-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Repositério Cientifico do Instituto Politécnico do Porto

schem@Doc: aweb-based XML Schema visualizer

2
José Paulo Lehhnd Ricardo Queirds

1
CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

2
CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. XML Schema is one of the most used specificatifursdefining
types of XML documents. It provides an extensived$eprimitive data types,
ways to extend and reuse definitions and an XMLtayrthat simplifies
automatic manipulation. However, many features timatkke XML Schema
Definitions (XSD) so interesting also make themheatcumbersome to read.
Several tools to visualize and browse schema digiirs have been proposed to
cope with this issue. The novel approach proposetis paper is to base XSD
visualization and navigation on the XML documeseif, using solely the web
browser, without requiring a pre-processing step ar intermediate
representation. We present the design and implertientof a web-based XML
Schema browser called schem@Doc that operatestowefSD file itself. With
this approach, XSD visualization is synchronizedhwithe source file and
always reflects its current state. This tool fitsliwn the schema development
process and is easy to integrate in web repositanataining large numbers of
XSD files.

Keywords: Schema visualization, XML Schema, Transformation,
Documentation, Interoperability.

1 Introduction

XML Schema is arguably the most used type definitlanguage for XML
documents. Thus, developing new XML documents sypsually involves reading
and understanding its definition in XML Schema (XSDhe teams that develop
these definitions usually integrate persons witffedént backgrounds, including
experts in the domain and experts in XML Schemaidally, domain experts are not
familiar with the complex features of this spagfion (e.g. reference bindings,
extensions, restrictions and redefinitions). To enetkngs harder for the all team, an
XSD s serialized as an XML document, which makemssible but difficult to read
by humans. As postulated by XML design goals [fthaugh XML tags are usually
self explanatory, and that is certainly the cash WiML Schema, the resulting XML
documents are usually anything but concise. Thisads a problem for software
processing XSD files, but is an extra burden fpeeson reading them in detail.

https://core.ac.uk/display/47139516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we present the design and implementatf a web-based tool for
browsing XML Schema files called schem@Doc. Usihig tool a human reader
browses XSD files through a Web interface, usinge tistructures, tables and
formatted text, rather than reading directly therse code. The schema structure and
documentation are automatically generated from dloeument type definition,
helping users to visualize the relationships amdype definitions and reading
documentation in plain natural language text fotethin XHTML. This tool does not
require specialized knowledge of XML or XSD, sa@én be used by novice users.
Also, it does not require any pre-processing of Xi. The user needs only to open
an XSD file annotated with a special processingrirmsion on a conventional Web
browser.

This tool was designed for Web based systems fieguine visualization of XSD
files still under development, by users that maybfamiliar with the XML Schema
specification. Since it is a very light tool, itvugell adapted for repositories with large
numbers of XSD files. Although targeted primarilgr finteractive use, it also
produces printed versions of XSD files that cambéed as reference.

The remainder of this paper is organized as folloWse next section reviews
basic concepts related to schema definition langsiaand existing approaches to
browse schema definitions. Section 3 present arviaxe of schem@Doc and section
4 details its main features such as the navigadioth visualization of the schema
types, embedded Schematron support and exampleragjene using instance
documents. The last section draws conclusions thenpresented work and outlines
future developments.

2 Visualization of schema definitions

Document Type Definition (DTD) was the languageeirited from SGML, to
define types of documents in XML. Its many limitats [2] (e.g. insufficient data
type support, lack of namespace awareness) lead tfficial W3C recommendation
for a schema language called XML Schema Definitammguage [3] (XSD) in 2001.
XML Schemas are richer and more powerful than DJ4sand are written in XML.
This new language overcame DTD limitations and juled several advanced
features, such as the ability to build new typesvad from basic ones [5], manage
relationships between elements (similar to relaialatabases) and combine elements
from several schemata.

In spite of its expressiveness, XSD lacks feattioedescribe constraints on the
XML document structure. For instance, there is naywio specify dependencies
between attributes, or to select the content mb@dsked on the value of another
element or attribute. To address these issuesaesatema languages were proposed,
such as RELAX NG [6] (based on TREX [7] and RELA])] DSD (Document
Structure Description) [9] and Schematron [10]. Bolematron language provides a
standard mechanism for making assertions abouvdhdity of an XML document
using XPath expressions and can be easily combivied W3C XML Schema
documents.

