structure and behavior is emulated with the former aspect. In 
this work, the flexibility provided the evolution concerns as 
database aspects, is specially highlighted by the authors. They 
conclude that the encapsulation of the concerns in aspects 
enables the easy replacement of the adaptation strategy and 
code, contrasting with other existing systems that introduce 
code directly on the class versions. 

V. FUTURE WORK 

The proposed meta-model in the context of the pool of 
experiments has responded satisfactory, but should be object of 
more research work to accommodate static attributes, all types 
of composite objects and relationships complexity. 

Although our meta-model previews the existence of aspect 
meta-objects, the current version of our system does not have 
that implemented. We are planning the development of a new 
module, a run-time weaver, that introduces the aspect code in 
the objects and meta-objects. 



Our system was not developed with performance in mind 
nor has any transaction mechanism or error handling, either. 
The transaction management will be the subject of a future line 
of research. 

The current DB classloader module allows transparent 
access from the java virtual machine to all version classes 
through its name variation. It would also be interesting to 
develop an integration plug-in with any development tool (like 
Eclipse or Netbeans) allowing the inclusion of those class 
versions resident in the database as a special classpath. 

VI. CONCLUSIONS 

The developed system offers a substantial level of 
transparency and obliviousness on the evolution of the 
database. Under certain conditions, the programmer can freely 
introduce changes directly on the embedded application 
schema which are automatically reflected on the database 
metadata. Besides, the existing data on the object repository is 
transparently adapted to that new schema version or any other. 
Our approach uses standard language mechanisms to extend 
the class definition with additional information that enhances 
the efficiency of the default conversion functions. In many 
situations the need of any intervention on the database is totally 
avoided with the introduction of those annotations associated to 
the classes. Other annotations can also reinforce the data 
domain integrity in their schema version. 

When a semantic change occurs on attributes or classes, 
those annotations are not enough.  In these cases, we have 
previewed in our meta-model a special type of meta-object 
introduced manually by the programmer that contains the user 
defined conversion function.  As result, the system is a semi-
transparent database evolution system.  

The proposed meta-model allows the existence of parallel 
versions of the schema granting backdate and update 
application compatibility. Comparatively with other systems, 
our meta-model uses a small set of meta-classes built-in in the 
system. Some of the meta-models introduced in the related 
work section are very detailed, providing a full description of 
the underlying data model. However, this level of detail could 
theoretically introduce serious performance penalties because 
of the need of maintaining a high number of metadata items. 
The meta-model presented here uses the information about 
classes in the application and the meta-objects in the database 
metadata layer. The main mission of these few meta-objects is 
to provide the system with historical information about other 
versions of the schema (past or future). 

The characteristics defining orthogonal persistent 
programming systems, discussed in the introduction section, 
are central to the inception of the meta-model and framework 
presented here. On the other hand, the use the AOP techniques 
took advantages of the seamless integration between 
application and database. Thus, the modularization of the 
database evolution concern has facilitated avoiding any 
modification on the virtual machine. 

The meta-model and framework are very dependent of the 
class versioning approach for schema evolution. However, we 
do not consider that inflexibility a disadvantage. This schema 

evolution approach comparatively with schema versioning has 
a better granularity.  

REFERENCES 

[1] Zicari, R.. A framework for schema updates in an object-oriented database 
system. In Data engineering, 1991. proceedings. seventh international 
conference on. 1991. 

[2] Banerjee, Jay;Chou, Hong-Tai;Garza, Jorge F.;Kim, Won;Woelk, 
Darrell;Ballou, Nat;Kim, Hyoung-Joo. Data model issues for object-oriented 
applications. ACM Trans. Inf. Syst. (1987) 5: pp. 3-26. 

[3] Ferrandina, Fabrizio;Meyer, Thorsten;Zicari, Roberto;Ferran, Guy;Madec, 
Joelle. Schema and Database Evolution in the O2 Object Database System. In 
Proceedings of the 21th international conference on very large data bases. 
1995. 

[4] Atkinson, Malcolm;Morrison, Ronald. Orthogonally persistent object 
systems. The VLDB Journal (1995) 4: pp. 319-402. 

[5] Kiczales, Gregor;Lamping, John;Mendhekar, Anurag;Maeda, Chris;Lopes, 
Cristina;Loingtier, Jean-marc;Irwin, John. Aspect-oriented programming. In 
Ecoop. 1997. 

[6] Rashid, Awais;Pulvermueller, Elke. From Object-Oriented to Aspect-
Oriented Databases. In Proceedings of the 11th international conference on 
database and expert systems applications. 2000. 

[7] Pereira, Rui Humberto;Perez-Schofield, J.B.G.. An aspect-oriented 
framework for orthogonal persistence. In Information systems and 
technologies (cisti), 2010 5th iberian conference. 2010. 

[8] Pereira, Rui Humberto;Perez-Schofield, J B G. Orthogonal persistence in 
Java supported by Aspect- Oriented Programming and Reflection. In 
Information systems and technologies (cisti), 2011 6th iberian conference. 
2011. 

[9]  http://www.iscap.ipp.pt/~rhp/aof4oop 

[10] Filman, R.;Friedman, D.. Aspect-Oriented Programming is 
Quantification and Obliviousness.  (2000) : . 

[11] Paterson, Jim;Edlich, Stefan;Hörning, Henrik;Hörning , Reidar. The 
Definitive Guide to db4o. . Apress, 2006. 

[12] Bloch, Joshua. JSR 175: A Metadata Facility for the Java Programming 
Language.  (2004) : . 

[13] Rashid, Awais;Leidenfrost, Nicholas A.. Supporting Flexible Object 
Database Evolution with Aspects.. In Gpce. 2004. 

[14] Ferrandina, Fabrizio;Meyer, Thorsten;Zicari, Roberto. Implementing 
Lazy Database Updates for an Object Database System. In Proceedings of the 
20th international conference on very large data bases. 1994. 

[15] Clamen, Stewart M.. Type Evolution and Instance Adaptation.  (1992) : . 

[16] Banerjee, Jay;Kim, Won;Kim, Hyoung-Joo;Korth, Henry F.. Semantics 
and implementation of schema evolution in object-oriented databases. In 
Proceedings of the 1987 acm sigmod international conference on 
management of data. 1987. 

[17] Dmitriev, Misha. The First Experience of Class Evolution Support in 
PJama. In The third international workshop on persistence and java. 1998. 

[18] Dmitriev, M;Atkinson, M. Evolutionary Data Conversion in the PJama 
Persistent Language. In In 1st ecoop workshop on objectoriented databases. 
1999. 

[19] Dmitriev, Misha;Hamilton, Craig. Towards Scalable and Recoverable 
Object Evolution for the PJama Persistent Platform. In Proceedings of the 
international symposium on objects and databases. 2001. 

[20] Rashid, Awais. SADES - a Semi-Autonomous Database Evolution 
System. In Workshop ion on object-oriented technology. 1998. 

[21] Rashid, Awais;Sawyer, Peter. Dynamic Relationships in Object Oriented 
Databases: A Uniform Approach. In Lecture Notes in Computer Science. 
Bench-Capon, Trevor and Soda, Giovanni and Tjoa, A. Vol. 1677.1999. 

[22] Rashid, Awais;Leidenfrost, Nicholas. VEJAL-An Aspect Language for 
Versioned Type Evolution in Object Databases.  (2006) : . 

[23] Kusspuswami, S.;Palanivel, K.;Amouda, V.. Applying Aspect-Oriented 
Approach for Instance Adaptation for Object-Oriented Databases. In 
Proceedings of the 15th international conference on advanced computing and 
communications. 2007. 

 


