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Abstract 

Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper 
a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five 
simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives 
optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms 
of the achieved diversity. 
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1. Introduction 
 

In the last 20 years genetic algorithms (GAs) have been 
applied in a plethora of fields such as: control, system 

identification, robotics, planning and scheduling, image proces- 
sing, pattern recognition and speech recognition [1]. This paper 
addresses the planning of trajectories, meaning the development 
of an algorithm to find a continuous motion that takes the robotic 
manipulator from a given starting configuration to a desired end 
position in the workspace without colliding with any obstacle. 

Several single-objective methods for trajectory planning, 
collision avoidance and manipulator structure definition have 

been proposed. A possible approach for generating the 
manipulator trajectories [2,3] consists in adopting the 

differential inverse kinematics, using the Jacobian matrix. 
However, these techniques must take into account the 

kinematic singularities, which may be hard to tackle. To avoid 
this problem, other algorithms for the trajectory generation are 
based on the direct kinematics [4–8]. 

Chen and Zalzala [2] proposed a GA method to generate the 
position and the configuration of a mobile manipulator. In this 

 

 

report the inverse kinematics scheme is applied to optimize the 
least torque norm, the manipulability, the torque distribution 
and the obstacle avoidance. Davidor [3] also applied GAs to 
the trajectory generation by searching the inverse kinematics 
solutions to pre-defined end effector robot paths. Kubota et al. 
[4] studied a hierarchical trajectory planning method for a 
redundant manipulator with a virus-evolutionary GA, running 
simultaneously two processes. One process calculates some 
manipulator collision-free positions and the other generates a 
collision free trajectory by combining these intermediate 
positions. Rana and Zalzala [5] developed a method to plan a 
near time-optimal, collision-free, motion in the case of multi- 
arm manipulators. The planning is carried out in the joint 
space and the path is represented as a string of via-points 
connected through cubic splines. Gacô  gne [9] presented a 
problem involving obstacle avoidance. The proposed techni- 
que looks for the emergence of system rules for a mobile robot 
to obtain a good road-holding behavior in different play- 
grounds. A multi-objective genetic algorithm is used to find 
short and readable solutions for every concrete problem. 
Indeed, multi-objective techniques using GAs have been 
increasing in relevance as a research area. In 1989, Goldberg 
[10] suggested the use of a GA to solve multi-objective 
problems and since then other investigators have been 
developing  new  methods,  such  as  multi-objective    genetic 
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algorithm (MOGA) [11], non-dominated sorted genetic 
algorithm (NSGA) [12], niched Pareto genetic algorithm 
(NPGA) [13], among  many  other  variants [14]. 

This paper reports the use of a multi-objective method to 
optimize a robotic manipulator trajectory. The proposed 
method is based on a GA adopting direct kinematics. The 
optimal manipulator front is the one that minimizes the 
objectives without any obstacle collision in the workspace. 
Following this introduction, the rest of the paper is organized as 
follows: Section 2 formulates the problem and the GA-based 
method for its resolution. Section 3 presents several simulation 
results involving different robots, objectives and workspace 
settings. Finally, Section 4 outlines the main   conclusions. 

 

2. Problem and algorithm formulation 
 

This study considers robotic manipulators that are required 
to move from an initial point up to a given final configuration. 
Two and three degrees of freedom (dof) planar manipulators 
(i.e. robots with two (2R) and three (3R) rotational joints/links, 
see Fig. 1) are used in the experiments with link lengths of 1 m 
and rotational joints which are free to rotate 2p rad. However, 
this algorithm can be extended to hyper-redundant robots. To 
test a possible manipulator/obstacle collision, the arm structure 
is analyzed in order to verify if it is inside of any obstacle. The 
trajectory consists in a set of strings representing the joint 
positions between the initial and final robot   configurations. 

noted that the initial and final configurations are not encoded 
into the string because they remain unchanged throughout the 
trajectory search. Without losing generality, for simplicity, it is 
adopted a normalized time of Dt = 0.1 s, because it is always 
possible to perform a time  re-scaling. 

