
An Engine for Generating XSLT from Examples

José Paulo Leal1 and Ricardo Queirós2,

1 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

2 CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. XSLT is a powerful and widely used language for transforming XML
documents. However its power and complexity can be overwhelming for novice
or infrequent users, many of which simply give up on using this language. On
the other hand, many XSLT programs of practical use are simple enough to be
automatically inferred from examples of source and target documents. An
inferred XSLT program is seldom adequate for production usage but can be
used as a skeleton of the final program, or at least as scaffolding in the process
of coding it. It should be noted that the authors do not claim that XSLT
programs, in general, can be inferred from examples. The aim of Vishnu - the
XSLT generator engine described in this paper – is to produce XSLT programs
for processing documents similar to the given examples and with enough
readability to be easily understood by a programmer not familiar with the
language. The architecture of Vishnu is composed by a graphical editor and a
programming engine. In this paper we focus on the editor as a GWT web
application where the programmer loads and edits document examples and pairs
their content using graphical primitives. The programming engine receives the
data collected by the editor and produces an XSLT program.

Keywords: XSLT, Transformations, Refactoring.

1 Introduction

Generating a XSLT program from a pair of source and target XML documents is
straightforward. A transformation with a single template containing the target
document solves this requirement, but is valid only for the actual example. Using the
information from the source document we can abstract this transformation. The
simplest way is to assume that common strings in both documents correspond to
values that must be copied between them. If we explicitly identify these
correspondences we can have more control over which strings are copied and to
which positions. However, a transformation created in this fashion is still too specific
to the examples and cannot process a similar source document with a slightly different
structure. For instance, if the source document type accepts a repeated element � and
the example has � repetitions of the element � then the generated program would
accept exactly � repetitions of that element.

Although too specific, a simple XSLT program can be used as the starting point
for generating a sequence of programs that are more general and are better structured,
ending in a program with a quality similar to one coded by a human programmer. To
refine an XSLT program we can use second order XSLT transformations, i.e. XSLT
transformations having XSLT transformations both as source and target documents.
In this approach the role of an XSLT generation engine is to receive source and target
examples, and an optional mapping between the strings of the two documents,
generate an initial program and control the refinement process towards the final
XSLT program.

The aim of this paper is the presentation of Vishnu – an XSLT engine for
generating readable XSLT programs from examples of source and target documents.
Readability is an essential feature of the generated programs so that they can be easily
understood by a programmer not familiar with the language. The architecture of
Vishnu is composed by a graphical editor and a programming engine. The former acts
as a client where the programmer loads and edits document examples and pair their
content using graphical primitives. The latter receives the data collected by the editor
and produces an XSLT program.

There are several use cases for an XSLT generation engine with these features.
The Vishnu generator was designed to interact with a component that provides text
editing functions for the end-user or programmer. A client of Vishnu can be a plug-in
of an Integrated Development Environment (IDE) such as Eclipse or NetBeans. In
this case the IDE provides several XML tools (highlighting, validation, XSLT
execution) and the plug-in is responsible for binding the content of text buffers and
editing positions with the engine and retrieving the generated XSLT program. Vishnu
can also be used as the back-end of a web environment for XSLT programming. In
this case the web front-end is responsible for editing operations and invokes engine
functions for setting the example documents and mappings, and retrieving the
generated program. The generator can also be used as a command line tool as part of a
pipeline for generating and consuming XSLT programs. In this last case the generator
processes example documents in the local file systems, making mostly use of default
mappings.

The rest of the paper is organized as follows. Section 2 presents work related to
XSLT editing and generation. In the following section we present the inner structure
of the XSLT generator that is composed of three main components: the context, the
generator and the refiner. Then, we evaluate the Vishnu XSLT generation engine
from three complementary and interrelated approaches, focusing: the consistency of
generation and refinement process; the coverage of the existing rules; and the
adequacy of the Vishnu API to XSLT editing environments. Finally, we conclude
with a summary of the main contributions of this work and a perspective of future
research.

2 Related Work

The first step to start editing XSLT files is choosing the editor that most suits one’s
programming environment. There are tools integrated in XML IDEs [1, 2], tools

integrated in general purpose IDEs as plug-ins [3, 4, 5, 6, 7, 8] and even standalone
applications [9, 10, 11]. Despite the existence of several environments for
programming in XSLT, usually integrated into IDEs, they do not use visual editing
for programming. Moreover, as far as we know, none of the graphical XSLT
programming environment generates programs from examples as source and target
documents.

