
SENSORS ON MOBILE

DEVICES FOR AAL

João Manuel Cardoso Madureira

Mestrado em Engenharia Electrotécnica e de Computadores

Área de Especialização de Telecomunicações

Departamento de Engenharia Electrotécnica

Instituto Superior de Engenharia do Porto

2013

Este relatório satisfaz, parcialmente, os requisitos que constam da Ficha de Disciplina de

Tese/Dissertação, do 2º ano, do Mestrado em Engenharia Electrotécnica e de

Computadores

Candidato: João Manuel Cardoso Madureira, Nº 1060392, 1060392@isep.ipp.pt

Orientação científica: Prof.ª Doutora Paula Maria Marques Moura Gomes Viana,

pmv@isep.ipp.pt

Empresa: Fraunhofer Portugal

Supervisão: Eng. Diogo Dias Júnior, diogo.junior@fraunhofer.pt

Mestrado em Engenharia Electrotécnica e de Computadores

Área de Especialização de Telecomunicações

Departamento de Engenharia Electrotécnica

Instituto Superior de Engenharia do Porto

20 de novembro de 2013

mailto:diogo.junior@fraunhofer.pt

Dedicated to my parents...

 i

Acknowledgements

Firstly, I would like to thank my research supervisor, MSc. Diogo Júnior, for giving me

this great opportunity of working and learning in Fraunhofer Portugal. For his availability,

help, teachings and encouragement throughout this work. I would also like to extend my

thanks to other Fraunhofer researchers that were always very helpful and encouraging.

Secondly, I would like to express my gratitude to Prof. Dr. Paula Viana for her guidance,

patience, assistance and for accepting to be my supervisor, a big thank you for her.

I would also like to thank my girlfriend Marta for her support, patience, care and for

always be by my side.

Finally, and most important, I would like to express my deep gratitude to my parents, for

their support, encouragement and guidance throughout this journey. I could have not

succeeded without them.

 ii

 iii

Resumo

Com o envelhecimento da população, as preocupações com a garantia do seu bem-estar

aumentam criando a necessidade de desenvolver ferramentas que permitam monitorizar em

permanência este sector da população. A utilização de smartphones pelos mais velhos pode

ser crucial no seu bem-estar e na sua autonomia contribuindo para a recolha de informação

importante já que estes estão muitas vezes equipados com sensores que podem dar

indicações preciosas ao cuidador sobre o estado atual do paciente.

Os sensores podem fornecer dados sobre a atividade física do paciente, bem como detetar

quedas ou calcular a sua posição, com a ajuda do acelerómetro, do giroscópio e do sensor

de campo magnético. No entanto, funcionalidades como essas requerem, obrigatoriamente,

uma frequência de amostragem mínima por parte dos sensores que permita a

implementação de algoritmos, que determinarão esses parâmetros da forma mais exata

possível.

Dado que nem sempre os pacientes se fazem acompanhar do seu smartphone quando estão

na sua residência, a criação de ambientes de AAL (Ambient Assisted Living) com recurso a

dispositivos externos que podem ser “vestidos” pelos pacientes pode também ser uma

solução adequada. Estes contêm normalmente os mesmos sensores que os smartphones e

comunicam com estes através de tecnologias sem fios, como é o caso do Bluetooth Low

Energy.

Neste trabalho, avaliou-se a possibilidade de alteração da frequência dos sensores em

diferentes sistemas operativos, tendo sido efectuadas modificações nas instalações por

defeito de alguns sistemas operativos abertos. Com o objectivo de permitir a criação de

uma solução de AAL com recurso a um dispositivo externo implementaram-se serviços e

perfis num dispositivo externo, o SensorTag.

Palavras-Chave

Cuidador, paciente, AAL, sensores, Bluetooth Low Energy, SensorTag, smartphone,

sistema operativo.

 iv

 v

Abstract

With the ageing of the population and the concerns about the people’s well-being

increasing, new tools need to be developed in order to allow the permanent monitoring of

this demographic group. The use of smartphones by elders can be crucial in their well-

being and autonomy since they are a lot of times equipped with sensors that can provide

caregivers with precious indications about the caretaker current status.

Sensors can provide data about the patient’s physical activity, as well as detecting falls or

calculate its position, with the help of the accelerometer, the gyroscope or the magnetic

field sensor. But functionalities as these require, mandatorily, a minimum sampling

frequency from the sensors that will allow the implementation of algorithms that will

determine those parameters in the most exact way possible.

Having in mind that the caretakers often are not accompanied by their smartphone when

they are at their home places, the creation of AAL environments with the help of some

other external devices that can be “worn” by the patients might also become an adequate

solution. These devices normally contain the same sensors as the smartphones and

communicate with them through wireless technologies, like Bluetooth Low Energy.

This work evaluates the possibility of sensor frequency modification in several Operating

Systems, and some modifications in the source code of some open source systems were

performed. With the objective of allowing the creation of an AAL solution using an

external device, profiles and services were implemented on an external device, the

SensorTag.

Keywords

Caregiver, caretaker, AAL, sensors, Bluetooth Low Energy, SensorTag, smartphone,

Operating System.

 vi

 vii

Table of Contents

ACKNOWLEDGEMENTS ... I

RESUMO ... III

ABSTRACT ... V

TABLE OF CONTENTS .. VII

INDEX OF FIGURES ... IX

INDEX OF TABLES ... XI

ACRONYMS .. XIII

1. INTRODUCTION ... 1

1.1. CONTEXT .. 1

1.2. OBJECTIVES .. 2

1.3. DISSERTATION STRUCTURE .. 2

2. AAL PRODUCTS AND RELATED TECHNOLOGIES .. 5

2.1. PRODUCTS FOR AAL .. 7

2.2. SENSORS ... 9

2.2.1 Accelerometer .. 10

2.2.2 Gyroscope .. 10

2.2.3 Magnetometer .. 12

2.2.4 Proximity ... 12

2.2.5 Light ... 13

2.2.6 Barometer .. 14

2.2.7 Sensor sampling rate ... 15

2.3. COMMUNICATION TECHNOLOGIES .. 16

2.3.1 Wi-Fi .. 16

2.3.2 Zigbee .. 18

2.3.3 Bluetooth.. 20

2.3.4 Bluetooth Low Energy ... 22

3. MOBILE OPERATING SYSTEMS .. 29

3.1. ANDROID .. 30

3.1.1 Architecture ... 32

3.1.2 Development Environment... 34

3.1.3 Testing Android ... 35

3.1.4 Sensor Framework ... 36

3.2. FIREFOX OS .. 39

 viii

3.2.1 Architecture .. 40

3.2.2 Development Environment ... 42

3.2.3 Testing Firefox OS ... 44

3.2.4 Sensor Framework ... 45

3.3. UBUNTU TOUCH .. 49

3.3.1 Architecture .. 49

3.3.2 Development Environment ... 50

3.3.3 Testing Ubuntu Touch .. 51

3.3.4 Sensor Framework ... 52

3.4. TIZEN .. 52

3.4.1 Architecture .. 53

3.4.2 Development Environment ... 54

3.4.3 Testing Tizen OS .. 56

3.4.4 Sensor Framework ... 57

3.5. OPERATING SYSTEMS COMPARISON .. 57

4. OPTIMIZING SENSOR ACCESS IN MOBILE OPERATING SYSTEMS.................................... 59

4.1. ANDROID ... 59

4.1.1 Google Nexus 10 Tablet ... 62

4.1.2 Results .. 64

4.2. FIREFOX OS .. 68

4.2.1 Samsung Nexus S Smartphone ... 68

4.2.2 Results .. 70

5. ADAPTING AN EXTERNAL DEVICE TO AAL ENVIRONMENTS .. 75

5.1. SENSORTAG COMPONENTS ... 76

5.1.1 Accelerometer .. 76

5.1.2 Gyroscope .. 77

5.1.3 Magnetometer .. 77

5.1.4 Other components .. 77

5.2. PROFILES AND SERVICES OVERVIEW ... 78

5.3. IAR ... 80

5.4. IMPLEMENTATION.. 81

5.4.1 Sensors ... 82

5.4.2 Battery .. 83

5.4.3 Proximity Profile .. 84

5.4.4 Find Me Profile .. 85

5.4.5 Help Request .. 85

5.4.6 Testing .. 86

6. CONCLUSIONS AND FUTURE WORK ... 91

REFERENCES ... 93

 ix

Index of Figures

Figure 1 - SenseWear Armband ... 7

Figure 2 - On-Wrist Fall Alert.. 8

Figure 3 - Mover application .. 9

Figure 4 - Mechanical gyroscope ... 11

Figure 5 - Wi-Fi network ... 17

Figure 6 - Zigbee network .. 18

Figure 7 - Bluetooth network ... 20

Figure 8 - BLE protocol stack .. 23

Figure 9 - Android's home screen .. 31

Figure 10 - Android architecture .. 32

Figure 11 - Eclipse IDE .. 34

Figure 12 - Android sensor data flow ... 38

Figure 13 - Firefox OS appearance .. 40

Figure 14 - Firefox OS architecture ... 42

Figure 15 - Firefox OS simulator ... 44

Figure 16 – Alpha in Device Orientation Event ... 47

Figure 17 - Ubuntu Touch home screen ... 49

Figure 18 - Tizen appearance ... 53

Figure 19 - Tizen architecture .. 54

Figure 20 - Tizen IDE .. 56

Figure 21 - Android application ... 60

Figure 22 - Google Nexus 10 tablet ... 62

Figure 23 - MPU6000/6050 ... 63

Figure 24 – Android Magnetometer results ... 64

Figure 25 – Android Gyroscope results ... 65

Figure 26 – Android Accelerometer results ... 65

Figure 27 - Android sensor layers .. 68

Figure 28 - Samsung Nexus S .. 69

Figure 29 - Firefox OS application .. 71

Figure 30 - Firefox OS sensor layers ... 74

Figure 31 - CC2541 SensorTag .. 76

Figure 32 - Texas Instruments CC debugger.. 80

Figure 33 - SensorTag LEDs and button .. 82

Figure 34 - SensorTag Android main screen.. 87

 x

Figure 35 - Help request dialog .. 87

Figure 36 - Path loss events .. 88

Figure 37 - Link loss disconnection alert ... 89

 xi

Index of Tables

Table 1 - Bluetooth Classic vs BLE ... 27

Table 2 - Classes of Android Sensor Framework... 37

Table 3 – Android Sensor Public methods ... 37

Table 4 - Advantages and disadvantages of the Operating Systems .. 57

Table 5 - MPU6050 characteristics .. 63

Table 6 - AK8963 characteristics ... 64

Table 7 - Android Sensor Results .. 66

Table 8 - KR3DM characteristics ... 69

Table 9 - K3G Gyroscope characteristics .. 70

Table 10 - AK8973 Magnetometer characteristics ... 70

Table 11 - KXTJ9 accelerometer characteristics ... 76

Table 12 - IMU3000 Gyroscope characteristics ... 77

Table 13 - SensorTag magnetometer characteristics ... 77

 xii

 xiii

Acronyms

AAL – Ambient Assisted Living

ADC – Analog-to-Digital Converter

AFH – Adaptive Frequency Hopping

AICOS – Assistive Information and Communication Solutions

AOSP – Android Open Source Project

API – Application Programming Interface

BLE – Bluetooth Low Energy

CPU – Central Processing Unit

CSS – Cascading Style Sheets

DMP – Digital Motion Processor

FFOS – Firefox Operating System

GPS – Global Positioning System

GPU – Graphics processing Unit

HAL – Hardware Abstraction Layer

HTML – HyperText Markup Language

I2C – Inter-Integrated Circuit

ISEP – Instituto Superior de Engenharia do Porto

JSON – JavaScript Object Notation

 xiv

LED – Light-Emitting Diode

MAC – Media Access Control

MEMS – Micro-Electro-Mechanical Systems

OS – Operating System

PDA – Personal Digital Assistance

PDU – Protocol Data Unit

QML – Qt Meta Language

RAM – Random Access Memory

RF – Radio Frequency

ROM – Read-Only Memory

SMS – Short Message Service

SPI – Serial Peripheral Interface

USB – Universal Serial Bus

VM – Virtual Machine

XML – eXtensible Markup Language

 xv

 1

1. INTRODUCTION

The work presented in this thesis is the result of an internship made at Fraunhofer Portugal,

conducted under the scope of the Master in Electrical and Computer Engineering -

Telecommunications, in the Instituto Superior de Engenharia do Porto (ISEP).

1.1. CONTEXT

With the continuous ageing of the population, it is fundamental to be able to give people

the possibility of living an autonomous life, for the longest time possible, and new mobile

solutions are appearing each day that can help users do that. Fraunhofer AICOS, among

other things, develops mobile solutions that can help needed patients. Applications like

activity monitoring, fall detection and indoor location can be used to achieve that goal, and

are continuously being improved by the company’s scientists.

Sensors are fundamental parts of those applications. Accelerometers, gyroscopes or

magnetometers can give pretty accurate data about the positioning, orientation and other

parameters of the devices they are attached. The interaction between sensors and

smartphones is being improved with the help of Mobile Operating Systems. They provide

APIs that can be easily used to make robust and powerful applications based on sensor

data. But as the users do not always carry their smartphones with them, other devices can

be used to perform the same exact tasks, using some way of communication, like Bluetooth

Low Energy.

 2

1.2. OBJECTIVES

The main objective of this work is to investigate sensor access in the upcoming Open

Source Mobile Operating Systems, as well as in the dominant OS on the world nowadays,

Android. Possible improvements in this task may allow the use of improved algorithms in

the fields of fall detection and activity monitoring and they should be implemented

whenever possible. Two approaches should be implemented: use built-in sensors in mobile

devices like tablets and smartphones, and the use of external sensors which can be

connected to mobile devices through a wireless link.

So, the main objectives are:

 Research about the upcoming mobile operating systems and their sensor access;

 Change the source code relative to sensor access and improve the sensor sampling

rates;

 Develop new profiles and services on an external device in order to be possible to

adapt it to AAL environments, having in mind the knowledge gathered previously

about sensor access.

 Accomplish a proof of concept, allowing easy later implementations to mobile

devices by the company scientists.

In order to achieve those objectives, the approach was to first perform a thorough research

about the most promising Mobile Operating Systems on the market. Then, a research on

how to build and install modified versions of those Operating Systems had to be made,

along with the possibility to do that. The study and firmware modification of external

devices was the final step, with its concept tested with the help of Android Operating

System.

1.3. DISSERTATION STRUCTURE

Apart from this Introduction (Chapter 1), this dissertation consists of five chapters. In

Chapter 2 a review of the related AAL products is made, some concepts about assisted

living are explained and a review about the sensors and communication technologies used

in AAL are also analyzed. In Chapter 3, Mobile Operating Systems are investigated, their

 3

main features are studied, including the available development environments or the

system’s architecture. Chapter 4 describes the necessary steps taken in order to optimize

sensor access in the studied operating systems and results are presented. The adaptation of

an external device to implement assisted living tasks is described in Chapter 5 and the

major achievements of this project and some future work are pointed in Chapter 6.

 4

 5

2. AAL PRODUCTS AND

RELATED TECHNOLOGIES

Developed societies are faced nowadays with the population’s aging problem, the world is

aging at a very fast rate and this tendency will be accompanied by the increase of people

with physical limitations. In 2050, about 16% of the world’s population will be over 65,

opposing the 7% nowadays [1]. So, new health solutions and new approaches regarding the

traditional health care system are unavoidable. Older people will want to be able to stay in

their homes, being assisted in their diary activities and live independently for longer, while

still feeling secure, protected and supported. This can be made using sensors and this

technology has proven recently to be a very effective way to improve people’s life. They

can provide data that can be used to evaluate the user’s current activity, location, giving the

possibility of alerting a person or an entity if something is wrong.

Over the last few years, the use of sensors in mobile devices have been increasing

significantly and they have now an important role in the people’s way of living. They give

the users a lot of new features that are being incorporated every day on an endless number

of different areas. Applications that respond to gestures and movement are now possible,

like a racing car game that do the steering by rotating the device, for example. Sensors

allow smartphones to be “really smart” under determined circumstances and applications

 6

that use them are evolving quickly. Success of smartphones is leading to an increasing

amount of Micro Electro Mechanical Systems (MEMS) and sensors in this area, providing

new services and improving hardware performance. Sensors are vital for the user-

smartphone interaction nowadays and it will continue to be that way in the future.

Examples of AAL actuation places are the home where the user lives, the town, the store,

but also the user’s body itself. The user can be monitored using the smartphone sensors, or

may be able to wear devices that contain external sensors, like a pendant that can detect

falls [2], as well.

The main advantage of those devices reside in the fact that this allows the patient not to be

directly monitored by a caregiver (a relative, a doctor, etc.), but instead, the patient can be

remotely monitored by independent devices that can alert caregivers when something goes

wrong. The caregivers are able to fully live their lives normally, taking actions accordingly

when something isn’t right.

A Smart System can be described as an integrated system that can diagnose and describe a

situation. It can achieve functionalities and is able to communicate with other Smart

Systems and other environments, performing multiple tasks and assist the users in different

activities in their daily lives [3]. In the AAL case, the most common Smart Systems are the

ones who can send information to someone or something, based in sensor data over a

period of time. These environments include sensors and motion detectors on doors, for

example, and they can detect if the door was opened and which one, creating the concept

of Smart Homes. The advantage of this approach is that it avoids the problem of

misplacing the sensors or to damage the wearable devices. Smart Home technology

including ambient sensors has been a fundamental piece of rehabilitation and monitoring

related applications. AAL is the application that has the focus on this dissertation and in

this case refers to smart systems that can be a part of health assistance in the individual’s

living environment [4] [14].

The remote monitoring of a patient status and self-awareness of his condition by the patient

are the most often pursued applications for AAL technologies. Systems where wearable

and ambient sensors are combined represent the most accurate prototypes nowadays using

this kind of technology.

 7

In the initial stage of this master thesis, an analysis of the current state of the art and related

work was executed. The aim of this research was to learn more about the way sensors are

used in Ambient Assisted Living (AAL), showing the advantages and disadvantages of

having embedded sensors in mobile devices, opposing to having external devices that can

be connected to them.

2.1. PRODUCTS FOR AAL

SenseWear Armband, for example, is a wearable device that has multiple sensors that

allow the device to monitor patient’s motion, steps taken, galvanic skin response that

measures the electrical conductivity of the skin, which changes in response to sweat,

among other features [7]. Its appearance can be seen in figure 1.

