
Trajectory planning of redundant manipulators using genetic algorithms

Maria da Graça Marcos, J.A. Tenreiro Machado, T.-P. Azevedo-Perdicoúlis 
Keywords:
Redundant manipulators 

a b s t r a c t

The trajectory planning of redundant robots is an important area of research and efficient
optimization algorithms are needed. This paper presents a new technique that combines
the closed-loop pseudoinverse method with genetic algorithms. The results are compared
with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory
planning is formulated as an optimization problem with constraints.
en a manipulator possesses more degrees of freedom than the required to execute a gi-
ematics admits an infinite number of solutions, and a criterion to select one of them is 
dundancy deals with the use of these extra degrees of freedom and is referred to in the 
Kinematics
Genetic algorithms 
Trajectory planning

1. Introduction

Kinematic redundancy occurs wh
ven task. In this case the inverse kin
required. Most of the research on re

literature as the resolution of redundancy [1].

Many techniques for solving the kinematics of redundant manipulators that have been suggested control the end-effector 
indirectly, through the rates at which the joints are driven, using the pseudoinverse of the Jacobian (see, for instance, [2]). 
The pseudoinverse of the Jacobian matrix guarantees an optimal reconstruction of the desired end-effector velocity – in the 
least-squares sense – with the minimum-norm joint velocity. However, even though the joint velocities are instantaneously 
minimized, there is no guarantee that the kinematic singularities are avoided [3]. Moreover, this method has the generally 
undesirable property that repetitive end-effector motions do not necessarily yield repetitive joint motions. Klein and Huang 
[4] were the first to observe this phenomenon for the case of the pseudoinverse control of a planar three-link manipulator. 

Baillieul [5] proposed a modified jacobian matrix called the extended Jacobian matrix. The extended jacobian is a square 
matrix that contains the additional information necessary to optimize a certain function. The inverse kinematic solutions are 
obtained through the inverse of the extended jacobian. The algorithms, based on the computation of the extended jacobian

mailto:mgm@isep.ipp.pt
mailto:jtm@isep.ipp.pt
mailto:tazevedo@utad.pt
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


matrix, have a major advantage over the pseudoinverse techniques because they are locally cyclic [6]. The disadvantage of
this approach is that, while mechanical singularities may be avoided, typical algorithmic singularities [7] arise from the way
the constraint restricts the motion of the mechanism [8].

One optimization method that is gaining popularity for solving complex problems in robotics is the genetic algorithm
(GA). GAs are population-based stochastic and global search methods. Their performance is superior to that revealed by clas-
sical techniques [9] and has been used successfully in robot path planning.

Parker et al. [10] used GAs to position the end-effector of a robot at a target location, while minimizing the largest joint
displacement. This method has some shortcomings, such as the lack of location precision, and is affected by the values of
the weights. Arakawa et al. [11] proposed a virus-evolutionary genetic algorithm, composed of a host population and a
virus population with subpopulations, for the trajectory generation of redundant manipulators without collision, that opti-
mize the total energy. The operators of crossover, mutation, virus infection and selection are executed in each subpopu-
lation independently. Kubota et al. [12] studied a hierarchical trajectory planning method for a redundant manipulator
using a virus-evolutionary GA. This method runs, simultaneously, two processes. One process calculates some manipulator
collision-free positions and the other generates a collision-free trajectory by combining these intermediate positions. de la
Cueva and Ramos [13] proposed a GA for planning paths without collisions for two robots, both redundant and non-redun-
dant, sharing the same workspace. The GA works directly over the task space adopting the direct kinematics. Each robot is
associated to one population and each string of a population represents a complete robot path. Nishimura et al. [14] pro-
posed a motion planning method using an artificial potential field and a GA for a hyper-redundant manipulator whose
workspace includes several obstacles. The motion planning is divided into two sub problems. The first is the ‘‘path plan-
ning” that generates a path leading the tip of manipulator to the goal without collisions, using the artificial potential field
concept. The second consists in the ‘‘collision-free sequence generation” that generates a sequence of movements by
which distinct parts of the manipulator can avoid collisions with the obstacles. McAvoy and Sangolola [15] proposed
an approach with GAs for optimal point-to-point motion planning of kinematically redundant manipulators. Their ap-
proach combines B-spline curves, for the generation of smooth trajectories, with GAs for obtaining the optimal solution.
Peng and Wei [16] presented the ASAGA trajectory planning method of redundant manipulators by combining a stochastic
search algorithm (simulated annealing algorithm) and a GA. In the ASAGA the selection, crossover and mutation operators
are adjusted by using an adaptive mechanism based on the fitness value. Zhang et al. [17] proposed an algorithm to solve
the inverse kinematics of a flexible macro–micro manipulator system which combines a GA and a neural network. The GA
is used to acquire discrete solution of the inverse kinematics, based on the fitness function and the discrete solution, is
generalized through a forward neural network.

