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Empowered by virtualisation technology, cloud infrastructures enable the construction of flexible and
elastic computing environments, providing an opportunity for energy and resource cost optimisation
while enhancing system availability and achieving high performance. A crucial requirement for effective
consolidation is the ability to efficiently utilise system resources for high-availability computing and
energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment.
Additionally, failures in highly networked computing systems can negatively impact system performance
substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose
algorithms to dynamically construct and readjust virtual clusters to enable the execution of users’ jobs.
Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-
making algorithms leverage virtualisation tools to provide proactive fault-tolerance and energy-efficiency
to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest
version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule
ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-
the-art algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A cloud computing model exploits virtualisation [3] to ren-
der vertical and horizontal scalability, interoperability, failover,

Cloud computing is a specialised distributed-computing para-
digm that has recently gained popularity as a resource platform
for on-demand, high-availability, and high-scalability access to re-
sources. Cloud computing represents a new type of computational
model, providing better use of distributed resources, while offer-
ing dynamic, flexible infrastructures and quality of service (QoS).
From a hardware point of view, users have the illusion of infinite
computing resources that are available on demand [1,2].
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load balancing, improved system manageability, and reduction of
infrastructure operational costs through resource consolidation.
Virtual machine (VM) technologies provide flexible and scalable
system services to cloud computing systems, creating a power-
ful computing environment where virtualised resources can be
dynamically allocated, expanded, reduced, or moved as demand
varies. With the development of virtualisation tools such as KVM,
Xen, and VMware, new capabilities are introduced, such as VM live
migration, VM checkpoint/restart, and VM pause/unpause, while
the performance overhead for applications is maintained within
an acceptable range [3,4].

As cloud computing follows a utility model of consumption,
users contract computing power based on their expected needs.
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However, not all users request the contracted computing power
for the entire period of the contract. Meisner et al. [5] showed that
much of the energy used in a data centre is wasted on idle systems,
and, in typical deployments, server utilisation is below 30%. As en-
ergy costs are becoming a more significant factor in the operational
costs of modern businesses, it is a natural consequence that energy
consumption enters into the service cost equation to provide per-
formance at reasonable prices. Rather than ensuring absolute per-
formance at any cost, the focus is to maintain high service-level
performance [6]. In this study, we measured the service perfor-
mance by the success rate of job completion by the deadline. The
service-level agreement (SLA), or contract, is defined for each job
by specifying a deadline guaranteed by the system.

Node failures are a characteristic of a distributed system that
can have thousands of nodes running a variety of different jobs.
Fu [7] reported that a node’s mean time between failures (MTBF)
is 1.25 h in a petaflop system. In this paper, we propose a two-
step strategy, composed of a cloud manager and a cloud sched-
uler, to construct and dynamically manage energy-efficient virtual
clusters to execute sets of independent tasks in which computing
resources are affected by failures. To improve the availability of vir-
tual clusters and maximise the rate of completed jobs, we apply a
proactive failure tolerance technique. We consider the problem of
dynamically mapping tasks, running on virtual machines, to phys-
ical machines (PMs) in a power- and failure-aware manner. These
virtual-to-physical resource-mapping decisions must consider the
performance status, power efficiency, and reliability levels of the
computing nodes. The optimisation decision includes selecting the
CPU capacity necessary to accomplish the tasks within their re-
spective deadlines, considering the predicted MTBF of each node
and the migration overhead of the VMs.

By ensuring that tasks are completed by their deadlines, we are
satisfying the SLA imposed on each job. However, we also consider
that an SLA violation may occur, and, therefore, the SLA should in-
clude a penalty to the service provider for those occurrences, as
proposed in [6].

Our optimisation strategy also enables the infrastructure to re-
act to energy inefficiencies by continuously monitoring power con-
sumption. Our approach is adequate to implement scalable and
elastic service platforms on demand because of its dynamic charac-
teristic. Additionally, it adapts to and reduces stop times in main-
tenance operations. In such situations, the administrators should
only specify the PMs and their maintenance operation times. Our
proposed strategies enable the autonomous rescheduling of the
tasks currently running to complete the submitted users’ jobs in
an energy-efficient manner.

The main contributions of this paper are:

1. a review of failure-aware algorithms for resource provisioning
of cloud infrastructures;

2. the development of power- and failure-aware cloud schedul-
ing algorithms that implement vertical and horizontal platform
elasticity;

3. the development of a dynamic scheduling strategy to provide
power- and failure-aware virtual clusters that reactively de-
tect energy optimising opportunities and perform consolidation
to reduce energy consumption while maintaining service-level
performance;

4. an extensive evaluation of the dynamic strategy and the
scheduling algorithms with randomly generated workloads and
with workloads that follow the latest version of the Google
cloud tracelogs; and

5. adynamic configuration of the CPU portion assigned to each VM
that reduces the consumed energy and maintains the service-
level performance.

The scheduling algorithms proposed in this study are improved
versions of our previous work [8]. Additionally, we introduce an
extended evaluation using randomly generated workloads and re-
alistic workloads based on the recent Google cloud tracelogs [9].

The remainder of this paper is organised as follows. Section 2
introduces and discusses the related work based on dynamic
placement and provisioning of VMs. Section 3 presents the archi-
tecture of our controller to enable a power- and failure-aware dy-
namic mapping of VMs to PMs, formulates the VM placement and
provisioning problems, and introduces the proposed algorithms.
Section 4 introduces the metrics used to evaluate the performance
of the algorithms and describes the workloads and failure charac-
teristics used in the simulations. Section 5 presents the results and
discusses the performance of the proposed algorithms. Section 6
presents the conclusions of our current research and introduces fu-
ture research directions.

2. Related work

This paper presents an approach for the dynamic scheduling
of virtual machines in clusters, considering both optimisation of
energy efficiency and physical-node reliability to provide energy-
efficient and highly available computing environments. Below, we
discuss relevant work in the literature related to similar issues.

The work by Xu and Fortes focused on initial [ 10] and dynamic
[11] mapping of VMs to physical resources. The objectives in
both studies were to simultaneously minimise costs due to total
resource wastage, power consumption, and thermal dissipation.
The first publication, on initial mapping, proposed an improved ge-
netic algorithm with fuzzy multi-objective evaluation to efficiently
search the large solution space and conveniently combine the con-
flicting objectives. The second publication concentrated on the
dynamic placement of the VMs, where the authors aimed to op-
timise a multi-objective utility function that aggregates the three
objectives in a weighted sum. The authors also defined thresh-
old values and observation window sizes for condition detec-
tion and the stabilisation of the computing infrastructure. The
PADD scheme [12] minimised energy consumption while satis-
fying service-level agreement (SLA) requirements. The authors’
scheme dynamically migrated the VMs onto fewer PMs during pe-
riods of low utilisation and then expanded them onto more nodes
if the need arose. The proposed algorithm aimed to minimise the
total energy while meeting a given performance requirement and
is based on the free CPU capacity thresholds of the nodes. It also
uses a buffering technique to implement safety margins, thus re-
serving capacity to address workload demand fluctuations. The SLA
specifies how much of a demand must be processed within a given
time limit. SLA violations can occur because the PADD scheme is
best-effort-based. Lee and Zomaya [13] proposed two consolida-
tion task heuristics that maximise resource utilisation and explic-
itly take into account both active and idle energy consumption.
The heuristics assign each task to the resource for which the en-
ergy consumption for executing the task is minimised without any
performance degradation. Beloglazov et al. [6] proposed a modi-
fied best-fit algorithm for energy-aware resource provisioning in
data centres while continuing to deliver the negotiated SLA. The
performance is measured by the percentage of SLA violations that
occurred. Unlike our work, none of the cited studies addressed the
problem of scheduling with respect to energy efficiency and fail-
ure occurrence. However, the last study described above is used as
a comparison baseline, where no failure-aware mechanism is im-
plemented and the VM re-initiates when there is a failure. This is
referred to as the common best-fit (CBFIT) algorithm in our results
section and is further described in Section 3.6.