Figure 1 - SenseWear Armband

This device can store data for 28 days, which means that it can save the month’s patient

history, giving doctors and caregivers a very accurate estimate about how the patient is

doing.

Other companies like emcare [8] offer other solutions like Panic Alert. This device sends

an alert to a care center when a button is pressed. If the patients aren’t feeling very well or

if an intruder wants to enter their property, they can send and alert and will receive a call

from them asking if something is wrong. If nobody answers the call, the care center will

then notify one of the priority contacts assigned by the users, letting him know about the

situation. This is not a wearable device, instead, it will be installed next to the bed or at any

place that could be of easy reach by the patient. This device is supposed to have up to five

 8

years in battery life, depending on activations. The communication with the care center is

made using Wi-Fi, so an additional device is needed to send the notification.

On-Wrist Fall Alert is another product developed by emcare. This device has been

developed to be permanently used around the wrist and uses an accelerometer to determine

if a fall has occurred. If it detects a fall, this device will start to vibrate a few seconds later,

to let the user know that a fall has been detected and if the user moves his arm, the alert

will be cancelled.

Figure 2 - On-Wrist Fall Alert

Pendant Fall Alert is another kind of product from the same company and it was made to

be used as a pendant, around the neck. Like On-Wrist Fall Alert, it has an accelerometer

that can detect falls and, like Panic Alert, has a button that can be pressed to raise an alarm.

It joins both “worlds”. In case of an alert, those two devices will alert the care center [8].

Other applications use the smartphone sensors to do tasks like activity monitoring. One of

those applications is the Mover application developed at Fraunhofer AICOS. Mover reads

the data from the phone’s accelerometer through the day, giving an estimate about the

user’s daily activity. This application can also make the user aware if he is moving more or

moving less than usual, this way he can choose to be more active or maybe rest a little,

depending on this information. Mover also has a fall detection algorithm, which triggers an

alarm in case of falling, and may alert one of the emergency numbers chosen via SMS

and/or e-mail. Then, the caregiver can perform the actions necessary for the situation.

 9

Figure 3 - Mover application

In figure 3 it is possible to see the appearance of the Mover application, in this case, the

patient is shown as a “walker” which means that this week his activity has been average

[18].

2.2. SENSORS

Most of mobile devices nowadays have built-in sensors that measure orientation,

accelerations and rotation rates, as well as environmental conditions. These sensors can

provide raw data with high precision and accuracy or can provide modified data using

sensor fusion. If the user wants to monitor changes in the environment, to monitor user

motion, among other features, he will have to use the sensors existent in devices.

It is possible to define three types of sensors that can be used to create useful applications:

Motion, Environmental and Position sensors.

Motion sensors measure acceleration forces and rotational forces along three axes.

Accelerometers and gyroscopes are in this category.

Environmental sensors measure environmental parameters, such as temperature, pressure

and light, between others. Barometers, photometers and thermometers are environmental

sensors.

 10

Position sensors give the physical position of the device. This category includes

magnetometers and orientation sensors [27].

The sensors that are the focus of this dissertation are the accelerometer, the magnetometer

(magnetic field sensor) and the gyroscope. These three sensors can give data used to

estimate the user’s current indoor position, fall detection, among other related activities.

But other sensors like the proximity sensor, the light sensor and the barometer are also

used in many smartphone applications.

2.2.1 ACCELEROMETER

Accelerometers are capable of detecting accelerations and the G-force associated with the

movement. These sensors are nothing more than a MEMS based circuit that measures the

forces of acceleration caused due to gravity of movement or tilting action. They measure

the acceleration of the device to which it is attached. Recent accelerometers usually have

three axes (X, Y and Z) which allows to correctly determine the acceleration and if the

device is with the screen turned up or down, for example [6] [11].

There are a lot of different applications that use these sensors like fall detection or gesture

recognition. In smartphones, they are used mostly for switching between landscape and

portrait modes and this sensor is also used as a tilt sensor for tagging the orientation to

photos that are taken with the built-in camera of the phone [19].

2.2.2 GYROSCOPE

These sensors don’t measure an external reference like accelerometers or magnetometers,

they measure their own rotation. They are based on the principles of angular momentum. A

rotating object has this angular momentum that will tend to rotate the object continuously.

So, when the spinning wheel is rotating, it will resist to any change in its axis of rotation. If

an external force is applied to change it, an opposite reaction that pushes in the opposite

direction will be created. Roll, the rotation around X axis, pitch, around Z axis and yaw,

rotation around Y axis, will be automatically detected by the device’s gyroscope. Unlike an

accelerometer, it can detect if a device made a full spin or is experiencing inertial change,

and not only the translation of the direction [11] [15].

 11

A mechanical gyroscope contains a spinning wheel that is mounted inside two metallic

rings orthogonal to each other. The spinning wheel will continue to spin on its axis,

regarding of the alignment of the outer rings [81].

Figure 4 - Mechanical gyroscope

This sensor is largely used for motion sensing capabilities to create games that rely on

motion control, instead of on-screen controls. When combining a gyroscope and an

accelerometer, a 6-axis motion sensing is available, that could detect precise motion by

simply moving the phone naturally. This way the smartphone is much more effective and

has motion sensing capabilities comparable to a game controller like the Wii-mote.

The majority of the nowadays smartphone games use a gyroscope to control them. For

example a game where a plane is to be controlled, can rely on the gyroscope to make the

plane go left or right, up or down and this is made much more accurately than if it was

done by just an accelerometer. In fall detection, the use of gyroscopes can improve the fall

detection accuracy, because smartphones can then detect not only the acceleration (with an

accelerometer) of the device, but also its angular velocity, and, combining those two data

types, it is possible to detect false positives more accurately like Ojetola et al. shown in

their study, Fall Detection with Wearable Sensors [16].

Gyroscopes are complex in implementation and it involves high precision in design and

electronics. Usually on mobile devices these sensors are the ones with the higher power

consumption, so applications that use this sensor will drain the phone’s battery faster [6]

[11].

 12

2.2.3 MAGNETOMETER

Unlike regular compasses, a digital compass does not use magnets to get attracted to

Earth’s magnetic field, because this would lead to damaging the smartphone’s capabilities.

There is not a spinning needle. Most electronic compasses work by magneto-inductive

technology, reading differences in the Earth’s magnetic field. In order to get clear readings,

if the compass is near some kind of device or near a large mass of metal, like a car, it needs

to subtract that reading from the reading of Earth’s magnetic field, to get a valid reading

[6] [11].

Magnetometers that exist on smartphones can behave as metal detectors and as compasses,

but the innovative application with theses sensors is, undoubtedly, the indoor navigation.

Researchers from the University of Oulu in Finland created an Indoor Positioning System

(IPS) that uses the Earth’s natural magnetic field to estimate position, IndoorAtlas [49]. In

their study, they demonstrate that every square inch of Earth emits a magnetic field, and if

these magnetic fields could be mapped, a magnetic field sensor can detect those magnetic

fields, making a map of the surroundings, and indoor positioning is possible. The main

advantage of this approach is the fact that no extra hardware is needed, no Wi-Fi or

Bluetooth base stations, just the smartphone and its magnetic field sensor is enough. The

disadvantage of products like this is that magnetic fields change. As the molten iron in the

Earth changes, so do magnetic fields. These shifts are not very fast, but even so, this will

translate on an error if the user does not update the maps regularly. Another big

disadvantage is that objects like cars, motors, any object that will have magnetic fields

associated to them, will change the surrounding magnetic field and will cause errors if they

are not contemplated in the original map [50].

It is useful to notice that magnetic north and the geographic north are not the same. The

angle between them is called magnetic declination. In Portugal, for example, the

declination is something like 4 degrees West, but this value will be different depending on

the location [51]. So, people who want to use applications that will rely on the magnetic

north will have to bear this in mind.

2.2.4 PROXIMITY

A proximity sensor is a device that detects objects when they get within a certain distance

from the sensor. If the object gets at that distance, the sensor usually turns on a circuit to

 13

perform some basic function like turn on or turn off the screen light. They are largely used

in industry today, in distinct areas. The main operating mode is to send a wave of some

form and monitor reflections. If a reflection is sensed, the sensor confirms that there is an

object nearby. There is four main types of proximity sensors: infrared, acoustic, inductive

and capacitive.

Inductive sensors sense objects with the generation of magnetic fields. A coil is charged

with electrical current, and this current is measured by a circuit. If metallic parts get close

enough to the coil, the current will increase significantly and the proximity switch will

open or close accordingly. These sensors have the disadvantage of only detecting metallic

objects.

Infrared sensors send out beams of invisible infrared light, and then a photodetector

located on the sensor detects any reflections of this light. As these switches are just a light

source and a photodiode, they are susceptible to false readings due to background light.

Acoustic proximity sensors work similarly to infrared switches but use sound instead of

light. Acoustic sensors measure the time that it takes for sound pulses to “echo” and this

time is used to calculate the distance, just like a sonar.

Finally, capacitive switches sense objects by detecting changes in capacitance around

them. An oscillator is connected to a metal plate and when the plate gets near an object,

this radio frequency changes, and the frequency detector sends a signal. These switches are

much more sensible sensing objects that conduct electricity than the ones which do not.

Smartphones are equipped with infrared sensors. The most common application for this

sensor in smartphones is to disable accidental touch events while in a call. This avoids the

generation of unwanted touch events by the ear [12] [52] [82].

2.2.5 LIGHT

Ambient light sensors are largely used nowadays in mobile devices and allow to optimize

device displays to the environment or to gather ambient light parameters. The devices

brightness optimization is made using the values from these sensors. If they detect that the

lightning condition is too brighter or too dark, different brightness values will be given to

the device’s display allowing to see well both in the dark and in the day light. Other issues

like battery consumption are also affected as the device consumes less power when the

 14

display is dim. This auto adjustment of display brightness reduces the strain on the user’s

eyes and protects the screen pixels.

Most of the light sensors used today, use the principle of superposition to calculate the

ambient light brightness. For this, they use two or more different types of photodiodes,

each sensitive to a different portion of the light spectrum. When these devices are exposed

to light they create a current. The brighter the light, the higher the current. This is the main

principle of these sensors. Combining these photodiode outputs mathematically, each one

with a suitably adjusted gain, the sensor can obtain a really accurate measurement of

environment brightness for the light sources commonly available.

Usually, these sensors are not used when a quick response is needed. However, there is a

problem inherent to these sensors that has been debated lately. The sensor generally is not

really measuring the light level of the environment, because usually the user is facing the

sensor and his head blocks the light. So, the brightness level of the device and the eyestrain

can be really affected, reducing significantly the utility of this auto adjustment application

while the user is using the smartphone [13] [19].

2.2.6 BAROMETER

This instrument is used in meteorology to measure atmospheric pressure. Essentially

measures the weight of the air. It is possible to measure the pressure exerted by the

atmosphere by using mercury, water or air in a way that is possible to forecast short term

changes in the weather.

Digital barometers are really tiny and they often can be found in some dedicated GPS units

and watches. They replace all the mechanical parts of a regular barometer with a simple

pressure sensing transducer, which measure pressure in Pascal. They need to be calibrated

in order to deliver accurate readings and that usually is done by giving them a correct

pressure reading regarding the elevation.

Barometers were included recently in smartphones and the reason for that inclusion was

the altitude value. It is possible to determine changes in altitude based on barometer

readings, because the atmospheric pressure is directed related to the altitude. So,

barometers are mostly used to aid the GPS sensor in correcting altitude measurements.

 15

These sensors can help a device to provide a more accurate weather forecast. Atmospheric

pressure when combined to general forecast for the air can warn the users to upcoming

rains and such, a little bit in advance. This could also help many people, especially older

ones, and people with some health conditions that are very sensitive to changes in the

atmospheric pressure. They could be noticed faster about those changes and act

accordingly by taking certain pills or to lay down for a while, just to give some examples.

Altitude is much more accurate than the altitude measured by GPS systems, so it is

possible to know in which floor the user is more accurately, giving indoor navigation and

location service a new approach [6] [19].

2.2.7 SENSOR SAMPLING RATE

One of the most important features about a sensor is its sampling frequency or sampling

rate. With a higher sampling rate it is possible to obtain more values during a period of

time, and this can make application interaction more precise and accurate.

Output data rate on a sensor defines the rate at which the data is sampled and the maximum

frequency a sensor can achieve [11].

Choosing a sensor sampling rate will always have to take in consideration the use of the

application or system. An application that uses the values from the light sensor will,

usually, use a sampling rate a lot smaller than an application for activity monitoring that

uses the accelerometer. Ambient light values are likely to change a lot less than the

accelerometer values when someone is walking, for example, and there is no need for a

large number of data, that will consume more battery. So, a user needs to choose the

minimum sampling rate (fewer samples per second) that still meets the requirements for

the application, because this way power consumption will be reduced.

In order to maximize an application that uses sensor data, selecting a sampling rate may be

crucial and has to follow some parameters:

 Sample as fast as possible to obtain the greatest accuracy;

 Slow enough that the noise doesn’t dominate the input signal;

 Slow as possible not to overload the application’s processor;

 Fast enough to guarantee adequate response time.

 16

These parameters may change according to which sensor has been in use, because some

sensors are more affected by drift and noise than others [10].

Achieving higher frequencies may be important to applications that require a fast response

time like a mouse that is controlled by accelerometers and gyroscopes, to help a Parkinson

patient to be able to read a text on a smartphone using sensor data to counter his trembling,

among others. These applications need to gather sensor data as soon as possible to be able

to take the according responses in time.

The smartphone sensors have the obvious advantage of being embedded on a smartphone.

There is no need for additional hardware and the majority of the recent smartphones have

the sensors that can do that.

2.3. COMMUNICATION TECHNOLOGIES

There are some wireless technologies that can be used to make the connection between

mobile devices, like a smartphone and a wearable device. Technologies like Wi-Fi or

Bluetooth are commonly used nowadays for these kinds of connections, but there are other

less known technologies that can play an important role in the future such as Bluetooth

Low Energy or Zigbee.

2.3.1 WI-FI

Wi-Fi [37] allows the exchange of data at high-speed. It is mainly used in devices that

exchange data over a computer network, such as the internet. Any device can connect to

the internet using an Access Point (AP), so this is an extra hardware needed when

compared to Bluetooth [23].

This technology is a group of specifications for Wireless Local Area Networks (WLAN),

based on the IEEE 802.11 [35]. Wi-Fi is the most common wireless technology nowadays

and can be found almost everywhere, from hotels to airports, schools and many other

because to be able to use it, the user only needs to have a laptop, a smartphone or other

compatible device.

SSID (Service Set Identifier)

In order to make a Wi-Fi network, it is necessary that the stations (STA) to connect to

devices that can provide the access, the AP. When one or more STAs connect to the AP, a

 17

network is created and is called Basic Service Set (BSS). When more than one BSS are

created in the area, it is crucial that they receive a different SSID, which is inserted in each

packet of the network. SSID is the name of each wireless network. Figure 5 shows an AP

that can be used by many different STAs forming a BSS [23] [36].

Figure 5 - Wi-Fi network

Security

In wired technologies, such as Ethernet [38], it is easier to control network access because

a physical connection is needed. In Wi-Fi this is not necessary, anyone with a compatible

technology can connect to the network. So, in order to block unwanted user access,

security schemes were created.

Wired Equivalent Privacy (WEP) appeared with the original Wi-Fi and is basically an

authentication mechanism. Each device need to provide a key that is used to cypher the

network’s data. These keys can either be 64 or 128 bit long. But the WEP uses keys that

may be easily discovered with the application of some techniques. So another solutions

were investigated.

Wired Protected Access (WPA) also is based on authentication and network cyphering, but

the way it is done is safer and trusted. The base of this kind of security is a protocol,

Temporal Key Integrity Protocol (TKIP). A 128 bit key is used by the network devices and

combined with the MAC Address (a distinct hexadecimal code for every device on the

network) of each STA. As this address is different for each device, a unique sequence is

generated. The key is periodically switched, unlike WEP [23] [36].

 18

But more recently, other even more secure scheme has appeared. WPA2 uses a secure

pattern named Advanced Encryption Standard (AES), but has the disadvantage of requiring

a lot of processing. This security scheme is recommendable for high security networks

[36].

Lately, a new concept was introduced, called Wi-Fi Direct [39], where devices can connect

to each other without the need of an access point. This technology totally changes the way

adhoc connections work. With this new protocol, any device can become an access point,

allowing other Wi-Fi compatible devices to establish a connection. It is possible to say that

Wi-Fi Direct works in a similar way as Bluetooth, but with higher rates, it can achieve 250

Mbps. The negative point is that unlike Bluetooth, this technology will require more

power, causing mobile devices to drain the battery quicker. This makes this technology not

so attractive for devices that do not need a high transmission rate. Wi-Fi Direct is already

implemented in some of the mobile Operating Systems, like Android [40].

It allows direct data transfer between devices with minimal setup using Wifi Protected

Setup (WPS) to establish a connection. It requires that the user knows the device name that

he wants to connect to. The range of a Wi-Fi Direct connection is 100 meters [22].

2.3.2 ZIGBEE

Zigbee is used to create Personal Area Networks (PAN) built from small, low power

digital radios. Devices often transmit data over long distances by passing data through

intermediate nodes to reach the distant ones, creating a mesh network, with no centralized

control or high power transmitter or receiver able to reach all the network’s devices [23].

Figure 6 - Zigbee network

 19

In Zigbee, as it is possible to see in figure 6, there has to be three different kinds of nodes.

Coordinators that are the master devices and coordinate all the network, Routers that route

the information which is sent by the end devices and the End Devices that usually contain

the information about the environment. To be a fully mesh network, a system has to be

peer-to-peer, which means that all the devices can connect with each other directly sending

broadcast messages. This does not occur in Zigbee, an end device has to connect to a router

or a coordinator and then talk to other end device [23] [83].

With not high data rates, 250 kbit/s maximum, is best suited for periodic or intermittent

data or to receive a single signal from a sensor or input device. Light switches, remote

controls and other industrial or consumer equipment that requires short-range wireless data

transfer at relatively low data rates.

This technology [42] was established in 2002 by a group of 16 companies and it introduces

mesh networking to the low power wireless spaces and its primary targets are home

automation and remote controls. Due to Zigbee’s complexity this technology may be

flawed in environments where devices need to be able to operate for extensive periods

from a limited power source or in environments that may need relatively high data transfer

rates [25].