Having these ideas in mind, the paper is organized as follows. Section 2 introduces the fundamentals of the kinematics
and dynamics of redundant manipulators. Based on these concepts, Section 3 presents the new closed-loop inverse kinemat-
ics algorithm with genetic algorithms (CLGA) and, for comparison purposes, the open-loop genetic algorithm (OLGA). Section
4 presents the simulation results and, finally, Section 5 draws the main conclusions.
2. Kinematics and dynamics of redundant manipulators

We consider a manipulator with n degrees of freedom whose joint variables are denoted by q = [q1,q2, . . . ,qn]T. We assume
that the class of tasks we are interested in can be described by m variables, x = [x1,x2, . . . ,xm]T, m < n, and that the relation
between q and x is given by the direct kinematics:
x ¼ f ðqÞ ð1Þ
Differential kinematics of robot manipulators was introduced by Whitney [18] that proposed the use of differential rela-
tionships to solve for the joint motion from the Cartesian trajectory of the end-effector. Whitney named this method resolved
motion rate control. Differentiating (1) with respect to time yields:
_x ¼ JðqÞ _q ð2Þ
where _x 2 Rm, _q 2 Rn and JðqÞ ¼ @f ðqÞ=@q 2 Rm�n. Hence, it is possible to calculate a path q(t) in terms of a prescribed tra-
jectory x(t) in the operational space.

Eq. (2) can be inverted to provide a solution in terms of the joint velocities:
_q ¼ J#ðqÞ _x ð3Þ
where J# is the Moore–Penrose generalized inverse of the Jacobian J [2,19].
The dynamic equation of motion for a general n-link manipulator can be described by
T ¼MðqÞ€qþ cðq; _qÞ þ gðqÞ ð4Þ
where T is the n � 1 joint torque vector, M(q) is the n � n inertia matrix, cðq; _qÞ is the n � 1 Coriolis/centripetal vector, and
g(q) is the n � 1 gravity vector.



3. Robot trajectory control

The Jacobian of a n-link planar manipulator (i.e., m = 2) has a simple recursive nature according with the expressions:
J ¼
�l1S1 � � � � � lnS1...n � � � �lnS1...n

l1C1 þ � � � þ lnC1...n � � � lnC1...n

� �
ð5Þ
where li is the length of link i, qi. . .k = qi+� � �+qk, Si. . .k = Sin(qi. . .k) and Ci. . .k = Cos(qi. . .k), i; k 2 N.
In the experiments are adopted arms having identical link lengths, l1 = l2 = . . . = ln.
In the closed-loop pseudoinverse (CLP) method the joint positions can be computed through the time integration of (6):
Dq ¼ J#ðqÞðxref � xÞ ð6Þ

where xref is the vector of reference position in the operational space. Nevertheless, in a previous study, addressing the CLP
method [20], we concluded that this method leads to unpredictable arm configurations and reveals properties resembling
those that occur in chaotic systems.

Genetic algorithms (GAs) are a method for solving both constrained and unconstrained optimization problems, based on
the mechanics of natural genetics and selection, that was first introduced by Holland [21]. A GA allows a population com-
posed of many individuals to evolve under specified selection rules to a state that maximizes the fitness or the cost function.
The GA modifies repeatedly the population of individuals (possible solutions). At each step, the genetic algorithm selects
individuals at random, from the current population, to be parents, and uses them to produce the offspring for the next gen-
eration. Over successive generations, the population evolves towards an optimal solution. The GAs can be applied to solve a
variety of optimization problems that are not well suited for standard optimization algorithms, including problems in which
the objective function is discontinuous, not differentiable, stochastic, or highly nonlinear.