Fault-tolerant scheduling has been extensively studied in
the literature regarding real-time systems, such as in Al-Omari
etal.[14]and Zhu et al. [ 15], where fault tolerance is achieved using
a primary backup technique that consists of scheduling the same
task in two different processors; therefore, a failure can be toler-
ated, and the task is still able to execute before its deadline. This
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technique privileges processing time without considering the en-
ergy consumed, and therefore, it is not considered here in more
detail.

Various other studies have addressed the issue of computing
environment availability and reliability, targeting SLA fulfilment.
For example, Feller et al. built Snooze [ 16], a scalable, fault-tolerant,
and distributed consolidation manager for heterogeneous clusters.
The goal of Snooze is to dynamically consolidate the workload of
the underlying heterogeneous software and hardware cluster ar-
rangement, which is composed of a combination of both virtual and
non-virtual machines. The approach divides the problem into two
parts, namely, consolidation and idle-time management, and for-
mulates the mapping of the workload to the PMs as an instance of
a one-dimensional bin-packing problem (CPU) in which the PMs
represent the bins and the workload represents the items to be
packed. To solve this problem, the authors used heuristic algo-
rithms with relaxed constraints that take into account the migra-
tion of the VMs. Additionally, they used the replication technique
to achieve fault-tolerance, which increases the consumed energy
to complete the same set of jobs. Loveland et al. [17] combined
different virtualisation technologies to provide high-availability
(HA) configurations based on redundancy (such as active/active
and active/passive) while minimising costs. Nagarajan et al. [18]
performed the first comprehensive study of proactive fault toler-
ance (FT) using VM migration mechanisms. The authors applied
Xen to migrate an MPI task from a health-deteriorating node to a
healthy node. Their solution integrates an intelligent performance
monitoring interface (IPMI) for health enquiries (migrations are
threshold-activated) with Ganglia, which determines node targets
for migration based on load averages. Each node in the cluster runs
a daemon that monitors resource usage and then multicasts that
information to all the other nodes. Thus, all the nodes have an ap-
proximate view of usage throughout the entire cluster. The proac-
tive FT daemon selects the target node for migration as the node
that does not yet host a guest virtual machine and has the lowest
CPU usage. The FT daemon provides three features, i.e., (i) health
monitoring, (ii) decision making, and (iii) load balancing. In the
case of a node failure without prior health deterioration symptoms,
the system automatically reverts to the reactive fault tolerance ap-
proach, i.e., by restarting from the last checkpoint. The combina-
tion of proactive and reactive mechanisms decreases the cost of
reactive fault tolerance by lowering the checkpoint frequency. The
VgrADS project [19] provides a virtual grid execution system that
provides uniform qualitative resource abstraction of aggregate re-
sources from disparate sources under different policies, such as
grids and clouds. The authors applied virtual grid execution for
scheduling sets of deadline-sensitive weather forecasting work-
flows, balancing performance, reliability, and cost. Fault tolerance
is achieved through the replication of task execution. The system
works by first applying a rank value to each workflow job and then
scheduling the jobs based on their rank priorities. Fu [7] inves-
tigated and proposed failure-aware node selection strategies for
the construction and reconfiguration of virtual clusters to enhance
system availability, achieving high performance. His approach
leverages proactive failure management techniques, based on VM
migrations, and considers both the performance and reliability
status of computing nodes when making selection decisions. He
proposed the optimistic best-fit (OBFIT) and pessimistic best-fit
(PBFIT) algorithms to determine the best qualified nodes to which
to allocate the VMs to run user jobs. Experiments showed that a
higher rate of successfully completed jobs was achieved by using
OBFIT and PBFIT strategies. However, these algorithms do not per-
form well with bad prediction accuracy (below 40%). The results
showed that the approach enabled a 17.6% increase in job com-
pletion rate compared with that achieved with the current LANL
HPC cluster. The algorithms OBFIT and PBFIT were proposed for the
same scenario considered in this study, and they were then com-
pared with our proposed power- and failure-aware scheduling al-
gorithms.

3. Energy- and failure-aware virtual clusters

This section provides the formal description of an energy-
efficient and failure-aware cloud architecture, which dynamically
maps VMs to PMs, to improve the completion rate of users’ jobs
while decreasing energy consumption.

3.1. System overview and problem formulation

We consider a private cloud computing environment con-
sisting of a cloud provider and multiple cloud users. The cloud
architecture, information flow, and relative control blocks are illus-
trated in Fig. 1. The cloud computing infrastructure is composed of
h physical machines, where M is the vector representing the PMs,
M = {my, ..., my}.Physical hosts are homogeneous, i.e., they have
the same CPU capacity C, memory capacity R, network bandwidth
N, access to a shared storage space S for storing the disk images of
the VMs, and predicted time in the future for the occurrence of fail-
ures F;, which can vary among PMs such thatm; = {C, M, N, S, F;}.
In our work, we define a failure as any anomaly caused by hard-
ware or software fault, an unstable environment, or intentional or
mistaken actions by the infrastructure administrator that stops the
computing infrastructure components from working correctly.

In a typical usage scenario, cloud users submit their jobs, and
the cloud manager then reserves the necessary resources from
the cloud infrastructure to run their jobs. Each job j = (T}, d;)
is composed of a set of n independent CPU-intensive tasks, t; €
Tj,q € {1,...,n}, and a deadline, d;. Once tasks are independent,
the job deadline becomes the deadline of the longest task. The task
workloads are expressed in Mflops. The cloud manager runs the
resource allocation algorithm that creates mappings of tasks to
machines. Then, it creates and manages VMs to execute the tasks,
where each VM will run on top of one PM at a time. The set of VMs
constitutes the user’s virtual cluster execution environment. A job
is scheduled only if a VM can be assigned to each task of the job. A
VM encapsulates the task execution environment and is the unit of
migration in the system. In our model, multiple distinct VMs can
be mapped to a single PM. Job deadlines become activated as soon
as cloud users submit jobs.

Although machines are composed of several components, such
as memory, network interface cards, and storage disks, the power
consumed by the active physical nodes is primarily dictated by the
CPU resource [20,6]. Thus, we consider only the CPU power con-
sumption in our energy model. Based on [11,6], the power con-
sumption, P, of a PM, i, can be estimated based on the linear power
model, P; = p1+ p2 x CPU%, where CPU% is the percentage of CPU
utilisation for a given time interval, measured for a PM i at runtime.
The p1 and p2 factors are the power consumption when the PM is
in idle mode and the additional power consumption from CPU util-
isation, respectively. The factor p2 is typically proportional to the
overall system load. Eq. (1) is the power efficiency of a PM i at a spe-
cific sample time and reflects how much useful work is produced
for a given power consumption as follows:

B CPU;%
" pl+p2 x CPU%

where the workload is represented by the percentage of CPU util-
isation and the factor p1 + p2 is used to normalise the efficiency.
The power efficiency increases monotonically with the workload,
reaching 1 at 100% CPU usage [10,11]. By efficiently consolidating
the VMs, idle PMs can go into sleep mode, which improves power
consumption because an idle PM consumes from 60% to 70% of its
total power [20,6].

The optimisation problem consists of scheduling all the tasks
of the submitted jobs so that the energy consumed is minimised,
with the realisation that the PMs are the cause of failures. Every

5 x (p1+p2) (1
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Fig. 1. Private cloud management architecture.

task t for all submitted jobs (J) may run on any machine m € M.
A schedule is defined by a function sched; : | — M that assigns
to each task t € J a set of machines M; C M. Because of node
failures, each task may be executed on a single machine or may
migrate between machines more than once. The failure prediction
mechanism specifies the off times for each machine, and a schedule
for a task may specify a set of machines on which the tasks are
separately executed.

