
© 1994 B. Malheiro, N. R. Jennings and E. Oliveira
ECAI 94. 11th European Conference on Artificial Intelligence. Edited by A. Cohn
Published in 1994 by John Wiley & Sons, Ltd.

Abstract. The ability to respond sensibly to changing and conflicting beliefs
is an integral part of intelligent agency. To this end, we outline the design and
implementation of a Distributed Assumption-based Truth Maintenance Sys-
tem (DATMS) appropriate for controlling cooperative problem solving in a
dynamic real world multi-agent community. Our DATMS works on the prin-
ciple of local coherence which means that different agents can have different
perspectives on the same fact provided that these stances are appropriately
justified. The belief revision algorithm is presented, the meta-level code
needed to ensure that all system-wide queries can be uniquely answered is
described, and the DATMS’ implementation in a general purpose multi-agent
shell is discussed.

1. INTRODUCTION

In many AI applications problem solving entities often have to make
decisions based on partial, imprecise, and ever changing information.
However in systems in which several agents cooperate with one
another within a decentralised control regime, the information
management problem is exacerbated still further - each agent has to
contend with deficiencies and changes in the information supplied by
its contemporaries as well as in its own local information.

To keep track of an agent’s changing beliefs, researchers have
devised a number of different types of Truth Maintenance System
(TMS) [1]. Such systems portray as their main features the mainte-
nance of the coherence between their beliefs, the reason for their
beliefs and the identification of contradictions. Whilst these systems
are generally sufficient for maintaining beliefs in an asocial context,
they need to be extended if they are to be used in a social context. For
example, as well as beliefs that an individual has generated for itself,
there will be beliefs that it has been informed about by other commu-
nity members (either because an acquaintance has answered a query
or because it has volunteered a piece of relevant information). In such
cases a number of crucial decisions must be made about how the
information provided by other agents should be treated - should it be
given the same credence as locally deduced beliefs?, should it only
be used when there is supporting local evidence?, how should contra-
dictions between the beliefs of different agents be dealt with?, and so
on. It is in the discussion and resolution of these issues (section 2),
and their subsequent implementation (section 3), that the main con-
tribution of this work lies.

2. REVISING BELIEFS IN MULTI-AGENT
SYSTEMS

This section briefly describes the fundamentals of belief revision sys-
tems (section 2.1), before the key principles and concepts of belief
revision in multi-agent systems are expounded (section 2.2).

2.1 Asocial Belief Revision

In a TMS “belief” is taken to mean justified belief - either it is an
assumption or it has been deduced from other beliefs. An assumption
is always believed; an ordinary fact may be believed or unbelieved;
and a contradiction is always false. There are a number of different
ways in which the dependencies between beliefs can be registered: in
justification based TMSs (JTMSs) each belief is associated with the
beliefs that immediately caused it [2]; whereas in an assumption
based TMS (ATMS) each belief is associated with the smallest set of
environments from which it can be deduced (the belief’s label) [3].
This work concentrates on the ATMS approach because, when com-
pared with the JTMS, it:

• enhances the system’s efficiency and improves its real time
operation because multiple contexts are kept (This makes it
faster to move from one valid context to another because the
new one does not have to be calculated from scratch);
• improves the system’s transparency because the belief revision
is not contingent on dependency oriented backtracking and
hence it will not stop on unresolved circularities or leave nodes
unlabeled.

ATMS’s are composed of three units: (i) the truth maintenance
system itself; (ii) the problem solver; and (iii) the interface unit. The
TMS guarantees that the conclusions reached by the problem solver
are kept updated and coherent. However it only deals with proposi-
tions (usually substituted by arbitrary identifiers called nodes) and
their dependencies. For each proposition there will be a node and for
each dependency a justification which describes how the node was
deduced from other nodes. The TMS has three basic operations: (i)
create a new assumption node whenever new propositions are
assumed to be true; (ii) create a new ordinary node when a new prop-
osition is deduced by the problem solver; and (iii) add a new
justification to an existing node whenever the problem solver finds a
new way of deducing it.