These schema languages have different syntaxemdsit of them support XML
serialization. It is a well known fact that the XMarmalism was not designed for the
convenience of human readers [1]. Although tag attibute names are usually self
explanatory and they are meaningful to an expargel documents with complex
structure are difficult to understand and requipecilized viewers. Specially for
XSD files, several tools are available for browsargl displaying schema definitions
in a user-friendly way. These tools are usuallyt mrcommercial XML Integrated
Development Environments (IDE) such as XML Spy,l&yStudio and <oXygen/>
Oxygen, or plug-ins of general programming IDEshsas Eclipse, NetBeans or even
Visual Studio .NET. There are a few standalonest¢bl, 12, 13] designed to browse
and generate documentation from XSD files. Thespragzhes require either a
preprocessing of the XSD files (converting thenHaML files), or installing specific
software for browsing them. On the other hand,ntiagority of these systems are not
open source, which limits its use in non-commen@akarch projects.

3 Overview

XML documents play such an important role in pulilig and exchanging data on
the Web that they might be considered a univeesajuage tool [14]. The design of
the schem@Doc tool fits the ubiquity of XML docurteand it is easy to install on a
web server and use from any browser linked to tierhet. Simplicity is the key in

the design of this tool, since it is the best wayehsure reliability and efficiency.

Hence, it should be no surprise that our schemaeriégs composed of the following
three components:

atransformation for converting an XSD to a web layout;
a script for handling user interaction;
a stylesheet to configure the layout.

The interplay of these three components to productenteractive visualization
from a XSD file is represented schematically in.Rig

B "% B

XML Schema XSLT Web Page
(XSD) processor (XHTML)

)
| T
Transformation Script Stylesheet
(XsL) (15) (css)

schem@Doc

Client Browser

Fig. 1. Overall architecture of schem@Doc.

A Web browser is the only requirement for using $bhem@Doc tool. The XSD
file is opened from the Web browser and processeaaragular XML file. We rely on
the XSLT processor, included in all recent versiohstandard Web browsers, for the
transformation of the XSD file into a web layouthel XSLT processor loads an
XSLT transformation and produces a XHTML web laythat will in turn load the
script and stylesheet files of the schem@Doc paekag

To prepare an XSD file for schem@Doc it is only egsary to annotate it with a
Processing Instruction (PI) in its prologue, toiade the XSLT processor and load
the transformation file. The following code showBlan a schema file prologue:

<?xml version="1.0" encoding="UTF-8"?>
<?xm - styl esheet type="text/xsl"
<xsd:schema ...>

hr ef =" schemaDoc. xsl| " ?>

</xsd:schema>

The transformation file, as well as the script ahdesheet files it requires, are all
part of the schem@Doc distribution package avkildor download from the
following URL http://www.dcc.fc.up.pt/schemaDoc. B typical installation these
files are placed on web published directory andeshly several XSD files.

Type

testFiles
Brmecadacs The element testFiles contains 2 set of tests (input and output files) for the evaluation process of the leamer's submission.

general

Cardinality: 1 or more
Child nodes:
Node Name || Node type | Type

[xsc:attribute

By recentation
B..clustion

[cardinality [

[Arguments of the execution test.

Description

evaluationModel

[xse:string [aptional

evalustionModelVersion

[ual ssful test execution.

[rhe

tests

| Brecrrie:

arguments

valorization

E‘"D”t [HleML Schema Information
outpue [Eexamples

ﬁ.g

Breccback
Becicroup
testDescription
E testGenerator
Breciprogram

Files

t/eimdearcEiless

Bcorrectors
B.otution

Fig. 2. XSD displayed by schem@Doc.

When an XSD file with the above Pl is opened onebWrowser the user will be
presented with an interface similar to the one atepliin Fig. 2. Of the left part the
reader finds a navigation area with two tabs, gaoking its own way to browse and
select types defined on the XSD. Documentationedected types is displayed on the
right part. These features of schem@Doc are destiib greater detail in the next
section.

4 Main features

Schem@Doc is a Web-based tool to navigate throhghyipes defined on a W3C
XML schema documents and to view their documentatithe remainder of this
section details its navigation, visualization amdreple generation features.

