
Modelling a network of
heterogeneous eLearning Systems

José Paulo Leal1 and Ricardo Queirós2

1CRACS/INESC-Porto & DCC/FCUP, University of Porto, Portugal

zp@dcc.fc.up.pt

 2CRACS/INESC-Porto & DI/ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. In recent years emerged several initiatives promoted by educational
organizations to adapt Service Oriented Architectures (SOA) to eLearning.
These initiatives commonly named eLearning Frameworks share a common
goal: to create flexible learning environments by integrating heterogeneous
systems already available in many educational institutions. However, these
frameworks were designed for integration of systems participating in business-
like processes rather than on complex pedagogical processes as those related to
automatic evaluation. Consequently, their knowledge bases lack some
fundamental components that are needed to model pedagogical processes. The
objective of the research described in this paper is to study the applicability of
eLearning frameworks for modelling a network of heterogeneous eLearning
systems, using the automatic evaluation of programming exercises as a case
study. The paper surveys the existing eLearning frameworks to justify the
selection of the e-Framework. This framework is described in detail and
identified the necessary components missing from its knowledge base, more
precisely, a service genre, expression and usage model for an evaluation
service. The extensibility of the framework is tested with the definition of this
service. A concrete model for evaluation of programming exercises is presented
as a validation of the proposed approach.

Keywords: SOA, interoperability, eLearning.

1 Introduction

The architecture of eLearning platforms is moving away from centralised systems
towards decentralised networks of heterogeneous systems. The types of systems
participating in these networks range from existing eLearning systems to supporting
services for specialized tasks. These systems and services may participate in several
learning processes that can be easily reconfigured to meet changing requirements and
demands. We are particularly interested in networks of eLearning systems providing
services related to the automatic evaluation of programming exercises. Networks of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47139626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this kind include systems such as Learning Management Systems (LMS), Evaluation
Engines, Learning Objects Repositories and Exercise Resolution Environments.
These types of systems have a completely different nature. Some expose their
functions as web services, such as Learning Objects Repositories or the Evaluation
Engines. Others have their own web interfaces for students and teachers, such as
Learning Management Systems. Some, as is the case with Integrated Development
Environment (IDE) that we intend to use as exercise resolution environments, were
not even designed to interact in the eLearning realm and must be extended for that
purpose. Modelling a network with such heterogeneity is challenging.
There are a number of eLearning Frameworks to adapt Service Oriented Architectures
(SOA) to eLearning promoted by educational organizations. These frameworks share
a common goal: to create flexible learning environments by integrating heterogeneous
systems already available in many educational institutions. However, these
frameworks were designed for integration of systems participating in business-like
processes rather than of complex pedagogical processes as those related to automatic
evaluation. Consequently, their knowledge bases lack some fundamental components
that are needed to model pedagogical processes.

The objective of the research described in this paper is to study the applicability of
eLearning frameworks for modelling a network of heterogeneous eLearning systems,
using the automatic evaluation of programming exercises as a case study. The paper
surveys the existing eLearning frameworks to justify the selection of the E-
Framework. This framework is described in detail and identified the necessary
components missing from its knowledge base. The extensibility of the framework is
tested with the definition of the missing components. A concrete model for evaluation
of programming exercises is presented as a validation of the proposed approach. The
proposed model reflects the experience gained by the authors with Mooshak and
EduJudge projects. Mooshak [2] is a contest management system for ICPC contests
that is being used since 2002 also as an e-Learning tool in computer programming
courses. EduJudge [3] is a system developed for enabling the use by Learning
Management Systems (LMS) of the collection of programming exercises of the UVA
on-line judge1. Both systems have automatic evaluation components that if recast as
services could provide their functions to different types of e-Learning systems.

The remainder of this paper is organized as follows: section 2 presents a survey of
the existing eLearning frameworks. Section 3 introduces the e-Framework and its
technical model. In the following section we detail our contribution to the E-
Framework’s knowledge base with the creation of a service genre, expression and
usage model that comprises the definition of an evaluation service. Then, we evaluate
the usefulness of this evaluation service by integrating it in a network of systems that
aims the automatic evaluation of programming exercises. Finally, the paper
summarizes the current trends in eLearning frameworks development and open
challenges for research.