While a conventional rule-based problem solver generally devel-
ops a unique solution, a reasoning system with an ATMS determines
the whole set of possible solutions. This different operating mode
necessitates the adoption of a different problem solving methodology
and a different knowledge representation. The rules have to be trans-
formed into sets of unit steps called consumers. This transformation
includes the calculation of the consumer’s depth which indicates its
dependence. The greater this depth, the greater the consumer’s
dependence on others (i.e. execution of a consumer of depth D can
only be done after the D-1 depth consumers have been executed, and
so forth). Using this depth information, the problem solver chooses
the nodes according to the number of assumptions they depend on,
starting with the nodes with the fewest assumptions. A consumer is
triggered only when the ATMS holds valid justifications for each of
its precondition nodes; once fired, it converts itself into a justification
of the conclusion node and ceases to exist as a consumer. The set of
consumers to be executed at any given time can be obtained through

Belief Revision in Multi-Agent Systems

Benedita Malheiro1, N. R. Jennings2 and Eugénio Oliveira1

1Dept. of Electrical Engineering and Computers, Faculty of Engineering,
Opporto University, Rua dos Bragas - 4099 Porto CODEX, Portugal.
2Department of Electronic Engineering, Queen Mary & Westfield College,
University of London, Mile End Road, London E1 4NS, UK.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47139913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distributed AI 295 B. Malheiro, N. R. Jennings and E. Oliveira

a scheduling algorithm [4] and an agenda which contains every node
with a non empty label and pending consumers. The problem solver
repeatedly chooses one of these consumers, executes it, and then
removes it, until there are no nodes left on the agenda.

The main purpose of de Kleer’s algorithm is to find, as efficiently
as possible, the most general environment of a node and the most
general version of a contradiction. Adopting this strategy avoids
unnecessary work since: (i) by finding the most general version of a
contradiction it avoids various solving steps which would only lead
to inconsistencies; (ii) by finding the most simple node label it avoids
superfluous label updating. This approach guarantees that the con-
sumers of the antecedent nodes will always be scheduled before the
node’s own consumers. The main cycle consists of choosing the con-
sumer with the smallest consistent environment, running it, and then
removing it. With such an agenda, the ATMS-problem solver combi-
nation will always find the most simple labels first - identifying all
possible solutions with the least effort.

The final component of the ATMS is the interface unit which sup-
ports the following functionalities: assumption creation; node
creation; addition of justifications; and querying about beliefs.

2.2 Locally Coherent Multi-Agent Belief Revision

Global coherence in a distributed belief revision system means com-
plete coherence between all of the agents’ conclusions all of the time.
However attainment of this level of coherence depends not only on
the system’s architecture and design but also on the amount of inter-
agent communication which is acceptable. Whenever a centralized
architecture is appropriate it is reasonable to build a global TMS
which incorporates all of the system’s facts and justifications;
whereas in the case of a distributed architecture a pragmatic compro-
mise between the achieved coherence level and the information
redundancy among the agents has to be reached. These two architec-
tural options give rise to two fundamental approaches to belief
revision in a multi-agent system: respectively, global coherence and
local coherence. In the first case, two or more agents cannot assign a
different belief status to the same fact. In the second case, different
agents may have different perspectives over the same fact if conve-
niently justified.

In multi-agent systems the autonomous agents each have their
own repositories where they record local propositions and justifica-
tions. Only when cooperation occurs do nonlocal facts have to be
represented. In such an environment global coherence is unattain-
able, unless the system broadcasts every relevant activity to all the
pertinent agents, therefore we settled for local coherence. Given this
stance, the question of how to include external propositions in an
agent’s local dependency network becomes a crucial issue. Depend-
ing on the scheme chosen for attaining local coherence, an agent that
receives an external fact may or may not receive its label: if the label
is sent, it is possible to guarantee the coherence between the founda-
tions of the external fact and the local facts and assumptions; if no
label is sent, it is impossible to cross check the external fact’s foun-
dations with the local TMS data. In the first case the agents exhibit
local-and-shared well-foundedness and local coherency, whilst in
the second case there is only local well-foundedness and local coher-
ency [5]. We chose the latter because it is more appropriate for
modelling autonomous agents which have their own beliefs, desires
and intentions. Consequently, the community of agents behaves like
a democratic society in which each individual can hold a different
opinion once it is locally justified - an agent only accepts to revise its
beliefs based on external information when it does not have its own
convictions regarding that fact.

Using this scheme, a given agent’s knowledge has to be divided
into two separate sets:

• private beliefs that the agent has generated and kept to itself
• shared beliefs that the agent has in common with at least one

acquaintance.
Within a particular agent, a shared belief can either be internal

(endogenous) or external (exogenous). The former means that the
agent has deduced the fact for itself; the latter means that the agent
has received the information from an acquaintance. This classifica-
tion is central to the belief revision process because:

• private beliefs have a local scope and are automatically revised
by the agent’s ATMS

• shared beliefs are revised only by the agent that created them
(i.e. agents where the beliefs are classified as shared internal).
The revision action is performed by the originating agents’
ATMS module and then the updated beliefs are resent to all the
acquaintances where they are known as shared external.

