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Abstract 

 
This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic 

algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed 

to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct 

fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing  a 

fractional-order dynamic evolution, characteristic of a long-term system    memory. 
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1. Introduction 

 
In the last twenty years genetic algorithms (GAs) 

have been applied in a plethora of fields such as in 

image processing, pattern recognition, speech re- 

cognition, control, system identification, optimiza- 

tion, planning and scheduling  [1]. 

Fractional calculus (FC) is a natural extension of 

the classical mathematics. In fact, since the begin- 

ning of theory of differential and integral calculus, 

several mathematicians investigated the calculation 

of non-integer order derivatives and integrals. 

Nevertheless, the application of FC has been  scarce 

 

 

 
until recently, but the advances in the theory of 

chaos motivated a renewed interest in this   field. 

The  fundamental  aspects  of   the   FC   theory 

are addressed in [2–5]. In what concerns the FC 

application we can mention research on viscoelas- 

ticity/damping, chaos/fractals, biology, electronics, 

signal processing, diffusion and wave propagation, 

percolation, modelling, control and irreversibility 

[6–19,23]. 

Bearing these ideas in mind, this paper analyzes 

the system signal evolution and the fractional-order 

dynamics in the population of a GA-based optimi- 

zation. The article is organized as follows. Section 2 

introduces the problem and the GA method for its 

resolution. Based on this formulation, Section 3 

presents the results for several simulations involving 

different working conditions and studies the resul- 

tant dynamic phenomena. Section 4 present  the 

same  simulation  with  others  fitness  functions and 
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compare the results. Finally, Section 5 outlines the 

main conclusions. 

given by the expressions 

  

  
2. The optimization GA 

 
This section presents the optimization GA used in 

the study of the dynamic system. To investigate the 

influence of the fitness function in the GA, are used 

three simple functions ff A; f B; f C g, each at a   time, 

 

 

 

 

(a) (b) 
 

Fig. 1.  System dynamics. (a) Initial system, (b) perturbed system. 

  

  

The objective consists on minimizing each function 

that depends on the parameter b 2 ½-50000; 50000]. 

In  the  experiments,  involving  the  three  test  func- 

tions,  it  is  adopted  a  binary  Gray  code,  with  the 

string length of l ¼ 24 bits to represent the solutions 

of  the  population  (2)  while  having  an  identical 

initial population. The same applies for the genetic 

parameters, namely (i) a 50-population GA, (ii) an 

execution   during   200   generations,   (iii)   a   rank 

selection   having   simple   crossover   and   mutation 

with  probabilities  pc  ¼ 0:8  and  pm  ¼ 0:05,  respec- 

tively.  Moreover,  the best solution  of each genera- 

tion  is always  passed  to  the next generation.   The 

 
 

 

(a) 
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Fig. 2. Input signal dpm perturbation over T exc ¼ 2 generations 

with  seed i ¼ 1  (Dp ¼ 0:04,  fitness f A). (a)  Generation domain, 

(b)  polar diagram. 

(a) 

 

 

(b)  

Fig.  3.  Output  variation  df ðT Þ  for  the  input  excitation  over 

T exc  ¼ 2  generations  with  seed  i ¼ 1  (Dp ¼ 0:04,  fitness  f A). 

(a) Generation domain, (b) polar   diagram. 



 

 

influence of several factors can be analyzed in order 

to study the dynamics of the GA, particularly the 

probabilities. This influence can be distinct accord- 

ing to the type of selection, elitism, fitness function 

and  string  length  used  in  the  GA.  In  this  work, 

 

 

 

  

Fig.  4.  Transfer  function  H1 ðjwÞ  using  seed  i ¼ 1  (T exc  ¼ 2, 

Dp ¼ 0:04, fitness f A ). 

across each test function experiment, it is changed 

only the initial seed of the mutation probability 

noise that is added to   pm. 

3. Evolution, signal propagation and fractional-order 

dynamics 

 

This section studies the dynamical phenomena 

involved in the signal propagation within the GA 

population. In this perspective, small amplitude 

perturbations are superimposed over biasing signals 

of the GA system and its influence upon the 

population fitness is evaluated. The experiments 

reveal a fractional-order dynamics capable of being 

described by systems theory  tools. 

 
3.1. Introduction to fractional calculus 

 
Since the foundation of the differential calculus 

the generalization of the concept of derivative and 
integral  to  a  non-integer   order  a  has  been     the 

subject of distinct approaches. Due to this reason 

there are several alternative definitions of  fractional 

 

 

 

 

 

 

Fig. 5. Polar diagrams of HA ðjwÞ for Dp ¼ f0:03; 0:04; 0:05g, n ¼ 1701. (a) Polar diagram with Dp ¼ 0:03, (b) polar diagram with 

Dp ¼ 0:04, (c) polar diagram with Dp ¼ 0:05. 