Bearing these facts in mind, in this paper we propose a new method that combines the CLP with a GA, that we call closed-
loop inverse kinematics algorithm with genetic algorithms (CLGA).

For comparison purposes another GA is used to solve the redundant robot kinematics, adopting the direct kinematics to
search the configuration space for the solution. We call this second scheme as the open-loop genetic algorithm (OLGA). The
optimal configuration is the one that minimizes the fitness function according to some specified criteria.

3.1. The CLGA formulation

The CLGA adopts the closed-loop structure without requiring the calculation of the pseudoinverse. The CLGA uses an ex-
tended Jacobian matrix J*, n � n, and an extended vector Dx*, as a way to limit the joint configurations for a given end-effec-
tor position.

The definition of J* and Dx* take the form:
J� ¼

�l1S1 � � � � � lnS1...n � � � �lnS1...n

l1C1 þ � � � þ lnC1...n � � � lnC1...n

j31 � � � j3n

� � � � � � � � �
jn1 � � � jnn

2
6666664

3
7777775

Dx� ¼

Dx1

Dx2

Dx3

..

.

Dxn

2
66666664

3
77777775

ð7Þ
where the matrix elements jik and Dxi, i = 3, . . . ,n and k = 1, . . . ,n, are values generated by the GA, satisfying the additional
imposed constraints.

3.2. Representation and operators in the CLGA

An initial population of strings, with dimension nP = N, is constructed at random and the search is then carried out among
this population. Each chromosome (string) is implemented by a matrix of nV = (n � 2) � n values (genes), represented as
floating-point numbers, and initialized in the range [varmin, varmax]. The three different operators used in the genetic algo-
rithm are reproduction, crossover and mutation. In what respecting the reproduction operator, the successive generations
of new strings are generated on the basis of their fitness function. In this case, it is used a rank weighting to select the strings
from the old to the new population. For the crossover operator, the strings are randomly grouped together into pairs. Single
crossover is then performed among pairs. Finally, for the mutation operator, one variable value is replaced with a new ran-
dom one. The first chromosome is not mutated due to the adoption of elitism.

The CLGA procedure is shown in Fig. 1, where xref is the vector of reference position in the operational space and xini is a
vector representing the initial position of the end-effecter in the operational space.

3.3. Optimization criteria

The fitness function is designed according to the goal we want to achieve. Five criteria have been selected a priori. All con-
straints and criteria are translated into penalty functions to be minimized and that are defined in the sequel.



Fig. 1. Procedure for the CLGA.
1. The largest joint displacement between two adjacent robot configurations can be minimized through the fitness function:
f1 ¼maxf½qjðkþ 1Þ � qjðkÞ�
2g; j ¼ 1;2;3 ð8Þ
where k and k + 1 are two consecutive sampling instants.
2. The total level of joint velocities must be minimized at each configuration leading to the fitness function:
f2 ¼
X3

j¼1

_q2
i ð9Þ
3. The joint accelerations are used to minimize the ripple in the time evolution of the robot trajectory, according to the fit-
ness function:
f3 ¼
X3

j¼1

€q2
i ð10Þ
4. In order to minimize the total joint torque in each joint configuration the fitness function is
f4 ¼
X3

i¼1

T2
i ð11Þ
5. To minimize the total joint power consumption the fitness function is
f5 ¼
X3

j¼1

P2
i ð12Þ
where the power Pi at joint i is defined as Pi ¼ Ti _qi where Ti is the generalized force/torque for joint i (i = 1,2,3).

3.4. The OLGA formulation

The OLGA trajectory planning adopts a simple open-loop structure, as we can see in Fig. 2. An initial population of strings,
with dimension nP = N, is constructed at random and the search is then carried out among this population. Each chromosome
is defined through an array of nV = n values, qi, i = 1, . . . ,n, represented as floating-point numbers, initialized in the range
[qmin, qmax]. The end-effector position for each configuration is easily calculated using the direct kinematics.