It enhances the IEEE 802.15.4 standard [43] by adding some security and network layers

and an application framework. The Zigbee Alliance developed standards that can be used

to create interoperable solutions and for custom applications where interoperability is not a

requirement, manufacturers can create their own manufacturer specific standards.

Zigbee technology can achieve some distance (100 m) in communication and its channels

are similar to the channels in BLE, but as Zigbee is not a frequency hopping technology, its

planning has to be careful, to ensure that there are not much interferers where the

communication is happening [25]. It operates in the 2.4 GHz frequency and over 16

channels and used the AES-128 bit security scheme also used in Wi-Fi networks [23].

Although at the moment this technology is not integrated out-of-the-box in smartphones, it

is expected that it will be incorporated soon, and some major manufacturers already

discussed and shown interest in this kind of technology. With this, users would not need

separate applications for each Zigbee equipped piece of hardware as control could be

consolidated on the smartphone device.

 20

2.3.3 BLUETOOTH

Bluetooth [44] is a wireless technology standard for exchanging data over short distances

by many types of devices. It is a relatively low power technology, ant its data transfer is

made through RF, allowing the device to detect each other if they are inside the proximity

range.

When two or more devices communicate in a Bluetooth connection, they constitute a

piconet. In this technology, the device that starts the communication is the Master and the

other ones are Slaves. The master controls the data transmission of the network and the

device synchronism. Each piconet can support up to 8 devices, but it is possible to increase

this number by overlapping piconets. These networks are called scatternets. In a scatternet,

a slave can be in more than one piconet, but a master cannot. This behavior is represented

in figure 7 [45] [84].

Figure 7 - Bluetooth network

The key features of Bluetooth are low cost, low power and robustness. When two devices

connect to each other, this process is called pairing. The structure and global acceptance of

the technology means that any enabled device can connect to other enabled device,

everywhere in the world. A fundamental strength of this technology is the possibility of

handling voice and data simultaneously, which provides some useful applications like

hands-free headsets for voice calls or synchronization between smartphones and

computers, for example.

Bluetooth operates under the unlicensed industrial, scientific and medical (ISM) band at

2.4 to 2.485 GHz, using a spread spectrum, frequency hopping and full-duplex signal. The

2.4 GHz ISM band is available in most countries, making this technology global.

 21

Interference between connections is avoided using Adaptive Frequency Hopping (AFH).

This technology allows to detect other devices in the spectrum and avoids using the

frequencies they are using. This adaptive hopping is done among 79 frequencies at 1MHz

intervals, which give a high degree of interference immunity and a more efficient data

transmission within the spectrum [23] [47] [21].

Bluetooth is a technology that is in constant evolution, making the applications and the

versions to be continuously changing through time. Different needs and different states in

evolution require different approaches:

Bluetooth 1.0

The first Bluetooth, manufacturers often found difficulties in its interoperability and

implementation.721 Kb/s is the usual rate for this version.

Bluetooth 1.1

Much alike the previous version in its transmission rates, some problems were solved and

the Received Signal Strength Indicator (RSSI), the system that measures the received

power strength was implemented.

Bluetooth 1.2

Faster connections and better interference immunity are the principal characteristics of this

version. Transmission rate was also increased.

Bluetooth 2.0 + EDR

In this version the power consumption was optimized and the transmission rate was

increased to 2.1 Mb/s. with the Enhanced Data Rate (EDR) feature. It is optional and may

not be used in Bluetooth 2.0 if it is not needed and the rate is 721 Kb/s in this case.

Bluetooth 2.1 + EDR

More secure connections are the main characteristic of this version where transmission

rates are the same as Bluetooth 2.0. A lower power consumption was also achieved for this

version.

 22

Bluetooth 3.0 + HR

Devices using this technology can achieve 24 Mb/s of transmission speed. These speeds

can only be reached on devices compatible with the High Speed (HS) characteristic.

Despite the evolution, this version is still compatible with the previous versions [84].

Bluetooth 4.0 (Low Energy)

The main advantage of this version is the power consumption. This version is the wireless

technology that was used in this project and its features are explained in section [2.3.4]

[20].

2.3.4 BLUETOOTH LOW ENERGY

Bluetooth Low Energy v.4.0 (BLE) is a technology whose utilization has been increasing

in the last few years, mostly in fields like health or sports. A lot of new applications are

possible with the inclusion of ultra-low power wireless chipsets. Most of the nowadays

applications in those fields use significant amount of power and they usually need extra

hardware to establish communications. This is the one big advantage of technologies like

BLE.

Bluetooth Smart or Bluetooth Low Energy [46] is an emerging technology developed by

the Bluetooth Special Interest Group (SIG) for short-range communications. Unlike

previous Bluetooth technologies, BLE has been designed as a low-power solution control

and this is the most important feature in this technology. BLE implements an entirely new

protocol stack, new profiles and applications. Its main goal is to be able to have a long

battery life using only a coin-cell.

As the other Bluetooth versions, this technology operates in the 2.4GHz ISM band with 40

channels spaced 2MHz apart and it is capable of transmitting at a rate of 1Mbit/s (absolute

maximum, usually it is “only” 100 Kb/s) using GFSK modulation. Like the Classic

Bluetooth it uses frequency hopping, but at a slower rate. Only 3 of the 40 channels are

used to advertise which allow device discovery. These 3 advertising channels are located in

different parts of the spectrum to provide immunity against the interference caused by Wi-

Fi. Once the device is connected it uses the remaining 37 channels for data transmission

[20].

 23

Given that various technologies use the license-free 2.4 GHz band, an overcrowded radio

environment may be found, decreasing the performance of the technologies due to the need

of retransmissions. The robustness and reliability of BLE is made through Adaptive

Frequency Hopping (AFH) as Golmie et al. demonstrate on their study – Bluetooth

Adaptive Frequency Hopping and Scheduling [47].

BLE Protocol Stack

Like Classic Bluetooth, the protocol stack for this technology is composed by two main

parts: the Controller and the Host. The Controller handles the lower layers of the stack

responsible for capturing packets and the radio. Typically is implemented as a small

System-on-Chip (SOC) with an integrated radio. The Host is responsible of handling the

upper layers of the stack, the Logical Link Control and Adaptation Protocol (L2CAP),

Attribute Protocol (ATT), the Generic Attribute Profile (GATT), the Security Manager

Protocol (SMP) and the Generic Access Profile (GAP). Communication between the

Controller and the Host is standardized as the Host Controller Interface (HCI). The non-

core profiles, i.e., application layer functionalities, not defined by the Bluetooth

specification, can be implemented on top of the Host [85].

Figure 8 - BLE protocol stack

As is possible to see in figure 8, some of the BLE Controller features are inherited from the

classic Bluetooth Controller, but they are incompatible. A device that only implements

BLE (single-mode device) cannot communicate with a device that only implements Classic

 24

Bluetooth. Many devices can implement both technologies and they are called dual-mode

devices.

L2CAP - The communication between this layer and the Controller is made via the HCI.

The main function of this layer is to provide data services to the upper layers, and to

segment the packets into fragments for the controller. It is also responsible of reassembling

packets from the Controller before they are submitted to the upper level layers.

GAP - The Generic Access Profile defines generic procedures and specifies device roles

for service and device discovery, connection and security management. The GAP defines

four roles with some requirements on the Controller: Broadcaster, Observer, Peripheral and

Central. A Broadcaster only broadcasts data (through the advertising channels) and does

not support connections with other devices and the Observer is its complementary, i.e.,

receives data transmitted by the Broadcaster. The Central role is the one designed for a

device that is in charge of initiating and managing multiple connections, hence Peripherals

are for single devices which use a single connection with a central device. A device can

support several roles, but only one can be adopted at a given time. Additional profiles can

be built on top of GAP. A new profile that specifies how applications can interoperate is

called application profile.

ATT - It defines the communication between two devices acting as a server and a client,

on top of a dedicated L2CAP channel. The server maintains a set if attributes. An attribute

is a data structure that stores information that will be used by the GATT, the protocol that

operates on top of the ATT. GATT determines the role (client or server) and this is

independent of the slave and master roles. The access to the server’s attributes is requested

by the client, and this triggers response messages from the server. The server can send to

clients two types of unsolicited messages also: notifications and indications. The difference

is that notifications are unconfirmed and indications require confirmation by the client.

Clients can write attribute values, by sending the appropriate commands.

GATT - This is a framework that uses the ATT for service discovery and exchange of

characteristic attributes from one device to the next. Its interface with the application layer

is made through application profiles. Characteristics are sets of data that include values and

properties. All the data related to services and characteristics are stored in attributes.

Generally there is an attribute table for each service that is going to be used by the profile.

 25

For example a gyroscope sensor service may contain a gyroscope characteristic that uses

an attribute for describing the sensor, other attribute for storing the data relative to the

sensor and descriptors that specify the measurement units.

In BLE there are two types of packets: Data and Advertise, each with different lengths.

Data packets can be as small as 80 bits or as long as 376 bits. This means that in a

transmission of data packets, time can range between 80 microseconds, to 0.3 milliseconds.

On the other hand, advertising packets’ PDUs contain a 16 bit header and up to 31 bytes of

data. Advertising packets can be sent within a range that goes from 20 milliseconds to 10

seconds. This specifies the interval between two consecutive advertising packets. The

scanner can connect to an advertiser by finding these packets. The scanner has to be

configured with a scan interval and a scan window and, after the establishment of the

connection, the scanner provides the advertiser with two important parameters. Connection

interval, that specifies the start time of connection events – the exchange sequence of data

packets – and slave latency that specifies the amount of connection intervals a slave can

ignore without losing the connection. This optimizes power consumption [20] [23] [26]

[75].

Profiles

In order to use Bluetooth technology, a device has to be able to interpret Bluetooth

profiles. Devices must be compatible with the subset of these profiles necessary to use the

desired services. So, profiles are definitions of possible applications and specify general

actions that devices can use or do to communicate with other Bluetooth devices. Profiles

reside on top of the Bluetooth Core Specification.

A wide range of profiles describing many kinds of applications or use cases are available.

They are designed for specific functionalities, for example the Find Me Profile that uses

the Immediate Alert Service to perform an alert, there is a Heart Rate Profile that enables a

Heart Rate Sensor to obtain data and then expose it to the Heart Rate Service, a Proximity

Profile that enables proximity monitoring between two devices by using the Link Loss

Service, the Immediate Alert Service and the Tx Power Service, among many others. They

allow developers to create applications aimed specifically to the features each profile

implements using predefined attribute/value pairs of information that can be found in each

 26

profile. Profiles provide standards which manufacturers follow and this allows the

interoperability among devices that use Bluetooth.

Bluetooth SIG defined many profiles for Low Energy. The GATT profile [48] is a general

Bluetooth specification in order to send and receive short pieces of data – attributes – over

a Low Energy connection. Currently, all LE application profiles are based on GATT, but

many individual devices can implement more than one profile, obviously. A device can

implement a Proximity Profile and a Gyroscope Profile, for example [17] [75].

A Comparison with Bluetooth Classic

Bluetooth technology was originally designed for continuous, streaming data applications

and successfully eliminated wires in areas such as medical and industrial applications, but

also in consumer applications. Classic Bluetooth will continue to provide robust wireless

connections, but if the goal is power saving, Bluetooth Low Energy is the technology to

use. Whereas Bluetooth Classic was developed with faster data rates in mind, BLE aims to

be able to achieve lower power consumptions by the devices. It is not designed to stream

large amounts of data, instead it is designed to periodically send short bursts of data [20]

[21].

BLE reduces significantly the Classic Bluetooth’s peak, average and idle mode power

consumptions, with energy efficiencies that can be several times higher than the Classic

Bluetooth. These low consumptions enable BLE chipsets to work with a small battery for a

year or more in some cases. The simple Link Layer of BLE allows this saving in energy

consumption by making quick connections, BLE chips spend most of the time asleep, only

waking up to send data, and since this process only takes a few milliseconds, energy will

be saved. Classic Bluetooth requires something like 100 milliseconds [20] .

BLE devices can be one of two types: single mode devices that can only support Bluetooth

Low Energy, and dual mode devices, that are fully compatible with previous versions of

Bluetooth. Dual mode devices can perform high data rate streaming, but cannot benefit

from the low consumption features that can be provided only by using BLE low data rate

modes. BLE can’t replace completely previous Bluetooth versions, but can allow new use

cases and applications [21] [26].

 27

There are a lot of Classic Bluetooth features adopted by BLE. AFH, as well as part of the

L2CAP are used by BLE, and it also implements the same link security with simple pairing

modes, encryption and secure authentication. This inheritance allows BLE to be secure,

robust and reliable in tough environments [85].

Table 1 resumes Bluetooth Classic and BLE characteristics.

Table 1 - Bluetooth Classic vs BLE

Specification Classic

Bluetooth

Bluetooth Low

Energy

Frequency 2400 to 2483.5 MHz

Range 100 m 50 m

Number of channels 79 40

Data Rate 1 – 3 Mbps 100 Kbs

Nodes 8 Unlimited

Voice Capable Yes No

Total time to send

data

100 ms 3 ms

Besides those characteristics, both technologies support service discovery and have the

profile concept implemented. Their use cases are basically the same, with BLE more

focused on health and sports environment, because of the lower power consumption

devices. From table 1 it is possible to conclude that BLE has its limitations also. One of

them is the data transfer rates than can be several times less than the Bluetooth Classic, so

for that reason streaming Bluetooth Low Energy connections will lose some of its low

consumption capabilities as the utilization approaches the continuous transmission. So, in

other words, the choice between classic and low energy has to be made depending on the

use case that is going to be given to the final application using one of these technologies

[20].

 29

3. MOBILE OPERATING

SYSTEMS

The way sensors are exploited on a smartphone is directly related with the phone’s

operating system. A mobile operating system is an OS built exclusively for a mobile

device like smartphones, PDAs, tablets or other digital mobile devices. It is responsible for

identifying and defining mobile functions and device features, including dialing,

application synchronization or text messaging, between others. We can say that a mobile

OS is similar to a standard OS, like Windows, Linux and Mac, but with other primary

concerns, like the wireless variations of local broadband connections, mobile multimedia,

the hardware management and the optimization of the application software’s efficacy in

the device. In order to adapt to different mobile environments, mobile operating systems

combine the features and the operating system of a standard personal computer, with a

touchscreen, Bluetooth, GPS, dialer and other device features. It runs focusing its resources

to emphasize communication, such as Random Access Memory (RAM), storing and CPU

speed [5].

Unlike personal computers, it is usually not possible to install a different operating system

on a smartphone. If the user doesn’t like the one that came preloaded, the best option is to

buy a new one. So the choice of an Operating System is much more critical and will reflect

 30

the user’s lifestyle because it will determinate the choice of apps and phone functionality.

Nowadays, from the operating systems already settled in the market, it is possible to

distinguish two types: the open source mobile operating systems, led by Android, and the

proprietary operating systems like Apple’s iOS, Windows Phone or Blackberry OS.

The main difference between these two types of mobile operating systems is the user

customizability. It is possible to change almost everything in Android for example, but in

iOS, the user has a very limited change capability. The kernel, user interface and some

standard applications are available to anyone who wants to use them in Android’s case, but

only the kernel is available in iOS.

In order to be able to test the fully capabilities of the sensors (in this particular case we are

more interested on the sampling frequency) on a mobile operating system, the OS needs to

be open source. This means we need access to the source code and to have total freedom

over the device and over the software. The open source mobile operating systems already

on the market are Android and Firefox OS. There are some upcoming open source systems

like Ubuntu Touch and Tizen that are expected to be on the market relatively soon.

3.1. ANDROID

This mobile operating system has been dominating the world smartphone market for the

last years and it seems that this domination will continue at least for the next few.

Android is an open source, Linux-based, operating system designed primarily for

touchscreen devices like smartphones, tablets and TVs. The main purpose of Android is to

create an open source platform available for carriers, manufacturers and developers, in

order to create a successful developing “community” that improves the mobile experience

for end users [53].

In 2005, Google bought the OS and the first Android-powered phone was sold in October

2008. The code is released under the Apache license [54]. This license allows device

manufacturers, wireless carriers and developers to modify the open source code and to

distribute it. This fact is determinant for the number of existing applications and custom

ROMs available. Android is the software of choice for technology companies that want a

low-cost and customizable, lightweight operating system for their devices. Despite being

 31

primarily designed for smartphones and tablets, many other applications on televisions,

digital cameras, among other electronic devices, had been seen using Android [55].

Figure 9 - Android's home screen

The User Interface (UI) in Android is based on direct manipulation and it is very intuitive.

The touch inputs are somewhat similar to real-world touches, which give users the feeling

of real gesture-based actions. Sensors like accelerometers or gyroscopes are used by some

of the core applications to respond to user actions, for example changing the orientation

between portrait and landscape, or simulating the steering wheel in a race car game. It is

possible to personalize home screen icons and applications, add widgets, among other

features. The home screen is highly customizable allowing the users to change for a

different operating system look if they want it to. As Android is largely used around the

world, there is an “infinite” number of applications developed that can be acquired in

Google Play and on other 3rd party app stores [56].

Google is giving updates to Android every six to nine months, with most of the devices

receiving them over the air. This gives users a new feel every now and then, keeping users

interested and waiting for the new update. But unless the user has one of the Nexus

devices, these updates can be slower and often arrive months later from the date of the

official release. This occurs mostly because of the extensive variation in hardware of

Android devices.

 32

If the developer community continues to work together in the next years, this platform will

surely continue to evolve.

3.1.1 ARCHITECTURE

Android is divided into five core layers (figure 10). It is important to understand how

Android works at a high level if the user/developer wants to port Android into a new

hardware. For this to succeed it is also important to understand how the hardware drivers

and the Hardware Abstraction Layer (HAL) interact with each other and with the many

layers of the Android operating system.

The HAL serves as a standard interface that allows the Android system to communicate

with the device driver layer without knowing about the lower-level implementations of the

drivers and hardware. The correspondent HAL must be implemented for a specific piece of

hardware, which means that the contract defined in each hardware specific HAL interface

must be respected, to correctly interact with the hardware. These implementations are

usually built into shared library modules (.so files).

Figure 10 - Android architecture

Through application framework, Android offers developers the possibility of building

extremely rich and innovative applications. They are able to access almost anything on the

 33

device like the hardware, location information, set alarms or run background services,

among many other things. One of the main Android advantages is that it does not

differentiate between core applications and 3rd party applications, which means that any

developer can build an application that can access all the phone’s capabilities and services.