1 Official Web Site, http://uva.onlinejudge.org/

2 eLearning frameworks

An eLearning framework can be defined as a specialized software framework. In the
eLearning field, this term has been associated with several initiatives to adapt SOA to
eLearning. Based on Service Oriented Approaches [8], the process of moving from a
framework to a working implementation can be defined by four key concepts: broad
vocabulary describes all possible ‘services’ for a domain such as eLearning;
reference model combines these services for specific learning or teaching
requirement; design specifies the use of standards and specifications for these
combinations; and artifact is an implementation (software, process, workflow) of a
design.

A Framework provides a vocabulary of Services (e.g. digital repositories
services), from which a Reference Model (e.g. describing content management) is
derived. A particular Design (e.g. repository management application) is modelled
based on the Reference Model which is then implemented as an Artifact.

Based on these key concepts, we group them in abstract and concrete frameworks.
While abstract frameworks provide a broad vocabulary and a reference model for
the development of eLearning systems, concrete frameworks provide also designs
and/or artifacts. In the remainder of this section, we categorize eLearning frameworks
based on these groups.

Abstract frameworks aim only at the creation of specifications, recommendations
and best practices for the development of eLearning systems. We highlight three
initiatives belonging to this category, more precisely, the IMS Abstract Framework
[12,13], the Open Knowledge Initiative [10,11] and the IEEE Learning Technology
Systems Architecture [9, 10], in the chronological order of their first definition.

Concrete frameworks extend the goals of abstract frameworks by providing a
complete service designs and/or components that can be integrated in actual
implementations of artifacts. We highlight four initiatives: E-Framework [17,18],
Schools Interoperability Framework [15,16] and Open University Support System
[14]. Based on the previous grouping we made a survey to categorize and to compare
the features of these frameworks. The following figure traces their evolution.

Figure 1 – Evolution of eLearning Frameworks.

The previous figure suggests that, in the last decade, the trend is the appearance of
the concrete frameworks rather than abstract frameworks. It is worth noting that none
of the concrete frameworks we mentioned actually implement artifacts. At most, these
projects include user contributed components, which can be integrated in artifacts for
systems using the framework, but are not part of the framework itself.

We also compare five of these frameworks regarding: impact and maturity,
architectural models, adopted standards and user groups.

Table 1. eLearning Frameworks survey.

Facets Features LTSA OKI IAF SIF E-F

Impact and
Maturity

Creation date 1996 2001 2003 2003 2007
1st version date 1996 2003 2003 2003 -
Last vers. Date 2001 2006 2003 2009 -
Cited projects - 3 - 37 4
Contributions inactive yes yes Yes yes

Architectural
Models

Main model layered layered layered flat layered
SOA yes yes yes Yes yes

Adopted
Standards

Content format - - - SCORM
SCORM
IMS CP

Metadata LOM LOM LOM LOM LOM,DC

Web Service SOAP SOAP
SOAP,
REST

SOAP,
REST

SOAP,
REST

Lang. bindings -
JAVA,

PHP, C#
JAVA JAVA JAVA

User
Groups

Framework users ESV ESV IMS ESV ESV
End users HE HE HE K-12 HE

From the previous table we can conclude that some frameworks have a very low

update frequency (IAF) for several initiatives and one of them is already inactive
(LTSA). The frameworks with the most recent updates are the E-Framework and SIF.
In the case of the E-Framework, it has been receiving great amount of input from the
eLearning community. On the other hand, SIF is the most widely used framework
with 37 cited projects in the project web site.

We also conclude that all frameworks adhere to a service-oriented approach. Most
of them use the layered architectural model. In this model components communicate
only with components in the neighbouring layers. In particular, the LTSA has five
layers in its architecture, but only one layer (system components) is normative. In the
flat model there is no restriction to the communication among components. The SIF
framework is a special case in applying this model since it uses a central component
(ZIS) that orchestrate all the communication between applications. These frameworks
use different main concepts to present their inner structure. OKI and IAF are an
exception since they share their main concepts, which is probably due to the fact that
these projects are cooperating [13].

