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SUMMARY

In this dissertation special problem structures related to the
group theoretic formulations of fixed charge linear programming problems
(FCP) and fixed charge network problems {FCNP) are investigated in the
context of penalty-oriented branch-and-bound procedures. A number of
penalty problems derived from the group formulation by reimposing re-
laxed constraints are described and compared. Problem structures of
FCP and FCNP related to such penalty problems are characterized and
exploited to produce efficient techniques for scolving the continuous
relaxations of FCP and FCNP, and for selecting, constructing and solving
the penalty problems.

A number of the proposed techniques for FCNP's are implemented in
a computerized algorithm and tested on a set of randomly-generated prob-
lems including both general FCNP's and the special cases of the fixed
charge transportation and the warehouse location problems, Computational
results indicate the procedure will efficiently solve such FCNP's when

the number of variables with fixed charges is as large as 100.



CHAPTER L
INTRODUCTION

A great deal of recent research in the development of operations
research methods has focused on finding computaticnally efficient solu-
tion procedures for linear integer programs. iIn spite of this broad
attention, however, no generally effective algorithm for such problems
has yet been presented. Thus, much of the most recent research in
integer programming has turned to identification and expleitation of
the simplified problem structures found in important special cases of
linear integer programs. In some cases (e.g. set covering} such
specialized research has produced promising results.

The purpose of the research reported in this dissertation is to
pursue such an investigation and exploitation of problem structures for
a class of integer programs known as fixed charge problems., As will be
discussed in succeeding sections, this class includes many of the inte-
ger programs most often encountered in application situations, yet no
computationally adequate solution procedures have been developed.

The particular structures of fixed charge problems investigated
in this research are those related to the group theoretic formulation
of the problem as defined in Chapters II and 11l1. Over the past several
years, Gomory, Johnson and others have presented a number of theoretical
results and related computational schemes for general linear integer

programs which derive from this formulation. The research reported



herein seeks to apply these ideas to fixed charge problems by identify-
ing extensions and simplifications in the approaches related to the
special structures of fixed charge problems, and developing a combina-
tion of the approaches appropriate for a computationally efficient

sclution procedure.

1.1 Formulation of the F'ixed Charge Problem

Mathematically the fixed charge problem can be formulatedl

min Z r.{x.) + ch
I

s.t Alxl + A2x2 =1
up 2w 20
Uy 2 %, 2 2,
where
gj(xl) - <[fj + ViR if xlj>o

LO ctherwise,

-vectors, A, is

-vectors, ¢ L u, and x, are n 1

£, Uy, Vv and %, are n, g8 Fpa Uy 2 9

matrix, b is an m-vector, %x,., f

an m by n 5 i3 ;

1 matrix, A,is an m by n

and Vj are the components of x f and v, and £ > 0. The problem is

l,

lSee Section 1.4 for a full explanation of notaticnal conven-
tions,



thus & general linear program with the added features that all decision
variables are bounded, and that a subset of the wvariables have a fixed
charge assessed in addition to the usual variable costs of linear pro-
gramming whenever they take on positive values, More general formula-
tions could be presented where some variables were not explicitly
bounded. However, practical applications usually permit introductions of
some artificially high bound when none is given explicitly, and bounds

on the wvariables with fixed charges are required for the analysis which
follows. Thus upper and lower bounds on all variables will be assumed
throughout this dissertation.

The importance of linear programs with fixed charges has been
well known since the early 1950's. Many problems arising in government
and industry have capital investment, setup or similar initial costs
which must be assessed if particular alternatives are to be part of a
problem solutlon. Examples are the construction costs of distribution
or service facilities, development costs for product lines, setup costs
for industrial processes, overhead and administrative costs of organiza-
tional units, purchase and installation costs for capital equipment, and
personnel training costs for processes and procedures. Problems with
such cost structures can often be adequately modeled by linear con-
straints, but the presence of fixed charges produces the more compli-
cated objective function of the above formulation.

More generally Gray [46] has shown that any linear program with
a separable concave objective function can be approximated by the fixed

charge problem formulation presented above through the use of piecewise



linearization. Thus a large class of nenlinear programming prcblems
are also among those which could be at least approximately solved if an
adequate solution procedure for fixed charge problems were available.

By the introducticn of an n,-vector of 0-1 integer variables w,

1

be the components of w and Ug s the above formu-

and letting w. and u. .
g] 1]

lation of the fixed charge problem can be converted to the mixed-integer

program

min vix., + ch + f'w
1 22
s.t Alxl + A2x? = b
>
xl =z 0
u2 = x2 = 22
-X + u,. z 0
13 1377 )
j=l,2,...,nl.
w, = 0orl

The two formulations are clearly equivalent because the added variables
and constraints assure the entire fixed charge fj will be assessed when-

aver le > 0, and the assumption that fj > 0 guarantees no optimal solu-

tion can have w, > 0 if x_ . = 0.
] 1]

Though the above formulation is the standard mixed-integer state-

ment of the fixed charge problem, it will be convenient for the analysis



which follows to use the revised mixed-integer formulation

min, ch + ch + cTs
11 272 s
s.t Alxl + A2x2 = b
—xl + y - s =40
(FCP) ER
ul > Xl =0
uy 2 5 20
u, 2 X, 2 22
y £ 0 mod g
where Cos ©» S and y are nl-vectors with

c . = f./u..
5] 1]

c.. = v, + ¢ .
1] J 8]

The equivalence of this formulation with the previous one follows by

the substitution



<
1

because the addition of redundant upper bounds on s and X, cannot affect
the solution, and each fixed charge fj will continue to be assessed

exactly when le > 0. In this formulation, however, the fixed charge is

assessed in pro rata amounts csj’ some of which are part of the cost of

%13 and the remainder of which are carried by the slack variables sj.

The congruence constraint on yj assures these two amounts will sum to

the full fixed charge whenever x is positive, and the fact that

1]

Csj > 0 guarantees no optimal solution to FCP will incur any of fj when
. = 0.
Xl]

1.2 TFormulation of Fixed Charge Network Problems

Where the constraints and cbjective function of FCP correspond to
finding the least cost circulation of a single commodity through a
directed network, the problem becomes part of an important subset of
fixed charge problems known as fixed charge network or fixed charge
transshipment problems. In particular, let (E1=E2) be the node-arc
incidence matrix of a directed network, i.e. a matrix with columns which
correspond to arcs of the network and consist entirely of zeros except
for a -1 in the row corresponding to the origin node of the arc and a
+1 in the row corresponding to the destination node of the arc. Then,
in a formulation consistent with the definition of FCP gi&en in the

previcus section, the fixed charge network problem can be stated



min, c{x T CoX, + c s
5.t Elxl + E2x2 =0
—xl + y - s = @
Uy = y 2z 0
(FCNP)
ul 2 leO
uy =z s 20
u2 > x?2 22
y = 0 mod u -

This special class of fixed charge problems has long been recog-
nized as worthy of independent study for at least two reasons. First,
any transportation or distribution problem where fixed charge cost
structures are present, but where all flows can be expressed in terms
of a single commodity, can be formulated as FCNP. Thus many of the
important fixed charge problems mentioned in the previous section are
actually fixed charge network problems.

In addition, the very special structure of the constraint
matrices El and E2 permits many computational simplifications. A vast

amount of research in the past two decades has focused on identifying

and exploiting the special structure of such matrices.



L.2.1 The Pixed Charge Transportation Problem

When the distribution system associated with a fixed charge net-
work problem is further simplified by having no transshipment points
{(i.e. every node is either a supply point or a demand point for the
commodity), and (possibly zero) fixed charges are associated with each
arc, the problem can be formulated in the even more specialized form of
a fixed charge transportation problem. In its simplest form such a

problem can be stated

m fi
min ) Ci.(xl )
i=1 j=1 4
%
s.t X.. £ 8 i=1,2,...,m
21 1] i
l:[\l -~
z ;C.. 2 d' 3—1323 ,I'l
i=p
X.. 20 i=1,. ,ﬁ, j=1, ,ﬁ
1]
where
f.. +v..x,. if %..>0
. . 1] 1] 1] 1]
L.{x.L) =
1) 13
0 otherwise
and . A
m no
.Z 5i 7 .Z d]
i=1 1=1

Here the éi correspond to the maximum available supply at each supply

node or source, and dj is the amount of demand at each demand point or



sink. The problem is to find the least-cost way to supply the demand.

In general, it might occur that there is excess supply, i.e.

However, such a case can always be converted to the above formulation
by adding an artificial sink to absorb the excess supply at zero cost.
Thus equality of supply and demand will be assumed throughout this dis-
sertation.

Like the more general fixed charge network problem, the impor-
tance of the fixed charge transportation problem as a significant special
case has been recognized for many years. This significance derives
from the facts that many important applications problems take this
simple form, and that the very special structure of the problem con-
straints permits many computational simplifications.

Though the above formulation of the fixed charge transportation
problem is the standard one, it will be convenient in the analysis which
follows to treat this problem as a special case of the fermulation FCNP.
The necessary conversion of a transportation problem to a network prob-
lem through additien of a super-source and a super-sink is well known
and need not be detailed here. However, it should be noted how the
required upper bounds on variables with fixed charges are assigned since
the above formulation has all arcs uncapacitated. Such bounds are
obtained by observing that the flow from scurce i to sink J cannot

exceed min{si,dj} in any optimal sclution. Thus this minimum may be
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used as an artificial upper bound on arc flows.

1.2.2 The Warehouse Location Problem

Another specilal class of fixed charge network problems which has
received extensive independent attenticn are the facilities or warehouse
location problems. 1In one of many possible forms, the warehouse loca-

tion problem is stated

m D m
V..%,. + £ow
min .Z .Z 1) 13 .Z ii
izl j=1 i=1
n
s.t. E X., £s5.W i=1,...,m
551 ij i'i
r’l:l ~
] %..2d j=1,...,n
i=1 Y4
xij e i=l,...,m; j=l,...,n
w., = 0 or 1 i=l,...,ﬁ.
i
where
P 8
>
2 ®i Z %4
i=1 i=1

~

As with the transportation problem, Si and &j are interpreted as the
amount of supply at a potential warehouse or source, and the demand at

a city or sink, respectively. In this case, however, fixed charges are
incurred, not on the transportation arcs themselves, but in constructing
or opening sources. Thus total supply is assumed to exceed total demand

in order to exclude the trivial case where all warehouses must be opened.
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As with the other cases discussed, warehouse location problems
have received independent attention because of the widespread applica-
bility of the formulation and the computational simplicity of its prob-
lem structure. Large numbers of factory, warehouse and service facility
location analyses can be described by the very simple constraint struc-
ture presented above.

As with the fixed charge transportation problem, it will be con-
venient in most of the analysis which follows to treat warehouse loca-
tion problems as special cases of the formulation FCNP. Once again the
necessary conversion by addition of a super-source and a super-sink is
well known. In this case, however, the fixed charge arcs are the cir-

cularizing arcs connecting the super-source with the individual sources.

1.3 Plan of the Dissertation

The chapters of the dissertation which follow this brief intro-
duction present an attempt to systematically identify computationally
relevant structures of problems FCP and FCNP, and to propose algorithms
to exploit these structures. In Chapter II the analysis begins with a
brief review of the current literature on methods related to the group
theoretic formulation of mixed-integer programs, and on algorithms for
the exact solution of fixed charge problems.

Problem structures identified as part of the research of this
dissertation are presented in the following two chapters. In Chapter
IIT attention is directed to the general problem FCP. A number of
results are obtained, and their potential use in computational proce-

dures is indicated. In Chapter IV the analysis is specialized to the



1z

case of FCNP. Unique structures of this special case and simplifica-
tions of more general structures are discussed.

Chapter V addresses the use of methods of Lagrangean relaxation
in group-related procedures for FCP and FCNP. A technique for use of
these methods is proposed, and the simplifications implied by the re-
sults of Chapters III and IV are indicated.

Chapter VI integrates the previous results in algorithms for FCP
and FCNP. Step-by-step solution precedures combining the ideas of
Chapters III, IV and V are propesed for both the general and the network
cases.

Chapter VII presents empirical investigations of the computa-
tional value of a number of the appreoaches proposed in previous chap-
ters. Results from the solution of a set of randomly-generated fixed
charge network problems by analgorithm employing many of the proposals
of this dissertation are presented and analyzed. Details of the compu-
tational procedures for generating and solving these problems make up
Appendixz A.

In Chapter VIII the dissertation concludes with a summary of
important results and recommendations for future research. Some con-

jectures are offered as guidelines for future work.