Developers have full access to the same framework APIs used by core applications.

Underlying to all the applications is a set of system services that control the behavior of

each application. Content providers enable applications to access data from other

applications, or to share their own data, for example, while Resource Manager provides

access to non-code resources like graphics, strings and layout files. The managing of the

application lifecycles is made by Activity Manager.

Android also includes a C/C++ set of libraries that allow developers to expose the

capabilities of the various components, through the Android application framework.

Libraries like SQLite that is a powerful database engine available to all the applications and

Surface Manager that manages the access to the display subsystem and composites 2D and

3D graphic layers from multiple applications, are just two of the core libraries that can be

used to create powerful applications.

Android Runtime provides a set of core libraries of the Java programming language that

allows to access most of the devices functionalities in this language. Every Android

application runs its own separate process, with its own instance of the Dalvik Virtual

Machine. This virtual machine has been written so that multiple instances of the VM run

simultaneously and efficiently. The Dalvik VM executes files in executable format (.dex)

that is optimized for minimal memory footprint. The VM is register-based and runs Java

classes that have been transformed into the .dex format by the “dx” tool. The virtual

machine relies heavily on the Linux kernel for features such as threading and low-level

memory management. It is not possible to run Java class files on Android, they need to be

converted to Dalvik bytecode format first.

Finally the Linux kernel relies on a 2.6 kernel for the device’s core services like security,

network stack and driver model. The kernel also acts as an abstraction layer between the

hardware and the rest of the software stack. It includes some additional features such as

wakelocks or memory management to better fit in mobile environments [57].

 34

3.1.2 DEVELOPMENT ENVIRONMENT

There are a lot of resources and libraries that can be used, giving developers the

opportunity of making useful and practical applications.

Applications are usually developed in Java language using Android Software Development

Kit (SDK). This SDK includes a set of tools like a debugger, software libraries, a handset

emulator based on QEMU, documentation, sample code and tutorials. To start developing

applications it’s recommended the Eclipse Integrated Development Environment (IDE)

using Android Development Tools (ADT) plugin [58].

Figure 11 - Eclipse IDE

ADT is a set of components which extend the Eclipse IDE with Android development

capabilities. Contains all required functionalities to create, compile, debug and deploy

Android applications from the IDE. It provides specialized editors for resource files such

as layout files. These editors allow switching between the XML representation of the file

and a user interface via tabs at the bottom of the editor.

Applications can be tested on a real device or using an emulator. To use the emulator it is

necessary to create Android Virtual Devices (AVD). To connect to either a real device or a

virtual device, the SDK contains Android Debug Bridge (ADB).

If the developer wants to create an application or extension in C/C++ he can use Native

Development Kit (NDK). This is a set of tools that allow the implementation of parts of the

 35

application using native-code languages such as C or C++. For certain types of apps this

could be crucial and helpful to reuse some of the existing native code libraries, but the

majority of the applications do not need the Android NDK.

Applications written in native code may sometimes result in a performance improvement

because does not use the Dalvik Virtual Machine, but most of the times will just increase

the complexity of the application with no clear benefits. In general, developers should only

use NDK when it is essential for the application and not just because they prefer to write in

C or C++. Maybe applications such as signal processing or physics simulation should use

the NDK, because they are self-contained, CPU intensive applications that don’t allocate

much memory, so they might be the best candidates to this technology. First, developers

should check in the framework APIs provided by Android if there is a way to do the

application without using the NDK, and use it only when it is not possible [59].

3.1.3 TESTING ANDROID

It is easy to test and put the hands on a device running Android, because there is so much

handsets in the world running this Operating System. But it is also possible to test the OS

on an emulator or building a specific version for a specific device. This can be made with

the Android Open Source Project (AOSP) [41].

It is possible to build an Android version and the kernel for a specific device, as well.

Operating systems that can build a specific ROM are Ubuntu and Mac OS. For

Gingerbread (2.3x) or newer, a 64-bit environment is needed. A powerful desktop or laptop

is recommended because the building process consumes a lot of RAM memory and will

need at least 30 GB for a single build. These builds can be made for a variety of devices,

including Pandaboard, Samsung Galaxy Nexus, Google Nexus 10, the emulator and other

target devices. They usually tend to behave very similar to the final Android product

released to the market for a specific version. Some features might not work so well because

of proprietary drivers and the OS might look different than some of the final products

because of the front end interfaces developed by the manufacturers.

Custom ROMs can be installed, giving users a new experience. They are very popular,

because they modify the system searching for memory and performance improvements. To

install these ROMs it is necessary root access to the devices. CyanogenMod [24] is

probably the most popular custom ROM in the world, but it is possible to find thousands of

 36

them around the internet as the Android’s source code is open and anyone can change it. A

more “free” user experience is given to the user with this ROM, because it overcomes

some of the chains of the Google’s Android. Using a custom ROM usually results in more

frequent updates that could fix bugs and introduce new features, because developers

behind it don’t have the same bureaucracy and procedures as the manufacturer and carriers

have. Custom ROMs are usually faster, more efficient and use less memory, because

developers tend to rip out the “garbage” such as carrier installed apps and they optimize

the kernel, allowing, for example to extend battery life. Most of them allow to install

applications directly on the SD Card, so if the device has run out of space, there is still this

very useful option. On stock ROMs (version of the operating system that comes, by

default, with the phone) this is not possible. Installing these custom software have

downsides too, something could go wrong and this maybe can cause the loss of warranty,

so, in the end, the user has to choose whether he wants to install something like this or not.

3.1.4 SENSOR FRAMEWORK

In Android, it is possible to access sensors available on the device by using Android sensor

framework. This framework is a part of android.hardware package and provides several

classes and interfaces that help developers perform a variety of sensor tasks. Tasks like

defining the rate at which the data is acquired and register or unregister sensor event

listeners that monitor sensor changes, are possible using this framework.

Sensors can be hardware based or software based. Hardware-based sensors are physical

components built-in the devices and measure specific properties like acceleration,

temperature or angular change. Software-based are not physical components and derive

their data from one or more hardware-based sensors. They are often called virtual sensors.

Linear acceleration or orientation sensors are just two examples of software-based sensors

[59].

 37

Table 2 describes the most important classes of the Android sensor framework:

Table 2 - Classes of Android Sensor Framework

Class Function

Sensor Creates an instance of a specific sensor.

Sensor Manager Creates an instance of the sensor service;

Provides methods for listing and accessing sensors;

Sets data acquisition rates and calibration parameters.

Sensor Event Gives information about an event that occurred

because of changes in sensor data;

Includes raw sensor data, timestamps and the type of

the sensor that generated the event.

Sensor Event

Listener

Creates two callback methods that are capable of

receiving event notifications when sensor data

changes.

A lot of public methods can also be used by Android applications in order to get sensor

capabilities. Resolution, power consumption and manufacturer, are just some examples of

information that developers can get by using those public methods.

Table 3 resumes the most important methods.

Table 3 – Android Sensor Public methods

Method Returns

getName () Name string of the sensor

getPower () The power in mA used by this sensor

getResolution () Resolution of the sensor in the sensor’s unit

getVendor () Manufacturer string of the sensor

getMaximumRange() Maximum range of the sensor in the sensor’s unit

getMinDelay () The minimum delay between two sensor events in

microsecond

The data delay (sampling rate) controls the interval at which sensor events are sent to the

application via onSensorChanged () callback method. This delay is very important and

has to be defined accordingly to the application requirements. By default there is four

 38

predefined delays (GAME, UI, NORMAL and FASTEST). The SENSOR_DELAY_FASTEST is the

fastest rate at which sensor events are sent to the application. In the new APIs (level 11 and

newer) it is also possible to define manually the desired delay, in microseconds. This

defined delay is just a suggested value. The system can modify this delay. A smaller delay

imposes a bigger load on the processor and uses more power, so developers must choose

the larger delay that still meets the application requirements. Once the delay is set it is not

possible to change it. The only way to do that is by unregister and then re-register the

sensor listener [59] [57] [19].

Needless to say, the applications made to use sensors cannot be tested in the emulator. The

emulator cannot emulate sensors. Physical devices are the only option to do that.

Sensor data flow in Android can be seen in figure 12.

Figure 12 - Android sensor data flow

The sensor represented in the figure 12 is the accelerometer, but the flow is almost the

same for other sensors. The applications use the sensor application framework to get the

sensor data. After the instance of the accelerometer, in this case, being created, the

application communicates with the C++ layer through sensor Java Native Interface (JNI).

The middle layer basically consists of Sensor Manager, Sensor Service and Sensor HAL.

These libraries define some methods and functions that will correlate both parameters from

 39

the application and data from the lower layers through kernel. This kernel includes the

sensor driver and through a computer bus, such as I2C, can communicate directly with the

hardware sensor [28].

The main difference in sensor implementation is the type of event generation and data

gathering. While proximity sensor, for example, is interrupt-based, almost all other sensors

are poll-based. Interrupt-based sensors only give events when the data changes. If the

sensor data keeps the same value for a long time, an event will never be sensed on that

amount of time. The values on those sensors are generally not required to be read quickly.

The device will behave perfectly even when no values are returned. Those sensors are not

usually used for games and other applications that require a lot of values during a short

interval of time. They are used mostly for screen luminosity control or for device

information.

Poll-based sensors are polled for at regular intervals of time, selected by the delay

parameter used while registering a Sensor Event Listener. Sensors like accelerometers,

gyroscopes or magnetic field sensors belong to this category. They provide quick

information that will allow applications like games, to behave accordingly to the user’s

gestures, for example [19].

3.2. FIREFOX OS

Firefox OS (project name: Boot to Gecko (B2G)) is an open source operating system, in

development by Mozilla Corporation. It uses a Linux kernel and boots into a Gecko-based

runtime engine, which lets users run applications developed entirely using HTML5,

JavaScript, and other Open Web Application APIs. Mozilla aims to fully support HTML5,

using “open Web” technologies, rather than the platform-specifics native APIs. The main

idea is to have all user-accessible software running on the phone be a Web application that

uses advanced HTML5 and device APIs to access the phone's hardware directly using

JavaScript. That way it is possible to remove some of the steps of software-hardware

communication and the overall process will be quicker [61]. The smartphones with Firefox

OS will be an environment similar to the one it is possible to see in figure 13.

 40

Figure 13 - Firefox OS appearance

HTML5 has the ability to communicate directly with the hardware. For anyone who wants

to use the camera, for example, the OS just opens a website that uses HTML5 to access the

camera. This means that every website can use the camera feature of B2G [86]. On

Facebook, for example, it's possible to share a photo directly, instead of take, store and

then share as usually happens. Giving access to hardware layer allows to remove a lot of

steps. Another advantage to Mozilla is that there are a lot more web developers than app

developers, which means that a lot more applications can be developed and shared, and,

with Firefox OS (FFOS) being totally open for new app development, this could be a

massive change in the smartphone world.

It can be said that the main goal for FFOS is not to compete with the high-end

smartphones, but to offer entry-to-mid-level smartphones at feature phone prices. It aims

the called feature phones, but they want to turn them into more smartphone-like with their

applications. It will be strictly low-end, at least for the first few years. Mozilla’s goal is not

to compete with Android and iOS, but to help people migrate from feature phones to

smartphones. To run FFOS an 800 MHz processor and 256 MB of RAM are required,

which is remarkably lower than some of the requirements of other Operating Systems [61].

3.2.1 ARCHITECTURE

This Operating System’s architecture is composed of three main components: Gonk, Gecko

and Gaia.

 41

Gonk is the lower-level operating system of B2G and consists on a Linux kernel and a

userspace Hardware Abstraction Layer. The kernel and a lot of userspace libraries are

common to open-source projects like Linux, Libsub, Bluez, etc. Some other parts of HAL

are shared with Android project like GPS, camera, between others. It is possible to say that

Gonk is an extremely simple Linux distribution.

Gecko is a free and open source layout engine used by many applications developed by

Mozilla, like Firefox browser, and other open source software projects. It's the application

runtime of B2G. At a high level, Gecko implements the open standards for HTML5, CSS

and JavaScript and makes those interfaces run well on the Operating Systems that it

supports. Roughly, it is the Firefox browser with the new Web APIs and without the user

interface.

Finally Gaia is the User Interface of B2G. Everything that is drawn after the startup of

B2G is related to Gaia. It's written entirely in HTML5, CSS and JavaScript. Its only

interface to the underlying operating system is through Open Web APIs, which are

implemented by Gecko [60].

In figure 14 is it possible to clearly distinguish these three fundamental layers of Firefox

OS.

 42

Figure 14 - Firefox OS architecture

At the moment of this dissertation Firefox OS were still a pre-release product, so the

architecture described here is not necessarily final and some things could be changed

afterwards.

3.2.2 DEVELOPMENT ENVIRONMENT

Finally, with Firefox OS, web developers get exactly what they expected for a long time: a

mobile environment that can be totally created only with HTML5, CSS and JavaScript.

Mozilla is working to create applications that are backed entirely by the open Web.

Because of this fact there is no specific IDE for this Operating System. Almost every IDE

can be used to develop HTML5 applications. Web is the platform to use. Open web apps

are considered to be a great opportunity for all developers who want to port their

applications into a large number of devices, not being held to a specific vendor platform

 43

(such as Android or iOS). The main difference between a web application and a website is

that the application can be installed and integrated to the device, and not being just a

“bookmark”, means that a web application becomes part of the device’s system. Open Web

Apps (OWA) are intended to be, in the future, working in all browsers, operating systems

and devices. There are parts of OWA technology right now, that are standardized

(HTML5, CSS, JavaScript, etc.), while other parts are still not yet standardized, and the

Mozilla implementation is specific for Firefox OS and to other Mozilla technologies. They

clearly identify those not standardized parts, and they want to make a total standardized

environment in the future.

Mozilla has been built an app system that lets users buy an application once and run it on

all their HTML5 devices. This is made through a receipt that is acquired when the user

purchases an application. The receipt is a JSON Web Token with metadata that links to the

Marketplace’s public key and it verification service URL, and it is a verifiable proof or

purchase, so the application is intended to be portable across any device that supports Open

Web Apps system.

There are two types of applications in Firefox OS: packaged and hosted apps. The first

ones are just a zip file containing all the important content like HTML, CSS, JavaScript,

images and manifest, etc. Hosted apps are basically like a website, they run from a server

at a given domain. Either way, a valid manifest is required. To list them in Firefox

Marketplace, the user will either provide the URL where the hosted application is located,

or upload the application as a zip file [87].

Regarding the applications layout, responsive design has become more and more important

as the screen resolution varies between different devices. Even if the applications are

intended to run only in Firefox OS devices, it’s important to notice that as Firefox OS can

be installed on a different variety of devices, they could use different screen resolutions

and this is a matter that should be taken into consideration when developing an application.

CSS media queries provide means to adapt the applications to different types of resolution.

As JavaScript APIs are being improved day by day, Mozilla’s Web API brings several

standard mobile features to JavaScript APIs. Features like accessing battery or vibration

are just some examples. But there are some WebAPIs that are available but require

 44

permissions for that specific feature to be enabled. Apps can register permissions in the

manifest.webapp file.

3.2.3 TESTING FIREFOX OS

There are some simulators like B2G Desktop or B2G emulators that are a bit hard to

configure and most of the time are significantly different from Firefox OS on a real phone.

So Mozilla created Firefox OS Simulator, an experimental prototype test environment for

Firefox OS.

This simulator is nothing more than an add-on for the Firefox browser. Its installation is as

easy as any Firefox add-on. The simulator launches with a JavaScript console so that

developers may debug their application from within the simulator [62].

Figure 15 - Firefox OS simulator

It is possible to add applications to the simulator by providing a URL to a website, or even

better, the path to a manifest file, that could be either a URL or a path to a local directory.

If the developer uses the last option, he creates a packaged app on the local computer and

no web server is needed. Firefox OS simulator does not create a virtual computer. It is a

version of B2G project that is built for operating systems. This allows the simulator to run

very quickly, with minimal startup time, which is clearly an advantage for developers. It

includes the Firefox OS desktop client, which is a version of the higher layers of Firefox

 45

OS that can run on desktop. Simulator may not be a perfect real environment simulation,

but it is a very useful way of testing Firefox OS apps.

Apart from the simulator it is possible to test Firefox OS on a real device. To connect the

device to the simulator ADB is needed and remote debugging must be enabled in the

developer options of the device.

Currently, there are three main targets for development. The primary target will typically

be the first to receive feature updates and bug fixes, devices like Pandaboard, the emulator

or GeeksPhone’s Keon and Peak are just some examples of this group. The second target

group of devices are the functional ones and are supposed to be especially used by app

developers. They will receive updates and fixes secondarily. Samsung Nexus S and

Samsung Nexus S 4G are the devices in this group. Finally builds can be made to Samsung

Galaxy S2 and Samsung Galaxy Nexus, although these devices are not being worked on a

regular basis by core developers. Their reliability and features may be well behind the

other two targets and these devices are just being used to test the operating system most of

the time [63].

So, there are some tools and requirements that the system that will build Firefox OS must

have. ADB and fastboot for example, as well as an “android.rules” file, where the user will

specify to which devices will try and send the build via USB. Other things like GCC 4.6+

or bison are also needed.

3.2.4 SENSOR FRAMEWORK

Standard Web APIs and Firefox OS specific Web APIs are used to access sensors in

Firefox OS. Document Object Model (DOM) events allow languages like JavaScript to

register various event handlers or listeners. Device Orientation specification defines

several new DOM events that provide information about the physical orientation and

motion of a hosting device.

When an event happens, the browser sends the event to the related element. If that element

has a handler (function) for the event, it gets called with related event info and it gets an

event object as its first argument, which has a lot of fields that describe about the event.

Mozilla Event Reference is used to help developers to track events from the sensors or

other parts of the Mozilla application code.

 46

This specification provides three events and the information is not raw sensor data, but

rather high-level data that is not known to the underlying source of information. Those

events are deviceorientation, devicemotion and compassneedscalibration. The

latter is not implemented in Firefox OS [64].

The basic use of events is made by adding an event listener for the specific event:

window.addEventListener ("deviceorientation", function (event) {

// process event.alpha, event.beta and event.gamma}, false);}

Device Orientation Event

The user agents that implement this specification must provide a new DOM event, named

deviceorientation. The event occurs whenever a significant change in orientation is

detected. For most implementations, a change in one degree is sufficient to fire this type of

events, while other implementations may also fire the event if they have reason to believe

that there is no sufficiently fresh data available.