 

2.2.  Multi-objective genetic algorithm operators 

 

The initial population is randomly generated. The search is 
then carried out among this population. Three different 
operators are used in the genetic planning: selection, crossover 
and mutation, as described in the   sequel. 

In  what  concerns  the  selection  operator,  the  successive 
generations of new strings are reproduced in a similar away like 
the MOGA algorithm [15]. Initially, each solution of the 
population is assigned a fitness value, f, according to its rank 
[10]. To promote population diversity the well-known fitness 
sharing  scheme  [12]  is  used  with  a  sharing  radius  of 
sshare = 0.01 and exponential of a =2  (2a). In this algorithm 
the distance between two solutions is measured in the 
parameter space and the sharing is performed considering all 
the solutions independently of their rank in spite of performing 
the sharing just between population member with same rank, as 
proposed by [15]. The metric used, between solutions s and k, is 
the Euclidian distance evaluated by Eq. (2b). The final fitness 
function are then given by Eq.  (2d): 

 

2.1. Representation 

 
 

 

The path for a iR manipulator (i = 2, 3), at generation T, is 
directly encoded as vectors in the joint space to be used by the 
GA. This is represented by (1), where i is the number of dof and 
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Dt the sampling time between two consecutive configurations:   

   

  
 

    
  

 
The joints values q

ð jDt;0Þ  
( j = 1, . . .  , n - 2; l = 1, . . .  , i) are 

randomly  initialized  in  the  range  [-p,  +p] rad.  It  should  be 

  

 

The simulated binary crossover (SBX) [12] operator is used 
with a probability pc = 0.6. The mutation operator replaces one 
gene value with probability pm = 0.05 using the Eq. (3), at 
generation T, where N(m, s) is the normal distribution function 
with average m and standard deviation  s. 

 
  

   

 
 

 

 
 

Fig. 1.  Two joint (link) robotic manipulator (2R) (g, gravity   constant). 

2.3.  Evolution criteria 

Five indices 
{ 

fq; fq̇ ; f p; f ṗ ; fEa 

� 
(4) are used to qualify the 

evolving  trajectory  robotic  manipulators.  These  criteria  are 



 

i q > p are 

 

 

 

Fig. 2. Optimal fronts for the 2R robot. (a) Pareto optimal front and (b) local optimal front. 

 
 

minimized by the planner to find the optimal Pareto front. 
Before  evaluating  any  solution,  in  order  to  remove virtual 

 

The joint velocity function fq̇ is used to minimize the ripple in 
time evolution. The cartesian distance fp  (4c)  minimizes    the 

jumps,  all  the values  such  that  jq
ðð jþ1ÞDt;TÞ

 
ð jDt;TÞ 

- i j total arm trajectory length, from the initial point up to the final 
readjusted, adding or removing a multiple value of 2p, in   the 
strings: 

point, where pj is the robot j intermediate arm cartesian position 
and d(-, -) is a function that returns the distance between   two 

arguments. The cartesian velocity  f ṗ (4d)  is  responsible for 
   reducing the ripple in arm time evolution. Finally, the   energy 

  fEa in expression (4e), where tl reports the robot joint torques, 

is computed assuming that power regeneration is not available 
by motors doing negative work, that is, by taking the absolute 
value of the power  [16]. 

  

 

 
  3. Simulation results 

 

In this section results of various experiments are presented. 
In this line of thought, subsections 3.1 and 3.2 present the 
trajectory optimization for 2R and 3R robots respectively, using X

  two objectives (2D). Subsection 3.3 shows the results of a five 
dimensional (5D) optimization for a 2R robot. Finally, 
subsection 3.4 presents the results of a 5D optimization for a 
3R robot in a workspace with an   obstacle. 

   

  

 

 

   

3.1. 2R Robot trajectory with 2D optimization 

 

The first experiment consists on moving a 2R robotic arm 
from the starting configuration, defined by the joint coordinates 

   A   {-1.149, 1.808} rad, up to the final configuration, defined 
by B   {1.181, 1.466} rad, in a workspace without obstacles. 