1.4 Notation and Conventions

In order to effectively present observations about the structure
of FCP and FCNP, a number of notational conventions will be required.

For the convenience of readers, these conventions are summarized below.
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1l.4.1 General Notation

The general notational scheme adopted for this dissertation is to
use upper case Latin letters to represent matrices, lower case Latin
letters to indicate column vectors (or scalars if the vector is of
dimension one), upper case Greek letters to denote sets, and lower case
Greek letters to represent functions. However, occasional deviatlons
from this standard will be required to conform to established tradition
{(e.g. use of Z for summation), and the following four symbols will be

reserved for special sets and matrices:

I = an identity matrix of appropriate size.

1 = a matrix (or vector) of ones of appropriate size.

0 = a matrix (or vector) of zeroes of appropriate size.
¢ = the empty set.

When the transpose of a matrix {or vector) is required, it will
be denoted by a T superscript. Thus MT is the transpose of the matrix
M. Sets of rows from a matrixz (or vector} will be denoted by enclosing
the matrix in brackets and indicating the limiting row numbers. For
example, [M]i = the submatrix consisting of rows 1 through k of M. When
only a single row of a matrix is required, this convention will be
simplified by dropping the redundant superscript, and if no confusion
will result the brackets will also be omitted leaving, for example,

Xij = the jth row or component of the vector X, .
l.4.2 Optimal Solutions and Tableaux

Many of the discussions to follow will deal with optimal solu-

tions, bases, and tableaux for various linear programs. All such
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refercnces will be with respect to bases of the well-known bounded
Simplex procedure. When it is desired to speak of the part of a solu-
tion vector, cost vector, bound vector or matrix associated with the
basic variables, nonbasic variables, etc., the usual rearrangement of
rows and columns will be assumed, and tdentifying superscripts will be
attached to sub-matrices, Specifically, the superscript B will denote
the basic part of a matrix, N the nonbasic part, U the part with non-
basic variables at their upper bounds, and L the part with nonbasic
variables at their lower bounds.

The discussions to follow will also require reference to numerocus
sub-problems. To identify the relations between such problems, a bar
over the name of a problem will denote the continuous relaxation of the
problem, i.e. the same problem with any congruence constraints relaxed.
Elements of the optimal solution, optimal Simplex tableau, etc. for such
a continuous relaxation will be similarly denoted by bars over the names
of the elements. Conversely, the derivative of a problem cobtained by
adding constraints will be indicated by specifying the additional con-
straints immediately after the name of the problem. Finally, the func-
tion nu (v) will be used to denote the value of an optimal solution to
the problem given as its argument, and the function beta (B) will denote
the best currently available lower bound on this optimal solution value.
In particular, the infeasible and unbounded cases in optimization prob-

lems will be handled implicitly by the conventions

n
-+

v (any infeasible problem) o,

1t

v {any unbounded problem)
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Examples of the above tableau and problem conventions include the

following:

rce = the continuocus relaxation of problem FCP, i.e. FCP without the
constraints y = 0 mod u; -

A? = the part of the original matrix Ay corresponding to the basic
variables in an optimal solution to FCP.

ﬁ? = the part of the updated tableau of A, corresponding to the
basic variables in an optimal solution to FCP, i.e., an
identity matrix.

ci = the part of the cost vector c, corresponding to the nonbasic
xij in an optimal solution to FCP or [CNP.

ui = the part of the upper bound vector u., corresponding to the non-
basic xlj at their lower bounds in an optimal solution to FCP
cr FCNP.

Eg = the part of the lower bound vector £_ corresponding to the
nonbasic xpj at their upper bounds in an optimal solution to
FCP or FCNP.

w(FCP) = the value of an optimal solution to problem FCP.

B{FCP) = the best currently available lower bound on vw{FCP).

v(FCP: y = 0 mod u,) = the value of an optimal soluticn to problem FCP

with the 3added constraints y = 0 mod ul, i.e. v(FCP).
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CHAPTER II

LITERATURE SURVEY

This chapter presents a brief summary of previously reported
research related to the subject matter of this dissertation. However,
integer programming technigues and fixed charge problems have been the
object of a vast amount of research over the past two decades, and any
review of this literature will necessarily be highly circumscribed.
Thus, the following sections will address only the two categories of
research most relevant to the analysis which follows, i.e. methods re-
lated to the group thecretic approach to integer programming and
algorithms for exact sclution of fixed charge problems. Any other
literature which may be relevant to particular topics of the disserta-

tion will be cited directly in the discussions of those topiecs.

2.1 Literature of Group Theoretic and Related Metheods

Consider the general linear integer program

min. h' z

(IP)

z 2 0 mod 1.
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[t iz well known that an equivalent statement of IP can be made in terms
of an optimal Simplex tableau for its continuous relaxation IP. In this

equivalent form the problemis stated

min (EN)TZN (2-1)

s.t. M 2 <w (2-2)

(EIP) 2N 2§ omed 1 (2-3)
2N s g (2-4)

2N 2 0 mod 1. (2-5)

In 1965, Gomory [40] demonstrated that if the constraints (2-2)
of EIP are relaxed, the resulting problem can be shown to possess many
interesting properties from the point of view of group theory in ab-
stract algebra. In particular, he showed that the fractional parts of
the columns of the constraints (2-3), i.e. the fractional parts of w and
the columns of ﬁN, form an Abelian group under modulo 1 addition. Thus
EIP with constraints (2-2) removed became known as the group problem
assoeciated with IP [GP(IP)J, and methods related to this formulation are
referred to as the group theoretic approach to integer programming.

One method for using this result proposed by Gomory, and later
developed by Hu [61], Shapiro [82,831, Gorry and Shapiro [45], Hefley
and Thomas [52], and others, was to solve GP(IP) as a knapsack problem

over the elements of the group connected with the constraints (2-3).
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If the resulting solution also satisfies (2-2), then it gives an optimal
solution for IP, Otherwise the group problem is resolved for the second
best solution, etc. until a solution is found which satisfies (2-2).

For some all-integer cases of IP promising results have been reported
{e.g. Gorry and Shapiro [45]). However, 1t appears this approach can
not be efficiently extended to the mixed-integer case, i.e. the case
where some components of z are not subject to congruence requirements.

2.1.1 Penalty-Oriented Group Theory

A somewhat different application of Gomory's theory, developed
more recently by Gomory and Johnson [41,42,43,44,65,66], proceeds from
the fact that GP{IP) is a relaxation of the equivalent problem EIP.

Thus the set of feasible solutions for GP(IP) includes the set of
feasible solutions for IP, and v(GP(IP)) is a lower bound on v{IF).

Principally, Gomory and Johnson have dealt with an even more
relaxed version of EIP, one row group problems formed by (2-1), (2-4),
(2-5) and one row from {2-3). For such relaxations of both the alli-
integer and the mixed-integer cases, they have developed methods for
generating inequality constraints on zN which must be satisfied by every
solution to the one row problem. In the best case, these constraints
are faces of the convex hull of sclutions to the one row group problems.

Such wvalid inequalities from the one row group problems can be
used in several ways. FPirst, they are valid cutting planes for the
overall problem IP. ©Scme development of this approach is found in
Glover [35].

An approach of more direct interest in this dissertation is the
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the use of valid inequalities in developing penalties for a branch-and-
bound approach to IP. In [41,42,43,44,65,66] Gomory, Johnson and
Spielberg suggest a procedure using the fact that the value of an
optimal solution to & one row group problem is an estimate of the addi-
tional cost or penalty for forcing the basic variable corresponding to
the row to take on a value which satisfies its congruence constraint.
When the one row group problem cannot be efficiently solved, several
valid inequalities may be generated from it and the linear program de-
fined by (2-1), (2-4) and these constraints can be solved instead, If
such inequalities clesely bound the convex hull of solutions to the one
row group problem, the value of an optimal solution to such a linear
program will approximately equal the value of an optimal solution to
the one row group problem. In any case, the value of an cptimal solu-
tion to this linear program provides a lower bound on the penalty for
bringing the corresponding basic variable into conformance with its
congruence constraint,

In the work presented by Gomory , Johnscon and Spielberg, and in
application of the work by Kennington (68] (see Section 2.2.2.3), these
penalties from the one row group problems are used in two ways. First,
they provide a lower bound on the value of any solution to the full
integer program and can thus be used in a branch-and-bound procedure to
limit the number of cases which must be explicitly investigated. In
addition, since they provide estimates of the penalty for making any
particular basic variable satisfy its congruence constraint, the penal-

ties can be used in the branching rules of the branch-and-bound
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procedure by indicating which integer variable should be the next to be
restricted. Computational results in (66] and [(68] indicate such
approaches are very promising.

2.1.2 Lagrangean Relaxation Theory

A more comprehensive approach to integer programming, which is
related to these group theoretic methods, was first suggested by
Everett [23] under the name "generalized Lagrange multipliers.," Con-

sider the mathematical program

min h z

(P) s.t. Mz = w

where ¢ is an arbitrary set, presumably containing integrality or other
difficult constraints on z. Everett observed that for all 4 2 0, the

relaxed problem

(Pa) min HTE + ﬁT(G-ﬁé)

provides a lower bound on P in the sense that

\J(P) = \)(PG).
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Moreover, when the best possible U is chosen, i.e. U such that

v(Pﬁ) = max v(PG), (2-6)
vz0

it may occur that
v(Pa) = v(P). (2-7)

Ullman and Newhauser [78] quickly observed that (2-7) can be satisfied
for integer programs only in the trivial case where v(P) = w(PF). How-
ever, the use of v(Pa) as a lower bound on v(P} remains a valid proce-
dure for all integer programs.

Everett proposed no efficient procedure for finding a U satisfy-
ing (2-6), but in 1965 a method was presented by Brooks and Geoffrion
[11]. Their technique employs Dantzig-Wolfe decomposition [18} to
calculate an optimal a. Sub-problems for the procedure consist of mini-

mizations of a linear objective function subject to the constraints
z € (.

Use of Lagrangean techniques in connection with the group the-
oretic approach to integer programming was first suggested by Shapiro
and Tisher ([25,84]. They proposed including the constraints (2-2) in

the objective function of GP(IP) to produce the bounding problem
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nin (hN)TzN + GT(G—ENZN)
s.t ﬁN 2 = w mod 1 (2-8)
(Gp(1P)-) 2N 2 0 (2-9)
u
N _
Z = 0 mod 1. (2-10)

Using @ = {zN: N satisfies (2-8), (2-9) and (2-10)}, the above theory
is applicable, and an optimal u {in the sense of (2—6)] can be calcu-
lated by the procedure of Breooks and Geoffrion., Sub-problems in the .
decomposition are the original GP(IP) with varying objective functions.
If an optimal U is used, Shapiro (84] demonstrates that an improved

bound on the value of an optimal solution to IP is obtained, i.e.
v(6R(IP)] < v(GR(IP),],

and the inequality may be strict.

More recently Fisher and Shapirc [26], and Geoffrion [31] have
observed that this method for tle group theoretic approach, and all other
generalized Lagrange multiplier schemes are part of a much larger set of
methods derived from Lagrangean duality in nonlinear programming.
Geoffrion proposes the generic name Lagrangean relaxation methods for
this larger class of techniques, and that term has been adopted for this
dissertation. Among the other techniques Geoffrion, Fisher and Shapiro
show to be part of the class of Lagrangean relaxation methods are Held

and Karp's approach to the traveling salesman problem [53], and Fisher
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[24] and Fisher and Schrage's [27] scheduling procedures. All these
methods employ bounds derived from Lagrangean dual problems like (2-6)
in seeking a solution to a primal problem like P.

2.2 Literature of Exact Solution
of Fixed Charge Problems

Because of the number of important applications presented in
Chapter I which can be formulated as fixed charge problems, the develop-
ment of solution procedures for general or special fixed charge problems
has been a major segment of research in integer programming methods for
the past two decades. This research can be classified into two distinct
categories according to whether the procedures yield approximate or
grget optimal solutions for the particular fixed charge problem being
studied.

Approximate methods [14,15,19,88,95] have been based primarily on
two important theoretical properties of FCP. The first is the 1954
result of Hirsch and Dantzig [ 58] that the objective function of a fixed
charge problem is a special case of a concave function, and thus that an
optimal solution for any fixed charge problem will occur at an extreme-

point of the convex set defined by

Alxl + A2x2 = b (2-11)
uy > x) >0 (2-12)
u. zx. = 4. (2-13)
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This property has led many researchers to develop extreme-point search
methods for obtaining approximate solutions to FCP.