There are four attributes that can be retrieved when a deviceorientation event occurs.

Alpha, beta, gamma and absolute.

The first three of those attributes must specify the orientation of the device in terms of the

transformation from a coordinate frame fixed on the Earth to a coordinate frame fixed on

the device. East (X) is the ground plane, perpendicular to the North axis and positive

towards east. North (Y) is the ground plane and positive towards true North and Up (Z) is

perpendicular to the ground and positive upwards. For most mobile device, the coordinate

frame is defined relatively to a screen orientation, usually portrait. This means that even

the orientation of the screen changes, this does not affect the orientation of the coordinate

frame relative to the device. That said, alpha is the rotation degrees around Z axis, beta is

the rotation degrees around X axis and gamma is the rotation degrees around Y axis. Those

angles form a set of intrinsic Tait-Bryan angles [9] (X-Z’-Y’’) that do not match the roll,

pitch and yaw convention used in vehicle dynamics. This also means that alpha is the

opposite of a compass heading. The absolute attribute is a Boolean that is set to true if the

orientation provided is the difference between the device’s coordinate frame and the

Earth’s coordinate frame. If not, this parameter is set to false [65].

 47

Figure 16 – Alpha in Device Orientation Event

Device Motion Event

This event is triggered when a significant change in motion is detected and returns four

attributes: acceleration, acceleration including gravity, rotation rate and interval.

Acceleration must be initialized with the acceleration of the hosting device relative to the

Earth frame. It must be expressed in m/s2. Implementations might be unable to provide

acceleration data without the effect of gravity, may supply the acceleration including

gravity value. This is less useful in many applications, it provides a best effort support.

This attribute is initialized with the acceleration of the hosting device, plus and

acceleration equal and opposite to the acceleration due to gravity. This value is also in

m/s2.

The rotation rate is initialized with the rate of rotation of the hosting device in space. It is

expressed as the rate of change of the angles defined in deviceorientation event and

must be expressed in deg/s.

The interval attribute is the interval at which data is obtained from the underlying hardware

and must be expressed in milliseconds. It should be a constant in order to simplify the

filtering of the data by the application. There is no access to magnetometer or to other

useful virtual sensors such as altitude, which is clearly a flaw that can be rectified in the

future.

 48

Sensor API specification provides several DOM events that allow applications to obtain

information given by the various sensors available on the device. This information, unlike

Device Orientation specification, is raw sensor data. This specification is aimed at covering

the most common sensors found in devices. A different DOM event will be fired for each

sensor type that will supply with physical raw sensor data. Like Device Motion and Device

Orientation, each sensor will turn on when the listener is added and turn off when the last

event is removed. The corresponding event must be fired when there is a change in the

sensor data. If the user agent does not support the sensor wanted, then the event will not be

fired. The event handler provides the following signature:

 Interface SensorCallback {

void ondata (double value, double min, double max);};

The ondata callback is lifted when there is sensor data to report, being the value the sensor

data. Min and max are the minimum and maximum ranges that the sensor can detect [64].

Light and Proximity Events

There is a set of DOM events for sensors that the device supports and they define which

sensor will be listened to be able to report data. Those events can be temperature related,

humidity related, among others, but in Firefox OS only light and proximity events are

specified in the API, so these are the only events that can retrieve these kind of values at

the moment.

Using the devicelight event is possible to verify the level of ambient light in lux. It

provides developers with information from photo sensors or other sensors that can detect

ambient light levels of the surrounding environment. This is mostly used for adjusting the

luminosity of the device.

The deviceproximity event gives information about the distance of a nearby object using

the device’s proximity sensor. This event is usually capable of returning three values: the

maximum and the minimum sensing distances that the sensor is able to report, along with

the current device proximity in centimeters [64].

https://dvcs.w3.org/hg/dap/raw-file/tip/sensor-api/Overview.html#widl-SensorCallback-ondata-void-double-value-double-min-double-max

 49

3.3. UBUNTU TOUCH

Canonical's Ubuntu Touch was developed around Android's kernel, but with no use of Java

Virtual Machine, as Android does. It's built around Qt5 and QML and the Ubuntu Touch

Developer Preview was released on Feb 21st, which is intended to be used for evaluation

and development purposes only. It does not provide yet all the features and services of a

retail phone. This version is still in development, but Canonical is making efforts to evolve

this platform quickly. It is expected that the first devices with Ubuntu Touch are expected

to be released at the end of 2013. Canonical claims that the mobile version is going to be

fully compatible with the PC and TV version, which allows more interaction between

devices. Figure 17 shows the home screen and the sidebar of Ubuntu Touch.

Figure 17 - Ubuntu Touch home screen

One big difference between Ubuntu Touch and Firefox OS is that it not only targets the

low-to-midrange market, but also the high-end smartphones, in the future.

A 1GHz cortex A9 processor will be required for entry-level Ubuntu phones, with at least

512 MB of RAM, while higher-end models aimed at doubling as PCs and will require a

quad core A9 or Intel Atom processor and at least 1GB of RAM [66].

3.3.1 ARCHITECTURE

Ubuntu Touch is based on CyanogenMod, a custom ROM for Android, which is an open

source replacement firmware for smartphones and tablets based on Android operating

 50

system. With this custom ROM, the user is offered with features and options not found in

the official firmware distributed by vendors of these devices.

The OS uses some of the code pulled straight from CyanogenMod repositories, so porting

Ubuntu Touch into new devices could be as easy as porting CyanogenMod to any device it

supports. It does not use AOSP because some of the work had been done by the project and

they are borrowing it, since it is open source and based on Linux distributions.

In order to support a wide range of devices, Touch’s architecture reuses some of the drivers

and hardware enablement available for Android, so some of the Android’s services are

constantly running at the device along the Ubuntu file system, living separately, in a

container. So porting into these new devices could be quite simple, because the Ubuntu

Interface is running in this container and can be easily accessed.

The components that are being used from Android are:

 A Linux kernel, with some modifications to support extra features needed by

Ubuntu;

 OpenGL ES2.0 HAL and drivers;

 Audio/Media HAL and services in order to reuse the hardware video codecs;

 Rild modem support.

It’s possible to say that Ubuntu “just” uses kernel (modified), HAL and SurfaceFlinger

display manager from Android. As this OS is running in a separated container on top of

Android kernel and services, the communication between them happens via Binder,

Sockets and libhybris. Hereupon, other than the basic services needed to reuse binary blobs

available, every other feature is made by Ubuntu [88].

3.3.2 DEVELOPMENT ENVIRONMENT

One of the biggest issues Canonical claims other operating systems to have, is the

overhead inherent to them. Android, for example, relies heavily on a Java Virtual Machine

for executing its applications. It really allows easy cross-reference compatibility, but the

performance is damaged by this fact. Ubuntu Touch is different: code runs natively on the

ARM-architecture processor with no virtual machine getting in the way, while developers

 51

can create applications using either the high-speed native applications or HTML5

applications. The CyanogenMod fork that Ubuntu Touch uses has been stripped of the

Dalvik Virtual Machine (Android’s virtual machine) along with other components that are

needed to run Android applications, so Ubuntu cannot run Android apps. Canonical makes

use of its Ubuntu Linux distribution for the basis of Ubuntu Touch, so applications

developed for smartphones will run just fine on an Ubuntu desktop or laptop machine.

Developers can create a single application for cross-device use and sell it though the

company’s integrated Ubuntu Software Center.

But in order to really start making applications, developers need to get Ubuntu SDK (just a

preview for now) from the developer’s website [67]. They have adopted QML (Qt Meta

Language), as the core of the technologies to bring Ubuntu into mobile devices. QML is a

powerful JavaScript-based declarative language, used to design responsive and intuitive

user interfaces. As the core of internet technology seems to be more and more HTML5,

Ubuntu toolkit also offers the flexibility to support HTML5. The choice of which

technology to use, has to be made by the developer.

The developer must have an Ubuntu distribution as well as Qt5 and Ubuntu QML toolkit.

They recommend using Qt Creator [78]. Qt is a cross-platform C++ integrated

development environment and a powerful tool to develop applications based on the Qt

framework. It includes an advanced code editor, UI designer, project management tools,

integrated visual debugger, among other things. It uses the C++ compiler from the GNU

Compiler Collection.

Then, after opening the editor, the user simply chooses to create a C++ application if he

wants to write an app using C++ or chooses Qt Quick application if the desired language is

QML [67].

3.3.3 TESTING UBUNTU TOUCH

At the moment, there is no simulator or emulator that can behave similarly to the Ubuntu

phones, but any developer who wants to make applications for mobile, theoretically can

run them in Ubuntu desktop and, at least, see design of the application at a specific

moment.

But it is already possible to install Ubuntu Touch Preview on devices and give both

developers and users the opportunity to try the OS right away.

 52

Currently, there are four supported devices that can be flashed with the operating system,

and give the user an accurate idea of how the system will work on future releases. The

devices are Samsung Galaxy Nexus, Google Nexus 7, Google Nexus 10 and LG Nexus 4.

The tools needed are somewhat similar to the tools used by Android and Firefox OS: adb,

fastboot, among others, as well as phablet tool provided by Ubuntu’s team. The device

must be unlocked and USB access must be given.

After the installation, if everything is running properly, it is possible to test developed

applications on real devices. To do that it is simply necessary to plug in the device over

USB and connect it to a wireless network, in order to the SSH key pairing to happen over

the air. Then, with Qt Creator, the user can connect to the device and by pressing Ctrl+F12,

the application will be installed and executed on the remote device [66].

3.3.4 SENSOR FRAMEWORK

It was not possible to test and study the sensors in Ubuntu Touch. Although it was possible

to build the source and install it on Galaxy Nexus device, the APIs that control sensors are

not available for developers. By the way, not all the operating system’s functionalities are

available to developers at the moment. Ubuntu’s developers are still trying to expose all

functionalities through the SDK, and thing like sensor access, content management and

some others are still not available, or at least not fully implemented, as it is possible to

check in [29]. So, for that reason, sensor testing was not made on this new operating

system.

3.4. TIZEN

Tizen is an open source, standards-based software platform supported by leading mobile

operators, device manufacturers, and silicon suppliers for multiple device categories such

as smartphones, tablets, netbooks, in-vehicle infotainment devices, and smart TVs. It is

made up of the popular Linux kernel and Webkit runtime. Tizen offers an innovative

operating system, applications, and a user experience that consumers can take from device

to device.

Tizen’s goal is to create an open ecosystem, compatible with Firefox OS and all web

browsers, but unlike Firefox’s Operating System, Tizen can run both native and web apps,

as well as apps that are a little bit of the two. The aspect of this OS is shown in figure 18.

 53

Figure 18 - Tizen appearance

Tizen provides a flexible and strong environment for app developers, based on HTML5.

The Tizen SDK and API allow developers to use HTML5 and related web technologies to

write applications that run across multiple device segments. The operating system features

a home screen similar to iOS and Android with a grid of applications, a pull-down settings

menu like Android, and a sliding lock screen as the one used by Windows Phone 8. Tizen

is not limited to smartphones and tablets, it will also work with in-car entertainment

systems, smart TVs and netbooks, although the emphasis so far has been on smartphones

[68].

3.4.1 ARCHITECTURE

Tizen’s efforts are focused on smartphone and tablet development. In the future, it is

planned to include more device types. Currently, the architecture diagram looks like the

one seen in figure 19.

 54

Figure 19 - Tizen architecture

It is possible to clearly identify the gap between native and the web in this operating

system. Both application and framework layers are divided in these two groups. The core

of the OS is the same as well as the kernel and device drivers.

The web framework provides the most up-to-date web technologies. It provides a large

number of HTML5 features defined by W3C and other standardization groups, such as

video, CSS3, vibration, among others. It enables access to device functionalities as

Bluetooth, NFC or messaging. These device APIs come with a strict rule-based security

control system that restricts malicious use, therefore it allows more security.

The native framework is a set of system services and native namespaces that could be used

to access a large number of APIs with which native applications can be developed. Besides

native namespaces, this framework includes popular standard open source libraries like

glibc, libstdc++, libxml2, OpenGL® ES, OpenAL, and OpenMP®, to support a more

efficient application development.

The core subsystem provides upper layers with features they require. It consists of a set of

core services, open source libraries and an additional set of APIs that are necessary by the

upper subsystems [69].

The kernel layer includes the Linux kernel and device drivers.

3.4.2 DEVELOPMENT ENVIRONMENT

This platform provides developers with two different frameworks for application

development: the web framework, used to create web applications and the native

 55

framework, used naturally to create native applications. Whether developers are using web

or native, Tizen platform ensures that all the applications have a consistent design and

performance.

With Tizen Web APIs, developers can build powerful web applications, using HTML5,

CSS and JavaScript. Tizen supports the latest HTML5 capabilities such as animation or

video. Web applications in Tizen are capable of being launched across various devices and

platforms with minimal customization. It is possible to have total device access with these

APIs like NFC or Bluetooth.

Through native APIs and C++ is also possible to develop powerful applications for Tizen.

Applications that can access the sensors or that can perform call operations can be created

with some methods in the API Reference. It is important to point that Tizen supports both

core and reference applications. The core applications are developed with platform internal

interfaces, such as Enlightenment Foundation Libraries (EFL) and other 3rd party

libraries. The reference applications are developed with Tizen native APIs. Developers can

switch a preloaded sample application between core and reference applications using the

MIC image creator. This creator is used to create images for Tizen. With this tool, users

can create images of different types for different platforms, including live CD images, live

USB images, raw images for Kernel-based Virtual Machine, among others.

The Tizen SDK is a software development kit that includes the platform binaries, sample

code and documents. It is available for Windows, Linux or Mac OSX. It includes an IDE,

platform binaries and libraries and sample applications. The Tizen integrated development

environment is based on the JSDT (JavaScript Development Tools) and Eclipse CDT

(C/C++ Development Tools). It also provides an emulator that allows to emulate the target

device and Smart Development Bridge (SDB) that works similarly to Android Debug

Bridge [70].

Figure 20 shows the Tizen IDE. With this IDE it is possible to test applications on an

emulator, web simulator or send directly to device over SDB. This IDE is somewhat

similar to Eclipse IDE, so Android developers shouldn’t find too hard to work with it.

 56

Figure 20 - Tizen IDE

3.4.3 TESTING TIZEN OS

As Tizen is an open platform, it is possible to modify the source code, repackage and

publish as the developer wants. So it is possible to build or flash an image to a supported

target. Currently, Tizen 2.2 (latest version) can be installed in the emulator or in one of the

reference devices [68].

The emulator is an x86-based Qemu image that can be run on computers. Qemu is a

generic and open source machine emulator and virtualizer [71]. This emulator contains a

variety of preloaded applications that give the user an experience similar to actual devices

and it provides the full stacks of the Tizen platform so developers can test applications

before deploying them to real devices. Using the Emulator Manager developers can create

and launch a Virtual Machine instance and the communication is made by SDB. There are

some very useful features in the emulator like event simulation, acceleration of the guest

operations using CPU or GPU, among other minor features.

There is also the possibility of building and installing Tizen in one of the reference devices.

These devices are designed based on commercial target devices. Reference device-210 [73]

is a device that uses Exynos 4120, C210 System-on-Chip (SoC) and is based on Samsung

Galaxy S2 HD and reference device-PQ [72] that uses Exynos 4412 (PQ) SoC and is based

on Samsung Galaxy S3. This device has, obviously, a better hardware, resulting in better

performance. It is hard to get one of these devices, because they only give them in specific

 57

conferences or to specific companies that may be connected or working with Tizen

Corporation.

3.4.4 SENSOR FRAMEWORK

As Ubuntu Touch, it was not possible to test the sensors in the Tizen Operating System,

but for a different reason. It was not possible to install this OS because we did not have any

device compatible with it. As referred in [3.4.3] it is only possible to install Tizen on two

different reference devices.

3.5. OPERATING SYSTEMS COMPARISON

Table 4 resumes the major advantages and disadvantages of the operating systems

investigated.

Table 4 - Advantages and disadvantages of the Operating Systems

 Advantages Disadvantages

Android o An “infinite” number of

free applications

available;

o Phone options are very

diverse;

o Personalization – users

can add widgets,

themes, giving an

“unique” user

experience;

o Google gives a wide

range of services from

Gmail to Google

Reader, for example;

o Advertising – free

applications will come with

ads;

o Hard for developers to test

applications because of

phone variety;

o Wasteful battery life

because of lots of

processing in the

background;

o Many devices mean many

processor types, and

applications like games may

not run on a specific one;

Firefox OS o Primarily aimed at low-

end devices – cheaper

phones;

o Easy to personalize;

o Easy to update;

o Uses HTML5 that

allows web developers

to build apps with no

need for learning a new

language;

o Too much web-oriented;

o Users in not-connected

territories may find it hard

to use;

o Because of the low-end

devices, the user interface

may seem a little basic, for

some users;

 58

Ubuntu

Touch

o Intuitive and easy to

navigate;

o Uploaders don’t need to

pay to upload apps like

in Android;

o No VM, so it is faster

and powerful;

o In the future,

smartphones will power

the desktop because of

the Linux software

compatibility;

o Requires a minimum of a

dual core processor;

o Lack of native apps, not

much developers are using

QML;

o Many of the major tasks are

still based on the terminal;

Tizen o Can run both native and

web apps;

o Not limited to

smartphones and

tablets;

o Backing of Samsung

and Intel;

o Can run Android apps;

o Needs more clarity

regarding platform’s future

to win developers and

consumers;

o OS may need a few years to

be fully stable;

 59

4. OPTIMIZING SENSOR

ACCESS IN MOBILE

OPERATING SYSTEMS

In order to fulfill the objective of optimizing access to sensors, an application was first

developed to enable testing the main sensors and getting information on performance. In a

second phase, some changes in the Operating Systems source codes were performed and

tests were conducted to understand the achievements obtained.

4.1. ANDROID

Firstly, a study about sensor sampling frequency in some Android devices was performed

to give an overview and some results that those devices achieve out-of-the-box. Then some

changes in the source code were made.

In order to test the sensors in Android, a Java application was developed using Eclipse

IDE. It has two activities: one for the main screen where it is possible to choose which

sensor to test and other with the values obtained from each sensor.