The objective function is the maximisation of the average power
efficiency of the execution of all jobs, defined by Eq. (2), for all
active physical nodes u, at all sample times f, as follows:

f u
i By
$ Il

o s=1

Ep="————, Yu<h (2)
f

subjected to the deadline constraint given by Eq. (3) for each task

t as follows:

FI(t) < d; (3)

where FT is the completion time of the task and d; is the deadline
of t.

The deadline constraint may lead to an empty schedule de-
pending on the resources available, their reliability, and the dif-
ference between each task execution time and its deadline. The
formulation presented above considers a set of jobs available at the
scheduling time. However, the cloud is dynamic with respect to re-
source availability and number of job submissions by users. Thus, a
new schedule would have to be produced when any of those condi-
tions change. The optimisation problem is NP-complete and cannot
be readily solved in a dynamic environment. Therefore, it is impor-
tant to develop heuristic algorithms, such as those proposed in this
paper, which can adapt the schedules on-the-fly.

Resource sharing is a common practice in virtualised environ-
ments. However, despite hypervisor slicing and resource sharing
among co-located VMs, the execution of one VM can still affect the
performance of the others. This phenomenon is known as perfor-
mance interference and is caused by the competition for resources
by running tasks. Performance interference in virtual environ-
ments induces slowdown of running applications, thus imposing
a deviation between expected and delivered QoS. Several authors
have investigated this problem and have proposed techniques to
predict the slowdown [21], where performance degradation, from
the last level of cache space and memory bandwidth sharing, can
be estimated with an error less than 4%. In this study, the SLA was
based on the specific deadline for each job; therefore, we can ac-
commodate the estimated performance degradation when select-
ing the PMs and assigning a CPU percentage to each task. In our
model, without loss of generality, we assume that there is no degra-

dation when resources are shared to evaluate the proposed algo-
rithms with respect to energy management and job completion
rates during node failure without introducing additional variables.

3.2. Cloud manager

The cloud manager continually obtains the virtual and physical
machine statuses, such as the nodes’ reliability, power consump-
tion, and execution progress of the tasks. Based on the information
collected, the cloud manager makes decisions concerning oppor-
tunities to improve energy efficiency, e.g., VM consolidation or the
need to migrate VMs to facilitate PM failure toleration. The consol-
idation mechanism transfers VMs from lower, loaded PMs to other
PMs, thereby improving the energy efficiency by putting the first
PMs in sleep mode and increasing the load rate of the active PMs.

Forecasting the time at which the next failure is going to occur,
in a certain PM, can be determined using the tool described in
[7,22]. The authors argued that the predictor tool can accurately
predict failure occurrences with an average accuracy of 76.5%. If a
PM fails unpredictably or fails before its running VMs conclude the
migration process, those VMs will be re-initiated in spare PMs.

3.2.1. PM states

Because a machine in an idle state can consume from 60% to 70%
of the power consumed when it is running at full CPU speed [20,6],
unused systems can enter a sleep state [23] to reduce power con-
sumption. There have been some notable efforts to reduce the
overhead caused by entering and waking from a sleep state. For
example, it has been shown [5] that a typical blade server con-
suming 450 W at peak can transit rapidly in a fraction of a mil-
lisecond to a near-zero-power idle state, consuming approximately
10.4 W. Thus, a reduction of power consumption can be effectively
achieved in modern real-world systems by switching idle PMs to
sleep mode in response to instantaneous loads, incurring near-zero
overhead. Another feasible technique to reduce the power con-
sumption of idle, or low-loaded, PMs is to use Dynamic Voltage
Frequency Scaling (DVFS) [24]. However, as is noted in [6], DVFS
is only applied to the CPU and not to other system components,
resulting in lower gains of energy compared with the technique of
switching idle PMs to the sleep state.

3.2.2. VMs migration

Migrations are required either for energy optimisation or when
a failure is predicted to occur. We opted for stop and copy mi-
grations that accomplish the migration process in a shorter inter-
val of time than live migrations [25]. In a live migration, memory
pages are iteratively copied from source to destination node, with-
out stopping the execution of the migrating VM [26]. The over-
head introduced by this approach is a function of the frequency
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Algorithm 1 Cloud manager algorithm

1: function CLOUDMANAGER(pmList, cloudUsers)
2: Event e <— NULL

3 while true do

4 jobList <— NULL

5 if e == ConsolidationEvent then

6: jobList.add(pmList.getTasksFromPMsPowerlInefficient (y, t))
7: else

8 jobList.add(pmList .getTasksFromPMsAboutToFail(¢))

9: jobList.add(pmList.getTasksFromPMsFailed())

10: jobList.add(cloudUsers.getUnscheduledjobs())

11: end if

12: map < schedAlg (pmlList, jobList .getTaskList ())

13: if map # NULL then

14: executeMapping (map) > Executes the VMs to PMs mapping
15: pmlidleList <— NULL, map < NULL

16: pmlidleList.add(pmList .getldlePMs())

17: pmSetSleepMode(pmlidleList)

18: end if

19: e < WaitForEvent()

20: end while
21: end function

of the writing to the memory pages because dirty memory pages
must be re-copied. In contrast, stop and copy migration requires
the VM to be stopped and its image to be transferred before ex-
ecution restarts at the new location. In this case, migration time
depends on the amount of memory allocated to the VM, which is
completely transferred; thus, the cost is mostly constrained by the
network bandwidth [6,27].

Several strategies for VM migration have previously been eval-
uated [18,25] with respect to working set size, and the results have
shown that live migration of VMs can almost double the migration
time compared with the time associated with the migration of VMs
using the stop and copy method. The migration of VMs with the
stop and copy method requires 12-14 s, in contrast to the 14-25 s
required for a live migration, on average.

3.2.3. Cloud manager algorithm

Algorithm 1 describes the cloud manager algorithm. In line 8,
the PM failure prediction mechanism identifies the PMs that are
about to fail and forces all VMs running on those machines to mi-
grate before a failure occurs in the preservation of the work already
completed. In line 9, the VMs that were running on PMs that failed,
before migrating their VMs, are added to the job list to be initiated
again. In line 10, all tasks that have not yet been scheduled in the
last scheduling instant and tasks from the new jobs that, mean-
while, have arrived are added to the job list. In line 6, if there are
no other tasks to schedule, we use the consolidation mechanism
for power efficiency improvement [28] that uses a single threshold
to identify under-utilised PMs. This mechanism identifies the tasks
that, if migrated, would increase the system power efficiency and
adds those tasks to the list. The destination PM is decided by the
scheduling algorithm in line 12. If there are other tasks to sched-
ule, the consolidation is postponed because those tasks will change
the load on the PMs.

Inline 12, a scheduler algorithm is called to map the set of avail-
able tasks to the PMs, regardless of whether they are new tasks
or tasks to be migrated. Only tasks that can start immediately are
mapped. The remaining tasks stay on the unscheduled list, i.e., the
result produced from the scheduling algorithm is not a plan for
mapping all available tasks. Such an approach enables the schedul-
ing algorithm to execute faster and is more adapted to the dynamic
behaviour of a cloud.

If a valid map results from the scheduling algorithm, it is ap-
plied in line 14. The map includes the initiating of new tasks, as

well as the migration of running tasks. If more than one migration
occurs from a source PM, they occur sequentially in time. After the
map is applied, the idle machines are collected in line 16 and are
set to sleep mode in line 17. Then, the algorithm waits for an event
in line 19. The events that may occur are changes to the environ-
ment, namely, a PM failure, a PM failure estimate, a VM consolida-
tion event, completion of a task, or the arrival of a new job. When
any of these events occurs, the cloud manager starts a new schedul-
ing iteration. The assignment of the CPU portion assigned to a VM
may be changed only if it is rescheduled from a migration opera-
tion or a task re-initiation.