In terms of standards we conclude that certain standards are common to almost all
frameworks. For instance, LOM for metadata content, WSDL for service description,
SOAP for web service and Java for language binding are common to all frameworks.
Finally, we notice that Educational Software Vendors (ESV) are the most common
framework users, with the exception of IAF. IMS uses the framework to develop

internal specifications (e.g. IMS Enterprise Services Specification). Regarding
eLearning systems end users, the Higher Education (HE) sector is the most targeted.

Based on this survey, we conclude that e-Framework and Schools Interoperability
Framework (SIF) to be the most promising e-learning frameworks since they are the
most active projects, both with a large number of implementations worldwide. In the
e-Framework we can contribute by proposing new service genres, service expressions
and service usage models. On SIF we cannot make this type of contribution to the
abstract framework. However, we can contribute with new agents, such as learning
objects repositories.

3 The e-Framework

The e-Framework is arguably the most prominent e-learning framework currently in
use. For this reason it was selected as basis for modelling a programming exercises
evaluation service.

The e-Framework is an e-learning framework aiming to facilitate technical
interoperability within and across higher education and research through improved
strategic planning and implementation processes. The e-Framework is an initiative
that was initially established by the UK's Joint Information Systems Committee
(JISC) and Australia's Department of Education, Employment and Workplace
Relations (DEEWR). In 2007, the two founding partners were joined by the New
Zealand Ministry of Education (NZ MoE) and The Netherlands SURF Foundation
(SURF).

The e-Framework has a knowledge base to support its technical model. The
technical model of the e-Framework aims to facilitate system interoperability via a
service-oriented approach [11]. The model provides the following set of technical
components enumerated in Table 2.

Table 2. Technical Model.

Components Description User role
Service
Genre

A collection of related behaviours that
describe an abstract capability.

No technical expert
(e.g. IT Manager)

Service
Expression

A specific way to realise a service genre with
particular interfaces and standards.

Technical expert
(e.g. Developer)

Service Usage
Model

The relationships among technical components
(services) used for software applications.

Domain expert
(e.g. Business Analyst)

A service genre describes a generic or abstract service expressed in terms of

behaviours (e.g. authenticate, harvest, search). A service genre specifies what a
service should do without specifying how it should work. This type of component is
usually described by IT Managers without any technical knowledge.

A service expression is a realisation of a single service genre by specification of
exact interfaces and standards used. Since this component covers various technical
aspects is more suitable for programmers.

A service usage model (SUM) describes a model of the needs, requirements,
workflows, management policies and processes within a domain. Hence, the expected
candidates to formally describe SUMs are those with the domains’ knowledge. A
SUM is composed of either service genres or service expressions, but not a mixture.

Other components such as specifications and standards (e.g. IMS Metadata, LOM)
are used by service expressions but are not also defined by the e-Framework.

4 Evaluation service description

In this section we contribute to the E-Framework with the definition of an evaluation
service. The purpose of this type of service is to be used by an Evaluator to mark and
grade exercises in computer programming courses and in programming contests. By
exposing its functions as services a programming exercise evaluator is able to
participate in business processes integrating different system types, such as
Programming Contest Management Systems, Learning Management Systems,
Integrated Development Environments and Learning Object Repositories.

The contribution is composed by a service genre, a service expression and a
service usage model.

4.1 Text File Evaluation Service Genre

In the e-Framework a service genre describes generic capabilities of a specific service
expressed in terms of their behaviours, without prescribing how to make them
operational.

In this section a text file evaluation service genre is proposed to the E-Framework.
A service of this genre is responsible for the assessment of a text file with an attempt
to solve an exercise described by a LO. It supports three functions:

• ListCapabilities: provides the requester with a list of all the
capabilities supported by a specific evaluator;

• EvaluateSubmission: performs the evaluation of a submission to a
given exercise, using some of the available capabilities;

• GetReport: accesses a detailed report of a previous evaluation.
In the following sub-subsection the three service internal functions are detailed.

The ListCapabilities function informs the client systems of the capabilities of a

particular evaluator. Capabilities depend strongly on the evaluation domain. For
instance, in a computer programming evaluator the capabilities are related with the
programming language compiler or interpreter. Each capability has a number of
features to describe it and for a programming language they may be the language
name (e.g. Java) its version (e.g. 1.5) and vendor (e.g. JDK). On an electronic circuit
simulator a capability may be a collection of gates that are allowed on a circuit and
features may be the names of individual gates.