Fig. 2. Procedure for the OLGA.
If the robot’s end-effector current position is Pc = (xc,yc) and the desired final position is Pf = (xf,yf), then the positional er-
ror, Perror, is defined as
Perror ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xf Þ2 þ ðyc � yf Þ

2
q

ð13Þ
The evaluation function Fa,i is defined based on the positional error, Perror, of the end-effector and on one of the criteria
functions fi (i = 1, . . . ,5) defined previously:
Fa;i ¼ aPerror þ ð1:0� aÞfi; i ¼ 1; . . . ;5 ð14Þ
where 0 < a < 1 denotes a weighting factor. When a = 1.0, the evaluation function is defined using only the position error, and
in this case it would be defined by F1.0,0.

4. Simulation results

This section presents the results of several simulations that compare the performance of the OLGA and the CLGA.
The experiments consist in the analysis of the kinematic performance of a planar manipulator with 3 rotational joints (3R-

robot) that is required to repeat a circular motion in the operational space with frequency x0 = 7.0 rads�1, center at
r ¼ ðx2

1 þ x2
2Þ

1=2, radius q = 0.5 and a step time increment of Dt = 10�3 s. The goal here is to position the end-effector of the
3R-robot at a target location while satisfying a given optimization criterion.

4.1. The OLGA performance

In a first set of experiments, the OLGA adopts crossover and mutation probabilities of pc = 0.5 and pm = 0.2, respectively, a
string population of nP = 100, and the results are obtained for nG = 100 consecutive generations.

Fig. 3 presents the average of the positional error, Perror , for nC = 100 cycles and r = {0.7,1.0,2.0}, defined as
Perror ¼
Pk

i¼1Perror

k
ð15Þ
where k is the number of sampling points and is defined as
k � 2p
x0Dt

nC ð16Þ
As we can see the Perror is very large, revealing a considerable lack of precision. Therefore, we decided to develop a second
set of experiments adopting a nP = 800 string population in order to augment the search space. The results are also shown in
Fig. 3. The algorithm requires more time, due to the higher computational load, but the performance, in what concerns the
index Perror , is much superior.



1.0E-06

1.0E-04

1.0E-02

1.0E+00

r = 0.7 r = 1.0 r = 2.0

r = 0.7 r = 1.0 r = 2.0

100
P

n =
800

P
n =

1.0,0
F

0.9,1
F

0.9,2
F

0.9,3
F

0.9,4
F

0.9,5
F

posE

Fig. 3. Perror of the 3R-robot, under the action of the OLGA for nP = 100 and nP = 800 string population, during nC = 100 cycles for r = {0.7, 1.0, 2.0}.
We observe that:

(i) as was expected, the minimum value of Perror occurs when function F1.0,0 is used, that is, when we consider only the
positional error on the fitness function;
(ii) the Perror depends upon r.

The Fourier transform of the robot joint velocities for a nP = 800 string population is depicted in Figs. 4–6 revealing that:

(i) we get a signal energy distribution along all frequencies (corresponding to a chaotic response) when minimizing only
the positional error F1.0,0, minimizing the total joint torque F0.9,5 or minimizing the total power consumption joint F0.9,6;
(ii) the signal energy is essentially concentrated in the fundamental and multiple higher harmonics (corresponding to a
repetitive motion) when minimizing the largest joint displacement F0.9,1, the total joint level velocities F0.9,3 or the joint
accelerations F0.9,4.

4.2. The CLGA performance

In this sub-section we start by analyzing the performance of the CLGA for a free workspace and, in a second phase, we
study the effect of including several types of obstacles in the working environment.

The CLGA algorithm adopts crossover and mutation probabilities of pc = 0.5 and pm = 0.2, respectively, a nP = 100 string
population, and the results are obtained for nG = 100 consecutive generations.
0.7r = 2.0r =

0 1 2 3
10
20

30

40

50

0 1 2 3
10

20
30

40

50

0 1 2 3
0

20

40

0 1 2 3

20

30

40

50

0 1 2 3

10
20
30
40
50

0 1 2 3

20

30

40

50

0.7r = 2.0r =

0 1 2 3

-20

0

20

40

0 1 2 3

-20

0

20

0 1 2 3
-20

0

20

40

0 1 2 3
-20

0

20

0 1 2 3
-20

0

20

40

0 1 2 3

-20

0

20

40

Fig. 4. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the OLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitnesses (a) F1.0,0 and (b) F0.9,1.