Hori and Ono [12, 13] use an example-based annotation tool which relies on a
target document editor. The main concepts of their approach are depicted in Figure 1.
An annotator can edit a target document (e.g., an HTML page) by using the
capabilities of a WYSIWYG authoring tool (1). The editing actions are recorded into
an operation history (2). When the editing is finished, the annotation generator creates
transformational annotation for the document customization (3), which can be further
used by XSLT processor to replicate the transformation from the initial document to
the customized document.

Fig. 1 History based document transformation.

Spinks [14] presents an annotation-based page-clipping engine providing a way of

performing Web resources adaptation. At content delivery time, the page-clipping
engine modifies the original document based on: 1) the page-clipping annotations
previously generated in a WYSIWYG authoring tool and 2) the user-agent HTTP
header of the client device. The page-clipping annotation language uses the keep and
remove elements in the annotation descriptions to indicate whether the content being
processed should be preserved or removed.

3 The Vishnu engine

The Vishnu engine [15] concentrates all the tasks related with the automatic
generation of an XSLT program from examples using second order transformations.
Nevertheless, it was designed to interact with a client. A client of the Vishnu engine
concentrates all the tasks related with user interaction where the programmer loads
and edits document examples and pairs their content using graphical primitives.

The communication between these two components is regulated by the Vishnu
API. Hence, the architecture of the Vishnu application is composed by a Graphical
Editor and a Programming Engine as depicted in Figure 2.

Fig. 2 The architecture of Vishnu.

The former acts as a client where the programmer loads and edits document

examples and pair their content using graphical primitives. The design and
implementation of a client for the Vishnu engine is presented in the next section to
validate the adequacy of the Vishnu API to XSLT editing environments.

The latter receives the data collected by the editor and produces an XSLT program.
The engine relies on the Vishnu API that includes methods for setting the source and
target documents as streams of characters, setting a mapping between the strings of
these documents using editing locations (offsets), and retrieving the resulting XSLT
program. The Vishnu API includes also functions for supporting graphical interaction
in the editor and for configuring the generation process. The functions for selecting
strings in the XML documents (text and attribute nodes) from editing locations are
example functions for supporting graphical interaction. The Vishnu façade class
implements this API and hides the inner structure of the XSLT generator that is
composed of three main components: the context, the generator and the refiner.

3.1 Context

The central piece of the engine is the generation context. The context holds the source
and target documents and the mapping between the two and is responsible for
converting between the external textual representation provided by the client and the
internal XML representation required by the Vishnu. In particular this component is
responsible for converting document position into XPath expressions and vice-versa.

The conversion is managed by the PathLocator class. This class converts text
locations (offsets) into IdPaths expressions and vice-versa. An IdPath is an absolute
XPath expression which selects either single texts or attribute nodes in an XML
document. The general form of an IDPath is:

/n 1[p 1]/.../n n[p n]/text()
/n 1[p 1]/.../n n[p n]/@attr

It should be noted that locating nodes from using their editing positions and the

reverse are not operations supported by the APIs for processing XML documents.
The Context component is also responsible for the generation of the mapping

between the source and the target documents. It maintains an XML map file

identifying the correspondences between both. These identifications can be inferred
automatically or manually set through the Editor. The following XML excerpt shows
an example of a source, target and a list of pairs of XPath expressions relating them
merged in a file called vishnu.xml.

<vishnu xmlns="http://www.dcc.fc.up.pt/vishnu">
<!—Source document -->
<source>
<rss version="2.0" xmlns="http://backend.userland.c om/rss2"/>
 <channel>
 <title>News</title>
 <link>…</link>
 <description>…</description>
 <item>
 …
 </item>
 </channel>
</rss>
</source>
<!—target document -->
<target>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>News</title>
 </head>
 <body>
 <h1>News</h1>
 …
 </body>
</html>
</target>
<!—pairing document-->
<pairings>
 <pairing

source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/head[1]/title[1]/text()"/>

 <pairing
source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/body[1]/h1[1]/text()"/>

</pairings>
</vishnu>

This file will serve as input for the Generator component to produce a XSLT program.