The joint distance fq (4a) is used to minimize the manipulator 
joints traveling distance. In fact, for a function y = g(x) the 
curve length is defined by Eq. (5) and, consequently, to mini- 
mize the curve length distance the simplified expression (6) is 
adopted: 

The optimization objectives considered in this section are the 
joint velocity  fq̇     (4b) and the cartesian velocity  f ṗ                         (4d). 

The simulations  results  achieved  by  the  algorithm, with 
n = 9 configurations, Tt = 15,000 generations and popsize = 300, 
converge to two optimal fronts. One of the fronts (Fig. 2(a)) 
corresponds to the movement of the manipulator around its base 
in the counterclockwise direction. The other front (Fig. 2(b)) is 

   

  
obtained when the manipulator moves in the clockwise 
direction. The solutions a and b, shown in Fig. 2 represents 
the   best   solution   found   for the fq̇ 

respectively. 
and f ṗ objectives, 

  
  

In this simulation study, the MOEAwas executed 21 times in 
order to study the Pareto optimal convergence. In 66.6% of the 
21 total number of runs, the Pareto optimal front was found. In 



 

 

Table 1 

Fronts parameters statistics 

 

 Pareto front     Local front    

 k a b Length  k a b Length 

Median 13.46 -8.32 -10.77 38.22  19.23 49.28 -13.02 315.50 

Average 13.45 -7.40 -9.95 38.70  19.18 49.48 -13.19 334.32 
Standard deviation 0.37 2.71 1.82 7.43  0.30 3.65 0.76 55.79 

 

all simulations, for both cases, the solutions converged to a 
front type, which can be modeled by the following equation (k, 
a, b 2 R): 

 

 

 

The achieved median, average and standard deviation for the 
parameters k, a and b of (7) are shown in Table 1, both for the 
Pareto optimal and local fronts. From these values it can be 

concluded that the algorithm converges always for one of the 
fronts. Furthermore, the variation for each type of front is small, 
as it can be verified by the achieved standard deviation values. 

To study the spread of the fronts the length of the 
approximating functions are measured. This length is evaluated 

considering the two extreme solutions of the front {a, b}. 
Therefore, the length is evaluated between the two points of the 
modeled function whose distance is the smaller to front points a 

and b, respectively. Table 1 also shows the experiments length 

Fig. 3.  Normal straight lines to the front obtained with  f ṗ      ð fq̇ Þ function. 

 

median, average and standard deviation. The front length 
variation is not as small as desirable. Further refinements to the 
proposed technique are under  consideration. 

To study the solution front diversity, the  approximated 
front was split into several intervals, limited by normal 
straight lines rm (Fig. 3), such that the front curve length is 
equal for all intervals. Any two consecutive normal straight 
lines have an associated interval Im (m = 1, . . .  , 19), and the 
solutions  located  between  these  lines  are  counted.  Fig.   4 

 
 

 

 

Fig. 4.  Solution distribution statistics for the 2R  robot. 

 

 
 

 

 

Fig. 5. Successive 2R robot configurations. (a) Solution, a, with the best performance for joint velocity ( fq̇ ) objective and (b) solution, b, with the best performance 

for cartesian velocity ( f ṗ    ) objective. 



 

 

 

 

Fig. 6. Joint time evolution vs. time for the 2R robot. (a) Solution, a, with the best performance for joint velocity ( fq̇ ) objective and (b) solution, b, with the best 
performance for cartesian velocity ( f ṗ    ) objective. 

 
 

shows the solution distribution statistics achieved by all 
simulation runs. In this chart, non-dominated and dominated 
solutions are represented, namely its average and its standard 
deviation. From the chart, it can be seen that the solutions are 
distributed in all intervals. However, the distribution is not 
uniform. This is due to the use of a sharing function in the 
attribute domain in spite of the objective domain. Moreover, 
the algorithm does not incorporate any  mechanism  to 
promote the development of  well-distributed  solutions  in 
the  objective domain. 