0.7r = 2.0r =

0 1 2 3 0 1 2 3

-20

0

20

40

0 1 2 3 0 1 2 3

-20

0

20

0 1 2 3 0 1 2 3

-20

0

20

40

-20

0

20

40

-20

0

20

0

20

40

0.7r = 2.0r =

0 1 2 3

-20

0

20

40

0 1 2 3

-20

0

20

0 1 2 3

-20

0

20

40

0 1 2 3

-20

0

20

0 1 2 3
-20

0

20

0 1 2 3

-20

0

20

40

Fig. 5. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the OLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitnesses (a) F0.9,2 and (b) F0.9,3.

0.7r = 2.0r =

0 1 2 3
0

10

20

30

40

0 1 2 3

10

20

30

40

0 1 2 3
0

10
20
30
40

0 1 2 3

0

20

40

0 1 2 3
0

10

20

30

40

0 1 2 3
10

20

30

40
50

0.7r = 2.0r =

0 1 2 3
0

10
20
30
40

0 1 2 3
0

20

40

0 1 2 3
0

10

20

30

40

0 1 2 3

0

10

20

30

0 1 2 3

10

20

30

40

0 1 2 3
10

20

30

40

50

Fig. 6. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the OLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitnesses (a) F0.9,4 and (b) F0.9,5.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
r = 0.7 r = 1.0 r = 2.0

1
f

2
f

3
f

4
f

5
f

posE

Fig. 7. Perror of the 3R-robot, under the action of the CLGA for nP = 100 string population, during nC = 100 cycles for r = {0.7, 1.0, 2.0}.
4.2.1. The CLGA performance in a workspace without obstacles
The average of the positional error, Perror , is presented in Fig. 7. We observe that:

(i) a high precision is achieved when using the CLGA with {f1, f2, f3, f5};
(ii) the maximum value of Perror occurs when minimizing the total joint torque f4;
(iii) in general, the CLGA gives better accuracy in the positioning than the OLGA.



0.7r = 2.0r =

0 1 2 3

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3

-10
0

10
20
30

-10
0

10
20
30

-20

0

20

0 1 2 3
-40

-20

0

20

-20

0

20

-20

0

20

40

Fig. 10. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the CLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitness f5.

0.7r = 2.0r =

0 1 2 3
-60
-40
-20

0
20
40

0 1 2 3
-60
-40
-20

0
20
40

0 1 2 3

-60
-40
-20

0
20
40

0 1 2 3
-40

-20

0

20

40

0 1 2 3
-40

-20

0

20

40

0 1 2 3

-40

-20

0

20

0.7r = 2.0r =

0 1 2 3

-20

0

20

0 1 2 3
-20

0

20

0 1 2 3
-40

-20

0

20

0 1 2 3
-40

-20

0

20

0 1 2 3
-40

-20

0

20

0 1 2 3
-40

-20

0

20

Fig. 8. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the CLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitnesses (a) f1 and (b) f2.

0.7r = 2.0r =

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

-10
0

10
20
30

-20

0

20

-20

0

20

-20

0

20

40

-20

0

20

-20

0

20

0.7r = 2.0r =

0

10

20
30

40

0

10

20

30

0

10

20

30

30

40

50

60

70

40

50

60

70

40

50

60

70

Fig. 9. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the CLGA, during nC = 100 cycles for r = {0.7, 2.0} and the fitnesses (a) f3 and (b) f4.
The Fourier transform of the robot joint velocities are depicted in Figs. 8–10 revealing that:

(i) we get a signal energy distribution along all frequencies when minimizing the total joint torque f4;
(ii) the signal energy is concentrated in the fundamental and multiple higher harmonics when we minimize the largest
joint displacement f1;



(iii) the results depend on the radial distance when minimizing the total joint velocities f2, the total joint accelerations f3

or the total joint power consumption f5.

We verify that the CLGA has a better performance than the OLGA or the CLP because, for example, when minimizing the
largest joint displacement f1, we get not only a good positioning but also a repetitive trajectory.

4.2.2. The CLGA performance in a workspace with obstacles
This section presents the results of several simulations, for the criteria f1, when considering two obstacles in the work-

space. When, for a given joint configuration, some part of the manipulator is inside an obstacle, the CLGA simply rejects
the configuration and generates a new population element.