(c) 

(b) (a) 



 

 

derivatives. For example, the Laplace definition of a 
derivative  of  fractional  order  a 2 C  of  the  signal 

xðtÞ,   Da½xðtÞ],   is   a   ‘direct’   generalization   of   the 

classic integer-order scheme yielding to Eq. (3). This 

An alternative approach, based on the concept of 

fractional   differential,  is   the Gru  ̈ nwald–

Letnikov definition given by Eq.  (4) 

 

means that frequency-based analysis methods have 

a straightforward adaptation (for zero initial  con- 

 

ditions): 
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(e) 

 

Fig. 6.  Estimated gain, poles and fractional-orders vs. T exc for fitness f A. (a) Gain k vs. T exc, (b) pole a vs. T exc, (c) pole fractional-order a 

vs. T exc, (d) pole b vs. T exc, (e) pole fractional-order b vs. T exc. 

(d) 



 

 

An important property revealed by this equation is 

that while an integer-order derivative implies just a 

finite series, the fractional-order derivative requires 

an infinite number of terms. This means that integer 

derivatives are ‘local’ operators in opposition with 

fractional derivatives that have, implicitly, a ‘mem- 

ory’ of all past events. 

The characteristics revealed by fractional-order 

models make this mathematical tool well suited to 

describe phenomena such as irreversibility  and 

chaos because of its inherent memory property.    In 

this line of thought, the propagation of perturba- 

tions and the appearance of long-term dynamic 

phenomena in a population of individuals subjected 

to an evolutionary process seem to be a case where 

FC  tools  fit adequately. 

 
3.2. The GA dynamics 

 
In  this  section  the  GA  system  is  stimulated by 

perturbing the mutation probability, pm, through a 
white   noise   signal,   dpm,  and   the corresponding 

 

 

Table 1 

Parameters of gi , i ¼ f1; 2g for fk; a; a; b; bg approximation of f A  optimization function 
 

Dp k   a   a   b   b  

 g1 ð105 Þ g2  g1 g2  g1 g2  g1 g2  g1 g2 

0.03 10.0 -0.40  2.90 -1.40  10.86 0.99  0.93 -0.67  0.83 0.04 

0.04 10.0 -0.44  2.12 -1.26  7.42 -1.11  1.14 -0.76  0.75 0.09 

0.05 9.7 -0.39  2.50 -1.31  7.23 -1.10  1.16 -0.79  0.75 0.10 
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Fig. 7. Polar diagrams of HB ðjwÞ for Dp ¼ f0:03; 0:04; 0:05g, n ¼ 1701. (a) Polar diagram with Dp ¼ 0:03, (b) polar diagram with 

Dp ¼ 0:04, (c) polar diagram with Dp ¼ 0:05. 

(c) 

(b) 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
(b) (c) 

 

 

 

 

Fig. 8.  Estimated gain, poles and fractional-orders vs. T exc for fitness f B . (a) Gain k vs. T exc, (b) pole a vs. T exc, (c) pole fractional-order a 

vs. T exc, (d) pole b vs. T exc, (e) pole fractional-order b vs. T exc. 

 

 
Table 2 

Parameters of gi , i ¼ f1; 2g for fk; a; a; b; bg approximation of f B  optimization function 
 

Dp k   a   a   b   b  

 g1 ð108Þ g2  g1 g2  g1 g2  g1 g2  g1 g2 

0.03 6.0 -0.40  6.39 -2.26  6.87 -1.44  2.02 -1.05  0.70 0.11 

0.04 5.0 -0.38  4.66 -2.03  5.65 -1.25  1.93 -1.09  0.66 0.15 

0.05 4.0 -0.30  6.83 -2.27  7.39 -1.40  1.42 -0.95  0.70 0.12 

(d) (e) 

(a) 



 

 

population fitness modification df is evaluated, see 

Fig. 1. The crossover and other probability signals 
used, pc and po, remain unchanged. Therefore, the 

variation   of   the   mutation   probability   and    the 

poles ða; bÞ 2 Rþ of fractional orders ða; bÞ 2 Rþ, 

respectively, given by Eq. (7) where l ¼ A for 

function  f A 

resulting fitness modification on the GA population,     

during the evolution, can be viewed as the system 
 

inputs and output signals varying during the 

successive generations. This analysis is evaluated 

using several experiments with different seeds for a 

small amplitude white noise perturbation signal. All 

the other seeds remain  unchanged. 