A second property concerns the continuous relaxation ICP.
Balinski [4] observed for the fixed charge transportation problem, and
Gray [46] extended for general fixed charge problems the result that an
optimal solution to FCP can be obtained without explicit consideration
of all its variables or constraints. It i1s sufficient to consider only

the reduced problem

(RP)

=
v
k.
\'4
(=]

Because all components of g in PCP are strictly positive, every optimal
solution to the FCP must have Xy T Y, s = 0. Thus v(RP) = vw(FCP), and

an approximate solution for FCP can be obtained by rounding to the solu-

tion
y =%
s = - il
xl=)_<l
X, = X



25

x
where —l is an optimal solution to RP.
X

2
The sclution procedures developed in this dissertation are exact
methods, i.e. they produce an exact optimum solution to FCP or FCNP,
Thus the literature of exact solution procedures is the most relevant to
the research reported herein, and nc further detail will be presented on
approximate methods. For more complete summaries of the approximate

solution literature, see [12,28,46,51,68,71,88,91]7.

2.2.1 General Fixed Charge Problems

Four researchers are known to have proposed exact solution
methods for the general fixed charge problem., The first was Murty ([76]
who suggested an extreme-point ranking procedure based on Hirsch and
Dantzig's result that an optimal sclution will occur at an extreme-point
of the convex set defined by (2-11), (2-12) and (2-13). The method
searches such extreme-points in decreasing order of variable cost, i.e.

in decreasing order of value of the objective function

VX, + X, (2-14)

A pivoting scheme is provided for moving from the least cost to the next
least cost extreme-point, etc., and the procedure terminates when bounds
on the fixed charges indicate that no lower ranked extreme-peoint could
produce an improved solution to the overall fixed charge problem.

Murty suggests the procedure will work best on nondegenerate problems,

but no computational experience for general fixed charge problems has
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been reported. Experience with fixed charge transportation problems,
reported in [46,76,77], suggests Murty's procedure may be effective
for problems with the dimension of y less than 100.

In 1967 Gray [46] reported a decomposition approach for fixed
charge problems. The methed uses Hillier's bound-and-scan technique
[57] to develop specific values of the y vector to be investigated. The
corresponding version of FCP with y fixed at the assigned value is then
solved. A set of clever bounds on the fixed and variable costs of an
optimal solution te I'CP, and limitations on the number of positive com-

ponents of x, implied by Hirsch and Dantzig's result are used to re-

1
strict the number of y vectors which must be explicitly evaluated,
Computational experience for both a general algorithm and a specialized
procedure for the fixed charge transportation problem is presented in
Lu46]. The method appears effective for general problems with y dimen-
sions up to 30 and transportation problems with y's of up to 50 com-
ponents.

Steinberg [88] presented a direct branch-and-bound method for
general fixed charge problems in 1969. In effect, his procedure
enumerates the possible values of y by fixing certain components yj and
testing if any setting of the remaining components could provide an
optimal soluticn for FCP. Rules for testing such partial solutions
include restrictions like Gray's on the number of positive xlj and a
cost bound obtained by minimizing {2-14) subject to (2-11), (2-12), and

(2-13), and adding a lower bound on fixed charges for components of y

not presently fixed. Computational success is reported for general
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fixed charge problems with y dimensions up to 30,

Jones and Soland [67] also presented a branch-and-bound procedure
for general fixed charge problems in 1969, In fact thelr research
addressed fixed charge formulations far more general than FCP, involving
nonlinear constraints and objective functions and "multi-level fixed
charge'" components, i.e. activities for which different fixed charges
are applicable at different activity levels. For the case of problems
like FCP, however, Jones and Soland’'s method reduces to a fixing selected
components of y and solving the corresponding version of RP to obtain a
cost bound. If the value of an optimal solution to such a RP exceeds
the value of a known feasible solution for FCP, no setting of the re-
maining components of y can produce an optimal solution and considera-
tion of the partial solution can be terminated. No problem with more
than 15 multi-level fixed charge components was solved.

2.2.2 Tixed Charge Network Problems

Even though a great deal of research has been devoted to solu-
tion of the warehouse location and fixed charge transportation cases,
no instance is known in the literature of an exact solution procedure
for general fixed charge network problems. The only relevant material
found as a part of this research is work by Zavarei and Frish [97] which
demonstrates that every fixed charge network can be formulated as a
fixed charge transportation problem at the expense of increasing the
number of nodes and arcs. Thus, at least theoretically, any fixed charge
transportation algorithm can be viewed as an algorithm for general fixed

charge network problems.



2.2,2.1 Warehouse Location Problems. In contrast to the situa-

tion for general network problems, a considerable amount of attention
has been devoted to solution of the special case defined as the warehouse
location problem in Section 1.2.2. The most important exact solution
developments will be‘summarized in the following discussion, but more
complete reviews are found in [12,46,71].

The first important exact solution method for the warehouse loca-
tion problem was reported by Effroymson and Ray [21] in 1966. Their
procedure, which is applicable only to the case where supplies at each
warehouse are assumed infinite, is a branch-and-bound technique depend-
ing heavily on solution of a version of FCNP at each step to develop
bounds for eliminating partial y solutions. However, the fact that FCNP
can be solved trivially in this uncapacitated case is exploited in a
set of post-optimality operations which improve the quality of the
bounds. Criteria for determining that free yj must take on given values
in completions of the current partial solution are also tested, and if
any new yj ave fixed, FCNP is rveoptimized with the additional y restric-
tions enforced. Computatiocnally, the authors report solving a problem
with the dimension of y equal to 50,

Spielberg [86,87] presented several procedures which use essen-
tially the same bounds as Efroymson and Ray, but a different enumeration
procedure. Instead of fixing some components of y and attempting to
determine that no setting of the remaining components can produce an
optimal sclution, his method systematically investigates a series of

completely fixed y vectors. A number of sequences of y vectors were
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tried, but none proved clearly superior, and computational times were
comparable to Effroymson and Ray's.

Ellwein (22] applied a specialized version of Benders' decomposi-
tion procedure [10] to capacitated warehouse location problems. Taking
advantage of Gray's bounds, Effroymson and Ray's opening and closing
rules, and bounds produced by linear sub-problems of the Benders' method,
Ellwein's algorithm implicitly enumerates candidate vectors y until an
optimal solution is identified. Computational success is reported for
y's of dimension up to 25.

Bulfin and Unger [12,13] also reported a procedure using some of
the previous results in the context of Benders' decomposition algorithm
[10]. An implicit enumeration procedure like Geoffrion's [29] is used
in a master integer problem, with the development of new partial solu-
tions partially controlled by solution of Benders' continuous sub-
problems. Ellwein's bounds are employed in the enumeration procedure to
reduce the number of partial solutions explicitly investigated. Compu-
tational experience in [12] indicates the procedure can efficiently
solve capacitated problems with y's of dimension up to 25. Experience
reported in [13] for a separate version of the algorithm adapted for the
uncapacitated case, shows solution of problems with y's as large as 50
in a few seconds.

2.2.2.2 Fixed Charge Transportation Problems. As was the case

for warehouse location problems, fixed charge transportation problems
have been the subject of extensive research. Thus, only the mest

important developments can be summarized here. More complete literature
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surveys are provided in [28,46,51,68,91].

The first important exact solution method for fixed charge trans-
portation problems was developed by Speilberg [85] in 1964. The method
is a direct implementation of Benders' partitioning [10] on the problem,
with a branch-and-bound method used to solve integer sub-problems,
Speilberg states that the method is efficient for y's as large as 150,
but discouraging for any larger problems.

As mentioned above, the procedures developed by Murty [76] and
Gray [46] for more general problems have been specialized te the fixed
charge transportation problem. However, since no important differences
in approach are used for the transportation case their methods will not
be repeated here.

The method developed by Frank [28] builds on Murty's approach.
Murty's ranking of extreme-points in terms of variable cost is used
aleng with a ranking of fixed costs obtained from a modification of the
defender algorithm (see Bellmore and Ratliff [[9]). Three different
schemes for combining these two rankings were investigated, but no
problems with y's larger than 16 were solved,

The first known group theoretic investigation of any fixed charge
problem is the work of Tompkins [91]. He identified a number of praoper-
ties of the Abelian group associated with fixed charge transportation
problems. A branch-and-bound procedure was developed which took advan-
tage of some of these properties to reduée the number of solutions
explicitly evaluated, but no computational results have been presented.

Hefley and Thomas [52] have reported experimenting with a more
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direct group thecretic approach., They derive and solve the group prob-
lem for a fixed charge transportation problem as a knapsack problem over
the associated group. Simplifications derived from Hefley's methods of
group theoretic decomposition [50] are exploited to reduce the diffi-
culty of solving the group problem. Problems with y's as large as 24
are reported solved by this procedure.

The most recent group theoretic approach to fixed charge problems
is the work of Kennington [68]. Since Kennington's research provided
the starting point for much of the analysis reported in this disserta-
tion, it is discussed in some detail in the following section.

2.2.2.3 Kennington's Group Theoretic Approach. Kennington's

[68] approach to the fixed charge transportation problem is a penalty-
oriented group theoretic approach using the principles presented in
Section 2.1.1. Thus a branch-and-bound algorithm is used with penalties
developed from group problems providing cost bounds and guiding the
selection of new branching variables.

Kennington formulates the problem as an all-integer program,

i.e. requires X, E 0 mod 1 in addition to the other constraints of FCNP,
and demonstrates that the resulting group problem congruence constraints
will contain only 0, +1 and -1 geoefficients, A large number of simpli-
fications in the group penalty approach then follow from this special
problem structure., Among these are the following:

1. The group problem associated with a fixed charge transpor-
tation problem can be efficiently constructed from the
optimal tableau of the reduced probiem, RP. Thus the
efficiency of solving RP instead of FCNP at each step in

the branch-and~bound algorithm can be extended to group
theoretic approaches.
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2. In contrast to the usual case, one row group problems
for the fixed charge transportation problem can easily
be solved exactly. Thus one row group penalties can
be derived without first resorting to the generation
of a set of valid inequalities,

3. As an additional aid in using the one row group penalties
for branching rules, it is possible to interpret such
penalties as costs of moving yj "up" to ujj or "down" to
0 instead of simply to some value satisfying the congru-
ence constraint.

4, One row group penalties for the fixed charge transporta-
tion problem are exactly equal to those developed from
different approaches by Tomlin [90].

5. The constraint matrix of the group problem associated
with a fixed charge transportation problem is totally
unimodular.

Computational experience for Kennington's algorithm is presented

in [68]). The results show efficient solution of fixed charge transpor-

tation problems with y's of dimension up to 100.
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CHAPTER III
GROUP RELATED STRUCTURE OF FIXED CHARGE PROBLEMS

In this chapter a number of structural characteristics related to
the group problem for general fixed charge problems are investigated.
Most of Kennington's results for the fixed charge transportation problem
(see Section 2.2.2.3) are shown to generalize to all fixed charge prob-
lems, and new concepts involving penalty problems stronger than one row
group problems are presented. Before proceeding with these results,
however, the general sclution framework to which the results are rele-
vant will be briefly reviewed.

Recall from Section 1.4 the conventions

B {(any minimization problem) = the best currently available
lower bound on the value of
an optimal scolution to the

problem,
v (any unbounded problem) = -,
v (any infeasible prcblem) = +o, and let
v (the best known solution teo FCP) = v*

Then Tigure 1 presents a brief flow chart of the branch-and-bound
approach to fixed charge problems which provides the motivation for the
research of this dissertation. The principal steps in the procedure can
be summarized as follows:

Step 0. Place the whole problem FCP in the candidate list

(i.e. in the set of restricted versions of FCP which might still yield
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B(FCP) = 0.

0. Put FCP in candidate list with
Set u#

= 4,

1

1. Choose from the candidate list]
FCP. with min B(FCPC).

Candidaté
list empty?

1

2. Solve the relaxation FCP,.
, Y
(FCPL) 2 v# 8. TFathom FCP,.
¥
3. Round the FCP solution by
8.=u_.-Xx,., for x,. > 0.
J 13 1] 2

Save the
rounded sclu-
tion as new
incumbent.
Delete any
problems in M5, Construct and solve
candidate list several penalty problems
having B8{candi- related to the group
date} znew v¥, problem GP(FCP,) derived

from the tableau of FC%.

v Y
(Any such
rob.
2VH?

Replace TCP, in the candi-
date list with one problem
constraining FCP, by yi = 0,
¥y = 0, for j ¢ 0p, and Y3 =
uij for j € 9y, and a simi-
lar problem with y. = uy;.

B8 value are calcul;ted %gom
penalties of Step 5. J

Figure 1.

6.