3.2 Generation

The purpose of the generator is to produce an initial XSLT program from the source
and target, using a string mapping. If no mapping is provided by the client then it
uses a default mapping inferred by the context component, linking text or attribute
nodes in both documents with equal character strings. The generator component

receives as input the paring file and, using a second order transformation, produces a
specific XSLT program. As an illustration we present the output of this second order
stylesheet based on the example included in the previous subsection.

<xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/t ext()"/>
 </title>
 </head>
 <body>
 <h1>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/t ext()"/>
 </h1>
 …
 </body>
 </html>
</xsl:template>

The initial XSLT program has a single template containing an abstraction of the target
document. To abstract the target document the target positions in the mapping are
replaced with xsl:value-of instructions referring corresponding source positions in
the mapping. As explained previously, with this level of abstraction the initial
transformation is only able to process a document with the exact same structure of the
source document provided as input. To be of any practical use this program is
submitted to a refinement process.

3.3 Refinement

The refinement process produces a sequence of XSLT programs �� starting with the
initial program �� by applying � = �	
� set of second order XSLT transformations
called refinements. Refinements can be divided in two categories: simplifications and
generalizations.

Let � and �� be respectively the example source and target documents. All
refinements 	
 have the following invariant: ����� = �� ⇒ 	
���� ��� = �� that is,
if a program maps the example source document to the example target document then
the refined program has the same property. A simplification refinement is even more
restrictive and any document S that is converted by program � is equally converted
by its refinement, �. �. ∀ , � ���� = � ⇒ ri��n��S� = �. Simplifications are “safe”
refinements but fail to introduce the level of abstraction needed for a transformation
to be effective, hence this stronger requirement is relaxed for abstractions.

An example of a generalization is the refinement that unfolds a single template
into a collection of smaller templates. Candidates to top elements in the new template
are elements whose XPath expressions in xsl:value-of share a common and non-
trivial prefix that can be used match of the new template. As it introduces new

templates with relative expressions in the match attribute this refinement is not a
simplification. The new template may match with nodes with the same tag occurring
in different points in a different source document structure. To minimize the chance
of unwanted matches this refinement associates a mode to the new template that is
used also by the xsl:apply-template instruction that invokes it. An example of a
simplification is the refinement that removes redundant modes from xsl:template
and xsl:apply-template instructions. This refinement selects templates with non
empty modes that cannot be matched by other templates. That mode is removed both
from the selected template and all xsl:apply-template referring it. The current
Vishnu implementation includes over 10 refinements.

As an illustration we present the final output of the refinement process based on
the example included in the previous subsection.

<xsl:stylesheet version="1.0" …>

<xsl:template match=" rss2:channel">
 <xhtml:html>

<xsl:apply-templates mode=" xhtml:head" select=" rss2:title"/>
 <xhtml:body>
 < xsl:apply-templates mode=" xhtml:h1" select=" rss2:title"/>
 <xhtml:ol>
 <xsl:apply-templates select=" rss2:item"/>
 </xhtml:ol>
</xhtml:body>

 </xhtml:html>
</ xsl:template >

<xsl:template match=" rss2:item">

<xhtml:li>
 <xhtml:a href="{rss2:link}">
 < xsl:value-of select=" rss2:title"/>
 </xhtml:a> -
 < xsl:apply-templates select=" rss2:description"/>

</xhtml:li>
</ xsl:template >

<xsl:template match=" rss2:description">

<xhtml:i>< xsl:value-of select="."/></xhtml:i>
</ xsl:template >

<xsl:template match=" rss2:title" mode=" xhtml:h1">

 <xhtml:h1>< xsl:value-of select="."/></xhtml:h1>
</ xsl:template >

<xsl:template match=" rss2:title" mode=" xhtml:head">
 <xhtml:head>

<xhtml:title>< xsl:value-of select="."/></xhtml:title>
 </xhtml:head>
</ xsl:template >

</ xsl:stylesheet >

The Vishnu engine supports different refinement strategies to control the
application of the refinement setR . A refinement strategy indicates the next
refinement to use is informed if the suggested refinement has changed the XSLT
program and decides when the refinement process is complete. There are several
refinement strategies that can be set using the Vishnu API. The most effective
strategies implemented so far apply the refinements in a predefined order, repeating
the application of refinement while it is effective.