3.3. Power- and failure-aware scheduling algorithms

In this subsection, we introduce our proposed scheduling al-
gorithms to allocate VMs in a power- and failure-aware manner.
The cloud manager invokes these algorithms to carry out task
(re)scheduling. Because the problem of mapping the VMs to the
PMs is NP-complete, the proposed algorithms are heuristic.

The submitted jobs and their tasks have heterogeneous re-
source requirements and varying deadlines. First, we define each
task’s minimum and maximum execution speeds and slack time,
which are used by the algorithms to prioritise tasks.

Eq. (4) defines the minimum resources r(t), in Mflops/s, as-
signed to a task t that are necessary to complete its remaining
workload W (t, ) in the time from time p + m,; to the task dead-
line d;. For example, consider the matrix multiplication algorithm
that requires 2n? flops for matrices of size (n, n) to compute. If the
amount of time available to execute the task is 120 s, the required
resource is 2n%/120 flops/s. Likewise Stillwell et al. [29], we as-
sume that a task t only requires the maximum amount of resources
max r(t) necessary to execute at the maximum speed, a value de-
fined by the user.
minr(t) > M (4)

di — [L — Mg
where p is the current time and the parameter m,; represents the
overhead required for a VM to migrate from node e to node i. The
parameter m,; is 0 if we are scheduling the task for the first time or
re-initiating it.

The slack time of task t, as shown in Eq. (5), expresses the
difference between the task deadline d; and the minimum time
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Table 1
List of symbols.
Symbol Description
h Number of physical servers/nodes
G Capacity of physical node i
Is.Jc Numbers of jobs submitted and jobs completed, respectively
f Number of time units for the simulation period
u Number of active PMs, at a certain time unit s
ri(t) Task t capacity request over PM i (Mflops/s)
8; Predicted instant of failure for node i
d; Completion deadline for task t
n The current time
Wi(t, n) Remaining workload for task t, at instant p (Mflops)
My Overhead migration of a VM/task, from node e to node i
R; Reliability weight of node i

necessary for task completion as follows:

W(t, u)
maxr(t)

slack_time = (d; — ) — (5)

The tasks for which Eq. (5) returns a negative value are can-
celled, and the corresponding jobs are considered incomplete, in-
curring an SLA violation. Assigning each task a CPU power between
minr(t) and maxr(t), we are satisfying the strict SLAs imposed on
each job.

We configure the cap parameter [41] from the Xen credit
scheduler for fine-grained CPU assignment, allocating the strictly
necessary amount of CPU power to execute a task before its
deadline. The Xen credit scheduler is the default CPU scheduler
used by the Xen hypervisor [30]. It assigns a cap and weights to
each VM instance to control the sharing of computing resources
among several VMs. The weights determine the proportion of CPU
time allocation to each VM when several VMs compete for the
CPU, meaning that VMs with higher weights will have a higher
execution priority. The cap specifies the maximum percentage of
CPU resources that a VM can obtain in a non-work-conserving
mode (i.e., a VM instance cannot use more than its share of the
CPU). By dynamically adjusting the CPU cap using the Xen credit
scheduler, the fraction of CPU resources assigned to each VM can be
updated to explore the available CPU fraction in the physical node
until the sum of the caps of all co-located VM instances is 100% [31].

In both algorithms proposed in this study, when a VM migra-
tion occurs, the CPU resource assigned to the VM is re-evaluated
and the destination PM and VM requirements are adjusted; thus,
the CPU requirement of the source PM may be different from that
of the destination PM. This dynamic CPU update only occurs when
migrations are performed, allowing horizontal and vertical scaling
of the VMs with respect to the CPU allocation. Table 1 lists the sym-
bols used in the schedule algorithms described next.

3.4. POwer- and Failure-Aware Relaxed time Execution (POFARE)

For the incoming jobs {ji, ..., jk}, the cloud manager creates a
set of virtual clusters, one for each user, to execute the tasks as-
sociated with the jobs. When invoked by the cloud manager, the
algorithm selects, at each step, a VM to schedule and determines a
destination PM.

3.4.1. VM selection

The algorithm creates a list of prioritised groups of tasks
{t1, ..., taxk}. The priorities are, from the highest to the lowest
priority (1) proactive failure tolerance; (2) re-initiating of failed
tasks; and (3) scheduling of new tasks. Power-optimising schedul-
ing is performed when there are no other types of tasks. Then, the
tasks in each group are sorted in ascending order according to the
slack_time of the tasks (Eq. (5)). These steps correspond to lines 3-5
of the algorithm POFARE that is described in Algorithm 2.

3.4.2. VM placement

After a VM is selected to be scheduled from the prioritised list,
in line 6 of Algorithm 2, all PMs are evaluated with respect to task
resource requirements, PM power efficiency, and reliability. In line
11, the algorithm checks that node i can supply the minimum re-
sources required by task t, which is evaluated using Eq. (6) as fol-
lows:

n

() + Y rilt) <G (6)

k=1
where {t; , t;,, ..., t;,} is the set of tasks running on node i and
ri(t;,) is the resource assigned to task t;,. The machine is consid-
ered a candidate if the minimum resource demand of ¢, plus the
overall resources required by all tasks that run on physical node i,
does not exceed the node capacity C;. For the first evaluation, r;(t)
is minr(t).

If the first condition is true in line 11, the second condition is
assessed, i.e., the algorithm verifies that the node i can execute
part of the task before a failure in i occurs, as evaluated by Eq. (7).
This equation indicates that task t can be (re)scheduled or migrated
from node e to a non-reliable physical node i at time pu + m,;,
which s predicted to fail at instant §;, if (1) it provides the resources
ri(t) required by task t during the §; — w time interval and (2)
task t will have to migrate to another, currently unknown physical
node where it cannot require more resources than those needed to
enable execution at maximum speed, max r(t).

ri(t) x (6 — n — mg;) + (maxr(t)) x (dy — & — me;)
> W(t, u,

if ((31 — W — M) (7)

_wew

~ maxr(t)

If the machine is not selected by the above equation, Eq. (8) is

evaluated. In other words, if task t starts at time u + m,; at node i,

with a predicted instant of failure §; later than the task deadline d;,

the amount of resources necessary to complete the task within the

deadline can be allocated without additional migrations. If node i
does not satisfy Eq. (8), it is discarded to receive the current task.

ri(t) x (dr — p —me) = W(E, )
if ((5:' — [ — M)

W(t, n)

>

minr(t)

All machines are evaluated and, in line 21, a maximum of one

machine is the pmSelected, i.e., the node that best improves the

power efficiency of the machine (Eq. (1)) and that can provide the

required resources. If there is more than one node providing the

same power efficiency, Ep, the node with the highest reliability is

selected in line 14. Eq. (9) represents the reliability weight for a
given node i. The node with the lowest R; is the most reliable.

1
T 8i—de—mg;

A 1;i(t) € [minr(t), max r(t)]) .

(8)

A Ti(t) € [minr(t), max r(t)]) .

(9)

The criterion for choosing the node that returns the lowest
value of Eq. (9) allows tasks that have a low slack time to be as-
signed to run in nodes that have the necessary resources to avoid
migrations. The algorithm sets the cap parameter in the Xen credit
scheduler to reserve the resources necessary to complete the tasks
within their deadlines. The algorithm supports a work-conserving
mode during task execution if the CPU capacity of a node is not
completely consumed. In such cases, the remaining free CPU ca-
pacity is distributed equally among all running VMs until the entire

R;
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Algorithm 2 POwer- and Failure-Aware Relaxed time Execution (POFARE)

1: function POFARE(pmlList, jobList)

2: mappingList <— NULL

3:  jobList.taskList.removeTasksHavingNegativeSlackTime()
4 joblList .taskList .groupTasksByReason()

5. jobList.taskList.sortTasksInGroupsByIncreasingSlackTime()
6: for all task € jobList.taskList do

7 [IRweight < NULL

8 hEpower < NULL

9 pmSelected <— NULL

> lowest reliability weight
> highest power efficiency

10: for all pm € pmlList do

11: if pm.hasResources(task) and pm.hasReliability(task) then
12: rWt <« pm.getReliabilityWeight (task)

13: ePw < pm.getPowerEfficiency(task)

14: if ePw > hEpower or (ePw = hEpower and rWt < [Rweight) then
15: [Rweight <« rWt

16: hEpower < ePw

17: pmSelected <— pm

18: end if

19: end if

20: end for

21: if pmSelected # NULL then

22: mappingList < {task, pmSelected}

23: pmSelected.updateResourcesAvailable(task.minResources)
24: end if

25: end for
26: return mappingList
27: end function

> VMs (tasks) to PMs mapping

CPU capacity of the node is consumed or the maximum capacity of
all VMs is reached, thus enabling the task to run at the maximum
possible speed. In cases where there is no physical node providing
the minimum required resources minr(t) to complete a task t by
its deadline d;, that task is put on hold until the cloud computing
environment releases the necessary resources.