The results obtained for solutions a and b, of the Pareto 
optimal front in Fig. 2(a), are presented in Figs. 5 and 6. The 
comparison of Figs. 5 and 6(a) with Figs. 5 and 6(b), makes 
clear that the joint/cartesian time evolution for the optimal 
solutions a and b, respectively, is significantly different due to 
the objective adopted. Between these extreme optimal solutions 
several others were found, that have an intermediate  behavior, 

 

 

Fig. 7.  Pareto optimal fronts, angular distance vs. cartesian distance optimiza- 

tion:   f1  ¼ cab  (workspace without  obstacles);   f2  ¼ cbd  (workspace  with  one 
obstacle). 

 
 

 

 

Fig. 8.  Successive 3R robot configurations. (a) Solution a and (b) solution   c. 

 

 

 

 

Fig. 9. Joint position of trajectory vs. time for the 3R robot. (a) Solution a and (b) solution c. 



 

 

 

 

Fig. 10.  Value path method representation of  fq ; fq̇ ; fEa ; f p  and  f ṗ              objectives. (a) Population tradeoffs and (b) best solution   tradeoffs. 

 

 
 

 

 

Fig. 11. Behavior of the best solutions obtained for the 2R robot with 5D optimization. (a) Joint 1 position vs. time, (b) joint 2 position vs. time, (c) joint 1 time 

evolution vs. time, (d) joint 2 time evolution vs. time, (e) cartesian movement, (f) cartesian time evolution, (g) joint 1 energy required and (h) joint 2 energy required. 



 

a 

 

and which can be selected according with the importance of 
each objective. 

 
3.2. 3R Robot trajectory with 2D optimization 

 

In this subsection a 3R robot trajectory is optimized using 
the objectives fq  (4a) and fp  (4c) in a workspace which may 
include a circle obstacle with center at (x, y) = (2, 2) and radius 
r = 1. The initial and final configurations are A   {-1.15, 1.81, 

Table 2 

Range objectives in the 5D optimization for a single   run   
 

fq (rad2/s2) fq̇       (rad4/s4) fEa  (J) fp (m
2/s2) f ṗ             (m4/s4) 

Minimum 79.8 18.2 1056.7 83.5 15.0 

Maximum 182.3 101.7 4602.7 121.8 56.4 

 

 
 

Table 3 

Range objectives in 5D optimization and 3R  robot 

-0.50} rad and B   {1.18, 1.47, 0.50} rad, respectively. The Tt fq (rad2/s2) fq̇ (rad4/s4) fE (J) fp (m2/s2) f ṗ (m4/s4) 
and popsize parameters used are identical to those adopted in the    
previous subsection.  The  trajectories,  which  collide with the 

obstacle are assigned a very high fitness value, in order to be 
eliminated in the  evolution. 

For an optimization without any obstacle in the workspace 
the   f2  ¼ cab  front  (Fig.  7)  is  obtained.  However,  when  the 

Minimum 155.1 52.8 446.9 74.4 12.9 
Maximum     638.0 731.9 20531.3     333.7 108.3   

Fig. 10(b) shows the solutions s = {s , s , s , s , s } which 
obstacle is introduced the front is reduced to the f1 ¼ cbd. Thus, i 1     2     3     4   5 

have the best performance for each objective 
only the performance of fq  objective is affected because no 
longer is possible to obtain so small values as previous case Oi  ¼ 

{ 
fq; fq̇ ; fEa ; f p; f ṗ 

�
 . From Fig. 10(b) it can be concluded 

(Figs. 8 and 9). Solutions {a, b} and {c, d} represent the 
solutions which have the best performance for the    objectives 
{fq, fp} with the 3R manipulator without and with obstacles, 
respectively. 

 
3.3. 2R Robot trajectory with 5D optimization 

 

Here, the 2R manipulator trajectory is optimized considering 
simultaneously five objectives described by Eq. (4). Figs. 10 
and 11 show the optimization results achieved with Tt = 50,000 
generations and popsize  = 1000. 