Figure 2 – The ListCapabilities function.

In this function, represented in Figure 2, the request doesn’t accept any parameter

and the response returns a list of all capabilities of the evaluator. Each capability is
described by a list of features, with a name and a value.

The EvaluateSubmission function allows the request of an evaluation for a
specific exercise. The request includes an exercise or a reference to an exercise
represented as a learning object held in a repository and a single attempt to solve a
particular exercise. The request may include a specific evaluator capability necessary
for a proper evaluation of the attempt. The response returns a ticket for a later report
request and may return also a circumstantial report about the respective evaluation of
the requester attempt.

A schematic of this function is shown in Figure 3. The service endpoint provides
the interfaces for the requests and responses for the evaluation functionality.
Internally the service implementation may include several features (indexing,
queuing, transforming, flow control, etc.) needed to provide the defined functionality
and a connection with a remote data source holding the objects such as a LOR.

Figure 3 – The EvaluateSubmission function.

The evaluator returns a report on the evaluation, if it is completed within a
predefined time frame. The report must contain information about the assessment of
the attempt but should not reach to any conclusion. The raw data sent to the client can
be used as input for other systems (e.g. classification systems, feedback systems).

In any case the response will include a ticket to recover the report on a later date.
Requesting a report using a ticket is supported through another function called
GetReport detailed in the next sub-subsection.

The GetReport function (Figure 4) allows a requester to get a report for a
specific evaluation. The report included in this response may be transformed in the
client side based on a XML stylesheet. This way the client will be able to filter out
parts of the report and to calculate a classification based on its data. The request of
this function includes a ticket sent previously by the service in response to an
evaluation. The response returns a report about an evaluation.

Figure 4 – The GetReport function.

4.2 The Evaluate - Programming Exercise service expression

In this section we define a new service expression, called Evaluate - Programming
Exercise, that specializes the Evaluate service genre2, modelling the evaluation of an
attempt to solve an exercise defined as a learning object. Examples of this kind of
exercise can be drawn from different domains; in this service expression we focus on
the automatic evaluation of programming exercises.

The e-Framework model contains 20 distinct elements to describe a service
expression, 9 of which are required elements, and the remaining either recommended
or optional. For the sake of terseness the remainder of this section concentrates on the
most significant of those elements.

4.2.1 Use & Interactions

The Use & Interactions element illustrates how the functions defined in the Requests
& Behaviours section are combined to produce a workflow. An interaction involving
the evaluator and two other service types, using the three main functions of the
evaluator, is depicted schematically in Fig. 4 as an UML sequence diagram. The
diagram includes three objects representing:

• Learning Management System - to manage the exercises suitable to specific
learner’s profiles;

• Evaluation Engine - to automatically evaluate and grade the students'
attempts to solve the exercises;

• Learning Objects Repository - to store programming exercises and to retrieve
those suited to a particular learner profile.

2 We completed the definition of this service genre and we expect to publish it shortly.

Fig. 5. Interacting with the evaluator.

The workflow presented in Fig. 5 starts with the configuration of an evaluation

activity in an LMS (e.g. Moodle with an evaluation plugin). The configuration
involves the selection of programming exercises and programming languages and will
be carried out by a teacher. To select relevant programming exercises the LMS
forwards the searches to a repository. To select programming language the LMS uses
the ListCapabilities function of the evaluator.

During the evaluation activity itself the LMS iterates on the evaluation of all
submissions. In general each student is able to make several submissions for the same
exercise and an activity may include several exercises. Each evaluation starts with an
EvaluateSubmission request from the LMS to the evaluator, sending a program and
referring an exercise and a programming language. The evaluator retrieves the LO
from the repository to have access to test cases, special correctors and other metadata.
The response to of this function returns a ticket and an evaluation report, if the
evaluation is completed within a certain time frame. The LMS may retrieve the
evaluation report using the GetReport function with the ticket as argument.

4.2.2 Applicable Standards

The Applicable Standards element enumerates the names and versions of all the
domain and technical standards, specifications and application profiles needed to
provide the functionality of the service expression.