In this perspective, a white noise signal  dpmðT Þ   is 
added to the  mutation  probability  pm of  the 

strings during a time period T exc and the new 
mutation  probability  pn   is  calculated  by  Eq.   (5) 
where Z is the white noise signal with maximum 

amplitude ±Dp 

 

 

Note that expression (7) is a transfer function 

adopting left and right half-plane poles a and b, 

respectively. 

In order to estimate the transfer function para- 
meters, an identification GA adopting a real  string 

is executed with the representation fk; a; b; a; bg. The 

identification GA is executed during T ide ¼ 600 
generations with a 100 strings population. It is  used 

 

 

Consequently, the input signal, at generation T, is 
the difference between  the  two  cases,  that  is 
dpmðT Þ ¼ pnðT Þ- pmðT Þ. On the other hand, the 

output  signal  is  the  difference  in  the   population 

fitness  with  and  without  noise,  that  is  df ðT Þ ¼  

f nðT Þ- f ðT Þ. 
Fig.  2  shows  the  input  signal  dpmðT Þ,  with  seed 

i ¼ 1, in the generation domain and the correspond- 
ing polar diagram, for f A, Dp ¼ 0:04 and T exc  ¼ 2, 

where  F½dpmðT Þ]  represents  the  Fourier  transform 
of   the   signal   perturbation.   Fig.   3   shows   the 
corresponding output signal variation df ðT Þ. 

Once having de Fourier description of the input 

and output signals it is possible to calculate the 

corresponding transfer function (6) for seed   i 

 

 

 

 

 

 

 

 
 

 

Fig. 9. Output variation df ðT Þ for fitness f C and for the input 

excitation over T exc  ¼ 2 generations with seed i ¼ 1 (Dp ¼ 0:04). 

   

 

 

 

The transfer function Hi ðjwÞ, with seed i ¼ 1, 

between the input  and  output  signals,  is depicted 

in Fig. 4. 

After repeating for all seeds a ‘representative’ 

transfer function is obtained by using the median of 

the statistical sample [20,21] of n experiments. 

 
3.3. Transfer function identification 

 

In this section the median of the numerical system 

transfer function, Fig. 5, is approximated by 

analytical  expressions  with  gain  k 2 Rþ  and two 

 

Fig. 10.  Transfer function H1 ðjwÞ for fitness f C   and using seed 

i ¼ 1 (T exc  ¼ 2, Dp ¼  0:04). 



 

 

the simulated binary crossover [22] and, when one 
mutation   occurs,   the    corresponding   value 

fx1; . . .  ; x5g - fk; a; b; a; bg is changed according 

with the equations: 

Since the optimization GA has a stochastic 

dynamics, each execution of the GA, with  a 

different noise seed, leads to a different transfer 

function.   Consequently,   in   order   to   obtain     a 
numerical  convergence  [20]  are  performed  n ¼ 

  1701 perturbation experiments, for each optimiza- 

tion  function,  with  different  seeds  for  the   white 
  

where ui is a random number generated through the 

uniform probability distribution U and ei is fixed 

according with the range of   estimation. 

The fitness function f ide measures the distance 

between the median HðjwkÞ and Gðjwk Þ: 

 

 

  

where H represents the median of the n transfer 

functions resulting for each  different  seed,  nf  is 

the  total   number   of   sampling   points   and   wk, 

k ¼ f1; . .  . ; nf g is the corresponding vector of 

frequencies. 

noise signal, dpmðT Þ (all the other seeds for pm, pc 

and selection remains unchanged). So, the    transfer 

function of the optimization GA dynamics is 

evaluated by computing  the  Fourier  transform 

(FT) for each pair of input and  output  signals. 

After that, the medians of the transfer functions 

calculated previously (i.e., for each real and 

imaginary part and for  each  frequency)  are taken 

as the final part of the numerical transfer function 

HðjwÞ (see Fig. 5). 

For evaluating the influence of the excitation 

period T exc several simulations are performed 

ranging from T exc ¼ 2 to T exc ¼ 12  generations. 

The relation between the transfer function para- 

meters and T exc  are shown in Fig.  6. 

 

 

 

 

 

 

 

Fig. 11. Polar diagrams of HðjwÞ for fitness f C ðbÞ and Dp ¼ f0:03; 0:04; 0:05g, n ¼ 1701. (a) Polar diagram with Dp ¼ 0:03, (b) polar 

diagram with Dp ¼ 0:04, (c) polar diagram with Dp ¼ 0:05. 