4 Validation

The Vishnu engine was validated in three complementary and interrelated approaches,
focusing the

consistency of the generation and refinement process;
coverage of the existing rules;
adequacy of the Vishnu API to XSLT editing environments.

By default Vishnu validates the consistency of the generation and refinement

process by checking that each intermediate transformation converts the example
source document into the examples target document. If this invariant is not satisfied
then the refinement process is aborted and an error is reported to the client.

To validate the coverage of the existing rules different scenarios were created.
Each scenario includes source and target document and a mapping, as well as the
expected program.

Fig. 3 The RSS to HTML scenario.

The manipulation of a scenario in Vishnu is made by the Scenario class. This class

provides a set of methods for testing the Vishnu engine. Typical uses involve a set of
scenarios where for each scenario the generated output of the engine is matched with
the resources enclosed on the scenario itself. The current scenarios include the
conversion of: 1) RSS documents to HTML; 2) Mathematical expressions in MathML
to presentation MathML and 3) Meta-data in LOM (Learning Object Metadata) to
RDF. The Figure 3 shows the inner workflow used for testing the RSS to HTML
scenario. A mixed-content scenario has not been added yet since the context
component is not supporting indexes in text nodes.

To validate the adequacy of the Vishnu API we developed a simple web
environment for XSLT programming based on the Google Web Toolkit (GWT), an
open source framework for the rapid development of AJAX applications in Java.
When the application is deployed, the GWT cross-compiler translates Java classes of
the GUI to JavaScript files and guarantees cross-browser portability. The specialized
controls are provided by SmartGWT, a GWT API's for SmartClient, a Rich Internet
Application (RIA) system.

The graphical interface of the front-end is composed by two panels: Mapping and
Program. In the Mapping panel the "programmer" uses graphical tools to map strings
in two XML documents corresponding to a source and a target documents for the
intended XSLT transformation. In the Program panel the user obtains the resulting
XSLT and can continue editing it.

Figure 4 shows the RSS-to-HTML scenario being used on the Vishnu client GUI
with its main components labelled with numerals. The Mapping panel includes two
side-by-side windows for editing respectively (1) the source and (2) the target
documents. These documents may be created either from scratch or based in scenarios
predefined in the Engine. Regardless of the choice the correspondences between both
can be set (3) manually through the Editor or inferred by the Engine.

When setting correspondences manually the programmer is able to pair contents
on these windows by selecting and highlighting with color texts where the origin is on
the source document and the destination is on the target window. Origin and
destination must be character data, either text nodes or attribute values.

When automatic correspondence is used Vishnu identifies pairs based on: text
matches (text or attribute nodes) or text aggregation. In the first mode strings
occurring on text and attribute type nodes on the source document are searched on the
text and attribute nodes of the target document, and only exact matches are
considered. In the second mode Vishnu aggregates strings in the source document to
create a string in the target document. After automatic pairing, the inferred
correspondences are presented in the GUI with colors mapping the two XML
documents. The user can then manually reconstruct the pairing of string between both
documents.

In complement to creating the source and target documents from scratch, the user

can fill in automatically the two rich text editors by using scenarios (4).
includes source and target document and a mapping, as well as

5 Conclusions

In this paper we present
XSLT programs for processing documents similar to the given examples and with
enough readability to be easily understood by a programmer
language.

The project that lead to the development of the Vishnu can follow different paths:
the engine can be used in other XSLT programming environments; the API of the
engine can extended with new functions; and the refinement pr
with new refinements. First of all, the Vishnu API was validated with a web
environment but the appropriate place to apply it would be an IDE with support for
XML. Eclipse is particularly suited for this purpose because it is not a XM
rather an IDE for programming in general with tools for handling XML, including
XSLT programming. Secondly, the Vishnu engine was designed as a tool for
generating simple XSLT programs from examples and can be extended for other uses.
The refinement process was designed to improve the quality of a naïve XSLT
program automatically generated from examples but can be used to improve any
XSLT program. In fact, an interesting side effect of this research is the definition of

Fig. 4 Vishnu client front-end.