Use the penalties calculated
at Step 5 to identify sets 9y
and @p of i such that either
the case of yj = 0 or the one
for y3 = ulj cannot produce
an optimal solution for FCP,
and to choose a branching
variable y£ on which to par-
tition the problem.

Flow Chart of General Branch-and-Bound Approach
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an optimal solution to the full problem). Set B(FCP)} = 0 and v¥* = +tw,

and proceed to Step 1.

Step 1. Choose as the current candidate, FCPC, the element of

the candidate list satisfying

B{(FCPC) = min {B(FCPC'): FCPC, in candidate list},

and proceed to Step 2.

Step 2. Solve the continuous relaxation of FCPC, i.e. ?Eﬁe.
if v(fﬁ?ﬁ) > v¥, proceed to Step 8 because no completion of FCPC (i.e.
no setting of the yj not assigned values in FCPC) can produce a sclution
to FCP with value less than that of a known solution. If v(?ﬁ?;) < vEy
proceed to Step 3.

Step 3. C(reate a feasible solution for FCP by rounding "up" the

optimal solution to FCPC, i.e. by setting

ulj - xlj if xlj > 0
5, =
3
¢ otherwise
y = 8§+ xl
1T X
Ky = ;{2,

where El and §2 are the optimal values of X and X in the solution of
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f@?&. If the value of this rounded solution is less than v®, proceed to
Step 4. Otherwise go to Step 5.

Step 4. A new incumbent solution has been found, i.e. the
rounded solution to fE?; provides a feasible solution to FCP with value
less than any solution found so far. Save this incumbent as a possible
optimal soluticn, and eliminate from the candidate list any problems
with B value greater than or equal to the value of the new incumbent.
If the new v* = -», stop; FCP is unbounded. Otherwise, proceed to Step
5.

Step 5. Attempt to obtain a better lower bound on U(FCPC) than
v(fﬁ?&) by constructing and solving several penalty problems related to
the group problem GP(FCPC) derived from the optimal tableau of fE?;. If
the value of the optimal sclutions to any of these penalty problems is
greater than or equal to v¥®, proceed to Step 8. Each problem is a
relaxation of FCPC, and thus has optimal solution value less than or
equal to v(FCPc). If all penalty problem solutions have value less
than v%, proceed to Step 6.

Step 6. Use the penalty information of Step 5 to identify ele-

ments of the sets

i
(=]
p—
Y
<

ko
—

BU = {j: penalties show v(FCPC: yj

%

]
=
p—
Y
<
o

H

{j: penalties show v(PCPC: yj
Also use the group-related penalties of Step 5 to choose a new branching
variable yg on which to partition the problem, i.e. choose a new y£ to

fix in FCPC such that i £ 0 UOD. Then go to Step 7.

U
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- . X . -
Step 7. Replace FCPC in the candidate list by two more re

stricted problems. One is defined by FCPc with the additional con-

straint that the branching variable yi =0, y, =0 for j e GD and yj

]
u.. for j e OU. The other problem is identical except that yi is re-

1]

stricted to equal its upper bound. B values for these two new candi-
dates are as obtained from the penalty problems of Step 5. Next proceed
to Step 1 to select a new FCPC.

Step 8. Fathom FCPC, i.e. eliminate FCPC from the candidate list
because no completion of it can produce a feasible solution to FCP with
value less than v#. If the candidate list is now empty, stop; if an
incumbent solution exists, it is an optimal solution for FCP, and other-
wise FCP is infeasible. If the candidate list is not empty, proceed to
Step 1 to select a new FCPC.

From Figure 1 and the above discussion it is evident that in the
context of such a branch-and-bound procedure relevant problem structure
and computational simplifications include the following:

1. Efficient procedures for solving continuous problems ?Ef;.

2. Convenient methods for constructing GP(FCPC) from the optimal
solution to fﬁﬁg.

3., Usable characterizations of penalty problems most likely to
give the highest cost bounds.

4. Efficient algorithms for construction and solution of penalty
problems.

5. Improved procedures for using penalty information in

selecting branching variables.
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The remainder of this dissertation presents a number of results relating

to such considerations.

3.1 Solution of the Continuous Relaxation

As formulated in Section 1.1, the problem FCP is equivalent to

min cixl + chQ + czs (3-1)

s.t. Alxl + A2x2 = b (3-2)

-Ix, + Iy -Is =0 (3-3)

(FCP)

w2y 20 (3-4)

Uy 2 ) =0 {3-5)

0, > s =0 (3-86)

U, 2 X, > 22 (3-7)

y = 0 mod ul, (3-8)

with cg > 0, This section investigates procedures for simplified solu-
tion of the continuous relaxation FCP, i.e. the version of FCP without
constraints (3-8).

3.1,1 <Construction of a Sclution from the Reduced Problen

As indicated in Secticn 2.2, Balinski [4] and Gray [46] have shown
that v(FCP) is equal to the value of an optimal solution to the reduced

problem
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. T T
min ¢ X, + ¢ X

s.t. Alxl + A2x2 =b

{RP)

Thus the value of an optimal solution to FCP can be obtained without
explicit consideration of all its constraints and variables. Through a

series of lemmas, some elaborations on this result will now be developed.

B B _ —
3.1.1.1 Lemma. If vectors Xy and X, form a basis for RP, then these

vectors together with the vector y form a basis for FCP.

Proof. The indicated vectors will form a basis for FCP if the corre-
sponding columns in the constraints (3-2) and (3-3) form a linearly

independent set. Consider a linear combination (z zy) of these

12720

columns such that

( 3 r B\ - B
Al A2 0]
-I Zl + z2 + zy = Q.
0 ¢ I
L J . / . J
. B B, . .
Now it must be that z, =z, = 0 because {xl,x2} is a basis for RP and so

B

l,Ai) are limearly independent. But then it must also be

the columns (A
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true that Zy = Q because no other combination of unit vectors can pro-
duce the zero vector. Thus the only linear combination of the columns

. B B . -
corresponding to X15 Xy and y which yields the zeroc vector has all
zero coefficients, and the columns are linearly independent.

Q.E.D,

3.1.1.2 Lemma. The updated Simplex tableau for [CP corresponding to

, B
basis vectors x

10 xz and y is (after renumbering of rows and columns

as indicated in Section 1.4.2) given by

B N B N
Xl xl x2 x2 ¥y s RHS
~N,T ~N,T T
0 (cl) 0 (c2) 0 cg -
B
X I 0
1 AN 2N ~
A A Al ______ A2 0 0 b
X, 0 1
~N 1 ~N_1 ~
rAt, rAst, [51%,
k k k
y O Q0 (===—-- I -I e
-I 0 0

where kB is the dimension of x? and the updated tableau of RP corre-

sponding to the basis vectors x? and xg is given by
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B N B N
xl xl x2 x2 RHS
~N.T ~N,T
0 (cl) 0 (02) -
B
X I 0
1l N N ~
------ Al ———— A2 b
B
x2 0 I

. : . B .
Proof. The basis matrix corresponding to xB X, and y in FCP is of the

l’

form

B B 1
Al A2 EO
__________ { -

1

i

-1 0 '
i 1

{

4 0 :
\ J

The inverse of this matrix can be calculated by the well-known formula

for inversion by minors as

-1 b
B B !
[Al Az] 0
I
|
e — e ————————— L
L Lo
B B~ :
[Al AQ) :
i
i I
i
0 { .
\ )

Direct multiplication of this inverse times the original constraint



matrix of FCP produces the updated constraint matrix indicated in the
Lemma when it is recognized that (Ai,Ag) is the corresponding basis
matrix for RP. Tor example, conslder the lower part of the columns
corresponding to x? in the constraint matrix of FCP. Multiplication of

the appropriate submatrices yields

) L 1

BB | N N1 AN-L
[Al > Az} ! ) [a)175 + 0 (A 17

. K k

K
_______________ 4 I - = ————— e | = ——————
i 0
o i J-I 0 -1 -1

! J \ J J

Calculation of the updated cost row for nonbasic variables is similar.

In terms of the updated constraint matrix the costs are

T
{ 3 l’ 1 r b 4 ~ - -
N N ~N 1 B N B ~N
0]
€ A Ay 1 ¢y N AN TIC) “1
: - Al A2
cN N I CB _ N B _ | ~N
2 AN-1 oaNoldo o 2| = 12 Sl T |%2
(V! (A ] .1 -1
1. B 2B Tl | | |eeemmmmmmm—emmmm
k ki
CS |t O CS c‘r___‘
t -1 0 J
. ) ! J L J L)
Q.E.D.

3.1.1.3 Lemma. Let the values of Xy and %, corresponding to the basis

B B, . - - \
{Xl,x2} in RP be Xy and X5 respectively. Then the values of X15 X5 ¥

. . B - .
and s corresponding to the basis {xl,xg,y} in FCP are given by
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Proof., First consider the nonbasic variables in FCP. The components of

ﬁl and ﬁg must exactly equal the upper or lower bounds on x? and xg be-
cause they were part of a basic solution to RP. Similarly, the lower
bound 0 provides a value which can correspond to a basic solution for
FCP. Thus it remains only to show that the values of basic variables
implied by these nonbasic values are those given in the statement of the

Lemma. Using the updated tableau of Lemma 3.1.1.2, the basic variables

of FCP can be calculated

XB }EB
1 1
~ aNAN  sN-N
=b - A/X, - A%, - 0= ’
5 1% 7 f2%g 5
) i)

where the last equality follows because the center expression is

identical to the one for the values of basic variables in RP., Similarly,

~1 AN 1 ~NoL1 ~B
[b]kB [Al]kB [A2J B X,
- _ N 2N -
Y 1 5 .
AN
0 -1
0 xl

Q.E.D.

B
3.1.1.4 Theorem. Let {xl,xg} be a basis which satisfies Simplex opti-

mality c¢riteria for RP, and let X = il’ X, = §2 be the corresponding



L

optimal basic solution. Then {x?,xz,y} is an optimal basis for FCP

yielding the optimal basic solution x, =y = X,, X, = X

1 17 ¥p T ¥y 8 = 0.

Proof. That {x?,xg,y} is a basis for PCP yielding the indicated solu-
tion follows from Lemmas 3.1.1.1 and 3.1.1.3. It remains only to show
that this basis is optimal for FCP. By Lemma 3.1.1.2, the adjusted cost

row of the FCP tableau corresponding to the indicated basis is given by

B N B N

x] X] %, %, l y l S

0 |(EN)T( 0 l(aN)TI 0 | ot ,
1 2 s

where E? and Eg are extracted directly from the optimal tableau of RPF.
-N

<, and Eg must satisfy Simplex optimality criteria for the solution
N _=-N _N

X] T Xy, X, S §§ in FCP because they were optimal in RP. Moreover,
cg 0 implies that Simplex optimality criteria are also satisfied for
the lower-bounded vector s. Thus Simplex optimality criteria hold for

all nonbasic variables, and the thecrem is proved.

Q.E.D.

3,1.1.5 Corollary. For FCP and RP as defined above, v(FCP} = v(RP).

Proof. If there is an optimal solution to RP, there must be an optimal

X

basic solution satisfying Simplex optimality criteria. Let Xy T Xy
X, = §2 be such a basic solution. Then by Theorem 3.1.1.%, X, =y = ﬁl,
Xy = §2, s = 0 is an optimal solution to FCP. Thus
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—_  T- T- T- T, . _ T- T-
w(FCP) = c Xy te X, t 0 ) + cs(O) = erxy + C Xy = v(RP).

Q.E.D.

The principal implication of the results presented in this sec-
tion is that solution of the reduced problem RP can not only provide the
value of an optimal solution for the continuous relaxation FCP, but an
optimal basis and the associated Simplex tableau as well. All such
elements of an optimal basic solution for FCP can be obtained by direct
extraction from corresponding elements of the solution of RP, and no
additional computations are required.

3.1.2 Alternative Constructions

Section 3.1.1 developed one construction for creating an optimal

basic soluticon to FCP from an optimal basic solution to RP. Clearly, if

Xy = X, Xy = x2 is an optimal solution to RP, then X =Y T Xy,

X, = ;2, s = 0 must be the corresponding optimal solution for FCP
because CS > 0. However, more than one basis for FCP may be able to
provide this solution and satisfy Simplex optimality criteria.