3.5. POwer- and failure-aware minimum time execution (POFAME)

The POFAME algorithm differs from the POFARE algorithm in
the amount of CPU resources that are assigned to a task. POFAME
selects a PM that maximises the power efficiency, as POFARE
does, but it reserves the maximum amount of resources needed to
execute the task (in line 23 of Algorithm 2), limited by the available
PM resources and the maximum amount of resources required
by the task. POFARE reserves the minimum required resources to
complete the task by its deadline, thereby increasing the task’s
completion time.

The complexity of POFARE and POFAME is given by the product
of the number of tasks, n, to be scheduled at a given time and the
total number of machines, m. For a single iteration, the complexity
of both algorithms is O(n x m).

3.6. Comparison of scheduling algorithms

We implemented three other algorithms to compare their per-
formance with that of our algorithm, namely, the optimistic best-
fit (OBFIT) algorithm, the pessimistic best-fit (PBFIT) algorithm [7],
and a best-fit type of algorithm that is based on the MBFD algo-
rithm [6] and herein called the common best-fit (CBFIT) algorithm.
Because MBFD does not consider node failures, CBFIT is a simplified
version to show the impact of the pro-active fault-tolerant migra-
tions. The CBFIT strategy selects, from all available PMs, the PM that
has the minimum capacity necessary to run a task to optimise en-
ergy consumption. In turn, OBFIT collects a set of PMs that will not
fail before a task’s deadline. Then, from this set of PMs, it weighs

and selects the PM that has both the minimum required capacity
and minimum reliability to run a VM. The PBFIT strategy calculates
the average available capacity level Cyyerqge among the computing
nodes that will not fail before the task deadline, and from the set
of PMs that will fail before the task deadline, it selects the PM with
capacity C, such that Coyerage + Cp results in the minimum required
capacity to run the task.

4. Evaluation and simulation scenario

In this section, the metrics used to evaluate the algorithm
performance are presented. The workloads, failure characteristics,
and simulation scenario are also described.

4.1. Performance metrics

To evaluate the performance of the algorithms, we defined
three metrics: (i) the completion rate of users’ jobs; (ii) the ratio
of useful Mflops processed to the energy consumed; and (iii) the
working efficiency. The first metric, expressed as Eq. (10), mea-
sures the completion rate of users’ jobs, E;, which is calculated as
the ratio of the number of jobs completed by their deadline, J¢, to
the number of submitted jobs, Js. Its value falls in the interval [0, 1],
and itis the SLA metric. The difference between E; and 1, multiplied
by 100, is the percentage of SLA violations.

_Jc
Is
The energy-efficiency metric, Ey;, shown in Eq. (11), calculates
the amount of energy consumed, in Joules, to produce useful
work. By useful work, we count the number of Mflops associated
with successfully completed jobs only, Jc. Ey is calculated by
dividing the sum of the workloads from all tasks of successfully
completed jobs by the overall energy consumption. The energy is
then calculated by multiplying the average power consumption of
the computing infrastructure (i.e., for all active physical nodes u at

E (10)
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all sample times f') by the number of sample times f, multiplied by
60 (because the samples are obtained each minute). We henceforth
represent this metric as Mflops/Joule.

» (9,- « Wt 0))

j t=1

Ev = —; S ,
> 5= (11)
h]f Xf x 60

1, ifjobjcompleted
;= 0,

otherwise.

Eq. (12) shows the calculation of the working efficiency, Ey,
which is used as a metric with which to determine the quantity
of useful work performed (i.e., the completion rate of users’ jobs)
by the consumed power. It is determined by multiplying E;, the
completion rate of jobs, by the average power efficiency based on
Eq. (1) for all active physical nodes i € [1, u] at all sample times f.

i qu=ul EP,‘

s=1

Ew = X Ej, Yu < h. (12)

f
Egs. (11)—(12) express the amount of useful work performed
from different perspectives. The first equation quantifies the
number of useful Mflops by the consumed energy, while the second
equation measures the quantity of useful work (i.e., completion
rate of users’ jobs) performed with the consumed power. The best
algorithm should be the algorithm that maximises both, enabling
the processing of more Mflops with a lower amount of energy and
maximising the job completion rate while keeping high levels of
power efficiency.

4.2. Workload and failure characteristics

In this section, we describe the characteristics of the workloads
and failures injected in the simulator to evaluate the performance
of the scheduling algorithms.

4.2.1. Random synthetic workloads

To create a set of synthetic workloads, we chose the Poisson
distribution as the basis of the synthetic jobs [32]. The average job
inter-arrival time was set to 10 min, and each job was composed
of an average of 10 tasks. Additionally, the average task length to
MTBEF ratio varied on a logarithmic scale of {0.01, 0.1, 1, 10}. In
other words, if we consider a ratio of 1, the average task length
equals the MTBF. The average CPU utilisation per task was set to
20% of the node capacity. The injection of this type of workload into
the simulator will enable an analysis of the impact of the average
task length to the MTBF ratio on the performance of the scheduling
algorithm. Considering these workload characteristics, we created
100 synthetic jobs. A job deadline equals the deadline of its longest
task, and the task deadlines are rounded up to 10% more than their
minimum necessary execution time.

4.2.2. Workloads based on Google cloud tracelogs

Recent studies analysing the latest version of the Google cloud
tracelogs [9], spanning 29 days, yielded significant data on the
characteristics of submitted workloads and the management of
cluster machines. These studies enable further work on important
issues, such as resource optimisation, energy-efficiency improve-
ments, and failure correlation. Some authors [33,34] argue that ap-
proximately 75% of jobs only run one task and most of the jobs have
less than 28 tasks that determine the overall system throughput.
The medium length of a job is 3 min, and the majority of jobs run
in less than 15 min, despite the fact that there are a small number

of jobs that run longer than 300 min. Moreover, task length fol-
lows a lognormal distribution [35], with most of the tasks requir-
ing a short amount of time [36]. This same distribution applies to
CPU usage, which varies from near 0% to approximately 25%, indi-
cating that a high proportion of tasks consume resources at lower
rates. For the same reason, a lognormal distribution can be applied
to describe the number of tasks per job. Depending on the cluster
or day observed, job inter-arrival times follow distributions such
as lognormal, gamma, Weibull, or even exponential [34-36], with
a mean time of 4 s. Regarding RAM usage, most of the tasks use
less than 2.5% of the node’s RAM [34]. Based on these studies, we
created 3614 synthetic jobs to simulate cloud users’ jobs, requiring
a RAM size of 256, 512, or 1024 MB, selected randomly. The total
number of tasks is 10357, and each task deadline is rounded up
to 10% more than its minimum necessary execution time. The job
deadline equals the deadline of its longest task.