Are considered two cases:

(i) for r = 0.7, the obstacles consist on one circle with center at (0.3, 1.3) and radius 0.2, and one rectangle, with the upper
left corner and the lower right corner with coordinates (1.3, 0.9) and (1.8, 0.5), respectively;
(ii) for r = 2.0, the obstacles consist on one circle with center at (1.6, 0.6) and radius 0.2, and one rectangle, with the upper
left corner and the lower right corner with coordinates (0.1, 1.5) and (0.6, 1.1), respectively.
Fig. 11. Successive robot configurations in a workspace with obstacles for r = 0.7, for the first and second cycles, respectively.

Fig. 12. Successive robot configurations in a workspace with obstacles for r = 2.0, for the first and second cycles, respectively.



In a first set of experiments we test the 3R-robot for a motion with two cycles.
For r = 0.7, the initial joint configuration is q0 = (0�, 14.9�, 154.3�). Fig. 11 show the successive robot configurations during

the first and second cycles, respectively. We observe that the robot approaches the desired position while avoiding the obsta-
cles, for the two cycles.

For r = 2.0, the initial joint configuration is q0 = (0�, 24.5�, 65.3�). Fig. 12 show the successive robot configurations during
the first and second cycles, respectively. We observe that the robot can not reach some points in the circle for the first cycle
but, for the second cycle, do not occur any problems. Due to this results, we repeat the experiment for r = 2.0, with the initial
joint configuration q0 = (�16.5�, 90�, �25.8�). The results for the first cycle are shown in Fig. 13, revealing that the perfor-
mance of the CLGA depends on the initial configuration of the manipulator.

In a second set of experiments we test the 3R-robot for nC = 100 cycles. The initial joint configuration is q0 = (0�, 14.9�,
154.3�) for r = 0.7 and q0 = (�16.5�, 90�, �25.8�) for r = 2.0, leading to the average of the positional error,
Perror ¼ 6:55E� 06 and Perror ¼ 9:44E� 06, respectively. The Fourier spectra of the joint velocities is depicted in Fig. 14.

The results reveal that the average of the positional error, Perror , and the Fourier transform of the robot joint velocities, are
consistent with those of the previous section. The presence of obstacles may cause some problems if the initial joint config-
urations is not adequate for the required task, namely in what repeatability and positioning is concerned. As we can see in
Fig. 15, the presence of obstacles leads to unpredictable and severe variations in the joint positions, causing a high positional
error. However, this problem disappears when we choose initial joint configurations more adequate for the desired trajec-
tory and for the desired workspace, as we can see in Fig. 13.
Fig. 13. Successive robot configurations in a workspace with obstacles for r = 2.0. The first and second cycles are identical.

0.7r = 2.0r =

0 1 2 3
-60

-40

-20

0

20

40

-60
-40
-20

0
20
40

-60
-40
-20

0
20
40

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

Fig. 14. jFf _qiðtÞgj vs. x/x0 of the 3R-robot, under the action of the CLGA, during nC = 100 cycles for r = {0.7, 2.0} in a workspace with obstacles.



Fig. 15. Successive robot configurations in a workspace with obstacles for r = 2.0 and for the initial joint configurations q0 = (0�, 24.5�, 65.3�).
5. Conclusions

A CLGA scheme that combines the CLP with a GA scheme was presented. Several experiments were developed to study
the performance of the CLGA when the manipulator is required to repeat a circular motion in the operational space while
satisfying different optimization criteria. The results were compared with the standard algorithm OLGA that adopts the di-
rect kinematics.

The results show that the CLGA gives, in general, superior results in what concerns the repeatability and positioning. The
better result occurs when the CLGA minimizes the largest joint displacement between two adjacent configurations since not
only we get a good positioning, but also the joint motion is repetitive and the chaotic phenomena observed in the CLP dis-
appear. It is shown that the presence of obstacles does not present an additional complexity for the CLGA to reach the solu-
tion, as long as the selected initial joint configuration are adequate for the required task.

References

[1] Dragomir N Nenchev, Yuichi Tsumaki. Motion analysis of a kinematically redundant seven-DOF manipulator under the singularity-consistent method.
In: Proceedings of the 2003 IEEE international conference on robotics and automation; 2003. p. 2760–5.