Consider first the constructed part of the FCP basis correspond-
ing to an element Xij’ i.e. a component of 3% which was basic in the

optimal solution to RP. Assuming that solution to RP is non-degenerate,l

But then the cptimal value of the corresponding y component, ij’ must

lSee Appendix B for further discussion of basic solutions in
bounded Simplex procedures.
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satisfy .

and yj must be basic in the solution of FCP., Thus, at least in the non-

degenerate case, yj must always be basic in FCP whenever X4 is basic in

RP.l

Even in the non-degenerate case, however, alternatives are pos-
. - . . N
sible for the part of the constructed basis corresponding to X the

part of X, which was nonbasic in the optimal scolution to RP. Under some

1

conditions, the Y corresponding to such ij may be replaced in the

basis by either xN

13 or s.. The following theorem enumerates the possi-

bilities.

3.1.2.1 Theorem. Let {xz,xg} be an optimal basis for RP which satis-

fies Simplex optimality and yields the optimal tableau

B N B N
xl xl x2 x2 RHS
-N,T -N,T
0 (cl) ) (c2) -
I 0
B =N -N =
Xy |7 Al ————— A2 b
B
x2 0 I

1

It should be noted that alternative bases are possible if
B B B . . .
xlj =0 or xlj = ulj’ but such cases have been omitted in the interest
of brevity.
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B B .
Further, let ¥y , s and cg be the portions of the y, s and S vectors

. B . .
corresponding to X1» and let yN, sN and cg be the portions corresponding
N B B B . N
to Xy Then Xis Ko ¥ s together with a constructed vector z form an

optimal basis for FCP which satisfies Simplex optimality criteria if and

only if zN is created according to the following rules:

(i) 1If xﬁj = 0 in the solution to RP, then

r
N N ~-N N
. or x,. if (¢ .-c .) <0
Y3 1j 17 s
N N N N -N N
z, = <y., 8. or x.. if {c_.-=c .) =0
] y] ] 1] 1j 7s]
N N . =N N
) or s, if (e, .-¢ .) » 0.
73 3 13 s

(ii) 1If xN = uNj in the solution to RP, then

zN = yN or xN
] ] 13"

Proof., By Lemma 3.1.1.2 the optimal tableau for FCP corresponding to

the basis {x?,xg,yB,yN} is given by



B N B N N B N
xl xl x2 5 ¥ S S RHS
-N.T -N.T B.T|, N.T
0 (cl) 0 (CQ) 0 0 (cs) (cs) -
XE I 0
______ ] P 3 0 0 0 5
5 1 2
x2 0 I
b IR [2:00 S B V-5 o | -1 | o |(BI
k k k
yNi 0 -1 0 I 0 -1 0

Ha

(3-15)

Theorem 3.1.1.4 demonstrated that Simplex optimality criteria are satis-

fied for this basis, and thus z?

tions.

If pivot is performed to replace yN

sulting updated Simplex tableau is given by

B N B N N B N
1 xl x2 X vy s S RHS
-N N.,T ~N.T N,T B.T| -
(cl-cs) 0 (c2) (cs) (cS) 0 -
xB 0]
1 _N _N -
-] A -———| A 0 0 0 b
1 2
B 1
%2
yB [ETJlB 0 [Kg lB 0 -1 0 [B]lB
k k k
SN I 0 0 -I 0 I 0

? is a valid choice under all condi-

in this basis by SN, the re-

(3-16)
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Nete that the adjusted cost for yN in this tableau is the positive

vector cg. Thus, Simplex optimality criteria can be satisfied only if

N _
y =

N

0 because yN = X

But then x? =

0 in the optimal sclution to FCP,.
observe that the adjusted cost

N
1

in any optimal solution tec FCP. Next,

for xf in the tableau is (Eg—cg). For x. = 0, this value can satisfy

Simplex optimality criteria only if it is non-negative. Therefore it

can be concluded that z? = s? provides a basis satisfying Simplex opti-
. . -N N
. . . - _ 3 0.
mality criteria if and only if le 0 and (clj Csj) 0
Similarly, if a pivot is performed to replace SN in the basis by
xi, the resulting updated Simplex tableau is given by

8 N B N B N B N
Xp 10X ] %, X, y y s s RHS
~N,T -N.T B ~-N N.T
0 0 (c2) (cl) g —(cl-cs)
B
xl I 0
——— ———— -N N -N _
B A2 Al 0 —Al b (3-17)
X 0 I
2
B -N.1 - - -
vl o o I, [AT]l SEa B v R 1125
k k k k
x? 0 0 0 -1 0 I Q

Examination of the adjusted cost row for this case will show that Simplex

optimality criteria will be satisfied whenever —(EN~c

N

tions c¢an produce this result. 15

explicitly required.

. N
However, if xlj =

If .., =

N
13

0,
N =N
ulj’ then clj

-(c

1

N

>
J) 2 0.

Two situa-
N

.~C .) = 0 must be
5]

< 0 by optimality



50

. . =N
of RP. Since Csj > 0, it will always be true that _(Clj—cgj) > 0.

Therefore it can be concluded that zg = xﬁj produces a basis satisfying

Simplex optimality criteria for FCP if and only if either ij = 0 in

. . -N N N N .
P ~C_,) = . = .
the optimal solution for RP and (Cl] csj) G, or xl:| ulj in the

optimal RP solution.

Q.E.D.

3.2 Group Formulation of the Problem

As briefly indicated in Section 2.1, the group problem associated
with an integer program IP [i.e. GP(IP)] is a relaxed version of the
equivalent form of the original problem obtained by expressing the prob-
lem in terms of an optimal Simplex tableau for its continuous relaxation
IP. Non-negativity constraints on the basic variables in the optimal
solution to IP are relaxed, but all other requirements of the original
problem are retained. The problem is expressed in terms of the nonbasic
variables in the optimal solution of IP, and thus GP(IP) can be viewed
as the problem of finding a minimum cost perturbation of the nonbasic
variables which will satisfy all congruence constraints of IP while con-
forming to non-negativity on the nonbasic variables in some optimal
solution to IP,

In this section the group problem associated with FCP will be
carefully developed. Before proceeding to this development, however, a
slight extension of Gomory's original definition of the group problem
must be presented.

As developed by Gomory [40] and summarized in Section 2.1, the

group formulation is established only for integer programming problems
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with zero lower bounds and no implicitly handled upper bounds on decision
variables. Moreover, the formulation 1s expressed in terms of elements
of the coptimal tableau associated with the ordinary Simplex method. The
following are the concepts necessary to generalize this group formula-
tion to the case of FCP, Le. to problems with implicit upper and lower
bounds which have been solved by bounded Simplex procedures:

1. The group problem is viewed as the problem of finding the
minimum cost perturbation of the optimum values of nonbasic wvariables in
FCP which satisfies all congruence constraints of FCP while conform-
ing to lower bounds on nonbasic variables which were lower-bounded in
the optimal FCP solution and to upper bounds on nonbasic variables which
were upper-bounded in the optimal FCP solution. Thus the decision vari-
ables are not the nonbasic variables themselves, but slack or perturba-
tion variables which measure how far in the feasible direction from
their FCP optimum values the nonbasic variables are changed in satisfy-
ing the congruence constraints of FCP.

2. Both upper and lower bounds on basic variables in the optimal
FCP solution are relaxed in the group problem.

3. Upper bounds on nonbasic variables which were lower-bounded
in the optimal FCP solution and .lower bounds on nonbasic variables which
were upper-bounded are also relaxed. Thus the perturbation or change
variables have no upper limits.

4. To obtain the constraints and objective function of the group

problem from the optimal tableau of an upper-bounded Simplex procedure,

express the original nonbasic variables in terms of perturbation
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variables, and substitute. This has the effect of making columns for
perturbations of nonbasic variables identical to the corresponding
columns in the optimal bounded Simplex tableau for FCP when the vari-
ables were lower-bounded in the optimal FCP solution, and -1 times the
corresponding bounded Simplex column when the variables were upper-
bounded in the coniiinucus solution. The right-hand-side of the main
congruence constralnts of the group problem then becomes, not the
adjusted right-hand-side of the bounded Simplex tableau, but the optimal

FCP values of the Lhasic variables themselves,

For details and justifications of these concepts see Appendix B.

3.2.1 Formulation and Construction of Group Problems

The results of Section 3.1 demenstrate how optimal bounded Simplex
tableaux for FCP can be constructed from corresponding tableaux for RP,
and the concepts presented above indicate how group problems assoclated
with FCP can be derived from optimal bounded Simplex tableaux for FCP.
Thus, group problems for FCP can easily be constructed from optimal
bounded Simplex tableaux for RP.

However, Theorem 3.1.2.1 shows that a large number of optimal
tableaux for FCP can be generated from a particular optimal tableau for
RP by varying the membership of the constructed FCP basis. Thus a number
of different group problems could result from a given optimal solution
to RP.

In this section relations between these alternative group prob-
lems are investigated. For notatiomal simpliecity, however, only three

cases will be treated. The cases correspond respectively to choosing
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N N
all components of the vector y , all components of the vector s , and

N . .
all components of the vector X, in forming the changeable part of the

1
basis for FCP. Corresponding FCP tableaux are (3-15), (3-16) and (3-17).

Any possibility admitted by Theorem 3.1.2.1 is merely a row-by-row mix

of the results for these three cases.
B

Consider first the case of the basis {xi,xg,yB,yN}, where {xi,xQ}
is an optimal basis for RP. Subdivide the associated nonbasic vectors
into upper and lower-bounded parts as indicated in Section 1.4.2, and
define the following perturbation variables

L _ L
Axl =X 0
Axg = ug - xg ASB = sB -0
(3-18)
L _ L L N _ N
sz = X5 - 22 As = s - 0.
AxU = uU - xU
2 2 2
Then the basic variables for this case can be expressed in terms of
these perturbation variables and the tableau (3-15) as
B -
X XB AxL AX
1 1 N 1 N
= - (Al) - (AQ) (3-19)
B ;B U
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B -3 =N-1 L =N;1 L B
v v [Al]kB Axl [A2]kB AxQ As
= - - + (3-20)
N -N U N
y I | |-axg 0 ||-ax, As

where QE, ig, §B and §N are the optimal values of xi, xg, yB and yN
respectively. Substituting for basic variables according to these rela-
tionships, and for nonbasic variables according to (3-18), we obtain the

following equivalent form of FCP:

) Ty
AxL AxL cB ASB
. ~N.,T 1 -N.T 2 S N
min (cl) + (c2) + + v(FCF) (3-21)
-Ax =A% CN iAsN
s
-N,1 L -N,1 L B -B B
[Al]kB [ %] [A2]kB A%, As y uy
s.t. ‘_AXU + _AXU - = mod (3-22)
1 2 N -N N
-1 - 0 As u
1
B N L U L 9]
As™, As, Axl, Axl, Ax2, Ax2 =z 0 (3-23)
(EFCP) o 2 Ax™ Ax 0
1 18 . 1 N 2
> —(Al) - (A2) > (3-24)
B %5 ~AXU —AxU RB
Yo 2 1 2 2



[ B) -B] (N1 L (=N, 1 ) L B
uy [Al] 3 Axl [A2] B Ax2 As
k K
U U
- - - - > -
> Axl Ax2 + 0D (3-25)
uN 7N -I 4 ASN
\l L L K L ’ /
B B N N
> = _
a2 As”, u) As (3-26)
L L U U
- = -
u, # Axl, u; oz Axl (3-27)
(ug—l;) z Axg, (ug-lg) = Axg. (3-28)

Several observations can be made about this equivalent form.
First, note that if the constraints (3-22) are relaxed, an optimal solu-
tion to EFCP is
B N L U L u
As, As, Axl, Axl, Ax2, Ax2 = 0,
This must be true because such a solution satisfies all constraints
except (3-22), and cptimality of FCP assures the objective function

. . L .
coefficlents of AxL and Ax, are non-negative, and that those of Axg

1 2
and Axg are non-positive. Thus, since e, > 0, no other solution satis-
fying (3-23) could preduce a smaller value of the objective function
(3-21).

Next observe that if the constraints (3-22) are included, the
all-zero solution will be a feasible solution only when y = 0 mod u_,

1

i.e. when an optimal scolution to FCP is also an optimal solution to FCP.



Moreover, if y ¥ 0 mod uys the all-zero solution would continue to be

infeasible if all constraints were relaxed except (3-22) and (3-23).
Thus minimizing (3-21) subject to (3-22) and (3-23) will produce a
-L

. . . - ~-L
generally non-zero solution, and since ¢, 1s positive, ¢ and ¢

1 2 are

. -U - s . .
non-negative and ¢’ and cU are non-positive, the wvalue of this optimal

- 2
solution will be greater than or equal to v(FCP).

Finally, note that since the value of an optimal solution to EFCP
is equal to v(FCP), the value of an optimal solution to any relaxation
of EFCP provides a lower bound on vw(FCP). In particular, the value of
an optimal solution to any relaxation of EFCP which includes at least

(3-22) and (3-23) provides a lower bound on vw(FCP) which is in general

greater than v(FCP). Thus the following bounding problem is of interest.