4.2.3. Failures and unavailability properties

For each physical node, the MTBF is programmed according to
a Weibull distribution, with a shape parameter of 0.8, which has
been shown [37] to well approximate the time between failures
for individual nodes, as well as for the entire system. Failed nodes
stay unavailable (i.e., mean time to repair (MTTR)) during a pe-
riod modelled by a lognormal distribution, with a mean time set
to 20 min, varying up to 150 min. Failure tolerance is implemented
through proactive VM stop and copy migration, rather than check-
pointing. The predicted occurrence time of failure is earlier than
the actual occurrence time. When a node fails, the tasks running
on it are restarted in a different set of nodes, from scratch, if there
is adequate time to execute those tasks before their deadlines. We
have assumed that the initiating of VMs uses negligible overhead.
Cavilla et al. [38] demonstrated that it is possible to initiate mul-
tiple VM instances in less than 1 s, assuming that the VM images
and data are stored in a Network Attached Storage (NAS).

4.3. Simulation setup

We simulated the cloud computing infrastructure described
in Fig. 1, which is composed of 50 homogeneous physical nodes.
The CPU capacity of the physical nodes was assumed to be 800
Mflops/s, values that can be evaluated using Linpack [39]. The
power consumed by the fully loaded physical nodes was 250 W.
The parameters p1and p2, for Eq. (1), were set to 70% and 30% of full
power consumption, respectively. The scheduling algorithms have
no knowledge of when jobs arrive. The average amount of CPU re-
sources required by a VM was set to 160 Mflops/s (20% of a node’s
capacity) for the random workload, implying that, on average, the
maximum number of VMs per node is 5. Each VM requires a RAM
size of 256, 512, or 1024 MB, randomly selected. The migration
overhead of the VM depends on the memory size and the network
bandwidth, which, in this experiment, was set to 1 Gigabit/s [6,27].
Tasks with deadlines extending past the failure time of their node
migrate ¢ = 3 min before the nodes predicted failure time.

When the consolidation mechanism is applied, the size of the
sliding window with which to detect energy-optimising opportu-
nities is 5 min, with a CPU usage threshold of t = 55% and number
of occurrences within the window of y = 3. We have chosen these
values based on our previous study [28], which demonstrated that
these values produce an optimal ratio of the amount of work per-
formed to the consumed energy.

It has been shown elsewhere [7,22] that the failure predictor
tool can predict failure occurrences with an average accuracy of
76.5%. In our simulations, we have measured the impact of fail-
ure prediction accuracy on the performance of the scheduling al-
gorithms, as well as the average task length to MTBF ratio, when
the prediction accuracy is 75%.



38 A.M. Sampaio, ].G. Barbosa / Future Generation Computer Systems 40 (2014) 30-43

100
90
80
70
60
50
40
30
20

Completion rate of users' jobs (%)

0 [
0.1 1 10
Average task length to MTBF ratio
@APBFIT EOBFIT ECBFIT mPOFAME B POFARE

(a) Completion rate of user’ jobs.

Mflops / Joule

0.01

0.00 S
0.01 0.1 p bt

Average task length to MTBF ratio
PBFIT 4---OBFIT
(c) Energy-efficiency.

- #~CBFIT —&— POFAME ——POFARE

100
90
80
70
60
50 p
40
30
20
10

0

Average power efficiency (%)

0.1 1
Average task length to MTBF ratio

PBFIT EOBFIT W CBFIT @ POFAME B POFARE
(b) Power-efficiency.
100
90
g 8
= 70
g 60
2
£ 50
[
o 40
£ a0
§° 20
10
0 e
0.1 1 10
Average task length to MTBF ratio
@A PBFIT EOBFIT WCBFIT EPOFAME B POFARE
(d) Working efficiency.

Fig.2. Impact of the average task length to MTBF ratio in the performance of scheduling algorithms, without dynamic consolidation, for random workloads. The configuration

is: (i) MTBF = 200 min; (ii) average failure prediction accuracy = 75%.
5. Results and analysis

This section presents the results associated with the algorithm
performance. First, we inject a set of random workloads to investi-
gate how well the algorithms perform for tasks with different av-
erage task length to MTBF ratios. Then, we use the Google-based
workloads to assess the algorithm performance with and with-
out the consolidation mechanism that dynamically re-adapts the
schedule to improve power efficiency. The section ends with the
reporting of preliminary results from the adoption of the proposed
algorithms in a real platform.

5.1. Random synthetic workloads

The results from the first set of simulations are shown in
Fig. 2. These simulations used the synthetic workload character-
istics introduced in 4.2.1. We fixed the MTBF at 200 min, and
the average task length to MTBF ratio was varied within the set
{0.01, 0.1, 1, 10}. Additionally, the average prediction accuracy for
the failure predictor tool was set at 75%, and the results were ob-
tained without dynamic consolidation. The CBFIT algorithm does
not consider failures when scheduling and does not perform migra-
tions when failures occur. It re-initiates the tasks of a node when
it fails. CBFIT is a best-fit algorithm that is used in this study as a
basis for performance comparison.

Fig. 2(a) shows the job completion rate as a function of the av-
erage task length to MTBF ratio. It shows that as the average task
length increases compared with the MTBF, the completion rate of
users’ jobs decreases. For the values of 0.01 and 0.1, task lengths
are small compared with the MTBF and OBFIT, POFAME and PO-
FARE perform similarly, completing almost 100% of the jobs. CB-
FIT also performs well for 0.01 because the task lengths are small
compared with the MTBF; thus, the failures do not affect its per-
formance. However, for the 0.1 case, the job completion rate for
CBFIT decreases significantly. For the values of 1 and 10, failures

occur in almost all tasks and CBFIT completes only 1% of tasks for
aratio of 1 and 0% for a ratio of 10, with most of the time spent on
re-initiating tasks. For a given task, OBFIT only selects nodes that
do not fail until the task deadline, and, therefore, it does not per-
form migrations to prevent failures. Consequently, its performance
also decreases significantly for the ratio of 1, with only 21% of the
jobs completed. For the ratio of 0.1, POFARE and POFAME complete
99% of the jobs. Although it is a high rate of success, it is not 100%
because of the additional overhead caused by the migration of the
VMs to tolerate node failures. The migration technique shows sig-
nificant improvements for the ratios of 1 and 10 compared with
the other algorithms. In contrast, PBFIT tends to complete more
jobs when dealing with unreliable PMs, as it only schedules tasks
to unreliable PMs.

Fig. 2(b) shows the average power efficiency that allows the
evaluation of the consolidation rate achieved by each algorithm.
For the average task length to MTBF ratio of 0.01, low power effi-
ciency is achieved, i.e., approximately 50%, meaning that the load
of a node is far from 100%. As the task sizes increase, the nodes run
at a higher percentage of CPU utilisation. POFARE is the best algo-
rithm in all cases; the results are above 90% for the ratios 1 and
10. The power efficiency indicates the node loads during the ex-
periments, including the workload of tasks that could not be com-
pleted by their deadlines. For a ratio of 10, OBFIT obtains a power
efficiency of 0 because it does not schedule tasks on unreliable PMs,
and, therefore, it does not launch any VMs. The other algorithms
achieve high rates of power efficiency, but only POFAME and PO-
FARE are able to complete jobs at rates of 4% and 3%, respectively.

Fig. 2(c) illustrates the energy efficiency (Ey ), which is repre-
sented by the ratio of the useful work to the energy consumed
(Mflops/Joule). For the average task length to MTBF ratio of 0.01,
all algorithms achieve a Mflops/Joule ratio lower than that for the
ratio of 0.1 because the same job completion rate is achieved in
both cases (Fig. 2(a)), but the consolidation is lower for the ratio
of 0.01 (Fig. 2(b)). The highest rate of Mflops/Joule is achieved for
0.1 and decreases for the ratios of 1 and 10 for all algorithms. The
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Fig. 3. Energy- and failure-aware scheduling algorithms, without dynamic consolidation, for Google-based workloads. The configuration is: (i) average task length = 3 min;

(i) MTBF = 200 min.