4.1 Navigation

When designing the web interface of schem@Doc wesidered two distinct usage
profiles. Novice or first-time users are expectedise schem@Doc to understand the
structure of an XSD and identify its main types.pEst and recurrent users, that
already know the basic structure of the XSD, aregeeted to search for
documentation on specific schema type, to focuteohnical details and may need to
print a reference for off-line usage. To addre$s thnge of needs this tool includes
two navigation modes, depicted side by side in Big.

Structural: browse the schema file based on the structumestdnces;
Reference: list of complex and simple types in alphabetideot

The former is the default and displays the strgctof a valid XML instance
document, with elements, attributes and respediipes as tree nodes. The roots of
these structures are element definitions on the XiSipe definition referred by other
types (using attributetype , ref or base) will appear as a child of the referring

type in the hierarchy. These nodes can be expamahed collapsed to control
visualization.

schem®Dac
9 Typs g Structure navigator || Type Navigator

[E E— Complex types:

o
‘% ggsneral B compitationType

presentation

correctorsType

evaluation

evaluationModel

evaluationModelVersion

i
tests Becdbacktype
EtestF\\es generalType
arguments Brintstype
valerization

input

output

Brecback
Beecteronr
restDescription
testGenzrator
Bectprogram

Beorreciers
B:iution

Bccourcetype
submission Type
Biestritestype

testGroupType

Fig. 3. Structural and Reference navigation.

The Reference navigation provides direct accesspcific types and their
documentation. This list is split up in complex asitdhples types and sorted in
alphabetic order within each group.

Both navigation modes support the visualizationsofiema definitions loaded
using the W3C XML Schema elements: import and idelu

4.2 Views

After selecting an element/attribute in the navmatarea (left side), the user

visualizes automatic generated documentation kkkat¢hat type on the viewing area

in the right part of the screen. Fig. 4 shows tiseialization presented to the user after
selection of thenetadata element on the structure navigator.

Structure navigator || Type Navigator
metadata

Emzx: data The meta-data element act as the container node for the Eduludge Metz-Datz (E1 MD),

|
i entation Cardinality: rzquired
Bvatuation Child nodes:

Node Name | Node type | Type
laeners/ Type
resentationType
evaluation [xsd:element evaluationType |required Evaluation data of the LO,

a
Bener:
B;res

=

ML Schema Information
[Flschematron Information
[Hexamples

Fig. 4. Visualization of type documentation.

The generated documentation contains several ssctimmely: element/attribute
name, description, cardinality, a table with sumynan child nodes information. It
contains also technical information on schematah(XSD and embed Schematron,
presented in following sub-section) and usage e¥esnphese last sections are meant
for the expert user thus are initially presentelthpsed.

As mentioned before, XSD files can be hard to ustded and undocumented ones
are even harder. To mitigate this problem the W3@cHication includes the
annotation element for adding complementary information. Thlement can
annotate any XSD elements and has two child eleneappinfo and
documentation . These elements can occur zero or more times eng
annotation element. The schem@Doc tool uses dioeumentation element
to generate description for types.

The annotations allowed by the W3C specificatian ramt enough for the needs of
schem@Doc. For that purpose, we created a new dadutype, with a target
namespace that separates new elements and afirivote the schema itself. It
includes elements and attributes to define andrabtite automatic generation of the
schema documentation. The following code illussdtee use of the type attribute to
classify the descriptions found in the documentattement either as “extensive” or
“summary”. Note that these examples assume a pmeomespace declaration
associated with “doc” prefix.

<xsd:element name="general" type="generalType">
<xsd:annotation>
<xsd:documentation doc:type="description-extens ive">
Extensive description here.<xhtml:br/>
</xsd:documentation>
<xsd:documentation doc:type="description-summar y'">
Summary description here.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

The previous example shows also how XHTML tags lsarused to format the
schema elements descriptions, thus enriching tadatslity of the documentation.
According to the W3C XML Schema specificatidocumentation element may
contain children from any namespaces. Since theenbof this element is injected in
a XHTML template, elements of this namespace articpéarly recommended when
using a XSD with schem@Doc. Typical XHTML elementged in this context are
hypertext references to HTML pages with extendedcudwentation, images
containing diagrams and even tables to improveltfeeimentation content layout.

4.3 Support for embedded Schematron

In spite of its expressiveness, there are casesewhé impossible to constraint an
XML document instance using XML Schema, as in tiil#ving examples:

« Specify incompatible/complementary attributes;

* Force an element or attribute value to be greatsAhan other;

« Make the content model depend on the value ofemet or attribute.