3.2.1.1 Definition. The group problem for FCP associated with the

basis {x?,xg,yB,yN} is the optimization problem defined by (3-21)},

(3-22), and (3-23), and denoted GPl(FCP).
B B B N
Development of the group problems for the bases {xl,xz,y »S 1
and {x?,xg,yB,xT} proceeds in exactly the same way whenever these bases

are optimal for FCP. By defining the perturbation variables
Ay =y -0, by =y -0, 8y =y -0 (3-29)

and using the tableaux (3-16} and (3-17), equivalent forms of FCP could
be stated. Relaxation of bounds on basic variables in these equivalent

forms produces the following group problems.



3.2.1.2 Definiticn. The group problem for FCP associated with the

basis {xB,xB, B,sn} is the optimization problem defined by
¥p

T
Ax AxL CB ASB
N ON.T| N.T| Z s —
min (c -c ) + () + + v(FCP) (3-30)
1l 7s 2 |
-A v -AxU cN A N
*1 2 SJ y
Axi Axg
s.t. [ﬁN]l + fRN]l - asd = §B mod u
1°.B 2°.B 1
K -AxU K ~Ax
1l 2
N L U L 9)
6s , Ay , Axl, Axl, Ax2, AxQ 20 (3-32)
AyN = 0 mod ui, (3-33)

and denoted GPQ(FCP).

3.2,1,3 Definition. The group problem for FCP associated with the

basis {xB,mB, B,x”} is the optimization problem defined by
12%92Y 2%

(3-31)
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s.t.
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L 3-34)
Axg Ay (
- - T B N -N.T, N e
(cN)T + (cN)T + (cB) as + (¢ -cN) As + Vv(ECP)
2 1 s s 1
—AxU -AyU
2
L L (3-35)
sz Ay
Ayt + (AN - as® - A (asY) = 5B mod WF
2°. B 1°.B 1°.B 1
k U k U k
=Ax —-Ay
2
ASB, ASN, AyL, AyU, Axg, Axg 2 0 (3-36)
L _ L U _ U
Ay~ = 0 mod uls Ay~ = 0 mod ul, (3-37)

and denoted GPS(FCP).

3.2.2 Relations Between Alternative Formulations

The three formulaticns of the group problem for FCP presented in

the previous section share several properties. Among these are the fol-

lowing:

All three group problems can be constructed from the
optimal bounded Simplex tableau of the reduced problem
RP by direct copying of rows from that tableau. The
only computation necessary is the changing of signs

on some columns.

The value of an optimal solution to any of the three
group problems provides a lower bound on v(FCP) which
will be generally greater than v(EFCP).

These similarities do not imply, however, that the three problems

are equivalent in their suitability for use in a branch-and-bound pro-

cedure like the one discussed at the beginning of this chapter, TFor
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example, the next theorem demonstrates that the first two are unequal in

their bounding effectiveness.

3,2.2.1 Theorem, Tor any GPl(FCP) and GPQ(FCP) as defined above which

correspond to Simplex optimal solutions to FCP, v(GPl(FCP)) z
v(GPQ(FCP)J. Moreover, any parallel relaxation of the two problems
obtained by imposing only part of the constraints (3-31) will similarly
have the value of an optimal sclution to the relaxation of GPl(FCP)
greater than or equal to the value of an optimal solution to the

analogous relaxation of GPZ(FCP).

Proof. TFirst observe that it will always be optimal to have AyN =0
in GPZ(FCP). Any other solution will incur unnecessary cost because
SN 0. Now suppose GPl(PCP) is relaxed by replacing the constraints
(3-22) with those of (3-31), i.e. ignoring the last part of the con-
straints (3-22). Then for this relaxed version of GPl(PCP), it will
always be optimal to have ASN = 0 because c: > 0. Thus the set of
solutions which could be optimal for GPQ(FCP) is essentially equal to
the set of solutions which could be optimal for such a relaxed form of
GPl(FCP) and is defined by (3-31) and

u L u

B L
As™, Axl, Axl, AxQ, sz z 0. (3-38)

Ay, As™ = 0. (3-39)

Now consider the objective functions. Over the set of solutions
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just described, the two objective functions are identical except for

the coefficient of the perturbations of x?.

but for GP_(FCP) it is (EN~CN). Since cN >0,
2 Ll s s

For GPl(FCP) this coeffi-

. . =N
clent 1s cl,

and by Theorem 3.1.2.1 it is possible to construct GP2(FCP) only when
(ET—CE) 2 0 and all nonbasic xlj are lower-bounded. Thus if GP2(FCP)
can be constructed, the value of the objective function of GPl(FCP) will
be greater than or egqual to the value of the objective function of
GPQ(FCP) for any sclution satisfying (3-31), (3-38) and (3-39). Cer-
tainly such a relationship will continue to hold when the described
relaxation of GPl(FCP)is replaced by the full problem, and so

v(ep, (Fcp)) 2 v{gp,(FCP)).

The argument for the second part of the theorem is exactly
analogous. Relaxation of some of the constraints (3-31) in both
GPl(FCP) and GP2(FCP) would not change any of the above conclusions, and
the value of an optimal sclution for the relaxation of GPl(FCP) would
still be greater than or equal to the value of an optimal solution for
the corresponding relaxation of GPQ(FCP) whenever GPZ(FCP) can be con-
structed.

Q.E.D.

Theorem 3.2.2.1 demonstrates that thé formulation GP2(FCP) has

little attraction in a branch-and-bound procedure for FCP. Generally

better bounds will bz obtained by use of the formulation GPl(FCP), and
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no additional computational effort is required.

Unfortunately, it does not appear possible to develop such a
dominance relationship between GPl(FCP) and GPB(FCP). For some solu-
tions it appears one would produce higher bounds, and for others the
reverse might occur.

However, GPl(FCP) and GP3(FCP) do differ in another important
aspect. The constraints (3-37) impose requirements on the perturbation
solution space which are difficult to deal with computationally. In-
stead of perturbations moving along a continuum as in GPl(FCP), they
must advance in discrete jumps to satisfy (3-37). Thus any penalty
problem derived from GPS(FCP) is considerably more difficult to solve
than a corresponding one from GPl(FCP).

Because of this computational difficulty with GPS(FCP) and the
weaker bounding properties of GP2(PCP), all remaining discussion in this
digsertation will address the formulation GPI(FCP). To simply notation,
the subscript will be omitted, and this formulation referred to simply
as GP(FCP). 1In addition, relaxations of GPl(FCP) involving only
selected rows of (3-22) will be denoted GP(T) where ' is the set of

indices of all enforced rows.

3,3. Penalties Derived from One-Row Group Problems

While the value of an optimal solution to GP(FCP) might very well
provide a very good bound on v(FCP), the congruence constraints of
(3-22) make GP(FCP) very difficult to solve. Thus Gomory and Johnson
[43] have proposed that even more relaxed penalty problems be derived

from GP(FCP). In particular, they have suggested solving penalty
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problems consisting of (3-21), (3-23) and one row of (3-22), i,e. GP(i).
In this section, such one row penalties will be studied in the

FCP context. To simplify the notation define dl, d al(i), a2(i) from

2,
the tableau of (3-15) as follows:

<L
1
d. = (3-40)
1 =
1
L
2
a, = (3-41)
2 .
2
[ -U.1 ]
L -A7]
1 17,3
al(i) = -I 0 (3-u42)
0 I
L |
i
(=L <U.1 |
(A -A4]
2 2" B
a2(i) = 0 0 (3-43)
0 0
- —13.

The vectors dl and d2 are then the objective function coefficients of

GP(FCP), adjusted in sign according to whether the corresponding variable



was upper-bounded or lower-bounded. Similarly, al(i) and az(i) are the
coefficients of one row of the constraints (3-22) after adjustment of
the sign.

3.3.1 Simple One-Row Group Penalties

With this notation the one-row group problem associated with the

ith row of GP(FCP) is given by

. T, N T, N —
min (dl) Axl + (dz) Ax2 + CsiASi + vw(FCP) (3-44)
. AT, N 2T, N _ -
(GP(l)] s.t. al(L) Axl + a2(1) Ax2 ~ s, 2, mod v (3-45)
N N
B, 8%y, Bs; 2 0. (3-46)

The problem can be Interpreted as that of finding the minimum cost
perturbation of the optimal solution to FCP which will cause Vs to

satisfy its congruerce requirement. The quantity
v{GP(1)) -~ v(FCP)

is thus an estimate of the additional cost or penalty for making Ys
conform to y; % 0 mod U

As indicated in Section 2.1.1, even such simple one row group
problems are often difficult to solve, and a series of approximation

methods have been developed (see [43,44,65,66]). In the FCP case, how-

ever, the simple one row group problems can easily be solved exactly.
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Since all perturbation variables are continuous, GP(i) reduces to two
linear knapsack problems, and the solution presented in the next theorem

applies.

3.3.1.1 Theorem. TFor GP(i) as defined above,

v(GP(1)) = w(FEP) + min{p™(1),0 (i)}

where

pD(i) = §imin < N (3-47)

. 2y .
min <La—'—(';-)— : azj(l) > 0

]
p (i) = (ulinyi) min 4 S (3-48)

min ‘——(J:j H 2]

Proof., Suppose (3-45) in GP(i) is replaced by
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T N T, N _
al(l) Ax) + a2(1) Ax, = bs; = w.
Then the resulting problem is a linear knapsack problem, and an optimal
solution can be obtained by well-known minimum ratio procedure. In par-

ticular, if w = §i” the value of a solution is given by
== D,
W(FCP) + p (1) (3-49)

where pD(i) is defined in (3-47). Moreover, if w > §i’ (3-49) provides
a lower bound on the value of an optimal solutionm to the knapsack prob-

lem. Similarly, if w = §i - the value of a solution to the knap-

u.,
1i*

sack problem is given by
[— §) .
v(FCP) + p (1), (3-50)

and (3-50) provides a lower bound on solution values for all problems

i <y, - u...
with w yl ull
By feasibility of FCP,

1i

Thus to satisfy (3-45) in GP(i} either

..T., N . T N
al(l) Axl + a2(1) Ax2 - Asi i (3-51)

v
l

or
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al(i)TAx§ + az(i)TAxg - bs, < §i - UL (3-52)
But by the argument just presented, the minimum cost solutions for these
two cases are given by (3-49) and (3-50). Thus the value of an optimal
solution to GP(i) will be the minimum of the values for the two cases.
Q.E.D.

In addition to having simple exact solutions, the one-row prob-

lems GP(i) possess another convenient property. Since GP(1) reduces to
two linear programs, one which corresponds to forcing Yi "down" to zero

., it is pos-

and the other which corresponds to forcing s "up" to U,

sible to interpret the functions pD(i) and pU(i). These guantities cor-
respond to the penalties for forcing v down and up, respectively. In
general group penalty approaches (see [43,44,65,66]1) it is possible to
obtain only an estimate of the penalty for forcing y; to satisfy its
congruence constraint. For the FCP case, however, this argument shows
that penalties for attaining specific values of y; can be identified.
Such specific information . is very useful in defining the sets @D and @U,
and choosing the branching variable yi in a branch-and-bound procedure
like the one presenzed at the beginning of this chapter.

3.3.2 Relation to Tomlin's Penalties

In [90] J. A. Tomlin proposed two other penalty approaches for
estimating the cost of forcing an integer variable up or down to the
next integral Qalue. One set of penalties is based on simple duality
concepts, and the other derives from Gomory's mixed-integer cuts [37],

For perturbation variables which must be integer, i.e. are subject to
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congruence requirements, Tomlin's two penalties are different., For the

case where all perturbation variables are continuous, however, both

penalties are the same. For FCP's with optimal FCP solution obtained

as in Thecrem 3.1.1.4, the penalties are given by

(i) =

(1) =

where TD(i)

TU(i)

Direct

penalties are

min a_.{i)y > o0

¥; min g > (3-53)

min ?T%)- H 2j(i) >

o
%)
o
<
h—._.—.‘,__.—...-—/

min

(uli—yi) min S (3-54)

nin ¢——— .
—an(l) 2j

si

the penalty for forcing the ith integer variable down
to the next walue satisfying Y; = 0 mod U

the penalty for forcing the ith integer variable up to
the next value satisfying ' £ 0 mod U

inspection of these expressions will show that Tomlin's

identical to the simple one-row group penalties for FCP,

This observation is summarized in the following theorem.
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3.3.2.1 Theorem. For the problem FCP with optimal FCP tableau con-

structed as in Theorem 3.1.1.4%, the simple one-row group pehalties

pD(i) and pU(i) satisfy

pD(i) TD(i)

TU(i)

J]

oY(1)

where TD(i) and TU(i) are the down and up penalties proposed by Tomlin.