 60

When the sensor is chosen in the main activity, the application creates another activity. In

this new activity sensor values are gathered. In figure 21 it is possible to see the main

screen (left) and the sensor values acquisition (right). On this specific case the information

given is about the accelerometer, and the device is the Sony Xperia S.

Figure 21 - Android application

It is possible to see the name and the manufacturer of the sensor, the X, Y and Z values,

but most important the samples per second that give a very approximate estimate about the

sensor’s sampling frequency. Other hardcoded values can also be seen like the Min Delay

that estimates the minimum period between sensor events in microseconds and the Power,

which shows the operating current of the sensor in mA. These values sometimes are not the

real consumption of the sensors and it is always better to consult the datasheets.

 61

The code to start the magnetometer activity, for example, that will do all the operations in

order to gather the information about the sensor is the following:

 Button mag_button = (Button) findViewById

(R.id.magnetometer);

 mag_button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

Intent intent = new Intent(SensorActivity.this,

Magnetometer.class);

 startActivity(intent); }

}

This code is the same for all the sensors. First it is necessary to put a listener on the button

and if the user clicks the button then it will start a new activity correspondent to the sensor

chosen. It migrates from SensorActivity to other specific sensor activity.

In order to identify the sensors available on the device and to choose a specific sensor, a

reference to the sensor service is needed and this can be done by creating an instance of the

SensorManager class and to get the default specific sensor using the getDefaultSensor ()

method and passing the parameter specific to the sensor. This returns null if the sensor is

not available.

In order to save battery it is a good practice to register the listener on the onResume ()

method and unregister it on the onPause () method. This way the sensor stops to acquire

data and use battery when the activity pauses or when the user is done using the sensor.

With the listener registered for the wanted sensor, when it reports for a new value, the

system invokes the onSensorChanged () method, providing a SensorEvent object. It is on

this method that the values for each axis (X, Y and Z) for the case of magnetometer are

acquired and the samples per second are determined. This is done using the

System.currentTimeMillis () function, that returns the system time in milliseconds.

Then it is just necessary to check if the time value plus 1 second is greater than the value

returned by the function every time that a sensor event is generated. If not, it means that a

second has passed and it is possible to count how many times the system entered the

onSensorChanged () method for the last second. Repeating the process will give a

reasonable idea of the sensor’s frequency.

 62

 time = System.currentTimeMillis ();

 …

 Override

 public void onSensorChanged(SensorEvent event) {

 if (time + 1000 > System.currentTimeMillis()) {

countSps++;

 x = event.values [0];

 y = event.values [1];

z = event.values [2];

} else {time = System.currentTimeMillis ();

countSps = 1;}

A condition was also made in order to confirm valid values. If the last value acquired by

the sensor is the same as the current value this could mean that the value is invalid, because

the sensors are suitable to sense minimal changes in the environment and it is almost

impossible to get the same value twice in a row (at least for magnetometer, accelerometer

and gyroscope).

4.1.1 GOOGLE NEXUS 10 TABLET

This device was the one used to make the source modifications on Android. It is a

powerful 10-inch tablet that has all the three sensors that we want to test. But the main

reason for this choice was the fact that it is possible to build the source of an AOSP version

for this device. In this case 4.2.2 Jelly Bean was the Android version used. Google Nexus

10 can be seen in figure 22.

Figure 22 - Google Nexus 10 tablet

Accelerometer and Gyroscope

Almost all the Nexus family uses the Motion Processing Unit (MPU) from the InvenSense

manufacturer [76]. Google Nexus 10 uses one of the InvenSense’s devices that

 63

incorporates motion sensor fusing. Sensor fusing is the combining of sensor data from

multiple sources in a way that the final information result is in some sense better than the

information when the sources are used individually. The MPU-6050 for Nexus 10 devices,

for example, combine a 3-axis gyroscope and a 3-axis accelerometer on the same silicon

die together along a Digital Motion Processor (DMP) that is capable of processing

complex 9-axis motion fusing algorithms. To integrate a 9-axis motion fusing algorithm,

external sensors are accessed. Magnetometers are the most common external devices to be

linked with the MPU and are accessed through an auxiliary master I2C bus. This family is

comprised in two parts with features that can be seen figure 23 [79].

Figure 23 - MPU6000/6050

More details about accelerometer and gyroscope are shown in table 5.

Table 5 - MPU6050 characteristics

 Accelerometer Gyroscope

Operating Current 500 µA 3.6 mA

Max output data rate 1024 Hz 1024 Hz (slow mode)

Startup time Not significant 30 ms

BUS interface I2C I2C

Magnetometer

The magnetic field sensor present in Nexus 10 is the AK8963 from Asahi Kasei

Microdevices (AKM) [77]. This is a 3-axis electronic compass with high sensitive Hall

sensor technology. It incorporates magnetic sensors for detecting terrestrial magnetism in

the three axes. More details are shown in table 6 [80].

 64

Table 6 - AK8963 characteristics

 AK8963

Operating Current (Typ.) 5 mA

Time for a single

measurement

7.2 ms

Interface I2C or SPI

Measurement range ± 4900 µT

4.1.2 RESULTS

Some sensor tests were made among the available Android devices, allowing an overview

about the maximum sampling frequencies in smartphones nowadays. Figures 24, 25 and 26

show those results:

Figure 24 – Android Magnetometer results

 65

Figure 25 – Android Gyroscope results

Figure 26 – Android Accelerometer results

Making a quick analysis of the sampling frequencies obtained, it is possible to see that

Nexus 10 is the one with better results out-of-the-box. So, it seemed obvious that we

should take this device and try to improve its frequency results. This device is one of the

devices supported by AOSP, so we can easily access and modify the Android source code

relative to this device.

A 4.2 Jelly Bean version of Android was built and installed from the AOSP. The tests

made were mainly focused on the sampling rate that each sensor could achieve. Android

has a fastest mode of collecting data that seemed to be limited somehow, so if we want to

 66

overcome that limit some changes had to be made in the source code and later a re-

compilation of the Android system.

Some sensors were tested before, and after the re-compilation and the results regarding the

sampling rate were noticeable and they can be seen in table 7. The fastest mode available

was used:

Table 7 - Android Sensor Results

Device Sensors Before After

NEXUS 10

Gyroscope 200 Hz 1000 Hz

Accelerometer 200 Hz 1000 Hz

Magnetometer 100 Hz 127 Hz

By default, gyroscope and accelerometer have a sampling rate of 200 samples per second

on Nexus 10, while the magnetometer’s is 100 samples per second. It was possible to

increase the sampling rate to 1000 samples/second on the gyroscope and the accelerometer,

and 127 samples/second was the maximum value achieved on the magnetometer’s case.

Theoretically, these values were approximately the expected ones. In [4.1.1] was made an

analysis of the sensors’ datasheets where it was possible to verify that the maximum output

data rate for the MPU 6050 in the accelerometer and the gyroscope was 1024 Hz, while the

minimum measurement time in the magnetometer is 7.2 milliseconds, which is

approximately 139 Hz. Those values can’t be reached as the Android system has some

delays due to the system’s processing. They are the absolute maximum sampling frequency

that the sensors can achieve. Maybe the gyroscope can go even further, because the slow

mode was the one defined in the source and no modifications were made in this mode. But

this was not investigated.

To achieve those values, changes were made in the Motion Processing Library, located on

the Sensor HAL. This library configures and defines the parameters for the MPU usage.

Features like delay, which sensor to use and other features are defined here. The file is

inside libsensors_iio folder and it is called MPLSensor.cpp.

By default, a limitation is defined here, that limits all the sensors rate by 5 milliseconds. If

at any point, the developer wants for the samples to be delivered faster, he would be

blocked by this limitation and 5 milliseconds was the fastest rate possible. So, the obvious

 67

thing to do, was to remove that limitation. That way, it was possible to increase by five

times the amount of samples per second in the gyroscope and accelerometer.

In Nexus 10, as the MPU combines an accelerometer and a gyroscope, it was expected that

the rate of both of them could be the same. This was what happened. They are on the same

silicon die together and the data is processed by the DMP for both sensors. So the rate is

the same before and after the changes in the source.

The magnetometer data is also processed by the DMP, but the device is external, it is not

embedded in the same silicon die and the limitation was 10 milliseconds. So the sampling

rate after the modifications could only reach approximately 8 milliseconds, instead of the 1

millisecond like the other sensors. The magnetometer has it minimum measurement time

defined in 7.2 milliseconds, and this value is impossible to be reached because of delays

imposed by the Android operating system [80].

if (ns < 5000000LL) {

//ns = 5000000LL;

ns = ns;}

/* mDelays array for each sensor */

mDelays[what] = ns;

In the function setDelay() making the modification seen above allows to define the delay

directly when registering the sensor. There are other alike limitations around the source

code and also had to be removed.

The modifications consist in either hard code a delay on the MPLSensor.cpp (such as

ns=1000000LL, that is equal to 1000 microseconds) or registering the sensor with the delay

desired in microseconds (such as 1000). With the limitation gone, this delay determines the

minimum period between sensor events. Gyroscope’s delay controls it all. If both

gyroscope and accelerometer are registered, if the accelerometer’s delay is superior to the

gyroscope’s delay, the delay will be set as being the gyroscope’s delay. The other way

around does not occur. It is possible to say that in terms of delay the importance is

gyroscope>> accelerometer>>magnetometer. If any delay for the most significant

sensors is lower, then the delay of the least significant sensors is changed. The figure 27

represents the layers that had to be accessed in order to change sensor sampling frequency

values.

 68

Figure 27 - Android sensor layers

After sensor HAL and Motion processing Library, Android will enter the kernel driver for

each sensor, performing all the fundamental tasks in order to define delays and retrieve

values from the actual sensor (hardware). This is optimized in all cases, retrieving the

values from the hardware as soon as the value of each axis changes, but limited in the

layers above.

This study proves that sampling frequency in Android can be modified and it is really

limited by software.

4.2. FIREFOX OS

The same tests as [4.1] were made for Firefox OS, with the difference that it was not

possible to test the operating system on an actual Firefox OS device. Instead, these tests

were made on a Nexus S that was running Android before the installation of the Firefox

OS version 1.0. The choice of this device resides in the fact that it possesses the three

sensors that were intended to be studied and it is supported and compatible with this

operating system. It is possible to build and install a Firefox OS version on this device.

4.2.1 SAMSUNG NEXUS S SMARTPHONE

This device was the chosen one to perform all the tasks for Firefox OS defined in this

dissertation. The choice was based on the availability of the Firefox OS source code for

 69

this device. It is possible to build the source code for other devices, but this device was

available on the company and the three sensors are present in this smartphone, and this can

help to explain the choice, as well.

Figure 28 - Samsung Nexus S

Accelerometer

The accelerometer in Nexus S is the KR3DM from STMicroelectronics. The low power

consumption is the feature that stands out in this 3-axis accelerometer. Table 8 shows some

specifications of this sensor.

Table 8 - KR3DM characteristics

 KR3DM

Operating current 225 µA

Interface I2C or SPI

Output data rate 3.125 Hz to 1.6 kHz

Max range ± 16.0 g

Gyroscope

The low power 3-axis angular rate sensor used in Nexus S is the K3G from

STMicroelectronics. It has an embedded temperature sensor that can be used to measure

the sensor’s temperature and a good high shock resistance. More details in table 9.

 70

Table 9 - K3G Gyroscope characteristics

 K3G

Operating current 6.1 mA

Interface I2C or SPI

Output data rate 95 Hz to 760 Hz

Max range ± 2000 degrees per second

Magnetometer

AK8973 from AKM is the magnetic sensor present in Nexus S. This 3-axis sensor has high

sensitive Hall sensors integrated and was developed with the intention of being used in

mobile phones and handy terminals. Its characteristics can be seen in table 10.

Table 10 - AK8973 Magnetometer characteristics

 AK8973

Operating Current (Typ.) 6.8 mA

Time for a single

measurement

12.6 ms

Interface I2C

4.2.2 RESULTS

With the device motion and device orientation events was possible to get sensor data, as

well as the sampling rate associated. The application developed aimed to get the values

from the device motion event and the device orientation, as well as the value of the light

sensor and proximity sensor. It was possible to verify that in this device, the acceleration

without the effect of gravity is an attribute that didn’t exist or couldn’t be reached. In this

operating system, it is not possible to define a delay, like in Android, so the frequency that

the values are gathered cannot be defined. This frequency was, in this case, 10 Hz for

device motion and device orientation events. The light and proximity events were only

fired when some significant changes were made to the ambient light around the device and

when an object became close to the proximity sensor, so on this cases, the frequency

couldn’t be measured. This 10 Hz frequency is proven by the interval attribute given by the

device motion event. This had the value of 100 milliseconds. In the application it is also

possible to verify how much time passed between the current and the last event fired for

 71

the specific event defined. Those values were approximate 100 milliseconds on the motion

and orientation events, confirming the 10 Hz frequency on this device.

The application was made using HTML5 + CSS + JavaScript like all of the Firefox OS

applications. The figure 29 demonstrates how the application looks. The Firefox OS

Simulator for the Firefox browser was the tool used to deploy the application into the real

device. No special IDE is needed to develop a Firefox OS application. Any IDE can be

used to develop application code, or even simpler, developers can use a text editor like

Notepad for developing HTML5 + CSS + JavaScript applications.

Figure 29 - Firefox OS application

This application is only composed by one screen, that will show the wanted parameters

when buttons are clicked. It is used a JavaScript file named sensortest.js that contains

the listeners for each button and the code that will run once the button is clicked. The code

for light sensor, for example, is the following:

 72

var ambientLight = document.querySelector("#light"),

 ambientLightDisplay = document.querySelector("#light-display");

 if (ambientLight && ambientLightDisplay) {

 ambientLight.onclick = function () {

 ambientLightDisplay.style.display = "block";

 window.ondevicelight = function (event) {

 now = Date.now();

 diff = now-last;

 last = now;

 var lux = "Ambient light: " + event.value + "

 lux
";

 lux += "Time after last value: " + diff + " ms

";

 ambientLightDisplay.innerHTML = lux; }; };}

In this code, document.querySelector returns the first element that matches the “light”

selector, which in this case is a button. Then listens for a “click” with function onClick (),

and when the button is clicked the applications listens for an event, that in this case will be

every ondevicelight events. The lux value is acquired and sent back to the HTML

through a variable called “lux”. Then it is necessary to know the sampling rate of the

sensor values and this is done using Date.now() method that returns the milliseconds

elapsed since 1 January 1970 00:00:00 UTC up until now as a number. Knowing that

allows to calculate the time between sensor events giving an approximate estimate of the

sampling rate. The access to other sensor events is similar to this one.

After a quick look at the figure 29, it is possible to find the time between events or after the

last event attributes. These values theoretically should be approximate to 100 on the cases

of device orientation and device motion events, because of the 100 milliseconds constant

given by the interval attribute. But it almost never reached that value, which shows that the

interval constant is just an informative attribute and gives the minimum interval that the

sensor data can be gathered. The light and proximity sensors only give new values when

the data is changed, so the time parameter found on the application is very variable for

those sensors. In the figure 29 it is possible to see that 199 milliseconds is the time interval

since the last lux value change. But if there is no changes in the light for a long time, this

value continues on growing, until some noticeable light change occurs. The same occurs

for proximity events. It was not possible to obtain the value of acceleration without the

effect of gravity or linear acceleration. Comparing with Android, for example, the

application seems a little easier to develop, although it is not possible to define parameters

like delay and it is not possible to access some of the sensors like the magnetometer.

WebAPIs provide limited access to the sensors and to their values.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

 73

It is possible to increase the sampling rate of the sensors like in Android. Most of the

action inside Gecko is triggered by input events. Input events enter Gecko through the

Gonk Application shell. Sensor events are no exception. In the Gonk App Shell is a

constant defined with the value 100 named sDefaultSensorhint. This is the interval in

milliseconds that the sensors will be requested for sensor data. This constant is related to

another defined in nsDeviceSensors.cpp named DEFAULT_SENSOR_POLL. If we change

both constants to a lower value, it will change the sensors sampling rate as well.

sm.registerListener(GeckoApp.mAppContext, gOrientationSensor,

sDefaultSensorHint);

When the library registers the listener for the sensor it passes the sensor poll value and this

value was the one changed.

 Those libraries allow to interpret the JavaScript defined in the application level and allow

the code to interact with Android libraries. As Firefox OS is “sitting” on top of Android, it

is possible to maximize the sampling rate of sensors to values similar to the ones provided

by Android devices. In the case of Nexus S it was possible to increase the frequency from

10 Hz to 100 Hz maximum in motion events and 50 Hz in orientation events. Because

Nexus S is limited to 100 Hz by default in the accelerometer, gyroscope and 50 Hz for the

magnetic field sensor, this was the maximum value reached, but if the same study and

changes in the source were made for Nexus S like the ones in Nexus 10, the frequency

could even be higher than 100 Hz as occurred in Android. The figure 30 describes the data

flow of Firefox OS sensor events in Nexus S.

 74

Figure 30 - Firefox OS sensor layers

An application registers handlers for sensor events and this way the developer is notified

and can use the values obtained from physical sensors in Firefox OS anyway he wants.

After registering the handlers, the Gonk application shell register the sensors that will be

enabled. Gonk sensor is responsible to determine the minimum time interval between

sensor events and to retrieve the values from the sensors. With the help of Android

libraries, the Sensor Manager Library in Firefox can control and fire DOM Events with

specified poll intervals, allowing to change the sampling frequency of a sensor application.

The process after that is similar to Android, with the sensor drivers and sensor HAL

defining all delays and conversions for sensor values.

 75

5. ADAPTING AN EXTERNAL

DEVICE TO AAL

ENVIRONMENTS

CC2541 SensorTag from Texas instruments [74] was the device used to achieve the other

goal of this master thesis - adapting an external device to AAL environments. The idea was

to develop firmware for this device that allows a smartphone to interact with it and be able

to receive sensor values via Bluetooth Low Energy.

This single mode device is low cost, low power that can be very useful in BLE

applications. It combines a Radio Frequency (RF) transceiver with an industry enhanced

8051 MCU. It is programmable and combined with the BLE protocol stack developed by

Texas Instruments, may well be one of the most flexible and cost-effective solutions on the

market nowadays. In figure 31 it is possible to take a look at SensorTag’s aspect.