To validate this type of constraints schema authstally extend XSD files using
at least one of these options: 1) combine XML Scherith others schema languages;
2) write code in a programming language to exptiessadditional constraints; 3) use
an XSLT/XPath stylesheet. To avoid ad-hoc solutitnschem@Doc we opted for
combining XSD with other standard schema languages.

A usual candidate to perform this “second levelvalidation” is the rule-based
validation language Schematron. The combinatiothefSchematron rules with the
W3C schema can be done in two ways: as separate fising pipeline validation
languages such as the DSDL (Document Schema Definitanguage) or
Schemachine language, or as a single file, indéis® embedding Schematron rules in
the XML Schema using theppinfo element within thennotation element of
a particular XSD element. This last approach fits processing model best and thus
was selected.

The following example shows an XSD that includesié®eatron rules to define
constraints that are beyond the capabilities of XStthema. Specifically the pattern
enforces the existence ofine-submit element if @ime-solve element also
exists.

<xsd:appinfo>
<sch:pattern name="p2">
<sch:rule context="time-solve">

<sch:assert test="following-sibling::*[1]= time- submit">
If the element time-solve appears in the document, then the
timesubmit must appear after.</sch:assert>

</sch:rule>

</sch:pattern>
</xsd:appinfo>

Fig. 5 shows how schem@Doc renders this partiquilgr in the viewing part. It
should be noted that Schematron information isquldoside a special section that is
initially collapsed. As for XSD, Schematron docur@ion is automatically
generated from its XML source.

Structure navigator || Type Navigator
time-solve
ametadata The time-solve attributz defines the maximum of time avzilable to solve the problem,
general
hints Usage: requirad
5::’"”“‘”'7'“ [ExML Schema Information
[=lschematran Information
time-submit Pattern name: p2
attempts Rule context: gjmd:time-solve
code:ines T
length [Tyee |l Condition [Text
? Ecomp\lation F— Follow!ng-s!blmg::’ . 1f the elarr!en[ejmd_::ima-sa\ve appears in the document, then
Eaecutmn [1]=sjmd:time-submit |[the ejmd:timesubmit must alse appear.
? apresentax:iun E“’“"'EE
asvaluatmn

Fig. 5. Visualization of Schematron rules.

4.4 Visualization of instance examples

The automatically generated documentation incladesxamples section to illustrate
the use of a type with a fragment of a documertaimee. Surely, the XSD author can
include these fragments in XSibcumentation elements and even format them
using XHTML. This special type of documentation binave been just another
value in thetype attribute introduced in sub-section 4.2. Howeverpducing
examples this way would be time-consuming and gsrone.

To produce document instance fragments as exaropledrticular elements or
attributes, schem@Doc uses a set of instance datardefined by the XSD author.
To generate an example fragment for documentinglament definition, the tool
simply searches the document instances for ocatgsenf those elements. These
instance files may be created from the XSD filelftsising an IDE (e.g. Eclipse) or a
XML specialized editor (e.g. XESB [15]). The visizaltion of the fragment example
is controlled by using the schem@Doc hamespace@tdvels. At the root level it
uses theéhref attribute to identify document instance(s). At gdlement level it uses
the order , childDepth andparentDepth attributes to control, respectively,

what document instance should be used and the depéh visualization of the
example. The following example illustrates the o$¢hese attributes to control the
visualization of examples for a particular elemeamedpresentation

<xsd:schema doc:href="ex1l.xml ex2.xml" ...>
<xsd:element hame="presentation" doc:childDepth="0"
doc:parentDepth="1">
<xsd:annotation>

<xsd:documentation>...</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:schema>

The childDepth /parentDepth attributes defines how many ancestors and
descendants levels should be shown in the exariple. absence of therder
attribute, at the element level, will make the tupiterate over all instance documents
included in the root levehref attribute, until it finds the first occurrence tife
presentation element. Fig. 6 shows how schem@Doc renders tlngbe
fragment.

presentation

The presentation category defines all the useful data to visualization by the e-l=arning systzms.

Cardinality: required
Child nodes:

[WodeName | Node type | Type [Cardinality | Description
[description |xsdiclement [resourceType [t or more [Description of the prablem.