[2] Doty Keith L, Melchiorri C, Bonivento C. A theory of generalized inverses applied to robotics. Int J Robot Res 1993;12:1–19.
[3] Baillieul J, Hollerbach J, Brockett R. Programming and control of kinematically redundant manipulators. In: Proceedings of the 23rd IEEE conference on

decision and control; 1984. p. 768–74.
[4] Klein CA, Huang CC. Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cyber 1983;13:

245–50.
[5] Baillieul J. Kinematic programming alternatives for redundant manipulators. In: Proceedings of the IEEE international conference on robotics and

automation; 1985. p. 722–8.
[6] Baker DR, Wampler II CW. On the inverse kinematics of redundant manipulators. Int J Robot Res 1988;7(2):3–21.
[7] Park Ki-Cheol, Chang Pyung-Hun, Lee Sukhan. A new kind of singularity in redundant manipulation: semi algorithmic singularity. Proc IEEE Int Conf

Robot Autom 2002;2:1979–84.
[8] Park J, Chung W-K, Youm Y. Characteristics of optimal solutions in kinematics resolutions of redundancy. IEEE Trans Robot Autom 1996;12(3):

471–8.
[9] Goldenberg DE. Genetic algorithms in search optimization, and machine learning. Reading, MA: Addison-Wesley; 1989.

[10] Parker JK, Khoogar AR, Goldberg DE. Inverse kinematics of redundant robots using genetic algorithms. In: Proceedings of the 1989 IEEE international
conference on robotics and automation; 1989. p. 271–6.

[11] Arakawa T, Kubota N, Fukuda T. Virus-evolutionary genetic algorithm with subpopulations: application to trajectory generation of redundant
manipulator through energy optimization. In: Proceedings of the 1996 IEEE international conference on systems, man, and cybernetics; 1996. p.
14–7.

[12] Kubota N, Arakawa T, Fukuda T, Shimojima K. Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm. In:
Proceedings of the IEEE international conference on robotics and automation; 1997. p. 205–10.

[13] de la Cueva V, Ramos F. Cooperative genetic algorithms: a new approach to solve the path planning problem for cooperative robotic manipulators
sharing the same work space. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems; 1998. p. 267–72.

[14] Nishimura T, Sugawara K, Yoshihara I, Abe K. A motion planning method for a hyper multi-joint manipulator using genetic algorithm. In: Proceedings
of the IEEE international conference on systems, man, and cybernetics; 1999. p. 645–50.

[15] McAvoy B, Sangolola B. Optimal trajectory generation for redundant planar manipulators. In: Proceedings of the IEEE international conference on
systems, man, and cybernetics; 2000. p. 3241–6.

[16] Peng Y, Wei W. A new trajectory planning method of redundant manipulator based on adaptive simulated annealing genetic algorithm (ASAGA). In:
Proceedings of the IEEE international conference on computational intelligence and security; 2006. p. 262–5.

[17] Zhang Y, Sun Z, Yang T. Optimal motion generation of a flexible macro–micro manipulator system using genetic algorithm and neural network. In:
Proceedings of the 2006 IEEE conference on robotics, automation and mechatronics; 2006. p. 1–6.



[18] Whitney DE. Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man–Machine Syst 1969;MMS-10(2):47–53.
[19] Siciliano Bruno. Kinematic control of redundant robot manipulators: a tutorial. J Intell Robot Syst 1990;3:201–12.
[20] Marcos MG, Duarte FB, Machado JAT. Complex dynamics in the trajectory control of redundant manipulators. Trans Nonlinear Sci Complex

2006:134–43.
[21] Holland JH. Adaptation in natural and artificial systems. 2nd ed. Ann Arbor: University of Michigan Press, Mit Press; 1992.


	Trajectory planning of redundant manipulators using genetic algorithms
	Introduction
	Kinematics and dynamics of redundant manipulators
	Robot trajectory control
	The CLGA formulation
	Representation and operators in the CLGA
	Optimization criteria
	The OLGA formulation

	Simulation results
	The OLGA performance
	The CLGA performance
	The CLGA performance in a workspace without obstacles
	The CLGA performance in a workspace with obstacles


	Conclusions
	References