CBFIT algorithm yields a Mflops/Joule value near zero for the ratio
of 1 because the job completion rate is only 1%. POFARE shows an
improvement over OBFIT by 23.6%, 16.9%, and 72.4% for the ratios
of 0.01, 0.1, and 1, respectively.

The working efficiency metric is shown in Fig. 2(d). It mea-
sures the useful work based on the consumed power, similar to the
energy efficiency, which considers energy; therefore, the same
function shape is obtained as in Fig. 2(c). POFARE shows an im-
provement over OBFIT of 26.2%, 20.3%, and 219.7% for the ratios of
0.01, 0.1, and 1, respectively.

A comparison of the performance results obtained by CBFIT
with those obtained by POFAME and POFARE shows that the over-
head imposed by pro-active migrations resulted in higher rates
of completed jobs, power, energy, and working efficiencies and,
therefore, increased the system availability. The number of migra-
tions, as a percentage of the total number of tasks, for the ratios
of 0.01 and 0.1 are 0.1% and 3.1% for POFAME and 0.1% and 3.8%
for POFARE, respectively. For the ratios of 1 and 10, the number of
migrations increases to 126% and 350% for POFAME and POFARE,
respectively, which is expected because the tasks are longer than
the MTBF. However, POFAME and POFARE still complete more jobs
with better efficiency than OBFIT, CBFIT, and PBFIT. The average
number of VMs per node for POFARE was 5, 9, 11, and 11 for the
ratios of 0.01, 0.1, 1, and 10, respectively.

5.2. Workloads based on Google cloud tracelogs

Fig. 3 shows the results for the workloads introduced in Sec-
tion 4.2.2, obtained without the dynamic consolidation mecha-
nism. The characteristics of these workloads are well defined with
respect to job duration. The goal is to evaluate the performance
of the algorithm for a realistic workload. The previously used
metric, the average task length to MTBF ratio, is not applicable;
thus, we consider the influence of the failure prediction accuracy
(FPA) on the algorithm performance [7,22]. FPA is defined as the

difference between the actual and predicted failure time, ex-
pressed as a percentage. For example, if a physical node is supposed
to fail at minute 100, the failure predictor tool will predict the fail-
ure at minute 10 if the FPA is 10%. This means that failure predic-
tion inaccuracies have a direct impact on the MTBF perceived by
the algorithms that consider node reliability. As before, the MTBF
was set to 200 min. If the average task length is 3 min, the average
task length to MTBF ratio is 0.015 in this experiment.

The results of CBFIT are constant for all values of FPA, as it does
not take failures into account when scheduling and does not per-
form task migration to prevent failures. When a node fails, CBFIT
re-initiates the task in another node. Fig. 3(a) plots the comple-
tion rate of users’ jobs as the FPA varies from 10% to 100%. We can
conclude that, for an FPA below or equal to 20%, a simple best-fit
algorithm (CBFIT) completes more jobs than any of the other algo-
rithms. In this case, the failure prediction error generates excessive
task migrations than required, thus affecting the rate of completed
jobs. Additionally, the energy consumed by OBFIT, POFAME, and
POFARE (Fig. 3(b)) is lower for an FPA below or equal to 20% be-
cause when a job cannot be finished, the algorithms do not launch
their tasks and, therefore, do not spend energy computing that part
of the job. The working efficiency (Fig. 3(d)), which combines the
rate of jobs completed with the average power efficiency, provides
a better evaluation of the algorithm performance. Additionally, CB-
FIT is only best for an FPA of 10%.

For an FPA greater than or equal to 30%, OBFIT, POFAME, and
POFARE achieve a job completion rate near 100%. This result is in
accordance with the results of Fig. 2(a) for an average task length
to MTBF ratio of 0.01 (in this case, it is 0.015) and an FPA of 75%,
where a job completion rate close to 100% was obtained. An impor-
tant characteristic of POFAME and POFARE is that they achieve an
almost constant energy consumption (Fig. 3(b)), energy efficiency
(Fig. 3(c)), and working efficiency (Fig. 3(d)), indicating that, for the
considered workload, the performance and the system availability
are nearly independent of the failure prediction accuracy.
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Fig. 4. Energy- and failure-aware scheduling algorithms, with dynamic consolidation, for Google-based workloads. The configuration is: (i) average task length = 3 min; (ii)

MTBF = 200 min; (iii) T = 55%; (iv) y = 3.

PBFIT provides the worse completion rate of users’ jobs be-
cause most of the tasks are short, which implies that they would
be scheduled only if the physical nodes were failing all the time.
Consequently, tasks are not scheduled and the energy consumed is
also lower than that of the remaining algorithms.

The energy consumed to run the users’ jobs vs. the variation in
FPA is depicted in Fig. 3(b). Disregarding the PBFIT case that is lim-
ited to very few PMs, the results show that POFARE is generally
the best algorithm to produce work at lower energy consumption
for different values of FPA. The results in Fig. 3(c) show that the
POFARE strategy uses the energy more efficiently to produce work
with respect to Mflops/Joule, with an improvement of 6.7% com-
pared with OBFIT for an FPA of 75%. The results for the working
efficiency in Fig. 3(d) show that for 75% FPA, POFARE yields a 4.8%
improvement over OBFIT.

We can conclude that POFARE is the strategy that produces
more work, in terms of useful Mflops and number of completed
jobs, for less energy. Specifically, if we take into account the fact
that the average FPA achieved by the failure predictor tool is ap-
proximately 75%, the POFARE algorithm yields 0.049 Mflops/Joule
and a working efficiency of almost 68%. These results show that
POFARE is the most suitable algorithm to allocate resources to ex-
ecute cloud users’ jobs in an energy-efficient manner.

In the next set of simulations, we assess the performance of the
algorithms when using the energy-optimising mechanism to dy-
namically readjust virtual clusters. With the consolidation mecha-
nism (Algorithm 1, line 6), a VM can be migrated if it benefits the
power efficiency.

Fig. 4(a) depicts the impact on job completion rate compared
with the results obtained without applying the consolidation
mechanism. As before, the impact on POFARE is higher only for an
FPA of 10%. For the remaining cases, the reduction in job comple-
tion rate is below 0.4% for POFARE. The CBFIT algorithm always im-
proves the job completion rate associated with the power-driven
migrations, namely, an improvement of approximately 0.6%.

Fig. 4(b) shows the energy consumed, and, compared with
Fig. 3(b), the results show that POFAME, POFARE, and CBFIT reduce
the consumed energy when power-oriented migrations are per-
formed. Considering an FPA of 75% and POFARE, the energy con-
sumption, with consolidation, is reduced by almost 11.3% without
significantly affecting the job completion rate, which was reduced
by less than 0.08%.

Considering Fig. 4(c) and (d), the results show that POFAME
and POFARE are clearly the strategies that benefit most from the
energy-optimising mechanism. Moreover, POFARE is the algorithm
that utilises energy more efficiently to produce work and, for the
specific FPA of 75%, yields an improvement over OBFIT of approxi-
mately 12.9% and 15.9% with respect to Mflops/Joule and working
efficiency, respectively. We can conclude that with consolidation,
the improvements of POFARE over OBFIT are significantly greater
than those without consolidation.

To analyse the impact of the power-oriented migrations,
Table 2 shows results for the Google cloud tracelogs and an FPA of
75%. The consolidation mechanism reduces the energy consumed
using POFARE from 26.9 to 23.9 M], a reduction of 11.2%, while
keeping the same job completion rate. The number of migrations
increases from 0.8%, due to failure tolerance migrations, to 2.55%,
which also includes power-oriented migrations. OBFIT yields a job
completion rate of 100% but with an increase of 13.8% in consumed
energy compared with POFARE. The 3.12% of VM migrations for
CBFIT, without consolidation, are re-initiates. With consolidation,
there is a 1.6% migration rate. From the energy and job comple-
tion rate columns in Table 2, we can conclude that the consoli-
dation mechanism improved all algorithms in these two aspects.
The average number of VMs per PM is similar for CBFIT, OBFIT, and
POFAME. The POFARE algorithm is more relaxed in terms of the
power assigned to tasks and, therefore, results in a higher number
of VMs per PM. Considering that a computational node may have
64 GB of memory and that each VM requests up to 1 GB of mem-
ory, it is feasible to host 21 VMs per node on modern cluster nodes.
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Table 2

Results for Google cloud tracelogs for energy, job completion rate, ratio of VM migrations to total number of tasks, and number of VMs per PM for the case of 75% of failure

prediction accuracy without consolidation (wocs) and with consolidation (wcs).

