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Abstract  

This paper analyzes the dynamical proper- ties of 

systems with backlash and impact phenomena based 

on the describing function method. It is shown that 

this type of nonlinearity can be analyzed in the 

perspective of the fractional calculus theory. The frac- 

tional dynamics is compared with that of standard 

models. 
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1 Introduction 

 
Backlash is one of the most important nonlinearities 

that taxes the control strategies implemented in the 

mechanical systems and degrades the overall perfor- 

mance of the systems. It causes delays, oscillations, 

and consequently gives rise to inaccuracies in the po- 

sition and velocity of the system. In extreme cases, 

backlash related effects can help set in an   extremely 

 
 

 

 

complicated system behavior thereby making it com- 

pletely intractable from the point of view of the con- 

troller. The control of systems with backlash has been 

investigated by several researchers. In [4, 11–13] the 

authors considered this problem and developed an al- 

gorithm for the compensation of kinematic backlash 

based on an adaptive controller. This kind of nonlinear 

dynamic phenomenon has been an active area of re- 

search but well established conclusions are still lack- 

ing, mainly due to the considerable randomness and 

diversity of reasons underlying the dynamic effects 

[7, 10]. 

This paper investigates the dynamics of systems 

that contain backlash and impacts through the describ- 

ing function (DF) method. The article is organized 

as follows. Sections 2 and 3 analyze the describing 

function of mechanical systems with backlash and the 

results of numerical simulations using the DF, respec- 

tively. The existence of power law relationship be- 

tween several variables typical of systems with frac- 

tional calculus is shown. Finally, Sect. 4 draws the 

main conclusions and addresses perspectives towards 

future developments. 

 

 
2 Mechanical systems with dynamic backlash 

 
In this section we use the DF method to analyze a sys- 

tem consisting of two masses subjected to dynamic 

backlash (Fig. 1). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47139462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

Fig. 1  System with two masses subjected to dynamic backlash 
 
 

We start, in Sect. 2.1, by considering the standard 

static model. After that, in Sect. 2.2, we study the dy- 

namical case involving the impact phenomena. 
 

2.1 Static backlash 
 

We begin by considering the phenomena of clearance 

without the effect of the impacts, which is usually 

called static backlash. The model and its input–output 

characteristic are shown in Fig. 2. By applying a    si- 

nusoidal signal x(t) = X sin(ωt ) at the input member, 
the DF of the static backlash is given by the expression 
[8]: 

  

 

 

 

Fig. 2   Classical backlash model 
 
 

necting their centers of mass. With these restrictions 

we have velocity components only along this line and 

no rotational or sliding effects occur. The proposed 

mechanical model consists on two masses (M1 and 

M2) subjected to backlash and impact  phenomenon, 

as shown in Fig. 1. 

A collision between the masses M1  and M2  occurs 

when  x1  = x2  or  x2  = x1  + Δ. In  this case, we can 
compute the velocities of masses M1  and M2  after the 

impact ẋ,  and ẋ, , respectively, by applying the New- 1 2 
ton’s law: 

 

  

where x12  = x1  − x2. The coefficient of restitution E 

varies in the interval 0 < E < 1, E = 0 being in  fully 

plastic materials and E = 1 in the elastic ones. By the 

  

principle of conservation of momentum it comes: 
 
 

   

 (3) ⎪   
 

 

     

From (2) and (3) we obtain: 
 

 

 

The classical backlash model corresponds to the DF 

of a system composed of two masses, M1 and M2, fol- 

lowed by the geometric backlash, having as input and 

as output the position variables x(t) and y(t),  respec- 

  
 

 

The energy loss (EL) at the impact is    determined 

by 
 
 
 

tively, as depicted in Fig. 2. 

This  standard approach to the backlash study     is 
 
  

based on the adoption of a kinematic model that   ne- 

glects the dynamic phenomena involved in the impact 

process. Because of that, often real results differ sig- 

nificantly from those “predicted" by that model. 

 

2.2 Dynamic backlash 



 

 

By application of the Newton’s law to mass 

M2, we obtain an upper-limit frequency ωL 

determined by solving for x2(t ) the equation f (t ) = 
M2x¨2(t ) when the amplitude of the displacement is 

within the clear- ance Δ/2 yielding [2, 3]: 
 

In this sub-section we consider the case of two bodies 

colliding on surfaces which are normal to the line con- 

 
 
 

 



 

 

 
 

 

 

 

Fig. 3 Nichols plot of N(F, ω) for the system with static back- 

lash, 10 ≤ F ≤ 50 N, 5 ≤ ω ≤ 15 rad s−1 and Δ = 0.3 m  

 

 

 

 

 
Fig. 4 Nichols plot of N(F, ω) for the system with dynamic 

backlash, 10 ≤ F ≤ 50 N, 5 ≤ ω ≤ 15 rad s−1 , Δ = 0.3 m and 

E = 0.6 

 
3 Numerical simulations 

 
In this section we study numerically the backlash with 

impacts. 