The pertinent e-learning content standards for this service expression are the IMS
Content Packaging (IMS CP) [12] v1.1.4 final specification and the IEEE Learning
Object Metadata (LOM). We introduce also a specification from a previous work [4]
where we defined programming exercises as learning objects based on the IMS CP.

An IMS CP learning object assembles resources and meta-data into a distribution
medium, typically a file archive in zip format, with its content described in a file
named imsmanifest.xml at the root level. The manifest contains four sections: meta-
data, organizations, resources and sub-manifests. The main sections are meta-data,
which includes a description of the package, and resources, containing a list of
references to other files in the archive (resources) and dependency between them.

This standard was defined for LO in general, not specifically for programming
problems. In particular, the IMS CP schemata (including the IEEE LOM) lack
features for describing all the resources required to perform the automatic evaluation
of programming problems. For instance, there is no way to assert the role of specific
resources, such as test cases or solutions. Fortunately, IMS CP was designed to be
straightforward to extend it and thus we were able to use this standard for our purpose
of defining programming problems as learning objects.

Meta-data information in the manifest file usually follows the IEEE LOM schema,
although other schemata can be used. Since the meta-data related to the automatic
evaluation cannot be conveniently represented using the IEEE LOM, it is encoded in
elements of a new schema - the EduJudge Meta-data Specification (EJ MD).

The only e-learning interoperability standard relevant to this service expression is
the IMS DRI specification [8]. It was created by the IMS Global Learning
Consortium (IMS GLC) and provides a functional architecture and reference model
for repository interoperability. The IMS DRI provides recommendations for common
repository functions, namely the submission, search and download of LO. The IMS-
DRI must be used by the evaluator with the LO repository.

4.2.3 Interface Definition

The Interface Definition element formalizes the interfaces of the service expression,
namely the syntax of requests and responses of its functions. This particular service
expression exposes its functions as SOAP and REST web services. The syntax of
function requests in both flavours is summarized in Table 3.

Table 3. Service Expression function requests in SOAP and REST.

Function Web
Service

Syntax

ListCapabilities
SOAP ERL ListCapabilities()

REST GET /evaluate/ > ERL

EvaluateSubmission
SOAP ERL Evaluate (Problem, Attempt ,Capability)

REST POST /evaluate/$CID?id=LOID < PROGRAM > ERL

GetReport
SOAP ERL GetReport(Ticket)

REST GET $Ticket > ERL

The remainder of this sub-section describes these functions in detail. All these
functions respond with an XML document complying with the Evaluation Response
Language (ERL). The ERL is formalised in XML Schema and covers the definition of
the response messages for the three evaluator functions. The diagram depicted in the
Figure 6 includes two main elements: request and reply. The former echoes the

request function and its parameters as received by the evaluation service and the later
contains the output to that request.

Fig. 6. The ERL schema.

The request element contains a different sub-element according to the function

type. The reply element includes two sub-elements representing the possible
responses of the service, more precisely, the capabilities and report elements.
The capabilities element is used in a ListCapabilities response. This element has
several capability sub-elements each with several feature elements to describe it.
The ticket attribute holds a ticket to recover a report on a later date.

4.2.4 Usage Scenarios

The Usage Scenarios element characterizes the types of workflows in which the
service expression is used. In our case these workflow types can be classified as
curricular and competitive learning. In this sub-section we detail the requirements of
these different scenarios.

Curricular learning in computer programming requires the evaluation of
exercises in several moments such as practical classes, assignments and examinations.
A programming evaluation service can be used in all three cases. Its usefulness in
practical classes results from the instant feedback it provides to students, identifying
the failed test cases and providing hints to resolve them. In programming assignments
combining automatic and human evaluation both feedback and grading are relevant.
In this scenario the student may submit multiple times, until a number of tests is
passed, and receive automated feedback in the process. In examinations grading is the
most relevant part and different grading policies can be implemented by the client
based on the tests cases that were successfully completed.