(c) 

(b) (a) 



 

 

The charts of fk; a; b; a; bg can  be  approxi- 

mated  through Eq. (10) leading to the  parameters 

of Table 1. 
 

By enabling the zero/pole order to vary freely, we 

get non-integer values for a and b. Alternatively, the 

adoption of an integer-order  transfer  function 
would lead to a larger number of zero/poles to get 

  the  same  quality  in  the  analytical  fitting  to    the 

These results reveal that the transfer function 

parameters fk; a; a; b; bg vary with a power law vs. 
the excitation time T exc. Moreover, all the para- 
meters have a strong dependence with T exc on the 
transfer function. Furthermore, k varies with Dp 

and pm while fa; a; b; bg have a low dependence with 

Dp and pm. 

numerical values. The ‘requirement’ of fractional- 

order models, in opposition with the classical case 

of integer models, is a well-known discussion and 

even nowadays final conclusions are not clear since 

it is always possible to approximate a fractional 

frequency response through an integer one as long 

as we make  use  of a  larger  number  of zeros   and 
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(e) 

Fig. 12. Estimated parameters vs. T exc for fitness f C . (a) Gain k vs. T exc, (b) delay T vs. T exc, (c) pole a vs. T exc, (d) pole fractional-order a 

vs. T exc, (e) pole b vs. T exc, (f) pole fractional-order b vs. T exc. 

(f) 



 

 

poles. Nevertheless, the present experiments con- 

stitute a complementary point of view towards the 

adoption  of FC. 

 

4. Experiments with the fitness functions f B and f C 

In this section is presented the polar diagram and 
the correspondent parameters  approximation when 

is used the f B and f C optimization functions. The 

experiments are carried out in the same    conditions 

as the previous section. 

The polar diagrams obtained for f B can be seen in 

Fig. 7. Adopting again the transfer function (7), 
with l ¼ B, it  yields  the  estimated  parameters 

fk; a; a; b; bg depicted in Fig. 8. These parameters 

can be approximated also through the power 
expressions (10) leading to the results shown in 
Table 2. Function f B reveals a behavior with 

similarities to the previous case, with exception of 

the gain k that has a small variation with Dp. 

The study of the fitness function f C follows an 

identical strategy. Nevertheless, it results a different 

type of output and transfer function as can be  seen 

in Figs. 9 and 10. The output is less sensitive and 

responds only after a delay of several generations. 

Consequently, this optimization GA leads to a 

different polar diagrams for HðjwÞ (see Fig. 11). In 

this case the median HðjwÞ can be approximated by 

In this simulation only k (Fig. 12) follows 
clearly Eq. (10), resulting the estimated 
values depicted in Table 3. The other 

parameters reveal a kind of noisy behavior 
and no clear trendlines emerge. Never- 

theless, in order to easy comparisons it was  
decided 

to maintain the parameters estimation through (10) 
leading to exponents g2  close to  zero. 

 

 

5. Conclusions 

 
This paper analyzed the signal  propagation and 

the dynamic phenomena involved in the time 

evolution of a population of individuals. The study 

was established on the basis of a simple GA 

optimization using three different functions. While 

the study of GA schemes has been extensively 

studied, the influence of perturbation  signals over 

the operating conditions is not well   known. 

From the results can be concluded that the 

optimization functions and the time duration of 

perturbation have a strong influence upon the 

behavior of the GA while the value adopted for 

the mutation probability seems to be less significant. 

Bearing these ideas in mind, a FC calculus 

perspective was introduced in order to develop 

approximating transfer functions analytically simple 

yet meaningful. It was shown that fractional-order 

models  capture  phenomena  and  properties  that 
    classical integer-order sometimes overlook due to 

the approximation requirement for the introduction 

leading to a minimum phase system in contrast to 

the previous cases. 

of a large number of parameters that makes things 

unclear. 

 

Table 3 

Parameters of gi , i ¼ f1; 2g for fk; T ; a; a; b; bg approximation of f C  optimization function 
 

Dp k      T  

 g1   g2   g1   g2 

(a) k; T  parameters vs. Dp           
0.03 28328   -0.51   0.34   1.17 

0.04 21467   -0.51   57.22   0.02 

0.05 18418   -0.53   87.80   -0.36 

(b) a; a; b; b parameters vs. Dp           
Dp a   a   b   b  

g1 g2  g1 g2  g1 g2  g1 g2 

0.03 0.58 -0.38  11.71 -0.32  0.45 -0.04  9.65 0.23 

0.04 0.16 -0.35  1.50 -0.35  0.61 -0.23  19.72 -0.16 

0.05 0.25 -0.18  34.51 -0.21  0.88 -0.27  3.09 -0.08 
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