‘skele[on b(sd:elemenl: |resource‘rype |op|:iona| |Pan:ia| solution of a problem,

[*hxmL schema Tnformation
[Elexamples
<ejmd:metadata xsi:schemalocation="hetp://wnr. eduiudge . eu/eimd vl ejmd_vl.xsd " >

<eimd:generaly

</ejmd:generals
<ejmd:presentation >

</ejmd:evaluaniony
</ejmd:metadatay

Fig. 6. Visualization of fragment examples.

5 Conclusions and futurework

In this paper we described the design and impleatient of a Web-based XML
Schema documentation generator called schem@Da@cniEin contributions of this
work are a new approach to the visualization ofesth definitions and a tool to
present XML Schema files on the Web. The schem@ot provides direct
visualization of the XSD files, generating docunagiain on-the-fly from the XML
schema file itself, without requiring the instaitat of add-ons or plug-ins at the client
side. The tool is being distributed in open soumed is available for testing and
download at the following URbkttp://www. dcc. fc. up. pt/schemaDoc.

Although the current implementation is already geised for documenting XSD
files developed as part of an eLearning projediaé some limitations that we will
address in the near future:

e Ensure full support for the XML Schema specificati@.g. field, key,
keyref, redefine, selector, wunique elements and tratis
substitutionGroup attributtes);

» Handle recursive definitions in the navigation view

* Improve the initial responsiveness by generatirge tinformation on a
lazy basis .

Make extensions of schem@Doc compatible with exgstditors to avoid the
need to edit the XSD source code. After addrgsHiese limitations we plan to
evaluate the this tool experimentally, testing bitghusability and utility with users
with different knowledge levels of XML Schema . Wan also to improve the
support to printed versions of XSD files that canused as reference and develop a
search feature based on XPath expressions.

Acknowledgements

This work is part of the project entitled “Integreg Online Judge into effective
elearning”, with project number 135221-LLP-1-200E%-KA3-KA3MP. This

project has been funded with support from the Eeaop Commission. This
communication reflects the views only of the auttaord the Commission cannot be
held responsible for any use which may be madbefrtformation contained therein.

References

1. Birbeck, M. And others: Professional XML, Wrox, 2iigio, 2001.

2. Harold, E.R.: The XML Bible, "d edition, Hungry Minds, 2004.

3. Fallside, D.C. (Ed.): XML Schema Part 0: Primer Setdedition. World Wide Web

Consortium, Recommendation, 28 October 2004.

4. Song, G., Zhang, K.: "Visual XML Schemas Based oneResl Graph Grammars," itcc,
vol. 1, pp.687, International Conference on Infoiorat Technology: Coding and
Computing (ITCC'04) Volume 1, 2004.

5. Biron, P. V. and Malhotra, A. (ed.). XML Schema RaiDatatypes Second Edition. W3C
Document, October 2004.

6. Clark, J, Murata, M.: RELAX NG Specification, OASISo@mittee Specification,
December 2001http://relaxng.org/spec-20011203.html

7. Clark, J.: TREX - Tree Regular Expressions for XMLair®pen Source Software Center,
2001, http://www.thaiopensource.com/trex/

8. Murata, M.: RELAX (Regular Language description $ML). INSTAC (Information
Technology Research and Standardization Center), 28@1//www.xml.gr.jp/relax/

9. Moller, A Document Structure Description 2.0, BRICS, 2002,
http://www.brics.dk/DSD/dsd2.html

10. The Schematron, An XML Structure Validation Langeiagsing Patterns in Trees,
http://www.ascc.net/xml/resource/schematron/schemditml

11. DocFlex/XSD Home Pagéttp://www.filigris.com/products/docflex_xsd/

12.

13.
14.

15.

Kilkelly, F.: SchemaViewerl.0, Internet Document, oW 2002.
http://xml.coverpages.org/SchemaViewer10-Ann.html

VisualSchema Home Pagdeitp://www.visualschema.com/

Mignet, L., Barbosa, D., Veltri P.; The XML Web: argt Study, International World
Wide Web Conference. Proceedings of the 12th intemmal conference on World Wide
Web, 2003.

Queiros, R., Leal, J.P.: Xesb: um editor XML paranasssas. In José Carlos Ramalho,
Alberto Simdes e Jodo Correira Lopes (eds.), InsAd@m3a Conferéncia Nacional XML:
AplicagBes e Tecnologias Associadas, (XATA 2005piversidade do Minho, Braga,
2005.