The basic operation of each agent can be described as a continu-
ous loop of: (i) receiving and processing new beliefs; (ii) updating the
items on the agenda; (iii) executing its agenda. Whenever a fact is
presented to the system (through the user agent) it is immediately
routed to the appropriate agents. The recipients are those agents
where the fact has been, or can be, assumed or deduced. Once the
arrived fact has been locally revised it is sent to all of the acquaintan-
ces where the necessary updates take place. The belief revision
algorithm followed by each agent is given in more detail in figure 1.

This algorithm does not guarantee that a unique belief status will
be attributed to every shared belief. If the domains of several agents
overlap, then a shared belief can be internal to several community
members. In such circumstances, whenever a belief revision occurs
in any of these agents, the system may find that the same belief has a
different belief status in different agents. The way in which the agents
that rely on such shared external beliefs decide which belief status to
adopt is explained in section 3.3.

3. IMPLEMENTING LOCALLY COHERENT
MULTI-AGENT BELIEF REVISION

The aforementioned multi-agent belief revision algorithm has been
implemented in a general purpose system which facilitates coopera-
tion between autonomous problem solving agents. The agents
themselves are divided into two distinct functional units: a domain
level system and a cooperation layer. The former is implemented as
an assumption based belief revision system and contains, among oth-
ers, domain expertise on planning and scheduling (section 3.1). The
latter is the interface between the agent and the rest of the community
and provides the necessary facilities for establishing, maintaining
and monitoring cooperation (section 3.2).

3.1 Implementing Distributed Belief Revision

As a first step, the rules and facts of the domain level system’s knowl-
edge base are transformed into consumers and nodes (which have the
following knowledge representation):

• consumer(Dep, Id, List_of_Antecedents, Con-
sequent) in which Dep stands for depth, Id for the identification
of the rule that originated that specific consumer,
List_of_Antecedents contains the precondition nodes list and Con-
sequent contains the conclusion node.



Distributed AI 296 B. Malheiro, N. R. Jennings and E. Oliveira

• node(Datum, Class, Type/Index, Scope, Agent)
where Datum is the proposition the node represents, Class specifies
whether the node is an assumption or a deduced node, the third
argument, if the node represents an assumption, contains its index,
otherwise it specifies the deduced node type, Scope specifies
whether the proposition is local, shared internal or shared external,
and Agent contains the name of the agent responsible for having
deduced the node.

3.2 Implementing the Cooperation Layer

The functionality related to cooperation is represented as a distinct
problem solving layer which sits above the ATMS-problem solver
component (figure 2). The cooperation layer has the following com-
ponents [6]: a cooperation module; a communication module which
sends/receives messages between/from the agents; a self model
which represents information about the underlying domain level sys-
tem; and a set of acquaintance models which represent the relevant
information about the other community members with which the
agent can be expected to interact.

The Cooperation Module is responsible for determining when
cooperation is necessary and for deciding what strategy should be
employed for each social interaction. Cooperation can be viewed
from two perspectives: from the organiser’s point of view and from
the respondent’s point of view [7]. The organiser starts the coopera-
tion based on its needs and views. This includes asking for assistance
(task sharing) and supplying voluntary help (result sharing). Task
sharing is initiated when the organiser has an activity that it cannot
accomplish alone and so it looks for help within the community - the
agent which accepts the task is the respondent. Result sharing is ini-
tiated when the organiser generates information which it believes
will be useful to others, based on its acquaintance model, or if it has
revised some of its shared beliefs.

The Communications Module provides the necessary physical
channels and the high-level protocol needed to support cooperative

problem solving. The implemented system is based on message pass-
ing through the UNIX Operating System sockets. The high-level
protocol is based on speech act theory [8] and has the following
primitives:

• request(Organiser, Respondent, Data): Organiser
asks the Respondent for help in producing Data (task sharing).

• query(Organiser, Respondent, Data): Organiser
queries the Respondent about a belief.

• answer(Respondent, Organiser, Data): Respondent
answers a request within framework of a task sharing cooperation.

• assign(Organiser, Respondent, Data): Organiser
initiates result sharing cooperation action as result of some shared
beliefs’ revision.

• reply(Respondent, Organiser, Data): Respondent
answers a previous query about a belief.

• explain(Respondent, Organiser, Data): Respon-
dent explains the reason for a particular belief, e.g., provides its
foundations.

In order to participate effectively in a multi-agent system, an
agent must know which of its tasks can be carried out without assis-
tance (independent tasks) and which of its tasks depend on other
agents in some way (dependent tasks). This information is repre-
sented in the agent’s self model: who_am_i gives the agent’s
identification; my_conclusions gives the tasks the agent is capa-
ble of performing; i_know_about gives the facts the agent knows
about; and my_goal gives each task’s requirements and results.