Competitive learning relies on the competitiveness of students to increase their
programming skills. This is the common goal of several programming contests where
students at different levels compete such as: the International Olympiad in Informatics
(IOI)3, for secondary school students; the ACM International Collegiate Programming

3 IOI Official Web Site, www.ioinformatics.org

Contests (ICPC)4, for university students; and the IEEExtreme5, for IEEE student
members. Each programming contest type has its own set of rules. In some cases
students participate individually (as in IOI and IEEExtreme) in other cases they
participate as a team (as in ICPC). Moreover, each contest has its own policy for
grading and ranking submissions. For instance, IO assigns points to tests and ICPC
just accepts a submission if it passes all tests, and gives a penalty for failed
submissions when an exercise is accepted.

An implementation of the proposed service expression meets the evaluation
requirements of this wide range of scenarios, from curricular and competitive
learning. The evaluation report does not compute a grade, points or classification, nor
produces a feedback for any particular scenario. However, all these can be easily
computed by clients using a XSL transformation on the XML formatted report.

4.3 Text File Evaluation Service Usage Model

In the E-Framework, a Service Usage Model (SUM) describes the needs,
requirements, workflows, management policies and processes within a domain. A
SUM is composed of either Service Genres or Service Expressions, but not a mixture.
In this section the SUM for the text file evaluation of learning objects is detailed. The
E-Framework has 22 distinct elements to describe a SUM, 12 are required elements
and the rest is either recommended or optional. For the sake of terseness just a subset
of the SUM content based on the templates provided by the E-Framework is detailed.
In concrete is described the SUM diagram, the technical functionality, the structure
and arrangement of the functions and the data sources and services used.

The SUM Diagram element, depicted in Figure 7, defines a visual representation
of the SUM for presentation purposes. This type of diagram is suggested by the E-F
templates [12]. It organizes business processes in columns. For each business process
the summary and name are highlighted in square rectangles in the top and the services
genres it includes as ovals. Data sources are represented in the footer of the diagram.

In the first business process called Archive Learning Objects, the teacher searches
in a repository for learning objects. Then, it selects the most appropriate and archives
it, for instance, in a LMS for future use.

The Evaluate Learning Objects business process details the attempt of the student
to solve a particular learning object and the request for its evaluation. In this business
process the Evaluation Service Genre, detailed in the previous subsection, was used.
This service includes the EvaluateSubmission function that returns ticket for a later
report request and may also return an evaluation report. The report could be sent to
both student and teacher or be transformed for a personalized notification about the
evaluation of the students’ attempt.

4 Official Web Site, http://icpc.baylor.edu/
5 IEEExtreme Official Web Site, http://ieeextreme.org/

Figure 7 – The SUM diagram.

The Functionality element categorizes the functions supported by the SUM from

a system viewpoint. The functions used in this SUM are organized as follows:
common functions (Authenticate and Authorize), repository functions (Search,
Obtain, Archive, Lookup and Alert) and evaluation functions (Evaluate).

The Structure & Arrangement element illustrates how a SUM is used in a
particular business process by identifying the services used, data sources and their
interactions within the SUM. An apt illustration of the use of this SUM is the
pedagogical learning process involving the evaluation of programming exercises,
presented in the following section.

5. Validation

To evaluate the usefulness of these service definitions we made a concrete definition
of a service expression based on the proposed service genre, a programming exercise
evaluation service. The evaluation of programming exercises involves the following
types of services:

Learning Management System - to manage and retrieve the exercises to the
learners. We chose the Moodle LMS since it is a free and open-source LMS with a
significant share on the LMS market [3];

Learning Objects Repository - to persist LOs and related meta-information. We
developed a specialized repository named crimsonHex [4] which currently stores
more than 2000 programming exercises;

Evaluation engine - to evaluate and produce feedback on the learners’ attempts to
solve the exercise. We will use the Mooshak system as the evaluation engine based on
a shared service [5];

Exercises Resolution Environment – to code the attempts of solving an exercise.
We will use the Eclipse IDE since it is a free, widely used and open-source solution.

Figure 8 – Service integration in a pedagogical e-Learning process.

Figure 8 shows the integration of these services in a pedagogical learning process.