3.3.3 Improving Penalties by Considering Upper Bounds

In order for GP(FCP) to conform to the mathematical group theory
results developed by Gomory [40], it was necessary to relax the con-
straints (3-24) through (3-28) of EFCP in formulating the problem.
Since Theorem 3.3.1.1 has demonstrated that simple one-row relaxations
of GP(FCP) are exceptionally easy to solve, however, it seems logical
to consider reimposing some of the constraints lost in the GP(FCP)
formulation in order to improve the bounds obtained. The more difficult
problem of considering constraints (3-2%) and (3-25) will be discussed
later in the dissertation, but a simple scheme for including the upper
bounds on perturbation variables [i.e. (3-26), (3-27) and (3—28)] is
presented here.

Define the upper limits

o, = u, - 22. (3-55)
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Then the bounded group problem BGP(T) associated with the GP(T) is given

by

. T, N T. N
min (dl) Axl + (d2) Ax

T cTAs + v(FCP)
2 s

rH

. T N AT, N
s.t. al(l) A, + a2(1) Ax2 - Asi

1 ¥i mod u for iel

1i
(BGP(T))

o
3%
v
Q

AXN

hY
o

AxN

e}
[\

As

=
\
[\
(=]

As with GP(T'), this problem can be interpreted as that of finding the
minimum cost perturpation of the optimal solution to FCP which will
cause y. to satisfy the constraint y; = 0 mod U for all iel'. However,
in BGP(l') the constraints (3-26}, (3-27) and (3-28) of EFCP are also
enforced.

Even with the additional constraints, the one-row cases BGP(1i)
are almost as easy to solve as GP(i). The next theorem specifies the

technique for cobtaining an optimal solution.

3.3.3.1 Theorem. For BGP(i) as defined above

v[BGP(i)) = v(FCP) + min{pD(i),pU(i)}

where pD(i) is the value of an optimal solution to the problem



70

min (dl)TAx? N (d2)TAxg + e ;bs, (3-56)
s.t. al(i)TAxi + az(i)TAxg - 8s, = §, (3-57)
@z a2 0 (3-58)

1 1
og z Axg 0 (3-59)
u, % As. 20 (3-60)

and pU(i) is the value of an optimal solution to a similar problem with

the right~hand-side of (3-57) replaced by (?i-u ).

1li

Proof. As with Theorem 3.3.1.1 the version of BGP(i) consisting of

(3-58), (3-58), (3-59), (3-860) and the constraint
T, N .~T, N _
al(l) Axl + a2(1) Ax2 - Asi = w

is a linear knapsack problem with optimal soluticn value increasing
monotonically with |w|. Moreover, any solution to BGP(i) satisfying
(3-45}) will also satisfy either (3-51) or (3-52). Thus a least cost
solution will always occur when the inequalities in these expressions
are replaced by equalities, and the value of an optimal solution to
BGP(i) will be the minimum of the two equality cases.

Q.E.D.

From Theorem 3.3.3.1 it can be seen that BGP(i), like GP(1i),
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reduces to two lirear knapsack problems for which efficient minimum ratio
solution schemes are available. Moreover, the "two case'" solution pro-
cedure still permits interpretation of the functions pD(i) and pU(i) as

., respectively,

the penalties for forcing v "down" to 0 and "up" to U, .

Thus, by solving B3P(1) instead of GP(i) generally higher penalties can
be achieved with relatively little computational cost and no loss of

other desirable properties.

3.4 Valid Inequalities for Fixed Charge Problems

In the work of Gomery and Johnson [42,43,44] on group theoretic
approaches to integer programming the penalty problem ideas discussed in
the previous section are closely related to the concept of a valid
inequality or cut. In this section a portion of their theory of walid
inequalities will be applied to derive some results for FCP,

3.4.1 Restatement of the Theory of Valid Inequalities

Before turning tc application of the Gomory-Johnson theory to

results for FCP, it 1s necessary to restate some of the important defi-
nitions and results of the theory in terms of the notation and require-
ments of FCP. The discussion of this section provides such a review,
with each definition and theorem being a direct restatement of more

general results in [43].

3.4.1.1 Definition [43,p.30]. A valid imequality for any relaxation

of the equivalent form EFCP is an inequality t defined by

tTAx +tTAx + tTAs =1 (3-81)
1l 2 E]

N =

N
1
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which is satisfied by every feasible solution {Ax?,AxN,As} to that

relaxation and has
> 0, (3-62)

3.4.1.2 Definition [43,p.30]. A valid inequality t is a minimal

valid inequality if there exists no other valid ineguality w for the

same problem satisfying t » w, where t > w 1s defined to mean

T.'lj > le
>

25 % W4

. 2 W .

5] 5]

for all j, and strict inequality holds in at least one case.

Suppose addition of inequalities is defined to mean coefficient
by coefficient addition, and multiplication of an inequality by a scalar
is defined to mean multiplication of each coefficient by the scalar.
Then clearly the set of valid inequalities for a particular problem is

a convex set because an inequality

(p)t + (1L-plw

constructed from two valid inequalities t and w would obviously satisfy
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(3-61) and (3-62) for 1 2 p 2 0. Moreover, it then makes sense to speak

of the extreme valld inequalities described in the following definiticn.

3.4.1.3 Definition [43,p.31]. An extreme valid inequality for a given

problem is a valid inequality for the problem which cannot be expressed
as a convex combination of two distinct valid inequalities for that

problem.
The relation between minimal and extreme valid inequalities is

given by the following theorem.

3.4.1.4% Theorem [43,p.31]. The extreme valid inequalities for a given

problem are minimal valid inequalities for the problem.

Proof. Let t be an extreme valid inequality for some problem, Then if
t is not minimal, there exists another wvalid inequality w such that
w < t in the sense described in Definition 3.4.1.2. Consider the in-

equality
(t + (t-w)].

Since t is a valid inequality and (t-w) is non-negative in every com-
ponent, this inequality satisfies (3-61) and (3-62) and so is a valid
inequality. Moreover, this inequality is not identical to w because that
would imply t = w. But t = %-w + %-[t + (t-w)), which implies t can be
expressed as a convex combination of two distinct valid inequalities and

contradicts extremality of t. Thus t must be a minimal valid inequality.

Q.E.D.



74

Before applying the above theorem and definitions to some obser-
vations about FCP, it is useful to gain some intuition about the dif-
ferent types of valid inequalities. Assume for this purpose that the
perturbation solution space of a problem associated with EFCP has only
two dimensions. Then the three possibilities are illustrated in Figure

Ax

Problem solutions

Valid inequality

~~ ""\_“f o Ax

1

Figure 2. Illustrations of Types of Valid Inequalities

The heavy dots in this figure represent points which satisfy the

problem of interest [e.g. GP(FCP)]. A valid inequality for this problem
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is any inequality with positive slope, i.e., with néﬁ—negative coeffi-
cients, which excludes none of the solution points, The inequality be-
comes minimal if i touches the convex hull of solution points for the
problem, and extremne if it forms a face of that convex hull. Thus in
terms of defining the solution space for a particular problem, extreme
valid inegualities are the most preferred, followed by minimal valid
inequalities and then ordinary valid inequalities. If the entire set
of extreme valid inequalities were available, an exact solution could be
provided by linear programming for any problem involving the minimiza-
tion of a non-negative objective function over the indicated solution
points because such a solution would occur at the intersection of
extreme valid inequalities,

3.4.2 Strength of Gomory Cuts as Valid Inequalities

In 1960, Gomory [37] proposed a method for deriving cutting planes
for mixed-integer programs. One such cutting plane can be derived from

each infeasible row 1 of the constraints (3-22), and takes the form
. .11, N . yT, N .3 T
[GC(l)J [gl(l)) Axl + [g2(1)) Ax2 + (gs(l)] As = 1

where
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ak.(i)
1 If & (i) 2 0 and k=1,2
Y3
gkj(l) = 9 (3-63)
ak.(i)
3 if a .(i) < © and k=1,2
- - u kj
i 7t
[_ -1 if  g=i
Yi - Y3
g . (1) = <« (3-64)
87
0 otherwise

and alj(i), a2j(i) are as defined in Section 3.3.
The purpose of generating such inequalities is to define the

solution space of ths original mixed-integer problem in a way which

could be dealt with by linear programming. However, the next thecrem

demonstrates that the GC(i) can be shown to be special cases of valid

inequalities.

3.4.2.1 Theorem. Each GC(i) which corresponds to a row i of (3-22)

not satisfied by the solution Axﬁ, Axg, As = 0 is a valid inequality for

EFCP, or any relaxation of EFCP involving at least (3-21), (3-23) and

the same row i of (3-22).

Proof. It is sufficient to show GC(1i) is a valid inequality for the
one-row group problem GP(i) because an inequality which is wvalid for a

given problem will certainly be valid for any other problem with
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feasible sclution set contained in that of the first problem.

For the GP{1i) case observe that for any infeasible row i, it must
be true that U ? ;i > 0. Thus the definitions (3-63) and (3-64)
clearly imply all coefficients of GC({i) are finite and non-negative.

Next recall that any sclution to GP(i) must satisfy either (3-51)

or {3-52). 1In the case where (3-51) is satisfied it must certainly hold

that

. N . N -
> -
¥ alj(%)axlj + ) a?j(l)AXQj 2 Y- (3-65)
.. . . )
{].alj(l)-o} {j.a2j(l) 0}
Similarly, if a sclution satisfies (3-52),
LN LN -

) alj(l)A).lj + ) a2j(l)Ax2j- bs; <y, - u,. (3-66)

{j:alj(i)<0} {j:azj(i)<0}

Dividing (3-65) by §i and (3-66) by (§i-uli) produces two expres-
sions which must be greater than or equal to one. Since either the
situation of (3-65) or the situation of (3-66) must occur, it is cer-
tainly true that the sum of the two such expressions must be at least
one, Thus

(g, (1) ax] + (g,(0)) oy + (g (1)) Tas 2 1

for all solutions {Ax?,ﬂxg,ﬂs} of GP(i), and GC(i) is a valid inequality

for GP(1i}. Q.%.D.
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In order for GC(i) to be a valid cutting plane for a given prob-
lem it is necessary that it be a valid inequality for the problem. Thus
Theorem 3.4.2.1 coild be shown for any mixed-integer prcblem, and in
fact, the argument given in the proof is exactly that of Gomory in [37].
The next theorem demonstrates, however, that Gomory cuts have unusual

significance for the FCP case.

3.4.2.2 Theorem. Each GC(i) which corresponds to a row i of (3-22) not

Axg, As = 0 is an extreme valid inequal-

satisfied by the sclution Ax?,
ity for GP(FCP) and any relaxation of GP{FCP) for which GC(i} is a

valid inequality.

Proof. 1t is sufficient to show that GC(i) is an extreme valid in-
equality for GP(FCP) since any inequality which is an extreme valid
inequality for a given problem is certainly an extreme valid inequality
in any relaxation of the problem for which it is wvalid. Moreover,
Theorem 3.4.2.1 implies GC(i) is a valid inequality for GP{FCP). Thus
it is only necessary to show that the GC(i) are extreme for GP(FCP).
Suppose, by contradiction, that some GC(i) derived from an in-
feasible row of (3-22) is not extreme. Then there exist two distinct

valid inequalities w and z such that
GC(i) = (plw + (1-p)z (3-87)

for some p satisfyingl>p > 0.

Now it must ke true that wsj =z , =0 for § # 1. This follows
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because gsj(i) = 0 for j # 1, and two non-negative quantities can pro-
duce a convex combination egqual to 0 only if they are both zero. Sup-

pose, however, that w_, < g_.(i) < z_., and consider the solution
si si si
AX. = 0, Ax, = 0, As = U -y (3-68)

Clearly, (3-68) provides a feasible solution to GP(FCP) because all
perturbation variables are non-negative and the indicated value of As

will satisfy all the constraints (3-22). But

N T AN T s - . -y -
W hx, 4 w2Ax2 + wSAs = wsi(uli—yi) < gsi(l)(uli—yi) =1,

T
1
which contradicts the validity of w. The reverse case where Z_s <
1) < .4 I .
gSl(l) w i is exactly analogous
Thus, iIf two distinct valid inequalities w and z do exist which
satisfy (3-67), there must exist some pair (k,j) with k=1 or 2 and

either
1 ~BE
wkj < gkj(l) < ij (3-6%2)

or

z . < gkj(i) < W (3-70)

ki ki’

Without loss of generality, assume (3-69) holds, and consider the solu-

tion
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— =~ if h=k, n=j
ghn(l)
AN
Axhn = (3-71)
0 otherwise
0 ifn =1
Az =< (3-72)
n akj(n) _
é;;ffj-- Yo mod U if n # 1.