Algorithm Energy (106 1)) Job comp. rate VM migrations Av. # of VM p/PM
wocs/wcs wocs/wcs wocs/wcs wocs/wcs
CBFIT 27.7/25.1 95%/95.5% (3.12%) + 1.6% 16/17
OBFIT 28.3/27.2 100%/100% 0%/0.99% 17/16
POFAME 28.1/25.3 99.6%/99.8% 1.05%/2.95% 17/17
POFARE 26.9/23.9 99.8%/99.8% 0.8%/2.55% 21/22
Table 3

Results for Google cloud tracelogs without failures for energy, job completion rate, ratio of VM migrations to total number of tasks, and number of VMs per PM, without

consolidation (wocs) and with consolidation (wcs).

Algorithm Energy (10° ]) Job comp. rate VM migrations Av. # of VM p/PM
wocs/wcs wocs/wcs wocs/wcs wocs/wcs

CBFIT 27.8/25.2 100%/99.8% 0%/2.1% 16/17

OBFIT 27.7[25.2 100%/99.9% 0%/1.99% 16/17

POFAME 28.6/25.3 100%/99.8% 0%/2.43% 16/17

POFARE 26.9/23.9 100%/99.9% 0%/1.82% 21/22

The average number of PMs used, for all algorithms, ranges from 7
to 9.

Table 3 shows results for the case where there are no node fail-
ures during the execution. We can conclude that POFARE is still the
best algorithm, consuming less power for the same rate of com-
pleted jobs, with and without consolidation.

5.3. Real platform evaluation

The results presented above are based on a simulation used to
evaluate the algorithms for a large set of workloads and failure
rates, since it is found to not be feasible or practical, to guaran-
tee repeatable conditions for such a set of experiments [6]. The ex-
periment reported in this section provides preliminary results of
the adoption of the proposed algorithms in a real platform. Cloud
systems use middle-wares such as OpenStack, Eucalyptus, and
OpenNebula, among others. In the current versions, these cloud
middle-wares do not allow the vertical scaling of a task, i.e., a task
cannot change the percentage of CPU power assigned to it dur-
ing run time. The algorithm proposed in this paper, POFARE, is
based on vertical scaling, i.e., higher or lower, of the CPU power
assigned to each task; therefore, we develop a prototype of our
Cloud Manager algorithm (Algorithm 1) to perform the real plat-
form evaluation. The experimental testbed consisted of 24 nodes
(cores) from an IBM cluster with the following characteristics:
each physical server is equipped with an Intel Xeon CPU E5504
composed of 8 cores working at 2.00 GHz, supporting virtualisa-
tion extensions and deploying 24 GB of RAM. The Xen 4.1 vir-
tualisation software was installed in the Ubuntu Server 12.04
operating system. We have applied the conditions reported in Sec-
tion 5.2, with an MTBF of 200 min and an average task length to
MTBEF ratio of 0.015. Each node behaves based on the description
in Section 4.2.3. The cloud manager is made aware of the cur-
rent status of each node by collecting heartbeat messages [40].
When a node fails, it stops sending heartbeat messages, and the
controller subsequently considers that a failure as occurred. The
task workload follows the Google cloud tracelogs, as explained in
Section 4.2.2. To implement such a workload, the stress software
(available on Ubuntu Linux), which emulates a workload, is used.
We created 151 jobs with a total of 389 tasks that ran for approx-
imately one hour to complete an instance of the experiment. All
the characteristics of the jobs, i.e., those used in simulations, are
maintained.

Fig. 5 shows the results obtained from the experiments when
applying both energy-optimising and fault-tolerant mechanisms.
These experimental results confirm, in general, those obtained

through simulations (Fig. 4(c) and (d)). Fig. 5(a) shows that the
POFARE algorithm utilises energy more efficiently in terms of
Mflops/Joule, outperforming POFAME and OBFIT by 16.4% and by
18.4% on average, respectively. For an FPA of 100%, the delivered
Mflops/Joule of the POFARE algorithm decreases to a value near
POFAME. This behaviour is justified by the fluctuation of the as-
signed amount of CPU to each task, which is not constant in the real
system, as considered in the simulation. For lower values of FPA,
this effect does not affect POFARE because the error margin used
to avoid failures accommodates such fluctuations. For FPA values
lower than 20%, simple algorithms, such as CBFIT, perform better
than any of the other algorithms.

In Fig. 5(b), the results for the working efficiency also demon-
strate that for different values of FPA, POFARE obtains a higher de-
gree of consolidation than do all of the other algorithms. POFARE
obtains on average 15.2% and 23.5% higher working efficiency than
do POFAME and OBFIT, respectively.

In conclusion, the real experiment showed that POFARE con-
sumes less energy than any of the other strategies and that com-
pletes a similar number of jobs by their deadlines for FPA values
equal to or greater than 25%.

6. Conclusions and future work

In this paper, we have proposed two algorithms that apply
proactive fault tolerance to address node failures. The objective is
to maximise the useful work performed by the consumed energy
in cases where the infrastructure nodes are subject to failure. This
objective implies an increase in the amount of useful Mflops pro-
cessed per energy unit, as well as the number of jobs completed by
the consumed power. To achieve this objective, we developed two
dynamic VM allocation algorithms, POFAME and POFARE, which
use two different methods to provide energy-efficient virtual clus-
ters to execute tasks within their deadlines. While the POFAME
algorithm tries to reserve the maximum required resources to ex-
ecute tasks, POFARE leverages the cap parameter from the Xen
credit scheduler to execute tasks with the minimum required re-
sources. The tests were conducted by injecting two sets of synthetic
jobs. The first set was generated based on the Poisson distribution
and allowed us to assess the scheduling algorithm performance
using different average task length to MTBF ratios. The improve-
ment in energy efficiency of POFARE over OBFIT is 23.6%, 16.9%,
and 72.4% for the average task length ratios of 0.01, 0.1, and 1, re-
spectively. The improvement in working efficiency of POFARE over
OBFIT is 26.2%, 20.3%, and 219.7% for the ratios of 0.01, 0.1, and
1, respectively. The characteristics of the second set of workloads
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Fig. 5. Experiments for Energy- and failure-aware scheduling algorithms, with dynamic consolidation, for Google based workloads. The configuration is: (i) average task

length = 3 min; (ii) MTBF = 200 min; (iii) T = 55%; (iv) y = 3.

used the latest version of the Google cloud tracelogs. The results
showed that the solutions obtained with the POFARE algorithm
are the best, compared with well-known algorithms, such as the
best-fit OBFIT algorithm. The results show that the POFARE algo-
rithm improves the work per Joule ratio by approximately 12.9%
and the working efficiency by 15.9% compared with the OBFIT re-
sults obtained with dynamic optimisation and maintenance of sim-
ilar levels of completed jobs. The results also showed that a relaxed
strategy (POFARE), which assigns the minimum required resources
to each task, yields better results than a strategy (POFAME) that
assigns the maximum required resources to each task. The pre-
liminary results for a real platform evaluation confirmed the
simulation results. Future research will address the platform het-
erogeneity in both node computation power and energy consump-
tion. With respect to job characterisation, we will also consider
data-intensive jobs to increase the range of applicability of the pro-
posed algorithms. Another relevant problem consists of processing
workflows in the cloud, such that jobs where tasks may have prece-
dence will also be considered.
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