In this particular scenario the teacher starts by setting a number of activities in the
LMS, including the resolution of programming exercises. To select the relevant
programming exercises the teacher 1) searches for relevant exercises in the repository.
Then, the learner 2) tries to solve the exercises set be the teacher using an
Experimentation Environment (e.g. Eclipse IDE). The IDE 3) recovers exercises
descriptions from the repository showing them to the student. After coding the
program the learner 4) send an attempt to the Evaluation Engine. The Evaluation
Engine 5) recovers test cases from the repository. The learner may submit repeatedly,
integrating the feedback received from the Evaluation Engine. In the end, the
Evaluation Engine 6) sends a grade to the LMS that records it and reports the LO
usage data back to the repository.

6 Conclusion and ongoing work

This paper presents a survey on eLearning frameworks and the contribution of an
evaluation service for programming exercises to one of the most prominent eLearning
frameworks - the E-Framework. The contribution includes three components of the E-
Fremework’s technical model: a service genre, a service expression and a service
usage model.

In the Service Genre the authors made an abstract description of the behaviours
expected from a text file evaluation service. Then, we add a new service expression
that specializes the previous service genre by refining its behaviours and requests, and

also specify several implementation details such as applicable standards and interface
definitions. Finally, in the Service Usage Model, we present the relationships between
services through business processes and the usage scenario based on a particular
domain - the automatic evaluation of programming exercises.

To evaluate the usefulness of these service definitions we made a concrete
definition of an Evaluation service expression, more precisely, a programming
exercise evaluation service. For this purpose, we are currently recasting Mooshak [2],
a contest management system, in order to implement this service expression.

References

1. Leal, J.P. and Queirós, R.: eLearning Frameworks: a survey. Proceedings of International
Technology, Education and Development Conference 2010, Valencia, Spain, (2010)

2. Leal, J.P and Silva, F.: Mooshak: a Web-based multi-site programming contest system
Software, Practice & Experience, Volume 33 , Issue 6 (May 2003), Pages: 567 - 581,
2003, ISSN:0038-0644

3. Leal J.P and Queirós, R.: CrimsonHex: a Service Oriented Repository of Specialised
Learning Objects, in Joaquim Filipe and José Cordeiro (Eds.) Proceedings of ICEIS'09:
11th International Conference on Enterprise Information Systems, pages 102-113, Milan,
Italy, May 2009, ISBN: 978-3-642-01346-1.

4. Leal, J.P., Queirós, R.: Defining Programming Problems as Learning Objects - ICCEIT
2009 - International Conference on Computer Education and Instructional Technology,
Venice, Italy, (2009)

5. Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Services (2007)

6. IMS CC Specification, Version 1.0 Final Specification,
http://www.imsglobal.org/cc/index.html

7. Bohl, O., Scheuhase, J., Sengler, R. and Winand, U.: The shareable content object
reference model (SCORM)-a critical review, Proceedings of the International Conference
on Computers in Education, 2002, pages 950-951

8. IMS DRI - IMS Digital Repositories Interoperability, 2003. Core Functions Information
Model, http://www.imsglobal.org/digitalrepositories

9. C. Smythe: IMS Abstract Framework - A review, IMS Global Learning Consortium, Inc.
(2003)

10. Wilson, S., Blinco, K. , Rehak, D. : An e-Learning Framework - Paper prepared on behalf
of DEST (Australia), JISC-CETIS (UK), and Industry Canada, (2004)

11. e-Framework Technical Walk-through, http://www.e-framework.org/Portals/9/docs/e-
Framework%20technical%20walk-through%20v1.1.pdf

12. IMS-CP – IMS Content Packaging, Information Model, Best Practice and Implementation
Guide, Version 1.1.4 Final Specification IMS Global Learning Consortium Inc.,
http://www.imsglobal.org/content/packaging/#version1.1.4

13. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.,
Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI, IEEE
Internet computing, 2002, Volume 6, Issue 2, Pages: 86-93

14. Fielding, R.T. and Taylor, R.N. (2002-05), Principled Design of the Modern Web
Architecture, ACM Transactions on Internet Technology (TOIT) (New York: Association
for Computing Machinery) 2 (2): pages: 115–150, doi:10.1145/514183.514185, ISSN
1533-5399

15. Clark, D., Next-generation web services, IEEE Internet Computing, 2002, Volume 6, Issue
2, Pages: 12-14