 76

Figure 31 - CC2541 SensorTag

It is easy to put this device in the pocket for example, due to its dimensions: 7x4 cm

approximately. That way, it is possible to make activity monitoring on a patient, fall

detection and, if the patient can send a call for help, for example. He just needs to take the

device out of the pocket and press a button. This will notify a smartphone, or other device

that uses BLE that the user needs help.

5.1. SENSORTAG COMPONENTS

Besides all the components that are necessary to make a device like this BLE connectable

and running, the SensorTag has some sensors and buttons that increase the interactivity and

the utility of this device. The sensors that are of more interest are the ones that have been

studied in this master thesis: accelerometer, gyroscope and magnetometer. But beyond that,

this device has a temperature sensor, a humidity sensor and a pressure sensor.

5.1.1 ACCELEROMETER

The accelerometer in SensorTag is the KXTJ9 from Kionix. It is a 3-axis silicon

micromachined accelerometer. This product specifications can be consulted in table 11.

Table 11 - KXTJ9 accelerometer characteristics

 KXTJ9

Operating current 135 µA

Interface I2C or SPI

Output data rate 0.781 Hz to 1.6 kHz

Max range ± 8.0 g

Max Data rate in SensorTag 10 Hz

 77

5.1.2 GYROSCOPE

InvenSense MPU 3000 is the gyroscope that is incorporated in SensorTag. This device has

a 3-axis gyroscope and a DMP on the same silicon die, along with a secondary I2C master

port that can function as an interface for third party accelerometers providing 6-axis

motion fusing with processed acceleration and rotation motion data. More specifications

can be seen in table 12.

Table 12 - IMU3000 Gyroscope characteristics

 IMU 3000

Operating current 6.1 mA

Interface I2C or SPI

Max output data rate 1000 Hz (slow mode)

Max range ± 2000 degrees per second

Data rate in original firmware 1 Hz

5.1.3 MAGNETOMETER

Freescale’s MAG3110 is the 3-axis magnetometer that is used in SensorTag. This

component output data rate is slower than the other magnetometers studied in this master

thesis, but still, the 80 Hz output data rate is more than enough for the majority of the

applications that need to know the values of the magnetic fields surrounding. Table 13

shows some characteristics of this sensor.

Table 13 - SensorTag magnetometer characteristics

 MAG3110

Operating current 900 µA

Interface I2C

Max Output Data Rate 80 Hz

Max data rate in original

firmware

10 Hz

5.1.4 OTHER COMPONENTS

Powering SensorTag is made using a 3 V coin cell battery. This cheap battery is expected

to run for many days or maybe years on a device like SensorTag. There are other

 78

components for user interaction: three buttons and two LEDs give users some visual

information and allow users to perform some actions by pressing the buttons.

5.2. PROFILES AND SERVICES OVERVIEW

As mentioned in [2.3.4] in order for a device to interpret data that comes from SensorTag,

profiles and services have to be implemented in the Tag’s firmware. The original firmware

comes with some profiles and services that were not studied because they were not the

scope of this master thesis. But other profiles and services had to be implemented or

modified to fulfill the objectives proposed.

Accelerometer, Gyroscope and Magnetometer

It was not necessary to develop from scratch profiles for receiving values from these

sensors and send them to a client, because they are implemented in the original version of

the firmware, but in order to make the device capable of activity monitoring and fall

detection, it was necessary to change sampling rate. The accelerometer and the

magnetometer had the option of changing the sampling rate by writing it on the service’s

characteristic for period, but it was limited to 10 Hz of maximum frequency, but the

gyroscope service does not have the option of modify the sampling rate. This had to be

introduced.

Battery

A battery service was created in order to verify the battery’s current voltage. The intent of

this service was to send notifications for a client informing that the battery reached some

critical value and needs to be replaced.

Proximity Profile

This profile was adopted by Bluetooth SIG and enables proximity monitoring between

client and server and is composed of three services: Link Loss, Immediate Alert and Tx

Power. In this profile, Link Loss is a mandatory service, while Immediate Alert and Tx

Power are optional.

This profile defines two roles: Proximity Monitor that shall be a client and Proximity

Reporter that shall be a server, in this case the SensorTag.

 79

Link Loss service was created to perform an alert when a BLE connection is lost. This way

it is possible to determine when a patient is being monitored or not, or if maybe he is out of

the BLE’s range for the application.

Immediate Alert Service as the name suggests indicates an immediate alert when a client

sends a predefined command to the server (SensorTag). In this case when a client writes a

“1” on the alert level characteristic an alert is performed and it is shut down when receives

a “0”.

Tx Power service allows for a client to read the transmission power of a connection by

reading the Tx Power level characteristic. This level will never change during a connection

thus the client should only read this value once. This value is important on path loss

conditions.

The Proximity Monitor shall maintain a connection with a Reporter and monitor the

Received Signal Strength Indication (RSSI). The Monitor shall calculate the path loss by

subtracting the RSSI from the transmission power level of the Reporter, discovered by

reading the Tx Power level characteristic. If the path loss exceeds a predefined threshold it

shall write on the immediate alert characteristic, causing the Reporter to alert. Monitor can

also alert if necessary. On the other hand, if path loss falls below the threshold defined,

Monitor shall write again on immediate alert’s characteristic, causing the alert to stop [75].

Find Me Profile

This SIG approved profile was implemented in SensorTag in order to cause an alert when a

client wants to know where the SensorTag is located. It uses the Immediate Alert Service

without any extra requirements than those defined in its specification.

When the client wants to locate the target device (SensorTag) it shall write in the Alert

Level characteristic causing an alert. Client can cancel the alert when the device is found

and the target device may be able to cancel the alert too by pressing a button, for example.

Call for Help Profile

This custom profile is not a part of the specification but it is very important for this work.

It uses a custom service, Call for Help service and its main goal is to make an alert on a

client when the user presses a button on SensorTag.

 80

In a connection when the button is pressed, a notification is sent to the client (intended to

be a smartphone) that can dismiss the alert by writing to the alert level characteristic on

this service. What client will do with that information it up to the application to define.

When the device is not connected it will queue the alert request, sending it right after a link

was established. This way, a user can ask for help request anytime he wants. Different

visual responses are supposed to be seen when a help request is sent and when a help

request is waiting to be sent.

5.3. IAR

All the software developed was made using IAR Embedded Workbench [30]. The code

was all developed in C language. This tool incorporates a compiler, an assembler, a linker

and a debugger, all in one Integrated Development Environment (IDE).

Most renowned corporations in the world that manufacture products with embedded

systems use IAR Embedded Workbench in critical applications, including medical and

health-related applications. In addition to this, Texas Instruments provide a series of

sample applications created in this IDE, to help developers to adapt the code for their

devices, making this a useful application.

Apart from this IDE, it is necessary to deploy the firmware into the real device. This is

done using CC Debugger, from Texas Instruments (TI). This tool is primarily used for

flash programming and debugging software running on CCxxxx 8051-based System-on-

Chip (SOC) devices from TI, as it is the case of the CC2541 investigated here. The aspect

of CC Debugger can be seen in figure 32.

Figure 32 - Texas Instruments CC debugger

 81

5.4. IMPLEMENTATION

A The purpose of modifying the SensorTag’s firmware was to create a device capable of

sending not only sensor values, but also alerts to a client, via BLE. It needs to receive alerts

as well in order to perform tasks related to immediate alerts.

So, services have to be created or modified, making this device capable of performing

those tasks. Each service has a distinct Universally Unique Identifier (UUID) that allows

for a client to know exactly to which characteristic should write or read. Profiles can share

the same service by creating two instances of the same service, as well.

Each service has also a table of attributes, that define attribute levels, characteristics,

making these values readable-only, writable-only, both or none, allowing a client to

perform the available tasks.

In Sensortag_Init() function are defined some of the initial connection parameters and

if the device becomes discoverable right after the power on or not, as well as the

advertising interval. But it also defines which services are being registered in the GATT

server with the function AddService(). The order that the services are being registered is

very important because it will define the instances of the services and the handles. Handles

are addresses to individual attributes and the value of a handle is defined by how many

attributes are registered in GATT.

Then the drivers for each component, accelerometer, LEDs, gyroscope, etc. are initialized

with the init functions, as well as the callback functions for each service, that will monitor

the attribute values of each service, allowing to perform the required functionalities

depending on those attribute value changes.

For the scope of this study, the LEDs and a button of the SensorTag were used and the

device aspect can be seen in figure 33.

 82

Figure 33 - SensorTag LEDs and button

It is possible to see both sides of the board and the three components that are fundamental

parts of the user’s interaction in this application.

LEDs 1 and 2 are represented by numbers 1 and 2 respectively and the button is

represented by the number 3. There are other two buttons in SensorTag but the side button

was the chosen one because as this device is primarily intended to be used on a pocket, a

side button is less likely to be pressed accidentally.

5.4.1 SENSORS

The modifications in the sensors’ services were made having in mind the sampling rates

needed by some of the ongoing projects in Fraunhofer AICOS. Mover application makes

activity monitoring and fall detection and needs a frequency of 50 Hz for the accelerometer

and 35 Hz for the gyroscope. For indoor location using the magnetometer the sampling rate

needed is approximately 60 Hz.

Accessing the sensor data in SensorTag is made using events that are triggered

periodically. The client writes on the attribute value defined for powering on or off the

sensor. When the sensor is enabled, the system schedules an event with the default period

that was defined and then sends a notification and the sensor data to the client. Once the

data rates needed were not superior to the maximum output data rates of the sensors (can

be checked in [5.1]) it was possible to achieve those data rates simply by changing the

 83

default periods on the three sensors. The code for reading and schedule a new

accelerometer event, for example, is the following:

 if(accEnabled)

{readAccData();

osal_start_timerEx(sensorTag_TaskID,ST_ACCELEROMETER_SENSOR_EVT,

sensorAccPeriod);}

If accelerometer is enabled the device will read the sensor data. After reading the data, this

device will send it to the client if this data is not equal to the last data gathered and then

schedule a new read event with the help of a timer defined by the OSAL. OSAL stands for

Operating System Abstraction Layer, but it is not really an operating system, it is a control

loop that allows software to setup the execution of events. All sensor events in the

application are called using this method.

Other thing that had to be done was the removal of the rate frequency limitation in the

magnetometer and accelerometer. These sensors were suitable of sampling frequency

change if a client wrote on the period characteristic, but the minimum value for executing a

new event will always be 100 that would correspond to 100 milliseconds. In the sensor

callback, a multiplier is there to make sure that 100 is the minimum value. This multiplier

was removed, and a condition was added only to check if the rate wanted is higher than the

maximum rate given by the hardware.

Gyroscope did not have the option of defining the sampling rate, so a new attribute was

created in the attribute’s table, making this sensor also suitable to this feature.

5.4.2 BATTERY

This service will allow to read the current voltage of the coin cell battery and used the

inner ADC of the CC2541 chip. The operating supply voltage of this chip is 2 - 3.6 V [31].

A new coin-cell battery has 3 V of voltage. So, a mapping of the voltage has to be made in

order to get a percentage of the battery, where 2 V is 0% and 3 V is 100% of battery level.

This is done with the help of the inner ADC.

 84

The ADC has an internal voltage reference of 1.24 V and a 10-bit resolution was used so

the maximum value is 210 = 512, which is 511 in reality (0 – 511). The voltage is measured

in the AVDD5 pin of the ADC which gives the VDD divided by 3. So:

This allows to map the voltage value between 273 and 409. Apart from this, in order to

make a battery read is it needed to bypass the inner DC-DC converter present in the chip.

The TPS62730 [32] is a high frequency synchronous step down converter optimized for

ultra-low power wireless applications and reduces the current consumption drawn from the

battery. This component is active by default and it gives 2.1 V of output voltage. So, before

a battery read this component is put in bypass mode, allowing to measure directly the coin

cell battery voltage level. The converter is then put back in active mode right after the

measurement.

A notification including the battery level is sent to the client if it dropped down a level and

a connection is established.

5.4.3 PROXIMITY PROFILE

As mentioned in [5.2] this profile is composed of three services. Tx Power, Link Loss and

Immediate Alert.

Tx power level is an attribute that can only be read by a Reporter and it is the Monitor that

defines it. In this case, this is made in SensorTag_Init() function and 0 dBm is the value

defined, which is the maximum output value for this chip. This value should be used for

calculate the path loss by the Reporter, and with this information send an immediate alert

that can use the Immediate Alert Service to do that. The Reporter can define two types of

alert by writing a LOW_ALERT or a HIGH_ALERT on the alert level characteristic. In the case

of a LOW_ALERT, the LED 2 is turned on using the function HalLedSet(), but if a

HIGH_ALERT was the one written, the LED 2 shall blink using the HalLedBlink()

function. These are defined in a LED driver called HalLed. These alerts shall stop when a

NO_ALERT is written by the Reporter.

 85

The link loss alert will occur when the devices that were in a connection get too far apart of

each other. For that is defined a supervision timeout value that defined the maximum

period that the device can be in a connection without receiving any packet from the client.

This period is defined in 10 seconds. After this period, if the Reporter wrote a low or a

high alert on the link loss alert level characteristic when they were connected, the device

will behave in the same way as in the Immediate Alert service.

5.4.4 FIND ME PROFILE

This profile uses the Immediate Alert service in order to perform an alert when the client

wants to know where the SensorTag is. When the client writes an alert level in the

characteristic, the LED 1 is turned on, behaving exactly like in [5.4.3], depending if the

alert is a low or a high alert. The alert can be cancelled by the user by simply pressing the

button in SensorTag, or by writing a no alert on the characteristic. This should be done by

the client. Obviously, this profile does not have any practical utility, because with just only

a LED it may not possible to determine the location of the device. But this can prove this

concept and with a component that can reproduce a sound, like a buzzer, this profile might

be very useful.

5.4.5 HELP REQUEST

The user can send a help request using the call for help service. There are endless scenarios

where this service can be very useful. The user might be feeling sick and in need of

assistance, a burglar might be trying to get in the house, among many other scenarios. By

just pressing the button, a help request is sent to the client (smartphone, pc), and this

device can then send this information to a caregiver or a doctor for example. When devices

are connected, a notification is sent, but if there is no connection available, the device shall

queue the request and send it right after a connection is established. The visual information

is different whether the request was sent or is expecting to be sent. If the help request was

sent, the LED 1 stays on indefinitely until the user cancels the help request by pressing for

3 seconds the button or until the client writes a zero on the characteristic help request level,

giving the user the information that something has been done with that help request. If

there is no connection available, the LED 1 blinks and sends the notification right after the

connection is established again, stopping the blinking of the LED 1 and the visual

information is the same as the described above, when the connection is established.

 86

5.4.6 TESTING

There are some Windows applications like Btool [33] or BLE Device Monitor [34] that

were used to test the developed firmware, but because the device was firstly intended to be

used connected with a smartphone, most of the testing was made with an application

developed by Fraunhofer AICOS.

BLE is only supported in the 4.3 version of Android, and few devices can actually connect

to peripherals via BLE. HTC One is one of them and this was the device used.

Initialization of the Device

When a coin cell battery is inserted into the device the LED 1 stays on for 3 seconds, and a

battery measure is made. If the battery level is below 10%, LED 2 is turned on for another

3 seconds and the device is put into sleep, nothing more can be done to the device except

change the battery. This is made because it does not have the required voltage value.

The device does not ever come back to this state unless the user presses the button for 7

seconds, at any point of the execution. This will make a software reset and the device is

initialized again.

Advertising

If the device “passes” the initialization, the user can then press the button making the

device advertisable and ready for a connection. The device advertises indefinitely, and

unless a software reset is made or a connection is established, the device will never stop

advertising while the battery is still providing power.

Connection

The device can now connect to the smartphone and start sending sensor values and other

notifications. The application main screen can be seen in figure 34. On this state, devices

can share help requests, find me requests, and path loss and link loss alerts.

 87

Figure 34 - SensorTag Android main screen

It is possible to analyze sensor data and to test the other alert options with the help of

screen buttons.

Help Request

When a help request is made, the device notifies the smartphone of that situation and a

dialog is opened and can be seen in figure 35. The smartphone then waits 20 seconds

before sending a SMS to a caregiver in order to give time for a cancel by the user, if he

wants to. After this period, the smartphone dismisses the help alert on both devices.

Figure 35 - Help request dialog

 88

This alert is the priority and if an alert of this kind was made, no other alert can be sent

while this alert is still active.

Path Loss

When the RSSI level is below a threshold defined by the smartphone, an immediate alert is

sent to the SensorTag and a notification is shown in the smartphone telling that they are

becoming too far apart of each other and soon the connection may be lost. If this value is

above the threshold, it means that they are “in range” and this alert is cancelled.

Information of this fact is given in both sides. Figure 36 shows what this information looks

like in the Android application.

Figure 36 - Path loss events

Link Loss

If the connection is lost, there is a 120 second period for devices to be connected again.

Since the SensorTag advertises automatically after a link loss, the smartphone will

automatically try a re-connection, and if this not happens, it will send a message to the

caregiver stating that the patient is no longer being monitored. Even in link loss, if the

patient wants to make a help request, he can press the button. The help request will not be

 89

delivered to the smartphone, but this information will be queued and will be sent after the

re-connection. Link Loss event can be seen in figure 37.

Figure 37 - Link loss disconnection alert

Forced Disconnection

If the smartphone forces a disconnection, since the SensorTag can detect if the

disconnection is voluntary or not, the device will only advertise again once the button is

pressed. This allows the device to go into a sleep state, saving power.

 91

6. CONCLUSIONS AND

FUTURE WORK

In this thesis the impact of sensors in AAL environments while using mobile devices was

investigated. Sensor access was also an object of study in both Android and Firefox

operating systems, along with an external device that comprises both sensors and other

features that can help monitoring patients who live alone in their home places.

Regarding sensor access in mobile Open Source Operating Systems it is possible to say

that Android is the one with better results. This was already expected since it is the “older”

Operating System among the ones studied. Firefox OS still has some limitations that

maybe can be surpassed in the future.

It was verified that it is possible to increase the number of sensor values in both Android

and Firefox OS Operating Systems by making some changes in the source code, since the

output data rates are limited by software and this is not an imposition of the hardware

maximum output data rates. Sampling frequency was improved almost to the maximum

hardware data rates, in the Android’s case, which was clearly a good result. Unfortunately,

sensor access in Ubuntu Touch and Tizen could not be studied because these Operating

Systems are not yet fully implemented.