In complement to creating the source and target documents from scratch, the user
can fill in automatically the two rich text editors by using scenarios (4). Each scenario
includes source and target document and a mapping, as well as the expected program.

In this paper we present Vishnu - an XSLT generator engine that aims to produce
XSLT programs for processing documents similar to the given examples and with
enough readability to be easily understood by a programmer not familiar with the

The project that lead to the development of the Vishnu can follow different paths:
the engine can be used in other XSLT programming environments; the API of the
engine can extended with new functions; and the refinement process can be extended
with new refinements. First of all, the Vishnu API was validated with a web
environment but the appropriate place to apply it would be an IDE with support for
XML. Eclipse is particularly suited for this purpose because it is not a XML IDE but
rather an IDE for programming in general with tools for handling XML, including
XSLT programming. Secondly, the Vishnu engine was designed as a tool for
generating simple XSLT programs from examples and can be extended for other uses.

ent process was designed to improve the quality of a naïve XSLT
program automatically generated from examples but can be used to improve any
XSLT program. In fact, an interesting side effect of this research is the definition of

In complement to creating the source and target documents from scratch, the user
Each scenario

the expected program.

an XSLT generator engine that aims to produce
XSLT programs for processing documents similar to the given examples and with

not familiar with the

The project that lead to the development of the Vishnu can follow different paths:
the engine can be used in other XSLT programming environments; the API of the

ocess can be extended
with new refinements. First of all, the Vishnu API was validated with a web
environment but the appropriate place to apply it would be an IDE with support for

L IDE but
rather an IDE for programming in general with tools for handling XML, including
XSLT programming. Secondly, the Vishnu engine was designed as a tool for
generating simple XSLT programs from examples and can be extended for other uses.

ent process was designed to improve the quality of a naïve XSLT
program automatically generated from examples but can be used to improve any
XSLT program. In fact, an interesting side effect of this research is the definition of

sort of “canonical XSLT” in terms of second order XSLT transformations. In practical
terms we plan to expand the Vishnu API to enable the use of the refinement process
on a given XSLT program, rather than only on those generated from examples. This
feature may be used in the XSLT programming environment to refractor any XSLT
programs, including the generated program after it was edited by the programmer.
Finally, Vishnu is an expandable system in the sense that refinements and refinement
strategies can be easily integrated. We expect to create new refinements both to
improve the quality of automatically generated XSLT programs and to introduce new
forms of automatically refactoring existing XSLT programs.

References

1. Stylus Studio - http://www.stylusstudio.com/
2. Altova StyleVision - http://www.altova.com/stylevision.html
3. Tiger XSLT Mapper - http://www.axizon.com/
4. XSL Tools - http://marketplace.eclipse.org/content/xsl-tools
5. oXygen - http://www.oxygenxml.com/eclipse_plugin.html
6. XMLSpy Eclipse editor - http://www.altova.com/xmlspy/eclipse-xml-editor.html
7. OrangevoltXSLT - http://eclipsexslt.sourceforge.net/
8. X-Assist - http://sourceforge.net/projects/x-assist/
9. Dexter-xsl - http://code.google.com/p/dexter-xsl/
10. VXT: A Visual Approach to XML Transformations. Emmanuel Pietriga, Jean-Yves Vion-

Dury and Vincent Quint. Proceedings of the 2001 ACM Symposium on Document
engineering, USA

11. FOA. Formatting Objects Authoring tool - http://foa.sourceforge.net
12. Hori, M., Ono, K., Abe, M. and Koyanagi, T.: Generating transformational annotation for

Web document adaptation: Tool support and empirical evaluation. Journal of Web
Semantics, 2(1), pp. 1-18 (2004-12).

13. Ono, K. et al., “XSLT Stylesheet Generation by Example with WYSIWYG Editing,”
Proceedings of the Symposium on Applications on the Internet (SAINT 2002), 2002, pp.
150-159.

14. Spinks, R., Topol, B., Seekamp, C., and Ims, S.: Document clipping with annotation.
IBM developerWorks, http://www.ibm.com/developerworks/ibm/library/ibmclip/ (2001).

15. Leal, J.P. and Queirós, R.: Visual Programming of XSLT from Examples - 8ª Conferência
- XML: Aplicações e Tecnologias Associadas, Vila do Conde, Portugal, June, 2010.