The acquaintance models provide agents with information about
who can assist them with their dependent tasks
(who_knows_about) and who they can assist by volunteering use-
ful information (is_interesting_to).

IF a fact F has arrived at AGENT THEN

IF F EXISTS IN AGENT THEN

IF SHARED-EXTERNAL(F) THEN

IF F’s status is unbelieved or false & it is currently believed by AGENT

THEN invoke ATMS to remove assumption that represented F and create an ordinary node
with an empty label

IF F’s status is believed & it is currently unbelieved by AGENT

THEN invoke ATMS to remove the ordinary node with an empty label that represented F
and create an assumption

IF SHARED-INTERNAL(F) THEN

IF F’s new status ≠ AGENTs current belief status THEN invoke ATMS in standard manner
IF F DOES NOT EXIST IN AGENT THEN

IF F’s belief status is unbelieved/false THEN create ordinary node with empty label

IF F’s belief status is believed THEN create an assumption

After this processing, the agent updates its own agenda and executes it. For every node in the
agenda the ATMS is invoked in the standard manner, that is:

IF node has pending consumers & node’s antecedents are believed

THEN incoming node’s justification is sent to ATMS

Finally, if any shared internal nodes are revised during these actions then their incoming belief
statuses are sent to the relevant acquaintances.

Figure 1: The Agents’ Belief Revision Algorithm



Distributed AI 297 B. Malheiro, N. R. Jennings and E. Oliveira

3.3 Cooperative Problem Solving

A cooperative interaction is started: (i) when an agent needs assis-
tance; (ii) when an agent is able to supply help; and (iii) when a belief
revision of shared knowledge occurs. An example of each of these
cases is presented below:

i) Task Sharing Cooperation:

Agent1 requests help from agent2 to determine whether michel is a
member of staff. Agent1 knows that it is unable to produce this
information, by examining the my_conclusions slot of its self
model, but the who_knows_about slot of its acquaintance
model indicates that agent2 can assist in this activity.

request(agt1, agt2, staff-michel)

If agent2 can deduce that michel is a member of staff it will answer
agent1 by sending the corresponding belief status (eg believed).

answer(agt2, agt1, staff-michel-believed)

Then the already detailed belief revision algorithm is locally trig-
gered at agent1 with staff-michel-believed as a shared
external fact.

ii) Result Sharing Cooperation:

Agent1 voluntarily sends a result (eg that john is believed to have
been promoted) to agent2. This exchange occurs because agent1’s
model of agent2 states in the is_interesting_to slot that
john’s promotion is a relevant piece of information.

assign(agt1,agt2, promoted-john-believed)

Then the already detailed belief revision algorithm is locally trig-

gered at agent2 in order to incorporate this new proposition as a
shared external fact.

iii) Belief Revision of a Shared Fact:

(a) Agent1 no longer believes in the internal shared fact that john
has been promoted and through consulting its acquaintance models
(the is_interesting_to slot) it passes this information onto
agent2.

assign(agt1, agt2, promoted-john-unbelieved)

(b) Agent2 no longer believes the internal shared fact that michel is
a member of staff and through consulting its acquaintance models
(the is_interesting_to slot) it passes this information to
agent1.

assign(agt2, agt1, staff-michel-unbelieved)

Then, in both cases, the already detailed belief revision algorithm is
locally triggered at the respondent in order to update the corre-
sponding shared external belief.

The adopted architecture results in locally responsible agents that
provide the community with local coherence. However, this
approach still leaves some important questions unanswered: what
does the system answer when it is queried about a fact for which dif-
ferent agents have a different belief status? and what belief status will
be adopted by an agent that has represented such a shared external
fact? With respect to the first question, there are two possible
situations:

• the fact under analysis is part of a contradiction, regardless of
the agent

• the fact under analysis is not part of a contradiction.

Consumers

Facts

Figure 2: Agent Architecture

Self Model

Cooperation Module C
om

m
un

ic
at

io
n

M
od

ul
e

COOPERATION LAYER

Acquaintance
Models

ASSUMPTION
BASED BELIEF
REVISION
SYSTEM

ATMSInterfaceProblem Solver

Assumptions

Inferred Nodes

Scheduler

Knowledge Base

Justifications

Facts

Beliefs



Distributed AI 298 B. Malheiro, N. R. Jennings and E. Oliveira

In the first case, the system answers that the fact is part of a contra-
diction and therefore it is false; in the second case, if there is at least
one agent that has reason to believe in the fact, the system answers
the query by stating that the fact is believed. Essentially the same
mechanism has also been adopted to solve the second question of
deciding in which acquaintance an agent should believe. Some meta-
level code is placed on top of the already described belief revision
algorithm to act as a filter for the incoming data:

IF incoming fact F is a new fact

THEN call standard belief revision algorithm

IF F already exists THEN

IF the incoming belief status is originated
by the current owner of the fact

THEN revise F accordingly

IF the incoming belief status is false (F
is part of a contradiction to some agent)

THEN revise F accordingly (becomes false
and will be owned by the agent that
found the contradiction)

IF the agent’s belief status for F is
unbelieved & the incoming belief status
is believed

THEN revise F accordingly (unbelieved to
believed)

4. CONCLUSIONS

This paper outlines the key issues associated with belief revision in
multi-agent systems and describes how a locally coherent cooperat-
ing community can be designed and implemented for a real world
scenario. The adopted implementation platform, which was origi-
nally conceived as a general purpose multi-agent architecture sup-
porting different forms of cooperation [6], also turned out to be well
suited for supporting belief revision activities. The knowledge con-
tained in the cooperation layer’s models ensures that if a change
occurs in an existing domain level system fact it will be communi-
cated to every agent where it is external, additionally the models
ensure that incoming facts are always communicated to the relevant
agents. Belief revision is attained not only through the implementa-
tion of the distributed ATMSs but also through the addition of meta-
level control actions which guarantee a unique justified answer to
every query (with a time response which is adequate for the majority
of real world applications).

To put this work in context we briefly compare and contrast it
with two of the most important distributed belief revision systems
which have been developed to date. Mason and Johnson imple-
mented a Distributed ATMS where the interchange between the
agents includes not only the shared data, but also the shared data
labels and the invalid assumptions sets [9]. They present agents
which exhibit local and shared well foundedness (the foundations of
the incoming facts are cross-checked with the local assumptions in
order to guarantee that these foundations are not locally disbelieved)
as well as local coherence. In our system, the agents exhibit only
local well foundedness; when we decided not to send the label
together with the node’s belief status we deliberately dropped the
possibility of guaranteeing the shared facts well foundedness in
order to gain a computational speed up. To compensate we apply the
following methodology throughout our system: (i) every answer
provided by the system is inspected in order to verify that it does not
contain any of the system’s detected contradictions; (ii) before

adopting or updating a shared external belief the receiving agent col-
lects all of its different perspectives, and only then asserts its status,
based on the results of the described meta-level control actions.

Huhns and Bridgeland implemented a distributed JTMS that pro-
vides local and shared coherence [5]. Their system suffers from the
typical JTMS problems: computational overhead (not suitable for
real world applications) and possible unsatisfiable circularities. In
addition their implementation allows an agent with less information
to dominate a more knowledgeable agent and their system is “agnos-
tic about what data should be shared among agents”.

For the future, we are investigating how our Distributed ATMS
implementation can be applied in the domain of geographical infor-
mation systems. On the theoretical side a number of issues require
further investigation, these include: explicit negation and more
sophisticated conflict resolution policies.

ACKNOWLEDGMENT

This work has been supported by the British Council / JNICT Proto-
col Grant 423.

REFERENCES

[1] J. P. Martins, (1990) “The Truth, The Whole Truth, and Nothing But The
Truth” AI Magazine, Special Issue, 7-25.
[2] J. Doyle, (1979) “A Truth Maintenance System” Artificial Intelligence 12,
231-272.
[3] J. de Kleer, (1986) “An Assumption-based TMS” Artificial Intelligence 28
(2), 127-162.
[4] J. de Kleer, (1986) “Problem Solving with the TMS” Artificial Intelligence
28 (2), 197-224.
[5] M. N. Huhns and D. M. Bridgeland, (1991) “Multi-Agent Truth Mainte-
nance” IEEE Trans. on Systems, Man and Cybernetics 21 (6), 1437-1445.
[6] T. Wittig (ed.), (1992) “ARCHON: An Architecture for Cooperative Multi-
Agent Systems” Ellis Horwood.
[7] E. Oliveira and F. Mouta, (1993) “A Distributed AI Architecture Enabling
Multi-Agent Cooperation” Proc. of 6th Int. Conf. on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems, Edinburgh, UK
[8] J. R. Searle (1969) “Speech Acts: An Essay in the Philosophy of Lan-
guage” Cambridge University Press.
[9] C. Mason and R. Johnson, (1989) “DATMS: A Framework for Distributed
Assumption Based Reasoning” in Distributed Artificial Intelligence Vol II
(eds. L Gasser and M. N. Huhns) 293-317.


