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Abstract This paper studies the describing function 

(DF) of systems constituted by a mass subjected to 

nonlinear friction. The friction force is decomposed 

into two components, namely, the viscous and the 

Coulomb friction. The system dynamics is analyzed 

in the DF perspective revealing a fractional-order be- 

havior. The reliability of the DF method is evaluated 

through the signal harmonic contents. 
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1 Introduction 

 
The phenomenon of vibration due to friction is verified 

in many branches of technology where it plays a very 

useful role. On the other hand, its occurrence is of- 

ten undesirable, because it causes additional dynamic 

loads, as well as faulty operation of machines and de- 

vices. Despite many investigations that have been car- 

 
 

 

 

ried out so far, this phenomenon is not yet fully un- 

derstood, mainly due to the considerable randomness 

and diversity of reasons underlying the energy dissi- 

pation involving the dynamic effects [7, 8, 11, 12]. 

In this paper, we investigate the dynamics of systems 

that contain nonlinear friction, namely, the Coulomb 

forces, in addition to the linear viscous component. 

Bearing this in mind, the article is organized as fol- 

lows. Section 2 introduces the fundamental aspects of 

the describing function method. Section 3 studies the 

describing function of mechanical systems with non- 

linear friction. Finally, Sect. 4 draws the main conclu- 

sions and addresses perspectives towards future devel- 

opments. 

 

 
2 Fundamental concepts 

 
Let us consider the feedback system of Fig. 1, with one 

nonlinear element N and a linear system with transfer 

function G(s), where c(t) is the output. 

Suppose that the input to a nonlinear element is si- 

nusoidal 

x(t) = X cos(ωt ). (1) 

In general, the output of the nonlinear element y(t) 

is not sinusoidal; nevertheless, the signal y(t) is peri- 

odic, with the same period as the input, and containing 

higher harmonics in addition to the fundamental har- 

monic component. 
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where Yk and φk are the amplitude and the phase shift 

of the kth harmonic component of the output y(t ), re- 

spectively. 

In the DF analysis, we assume that only the funda- 

mental harmonic component of the output is signifi- 

cant. Such assumption is often valid since the higher 

harmonics in the output of a nonlinear element are usu- 

ally of smaller amplitude than the fundamental com- 

ponent [4, 13, 16]. Moreover, most systems are “low- 

pass filters” with the result that the higher harmonics 

are further attenuated [1, 3, 6]. 

Fig. 2 (a) Elemental mass system subjected to nonlinear fric- 

tion, and (b) non-linear friction with Coulomb and viscous com- 

ponents (CV model) 
 

 

Let us consider again the standard control system 

shown in Fig. 1 where the block N denotes the DF 

of the nonlinear element. If the higher harmonics are 

sufficiently attenuated, N can be treated as a real or 

complex variable gain and the closed-loop frequency 

response becomes 

The DF, or sinusoidal DF, of a nonlinear   element,  

N (X, ω), is defined as the complex ratio of the fun- 

damental harmonic component of the output and the 

input, that is: 

  

The characteristic equation is 

 
   

  
  

 

where the symbol N represents the DF, X is the am- 

plitude of the input sinusoid, and Y1 and φ1 are the 

amplitude and the phase shift of the fundamental har- 

monic component of the output, respectively. Several 

analytical expressions of DF of standard nonlinear el- 

ements can be found in the references [2, 5, 9]. 

For nonlinear systems without involving energy 
storage the DF is merely amplitude-dependent,  that 

is N  = N (X). However,  when we have nonlinear  el- 
ements that involve  energy,  the DF method is     both 

amplitude  and  frequency  dependent  yielding  N  = 
N (X, ω). In this case, to determine the DF,  usually 

we have to adopt a numerical approach because it is 

impossible to find a closed-form analytical solution. 

Once calculated, the DF can be used for the approxi- 

mate stability analysis of the nonlinear control system. 

 

If (5) can be satisfied for some values of X and ω, 

then a limit cycle is predicted for the nonlinear sys- 

tem. Moreover, since (5) is valid only if the nonlinear 

system is in a steady-state limit cycle, the DF analysis 

predicts only the presence or the absence of a limit cy- 

cle and cannot be applied to the analysis of other types 

of time responses. 

 

 
3 Mechanical systems with nonlinear friction 

 
In this section, we analyze the DF of a dynamical sys- 

tem with nonlinear friction composed of a combina- 

tion of the viscous and Coulomb components. 

Let us consider a system (Fig. 2) with a mass M , 

moving on a horizontal plane under the action of    an 

Fig. 1   Nonlinear control system 
 
 

If we assume that the nonlinearity is symmetrical 

with respect to the variation around zero, the Fourier 

series become: 

 

 
 



 

 

 
 

Fig. 3 The Nichols plot of 

N(F, ω) for the system 

subjected to nonlinear 

friction (CV model) with 

M = 1.0 kg, 

2.5 ≤ F ≤ 100.0 N, 

1.0 ≤ ω ≤ 100.0 rad s−1
 

with 

{B, K}= {0.5N s m−1, 2.0 N} 

 

 

 

 

 

 

 

 

 

 

 

input force f (t ), with a friction Ff (t ) effect composed 

of two components: a non-linear Coulomb K part and 

a linear viscous Bż part (so-called CV model). 

The equation of motion in this system is as fol- 

lows: 

  

where  z,  ż and  z̈ are  the  displacement, velocity and 

acceleration, respectively. 

For the system of Fig. 2 we can consider as input a 

sinusoidal force f (t ) applied to mass M and as output 

the position z(t). Therefore, the describing function 

N (F, ω) can be calculate numerically as: 

  

  

 

100.0 N. We have different results according to the 

excitation force F and we get straight lines with 

slopes revealing clearly  a  fractional-order  behav- 

ior. 