Figures  3  and  4  show  the  Nichols  plots     for 

N (F, ω) under the action of an input force F (t ) = 

F cos(ωt ), with M1 = 1.0 kg, M2 = 1.0 kg, E = 0.6 

and Δ = 0.3 m, for the static and dynamic backlash 
models, respectively. 

Comparing both charts we note significant differ- 

ences. Figure 5 illustrates the Bode plots of the sta- 

tic and dynamic backlash models vs. the exciting fre- 

quency ω, for the input force F = 40 N. We note 

that the major difference between the static and dy- 

namic models occurs at the high frequencies. More- 

over, Figs. 6–8 show the log–log plots of N (F, ω) with 

M1 = 1.0 kg and M2 = 1.0 kg for several values of E, 

Δ, and input force F . The plots reveal that we have 

a family of curves that depend on the variation of all 

the parameters, being more visible for the imaginary 

component. 

Fig. 5  Bode plots for the magnitude and phase of N(F, ω) 

for the system with static and dynamic backlash, F = 40 N, 

0.5 ≤ ω ≤ 25 rad s−1 for Δ = 0.3 m and E = 0.6 

 
 

The Nichols plot in Fig. 4 reveals the  occurrence 

of a jumping phenomenon, ωJ , which is a character- 

istic of nonlinear systems [1]. Moreover, Fig. 4 shows 

also that for a fixed value of E and Δ the plots are pro- 

portional to the input amplitude F . The jumping phe- 

nomenon is also visible in Figs. 5–8. Furthermore, it is 

visible in Figs. 6 and 7, particulary for the imaginary 

component, that in certain bandwidths the slope that 

follows is non-integer [5, 6, 9, 14, 15]. 

The variation of ωJ with E is relatively small. 

Therefore, in order to study ωJ , we consider its aver- 

age value and we approximate the relationship through 

the power law function: 

  

Figure  9  illustrates  the  variation  of  ωJ     versus 

F for Δ = {0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. 

Figure 10 presents the values of the parameters {a, b} 
versus Δ. We concluded that there is a clear   relation- 

                

                

                

                

                

                

 

    

    

    

    

    

    

 

                

                

                

                

                

                

 



 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Log–log plots of N(F, ω) for the two mass systems with 

dynamic backlash, F = 40 N, 5 ≤ ω ≤ 35 rad s−1 , Δ = 0.3 m 

and E ={0.0, 0.2, 0.4, 0.6, 0.8, 1.0} 

 

 
Fig. 8 Log–log plots of N(F, ω) for the two mass systems with 

dynamic backlash, 5 ≤ ω ≤ 35 rad s−1 , Δ = 0.3 m, E = 0.6 and 

F = {10.0, 20.0, 30.0, 40.0, 50.0} N 

 

 

 

 

Fig. 9  Variation of ωJ  vs. F for Δ = {0.01, 0.025, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5} 

 

 

 
Fig. 7 Log–log plots of N(F, ω) for the two mass systems with 

dynamic backlash, F = 40 N, 5 ≤ ω ≤ 35 rad s−1 , E = 0.6 m 

and Δ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} m 

 
ship between the variables that also approximately fol- 

low the power law function: 

  

Usually it is accepted without a precise mathemat- 

ical proof that the set of nonlinearities, for which the 

FD technique can be reliably applied, includes a low- 

pass filter in the control loop that attenuates the higher 

order harmonics. Therefore, from an empirical view- 

point, the system with two masses is somehow in the 

lower limit of applicability of the FD. Nevertheless, 

experience demonstrates that, in general, the FD is a 

robust and intuitive scheme leading to responses with 

a good degree of generalization. 



 

 

 
 

lead to distinct results when adopting static and dy- 

namic models. Furthermore, we observe that several 

variables follow the power law relationships which 

were recently recognized to be an important charac- 

teristic in nonlinear and fractional dynamical systems. 
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Fig. 10  Variation of the values of the parameters {a, b}, in 

ωJ ≈ aFb , vs. Δ 

 
Another aspect that deserves further comments is 

the fractional nature of the mathematical description 

of FD. In general, it is difficult to know a priori if a 

given phenomenon is of fractional or of integer or- 

der. However, a posteriori, usually we can recognize 

the reasons underlying the fractional dynamics. In the 

present case we observe that the fractional imaginary 

component is undoubtedly the description of the mul- 

tiple dynamic impacts. In fact, without backlash we 

get a model having a zero imaginary component  and 

with the static backlash we get a ω−2  relationship. 

Therefore, in these two cases we have integer order 

dynamics in clear opposition to the fractional dynam- 

ics found in the present study. 

 

 
4 Conclusions 

 
This paper addressed several aspects of the phenom- 

ena involved in systems with backlash and impacts. 

The dynamics of a two-mass system was analyzed 

through the describing function and compared with 

standard models. The plots revealed that these systems 
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