Fig. 10(a) shows the final non-dominated solutions found in 
one run. The horizontal axis marks the identity of the objective 
functions. The vertical axis represents the normalized objective 
values. Non-normalized maximum and minimum values 
archived in the simulation can be seen in Table 2. The 5D 
algorithm did not attain solutions as good as the 2D algorithm 
due to the significant increase in the search complexity; 
nevertheless, the solutions have a good distribution (Fig. 10(a)) 
with values near to the ones obtained for the 2D corresponding 
simulation. The good distribution can be observed in Fig. 10(a) 
by the solution spread achieved in vertical direction over  each 

objective mark 
( 

fq; fq̇ ; fEa ; f p; f ṗ                                              . 

that fq  and  fq̇ , or fp  and  f ṗ   , are conflicting objectives with   a 
relative low tradeoff between them (extent  fq  fq̇     and  f p  f ṗ                 of 

{s1, s2} and {s4, s5}, respectively). On the other hand, the fEa 

objective presents the highest tradeoff among the others 
objectives. Fig. 11 shows the best solution, si obtained for each 
objective i = {1, . . .  , 5}. For the studied trajectory, the results 
indicate that as the manipulator moves near to its basis the 
energy consumed is lower (Fig. 11(e), (g) and   h). 

 

3.4. 3R Robot trajectory with 5D optimization 

 
In this subsection, a 3R manipulator trajectory is optimized 

considering the five objectives described by Eq. (4) and one 
obstacle  with  center  c = (1,  0.4)  and  radius  r = 0.4.  The 
manipulator  has  a  link  length  of  li  = 0.67 m  and  weight  of 
mi  = 0.67 kg,  i = {1, . . . ,  3}.  The  starting  and  final  config- 
urations are A = {-1.374, 1.129, 1.129} and B = {1.05, 0.909, 
0.909}, respectively. Table 3 contains the objective range 
values achieved by the 3R manipulator  in  a  single  run. 
Fig. 12(a) and (b) shows the optimization results achieved 
with  Tt = 50,000  generations  and  popsize = 1000.  From Fig. 
12(b) it can be confirmed that the objectives are quarrelsome. 
However, the relative tradeoffs between them have 
changed. 

 

 

 

 

Fig. 12.  Value path method representation of  fq ; fq̇ ; fEa ; f p  and  f ṗ              objectives for the 3R  robot. 



 

 

 

 

Fig. 13. Results of the best solutions for 3R robot with one obstacle, considering MOEA optimization with five objectives. (a) Successive configurations for the 

archived best solution regarding the joint distance ( fq) objective, (b) successive configurations for the archived best solution regarding the joint velocity ( fq̇ ) objective, 

(c) successive configurations for the archived best solution regarding the energy ( fEa ) objective, (d) successive configurations for archived best solution regarding the 
cartesian distance ( fp) objective and (e) successive configurations for the archived best solution regarding the cartesian velocity ( f ṗ    ) objective. 

 

Fig. 13 presents the best solutions for each objective. The 
great part of them are obtained when the manipulator travels in 
the counterclockwise direction. However, the solution with 
lower  fq̇     is obtained in a clockwise  direction. 

 

4. Summary and conclusions 
 

A multi-objective genetic algorithm robot trajectory planner, 
based on the kinematics approach, was proposed. The multi- 
objective genetic algorithm is able to reach optimal solutions 
regarding the optimization of multiple objectives. Simulation 
results were presented considering the optimization of two and 
five simultaneous objectives. The results obtained indicate that 
obstacles in the workspace may interfere in the Pareto front. For 
the studied cases the single obstacle considered does not 
represent a significant difficulty for the algorithm to reach 
optimal solutions. Furthermore, the algorithm determines the 
non-dominated front maintaining a good spread and distribu- 
tion of solutions along the Pareto front. The relative tradeoffs 
between the objectives change according with the robot and the 
workspace under evaluation. 
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