 92

The use of external sensors combined with a smartphone was also object of study with the

implementation of some BLE profiles like the Proximity Profile and the Call for Help

profile that can be used to make BLE devices to directly interact with each other,

performing some tasks that can be crucial in the AAL environments and at patients’

homes. With SensorTag is also possible to achieve the sensor data rates wanted making it

possible to integrate this device with the Fraunhofer AICOS projects like Mover or indoor

location.

Future Work

Along this thesis some limitations were faced such as the unavailability of sensor APIs or

devices to test Ubuntu Touch and Tizen. Some aspects that can be better analyzed in the

future are:

 Test other Android devices and real Firefox OS devices, other that Nexus 10 and

Nexus S.

 Test Ubuntu Touch and Tizen sensor access.

 The repercussions of increasing the sampling rate of the sensors over the battery

consumption were not investigated, and this is very important for a real use

scenario. Battery tests in SensorTag should be performed as well.

 It may be possible to incorporate some activity monitoring and fall detection

algorithms in the SensorTag and not only on the smartphone. Right now, the device

only sends unanalyzed sensor data to the smartphone.

 Developing a prototype with a buzzer in order for the device to make sound alerts,

making the Find Me Profile useful.

 93

References

[1] “AAL4ALL”, www.aal4all.org, [Accessed: August 2013].

[2] “Pendant Fall detector”, http://www.emcare360.com/web/emcare/

services?serviceId=202&allDevices=true&doAsUserId=, [Accessed: August 2013].

[3] “The Vision of Smart Systems”, http://www.smart-systems-

integration.org/public/documents/publications/EPoSS%20Strategic%20Research%20

Agenda%202009.pdf, [Accessed: July 2013].

[4] “Wearable devices”, http://www.jneuroengrehab.com/content/9/1/21, [Accessed:

August 2013].

[5] LASHKARI, Arash Habibi, MORADHASELI, Mohammadreza, “Mobile Operating

Systems and Programing: Mobile Communications”, VDM publishing, 2011.

[6] BAO, M. H., “Handbook of sensors and actuators”, Elsevier B. V. 2000, ISBN 0-

444-50558-X

[7] “Sensewear Armband” http://sensewear.bodymedia.com/SW-Learn-More/Product-

Overview, [Accessed: August 2013].

[8] “Emcare” https://www.emcare360.com/web/emcare/services?allDevices=

true&doAsUserId=, [Accessed: August 2013].

[9] “Tait-Bryan Angles”, http://commons.wikimedia.org/wiki/Tait-Bryan_angles,

[Accessed: June 2013].

[10] “Sampling rates for analog sensors” http://www.embedded.com/design/prototyping-

and-development/4024581/Sampling-rates-for-analog-sensors, [Accessed: September

2013].

[11] WILSON, Jon S., “Sensor Technology Handbook”, Elsevier 2005. ISBN 0-7506-

7729-5.

[12] HORNUNG, Mark R.; BRAND, Oliver, “Micromachined ultrasound-based

Proximity sensors”, Kluwer

[13] “Light Sensors”, http://www.maximintegrated.com/app-notes/index.mvp/id/5051,

[Accessed: October 2013].

[14] LABRADOR, Miguel A.; YEJAS, Oscar D. Lara, “Human Activity Recognition:

Using wearable Sensors and Smartphones”, Taylor and Francis Group 2013.

[15] “Gyroscope Uses”, http://www.gyroscopes.org/uses.asp, [Accessed: August 2013].

[16] OJETOLA, Olunkule; GAURA, Elena I.; BRUSEY James – “Fall detection with

Wearable Sensors” – SAFE, Coventry University (2011)

[17] “GATT base profiles” it https://www.bluetooth.org/en-us/specification/adopted-

specifications, [Accessed: August 2013].

[18] “Mover, Fraunhofer AICOS”, http://mover.projects.fraunhofer.pt/faq.html,

[Accessed: October 2013].

http://www.aal4all.org/
http://www.emcare360.com/web/emcare/%20services?serviceId=202&allDevices=true&doAsUserId
http://www.emcare360.com/web/emcare/%20services?serviceId=202&allDevices=true&doAsUserId
http://www.smart-systems-integration.org/public/documents/publications/EPoSS%20Strategic%20Research%20Agenda%202009.pdf
http://www.smart-systems-integration.org/public/documents/publications/EPoSS%20Strategic%20Research%20Agenda%202009.pdf
http://www.smart-systems-integration.org/public/documents/publications/EPoSS%20Strategic%20Research%20Agenda%202009.pdf
http://www.jneuroengrehab.com/content/9/1/21
http://sensewear.bodymedia.com/SW-Learn-More/Product-Overview
http://sensewear.bodymedia.com/SW-Learn-More/Product-Overview
https://www.emcare360.com/web/emcare/services?allDevices=%20true&doAsUserId
https://www.emcare360.com/web/emcare/services?allDevices=%20true&doAsUserId
http://commons.wikimedia.org/wiki/Tait-Bryan_angles
http://www.embedded.com/design/prototyping-and-development/4024581/Sampling-rates-for-analog-sensors
http://www.embedded.com/design/prototyping-and-development/4024581/Sampling-rates-for-analog-sensors
http://www.maximintegrated.com/app-notes/index.mvp/id/5051
http://www.gyroscopes.org/uses.asp
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://mover.projects.fraunhofer.pt/faq.html

 94

[19] STROUD, Adam; MILETTE, “Professional Android Sensor Programming”, John

Wiley and Sons, 2012. ISBN: 978-1-118-18348-9

[20] GUPTA, Naresh, “Inside Bluetooth Low Energy”, Artech House, 2013

[21] SMITH, Phil, CSR – “Comparisons between Low Power Wireless Technologies”

(2011)

[22] “Wi-Fi Direct”, http://www.wi-fi.org/discover-and-learn/wi-fi-direct , [Accessed:

September 2013].

[23] DE SANCTIS, Constantino; AFIFI, Hossam; LABIOD, Houda, “Wi-Fi, Bluetooth,

Zigbee and WiMax”, Springer 2007

[24] “CyanogenMod”, http://www.cyanogenmod.org/, [Accessed: October 2013].

[25] “Zigbee FAQ”, http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx, [Accessed:

September 2013].

[26] VILLEGAS, Julio – Bluetooth Low Energy Version 4.0 – “Helping create the

“internet of things””

[27] “Android sensor overview”, http://developer.android.com/guide/topics/sensors/

sensors_overview.html, [Accessed: October 2013].

[28] “Texas Android Sensor Porting Guide” http://processors.wiki.ti.com/index.php/

Android_Sensor_PortingGuide, [Accessed: September 2013].

[29] “SDK status Ubuntu Touch” https://wiki.ubuntu.com/Touch/SdkFeatureStatus,

[Accessed: November 2013].

[30] “IAR”, http://www.iar.com/Products/IAR-Embedded-Workbench/, [Accessed:

September 2013].

[31] “CC2541 characteristics”, http://www.ti.com/lit/ds/symlink/cc2541.pdf, [Accessed:

September 2013].

[32] “DC-DC converter”, http://www.ti.com/lit/ds/slvsac3c/slvsac3c.pdf, [Accessed:

September 2013].

[33] “Btool”, http://processors.wiki.ti.com/index.php/Category:CC2540DK_Mini_

BTool_Connection, [Accessed: August 2013].

[34] “BLE device monitor”, http://processors.wiki.ti.com/index.php/BLE_Device_

Monitor_User_Guide, [Accessed: August 2013].

[35] “Wi-Fi 802.11 standard”, http://www.ieee802.org/11/, [Accessed: September 2013].

[36] “WIFI article”, http://www.infowester.com/wifi.php, [Accessed: September 2013].

[37] “WiFi Alliance”, http://www.wi-fi.org/, [Accessed: October 2013].

[38] “Ethernet”, http://standards.ieee.org/about/get/802/802.3.html, [Accessed: September

2013].

[39] “Wi-Fi Direct Specification”, http://www.wi-fi.org/knowledge-center/faq/does-

specification-underlying-wi-fi-direct-certification-program-work-both, [Accessed:

September 2013].

http://www.wi-fi.org/discover-and-learn/wi-fi-direct
http://www.cyanogenmod.org/
http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
http://developer.android.com/guide/topics/sensors/%20sensors_overview.html
http://developer.android.com/guide/topics/sensors/%20sensors_overview.html
http://processors.wiki.ti.com/index.php/%20Android_Sensor_PortingGuide
http://processors.wiki.ti.com/index.php/%20Android_Sensor_PortingGuide
https://wiki.ubuntu.com/Touch/SdkFeatureStatus
http://www.iar.com/Products/IAR-Embedded-Workbench/
http://www.ti.com/lit/ds/symlink/cc2541.pdf
http://www.ti.com/lit/ds/slvsac3c/slvsac3c.pdf
http://processors.wiki.ti.com/index.php/Category:CC2540DK_Mini_%20BTool_Connection
http://processors.wiki.ti.com/index.php/Category:CC2540DK_Mini_%20BTool_Connection
http://processors.wiki.ti.com/index.php/BLE_Device_%20Monitor_User_Guide
http://processors.wiki.ti.com/index.php/BLE_Device_%20Monitor_User_Guide
http://www.ieee802.org/11/
http://www.infowester.com/wifi.php
http://www.wi-fi.org/
http://standards.ieee.org/about/get/802/802.3.html
http://www.wi-fi.org/knowledge-center/faq/does-specification-underlying-wi-fi-direct-certification-program-work-both
http://www.wi-fi.org/knowledge-center/faq/does-specification-underlying-wi-fi-direct-certification-program-work-both

 95

[40] “Wifi p2p android”, http://developer.android.com/guide/topics/connectivity/

wifip2p.html, [Accessed: September 2013].

[41] “AOSP”, http://source.android.com/, [Accessed: October 2013].

[42] “Zigbee Alliance”, http://www.zigbee.org/, [Accessed: October 2013].

[43] “Wireless IEEE 802.15.4 standard”, http://standards.ieee.org/about/get/802/

802.15.html, [Accessed: October 2013].

[44] “Bluetooth Specifications”, https://www.bluetooth.org/en-us/specification/adopted-

specifications, [Accessed: September 2013].

[45] “Bluetooth basics”, http://www.bluetooth.com/Pages/Basics.aspx, [Accessed:

October 2013].

[46] “BLE specification”, https://developer.bluetooth.org/TechnologyOverview/

Pages/v4.aspx, [Accessed: October 2013].

[47] GOLMIE N.; REBALA O.; CHEVROLLIER, N.; - “Bluetooth Adaptive Frequency

Hopping and Scheduling”, National Institute of Standards and Technology (2003)

[48] “GATT specifications”, https://developer.bluetooth.org/gatt/Pages/GATT-

Specification-Documents.aspx, [Accessed: August 2013].

[49] “Indoor Atlas”, https://www.indooratlas.com/, [Accessed: August 2013].

[50] “Indoor Atlas study”, http://gigaom.com/2013/09/25/indooratlas-uses-geomagnetism

-to-map-buildings-gps-cant-reach/, [Accessed: September 2013].

[51] “Geomagnetismo”, http://www.ipma.pt/pt/enciclopedia/geofisica/geomagnetismo/

index.html, [Accessed: November 2013].

[52] “Proximity sensors”, http://www.fargocontrols.com/sensors.html, [Accessed:

October 2013].

[53] “Industry Leaders Announce Open Platform for Mobile Devices”, http://www.

openhandsetalliance.com/press_110507.html, [Accessed: June 2013].

[54] “Apache License 2.0”, http://www.apache.org/licenses/LICENSE-2.0/, [Accessed:

November 2013].

[55] “Mobile Application Development using Java and Android”, http://rockcode.in/

Mobile-Application-Development-using-Java-and-Android.php, [Accessed: June

2013].

[56] “Android Website”, www.android.com/, [Accessed: October 2013].

[57] “Android Architecture”, http://android.pk/android.html, [Accessed: September

2013].

[58] “Eclipse IDE”, http://www.eclipse.org/, [Accessed: September 2013].

[59] “Developer Android”, http://developer.android.com/index.html, [Accessed:

September 2013].

[60] “Firefox OS Architecture”, https://developer.mozilla.org/en-US/docs/Mozilla/

Firefox_OS/Platform/Architecture, [Accessed: September 2013].

http://developer.android.com/guide/topics/connectivity/%20wifip2p.html
http://developer.android.com/guide/topics/connectivity/%20wifip2p.html
http://source.android.com/
http://www.zigbee.org/
http://standards.ieee.org/about/get/802/%20802.15.html
http://standards.ieee.org/about/get/802/%20802.15.html
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.bluetooth.com/Pages/Basics.aspx
https://developer.bluetooth.org/TechnologyOverview/%20Pages/v4.aspx
https://developer.bluetooth.org/TechnologyOverview/%20Pages/v4.aspx
https://developer.bluetooth.org/gatt/Pages/GATT-Specification-Documents.aspx
https://developer.bluetooth.org/gatt/Pages/GATT-Specification-Documents.aspx
https://www.indooratlas.com/
http://gigaom.com/2013/09/25/indooratlas-uses-geomagnetism%20-to-map-buildings-gps-cant-reach/
http://gigaom.com/2013/09/25/indooratlas-uses-geomagnetism%20-to-map-buildings-gps-cant-reach/
http://www.ipma.pt/pt/enciclopedia/geofisica/geomagnetismo/
http://www.fargocontrols.com/sensors.html
http://www/
http://ciemcal.org/android-operating-system/
http://rockcode.in/
http://www.android.com/
http://android.pk/android.html
http://www.eclipse.org/
http://developer.android.com/index.html
https://developer.mozilla.org/en-US/docs/Mozilla/

 96

[61] “Firefox OS platform”, https://developer.mozilla.org/en-US/docs/Mozilla/

Firefox_OS/Platform, [Accessed: September 2013].

[62] “Firefox Tools”, https://developer.mozilla.org/en-US/docs/Tools, [Accessed:

September 2013].

[63] “Build Firefox OS”, https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/

Firefox_OS_build_prerequisites, [Accessed: September 2013].

[64] “Firefox Hardware Access APIs”, https://developer.mozilla.org/en-US/docs/

WebAPI, [Accessed: September 2013].

[65] “Device Orientation Event”, http://dev.w3.org/geo/api/spec-source-orientation,

[Accessed: September 2013].

[66] “Ubuntu Touch Website”, https://wiki.ubuntu.com/Touch, [Accessed: September

2013].

[67] “Ubuntu Developer Website”, http://developer.ubuntu.com/, [Accessed: September

2013].

[68] “Tizen Overview”, https://www.tizen.org/about, [Accessed: September 2013].

[69] “Tizen Architecture”, https://developer.tizen.org/help/index.jsp?topic= %2Forg.tizen.

gettingstarted%2Fhtml%2Ftizen_overview%2Ftizen_architecture.htm, [Accessed:

September 2013].

[70] “Tizen Developer”, https://developer.tizen.org/, [Accessed: September 2013].

[71] “QEMU”, http://wiki.qemu.org/Main_Page, [Accessed: September 2013].

[72] “Reference device-PQ”, https://wiki.tizen.org/wiki/Reference_Device-PQ,

[Accessed: September 2013].

[73] “Reference device-210”, https://wiki.tizen.org/wiki/Reference_Device-210,

[Accessed: September 2013].

[74] “SensorTag”, http://www.ti.com/tool/cc2541dk-sensor, [Accessed: October 2013].

[75] “Bluetooth Low Energy Profiles”, https://developer.bluetooth.org/Technology

Overview/Pages/BLE.aspx, [Accessed: September 2013].

[76] “InvenSense website”, http://www.invensense.com/, [Accessed: November 2013].

[77] “AKM website”, http://www.akm.com/, [Accessed: November 2013].

[78] “Qt Creator”, http://qt-project.org/search/tag/qt~creator, [Accessed: November

2013].

[79] “MPU 6050”, http://invensense.com/mems/gyro/mpu6050.html, [Accessed: October

2013].

[80] “AK8963 magnetometer”, http://www.akm.com/akm/en/file/datasheet/AK8963.pdf,

[Accessed: October 2013].

[81] “Gyroscope in smartphones”, http://www.mobile88.com/news/read.asp?file=/

2012/4/21/20120421165938, [Accessed: November 2013].

[82] CHOWDARY, Rahul D; PRAKASH, Bhanu K., “El Electronic Guard for Blind”,

2010

https://developer.mozilla.org/en-US/docs/Mozilla/
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/
https://developer.mozilla.org/en-US/docs/%20WebAPI
https://developer.mozilla.org/en-US/docs/%20WebAPI
http://dev.w3.org/geo/api/spec-source-orientation
https://wiki.ubuntu.com/Touch
http://developer.ubuntu.com/
https://www.tizen.org/about
https://developer.tizen.org/
http://wiki.qemu.org/Main_Page
https://wiki.tizen.org/wiki/Reference_Device-PQ
https://wiki.tizen.org/wiki/Reference_Device-210
http://www.ti.com/tool/cc2541dk-sensor
https://developer.bluetooth.org/Technology%20Overview/Pages/BLE.aspx
https://developer.bluetooth.org/Technology%20Overview/Pages/BLE.aspx
http://www.invensense.com/
http://www.akm.com/
http://qt-project.org/search/tag/qt~creator
http://invensense.com/mems/gyro/mpu6050.html
http://www.akm.com/akm/en/file/datasheet/AK8963.pdf
http://www.mobile88.com/news/read.asp?file=/

 97

[83] “Zigbee technology”, http://www.eetimes.com/document.asp?doc_id=1276404,

[Accessed: November 2013].

[84] “Bluetooth article”, http://www.infowester.com/bluetooth.php, [Accessed: November

2013].

[85] “Litepoint”, “Bluetooth Low Energy whitepaper”, 2012.

[86] “Firefox OS article”, https://hacks.mozilla.org/category/firefox-os/by/comments/as

/complete/, [Accessed: November 2013].

[87] “HTML5 article”, https://hacks.mozilla.org/category/html5/as/complete/, [Accessed:

November 2013].

[88] “Ubuntu porting guide”, https://wiki.ubuntu.com/Touch/Porting, [Accessed:

November 2013].

http://www.eetimes.com/document.asp?doc_id=1276404
http://www.infowester.com/bluetooth.php
https://hacks.mozilla.org/category/firefox-os/by/comments/as%20/complete/
https://hacks.mozilla.org/category/firefox-os/by/comments/as%20/complete/
https://hacks.mozilla.org/category/html5/as/complete/
https://wiki.ubuntu.com/Touch/Porting

 98