Figure 6 depicts the harmonic content of the out- 

put signal z(t) for an input force of F = 10 N. We 
verify that the output signal has a half-wave symmetry 

because the harmonics of an even order are negligi- 

ble. Moreover, the fundamental component of the out- 

put signal is the most important one, while the ampli- 

tude of the high order harmonics decay significantly. 

Therefore, we can conclude that, for the friction CV 

model, the DF method may lead to a good approxima- 

tion. 

In order to study Re{N (F, ω)} and Im{N (F, ω)}, 
we approximate the numerical results through power 

functions: 

 

 
  

  
   

Figure 3 shows the Nichols plot of  N (F, ω)     for 

M = 1.0 kg, B = 0.5 N s m−1  and K = 2.0 N.  Al- 
ternatively Figs. 4 and 5 illustrate the log–log plots 

of |Re{N }| and |Im{N }| vs. the  exciting frequency 

ω, for different values of the input force 2.5 ≤ F    ≤ 

Figure 7 illustrates the variation of the  parameters 

{a, b} and {c, d} versus F for K = {1.0, 2.0, 3.0, 4.0, 

5.0}. We verify that Re{N (F, ω)} and Im{N (F, ω)} 
reveal a distinct relationship with ω [10]. In fact, we 

conclude that Re{N } and Im{N } are, in the two cases, 



 
 

 

Fig. 4  Log–log plots of 

|Re{N }| vs the exciting 
frequency 1.0 ≤ ω ≤ 100 
rad s−1 , for the CV model 
with 

{B, K}= {0.5N s m−1, 2.0 N}, 
M = 1.0 kg and 

F = {5, 15, 30, 100} N 

 

 
 

 

 

 

 

 

 

 

 

 

 
   

 
 

 
Fig. 5  Log–log plots of 

|Im{N }| vs the exciting 
frequency 1.0 ≤ ω ≤ 100 
rad s−1 , for the CV model 
with 

{B, K}= {0.5N s m−1, 2.0 N}, 
M = 1.0 kg and 

F = {5, 15, 30, 100} N 

 

 
 

 

 

 

 

 

 

 

 

 

 
   

 
 

 

 

of the same type, following the power law according 

to expression (8). Furthermore, we obtain  fractional- 

order dynamics as revealed by the Nichols chart in 

Fig. 3. Nevertheless, Re{N (F, ω)} has an integer  na- 



 

 

 
 

Fig. 6 The Fourier 

transform of the output 

position z(t ), for the CV 

model, vs. the exciting 

frequency 1.0 ≤ ω ≤ 100.0 
rad s−1 and the harmonic 
frequency index 

k = {1, 3, 5, 7, 9} for an 
input force 

F = 20 N, with M = 1.0 kg, 

{B, K}= {0.5N s m−1, 2.0 N}   

 

 

 

 

 

 

 

 

 
    

 

 

 
 

ture with b ≈ 2, while Im{N (F, ω)} is clearly frac- 

tional with 2 <d < 2.7 [14, 15]. 

To have a deeper insight into the effects of the dif- 

ferent CV components, several complementary exper- 

iments were performed by separately varying the val- 

ues of K and M while keeping the rest of components 

constant. For example, Fig. 8 presents the values    of 

the parameters {a, b, c, d} when approximating Re{N } 
and Im{N }, for 2.5 ≤ F ≤ 100.0 N with M = {0.5, 

1.0, 2.0, 3.0} kg and {B, K}= {0.5 N s m−1, 2.0 N}. 

As we should expect, Re{N (F, ω)} and 

 
method and comparing with standard models. The po- 

lar plot reveals a fractional-order behavior which was 

further analyzed in the real and imaginary compo- 

nents. The results encourage a further study of nonlin- 

ear systems in a similar perspective and the adoption 

of the tools of fractional calculus. The fractional-order 

behavior is clearly a result of the Coulomb  friction. 

In fact, for a linear system the DF yields the transfer 

function, which for the mass and linear friction system 

is simply 
 1 

Im{N (F , ω)} vary with the system parameters,     but 
we conclude that the integer vs fractional    behaviors 

remain identical, respectively. Furthermore, the  frac- 

 
 

tional characteristics of Im{N } are a direct conse- 

quence of the nonlinear action of the Coulomb    fric- 

tion, since the viscous friction leads simply to a of a 

linear integer order. 

 

 
4 Conclusions 

 
This paper addressed the study of systems with non- 

linear friction. The dynamics of elemental mechani- 

cal system was analyzed by describing the    function 

where F is the Fourier operator. The asymptotic cases 

ω → 0 ⇒ N (ω) → −jB−1 and ω →∞⇒ N (ω) → 

−M−1ω−2  lead,  clearly,  to  integer-order dynamics. 

However, the introduction of the Coulomb component 

with amplitude K , involves signal excursions around 

the zero value that can be interpreted as an averaging 

of the friction effect. The signal excursion, and con- 

sequently the friction averaging, depends on the fre- 

quency and changes smoothly with it. This smooth 

change results in a fractional dynamics that cannot be 

attended by the classical analysis. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.   7   Variation   of   the   parameters   {a, b}  and   {c, d} vs 

2.5 ≤ F  ≤ 100.0  N,  in  the  CV  model  with  M  = 1.0    kg, 

B = 0.5N s m−1 and K = {1.0, 2.0, 3.0, 4.0, 5.0} N 

Fig.   8   Variation   of   the   parameters   {a, b}  and   {c, d} vs 

2.5 ≤ F  ≤ 100.0 N, in the CV model with M = {0.5, 1.0, 2.0, 

3.0} kg, {B, K}= {0.5 N s m−1, 2.0 N} 
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