To show this solution is feasible for GP(FCP), observe first that all

values of Aﬁ?, A§§ and As are clearly non-negative. Moreover, for row

i of (3-22)

N
1

a, .(1)
. T »N _ KJ _ -
+ a2(1) Ax2 Asi = gkj(i) Y OP Yo - Upss

R
al(l) Ax

and either of these values is congruent to §i mod u Similarly, for

it

row n ¥ 1

T, -N T, ~N A
al(n) Axl ¥ az(n) Ax. - As

. akj(n) ) akj(n) 5 lnod w
2 n gkj(n) gkj(n) n| . "ln

mod u
In akj(n) akj(n)

- +y
gkj(n) gkj(n) n

mod uln

1t
~gi
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Thus the solution of (3-71) and (3-72) satisfies the constraints (3-272)

and is feasible for GP(FCF).

But for <his soclution (remembering Wep T Q for h # 1),
. A W, . g, (1)
w}Aﬁ? + wgﬂﬁg + wzﬂs = kgi) < kj(i) =1
“ Bk 83

which violates validity of w. Therefore no distinct valid inequalities
satisfying (3-87) can exist, and GC(i) is an extreme valid inequality
for GP(FCP),

Q.E.D.

The implication of Theorem 3.4.2.2 is that Gomory cuts are
extreme valid inequalities or faces of the convex hull-of solutions to
GP(FCP). This is a somewhat surprising result because experience with
the use of Gomory cuts in integer programming has generally been disap-
pointing computationally (see e.g., [49]). For the FCP case, however, the
above theorem shows that the Gomory cuts are as strong as any possible
inequality for GF(FCP). The GC(i) may not be the only faces of the con-
vex hull of solutions to GP(FCP}, but by Theorem 3.4.1.4 there can be
no valid inequality t for GP(FCP) which satisfies t < GC(i),

A possible explanation for this apparent contradiction between
observed and theoretical strength of Gomory cuts lies in the fact that
Theorem 3.%.2.2 would not hold if GP(FCP) were augmented by certain of
the contraints of EFCP which are relaxed in the GP(FCP) formulation.

The next section investigates this phenomenon for the case of the con-

straints (3-25).
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3.4,3 Gomory Cuts in Either-Or Problems

Consider the etther-or problem EOP(T) derived from the optimal

tableau (3-15) in the form

. T N T N T —_—
min dlel F dQsz + CSAS + v(ICP) (3-73)
T, N T N - - .
s.t. al(l) Axl 4 a2(1) Ax2 - Asi =y, or yi - uli for ieT (3-74)
(EoP(T)) Ax?, Axg, as = 0, (3-75)

Clearly, such a prcblemis a valid relaxation of FCP because 1t consists
of GP(T) with some of the constraints (3-25) reimposed. A solution to
GP(T) is also a solution to EOP(I') if it not only satisfies the rows of
{3~22) corresponding to i€l but also satisfies those rows in such a way
that the implied values of the vi yield 0 < Vs <u,.,.

The extremality of Gomory cuts implied by Theorem 3.4.2.2 does
not always hold for EOP(T). Consider, for example, the case where con-

straints of EOP(T) are given by

Ax21 - Asl =5 or -4 {3~786)
szl - A52 = 8 or -12 (3-77)
M, s sy, ds, 2 0, (3-78)
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and those of GP(l') are

5 mod 9

Ax2l - Asl

Ax2l - A52 Z B mod 20

>
szl, Asl, As2 z 0.

The Gomory cut for (3-76) is
1
Ax + E-AS = 1. (3-79)

However, inspection will show that if A%,y is positive in any solution

to (3-76), (3-77) aad (3-78),

v
[o.0]
[\
w

and As

Ax,, 2 1

Thus the inequality

— AX_ . + % As, 2 1 (3-80)

is a valid inequality for the above EOP because it eliminates no feasi-
ble solution. But (3-80) has smaller coefficients than (3-79) which
implies (3-79) is not minimal. Therefore, by Theorem 3.4.1.4, the
Gomory cut (3-79) is also not an extreme valid inequality for the above

EOF.
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Trom this example it can be concluded that Gomory cuts will not
always be extreme for EOP's of at least two rows. However, the next

theorem demonstrates that extremality does hold for the one-row problems

EOP({1i).

3.4,3.1 Theorem. Each GC(i) which corresponds to a row i of (3-22) not

satisfied by the solution Axi, Axg, As = 0 is an extreme valid inequality

for the corresponding problem EQP(1i).

Proof, By Theorem 3.4.2.1 any such GC(i} is a valid inequality for
GP(i). Since every sclution to EOP(i)} is a solution to GP(i), it must
therefore be true that GC(1) is a valid inequality for EOP(1).

To show that GC(i) is an extreme valid inequality for EOQP(i) it
is only necessary to retrace the argument in the proof of Theorem
3.4,2.2. The existence of valid inequalities w and 2z satisfying (3-67)
would continue to b2 contradicted by the comstructed solutions (3-58)
and (3-71)-(3-72) because these solutions also satisfy the one-row
either-or problem EOP(i),

Q.E.D.

To understand why Theorem 3.4.3.1 cannot be generalized even to
the two-row case, it is necessary to understand the essential property
of GP(FCP) that made (3-68) and (3-71)-(3-72) feasible solutions. In an
intuitive sense this property might be described as "independence" of
the rows of (3-22)}, i.e. the constraints of (3-22) can each be satisfied
independently by choosing an appropriate value of As; . Such Asi may be

highly infeasible for EOP(l')'s, but they will produce a feasible
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soclution for GP(TI'). Proceeding from these intuitive ideas, a suffi-
cient condition to achieve this "independence" in two-row EOP's will

now be developed.

3.4.3.2 Definition. Row i is said to be diseonnected in EOP{i,j) if

there exists a pair (k,n) such that

akn(i) > 0 and akn(j) = Q, {(3-81)

Similarly, when no such pair exists, i is said to be connected in
EOP(i,]).

The property of being disconnected can best be understood as a
"two way independence." When both the slack ds., which has a negative

coefficient, and some component Ax,  with a positive i coefficient can

kn
be chosen independently of any row j considerations, row i of EOP(i,])

can always be satisTlied. The next theorem demonstrates the expected

implication of this fact on the Gomory cuts.

3.4.3.3 Theorem. If row i is disconnected in EQP(i,j), then GC(j) is

an extreme valid inequality for ECP(i,i).

Proof. Validity of GC(j) follows from the fact that every solution to
EOP(i,j) solves GP(i,j). Thus, since Theorem 3,4.2.1 assures GC(j) is
valid inequality for such GP(i,j), it is certainly a valid inequality

for EOP(1,j).

Now suppose, 2y contradiction, that GC(j) can be expressed in
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terms of twe distinct valid inequalities w and z as shown in (3-67),
i.e. that GC(3) is not an extreme valid inequality for EOP(i,j). By

argument in the proof of Theorem 3.4.2.2, it must be true that

Wae T Zhp T (D)

for all pairs (h,t} with a _.{(j) = 0, and also that

ht

Wg & %g T gs(])'

T h b 1 h i i .
hus there must be some pair (h,t) for which aht(]) Z 0 and wht # zht

Let (h',t'} be such a pair, Ax n be the variable with coeffi-

k

cients as in (3-81}, and

(1) < z

wh‘t' < gh't' htt!”
Then, consider the solution
( :
__lTT lf h:hl, t:-t!
g+ (3
N y a, ., (i}
e 79 S =5 - 3 (?)t oy i hek, tem, A, (5) <0
kn'? kn'J Bprer s
L 0 otherwise
AS = 0
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0 otherwise.

All components of this solution are non-negative by the facts that
akn(j) > 0 and U ? §i > 0, Moreover, direct substitution shows that
this solution satisfies the constraints (3-74) for both row i and row j.
Thus the solution is a feasible solution for EOP(i,j), but

(3)
Gy -

wiaxy ¢ Wil
14%; 1 WA,

Wotg Bl
h't < h't

. 1
B3 B

+ wTAE =

which contradicts the validity of w.
Q.E.D.

The intuitive principle of "two way independence" discussed above,
together with the theoretical result of Theorem 3.4.3.3 suggest that
connectedness may be a measure of the degree of interaction between
pairs of rows from EOP(FCP). When i is connected in EOP(i,j), or better
yet, with both i and j are connected in ECQP(i,j), it seems reasonable to
conclude that there is a relatively high degree of interaction between
the two rows. The application of such a criterion in a branch-and-

bound procedure is discussed in the next section.

3.5 Two-Row Penalty Problems

In Sectien 3.3.3 it was proposed that the basic method of Gomory

and Johnson [43] for deriving penalties in a branch-and-bound procedure
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from one-row group problems GP{i), be extended to solving problems
BGP(i), where the latter problems include the constraints of GP(i) and
upper bounds on the perturbation variables. In Section 3.4 the addition
of the constraints (3-25) to group problems to obtain either-or problems
was discussed. If the principles of including bounds on perturbation
variables and of limiting solutions to those satisfying the either-or
case were combined, the result would seem to be even stronger penalty
problems, i1.e. even better bounds on v(FCP).

Theorem 3,3,3.1 demonstrates, however, that such would not be
the case if only one vrow is considered. In the one-row case, any opti-
mal solution to GP(i) or BGP(i) automatically satisfies the constraints

of EOP(i) as well. Thus

v{GP(1)] = v(EOP(i))
and

v(BGP(2)) = v(EOP(i): (3-58),(3-59) and (3-60)).

n

From this dilemma it can be concluded that problems with at least
two rows would need to be solved in order for the effects of either-or
limitations to be reflected in penalties, However, solution of an
either-or problem with k rows by the method of Theorem 3.3.3.1 involves
solving 2k linear programs in order to decide which right-hand-side pro-
vides the minimum value. Thus the computational difficulty of such
penalty problems increases rapidly with the number of rows considered.

For these reasons, two-row penalty problems were selected for
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detail consideration in the research reported in this dissertation. The
following sections investigate the strength of two-row problems and
discuss methods for using such problems in a branch-and-bound scheme
like the one discussed at the beginning of this chapter.

3.5.1 Strength of Two-Row Problems

Define the bounded either-or problem BEOP(T) by

. T N N T —
min dlel + d Ax2 + cSAs + v(FCP) {3-82)

K ]

T N _\T. N -
s.t. al(l) Ax) + a2(1) Ax,, - Asi =y,

5 or y. - u. for ieT (3-83)

(BEOP(T))

u. = Ax, =20, o, 2 Axg 20, u, = As z 0. (3-84)

Then the two-row cases BEOP(i,j) clearly satisfy

I\

v(BEOP(1,3)) 2 v(FCP)

[\

v(BEOP(1,3)) = max{v(eP(i}], v(eP())}

v(BEOP(4,4)) 2 max{v(BGP(i)), v(BeR(]))}

v(BEOP(i,3)) = max{v(BEOP(1)}, v{BEOP(j)}}
v(BEOP(1,)) 2 v{GP(1,7))
v(BEOP(1,7)) = v(BGP(i,}))

v{BECP(i,$)) 2 v(EOP(i,7))
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because the set of feasible solutions to BEQOP(i,j) is included in the
set of feasible so.utions to each of the problems on the right-hand side
of the inequalities.

To see that in contrast to the one-row case, all the above in-

equalities can hold as strict inequalities, consider the BGP(1,2)

min AX + 3&x22 + 1000As. + Ll000As,, + 500

21 1 2
s.t. ale + Ax22 - Asl =5 or =&
QAx2l + 2Ax22 -As2 = 8 or -12
324,20, 112 Ax,. 20, 9245, 20, 202 4s_20,.

21 7 22

For this example the scluticns to the penalty problems listed above are

given by

v(BEOP(1,2)] = 2509
v(FCP) = 500
v(aP(L)) = 505
v(cP(2)) = 504
v(BGP(1)] = 509
v{BGP(2)) = 506
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v(BEOP(1)} = 509
v(BEOP(2)} = 506
v(GP(2,2)] = 514
v(BGP(1,2)) = 536
v{EOP(1,2)) = 2505.

Thus v(BEOP(l,2)) provides a better bound on the value of its FCP than
any other one or two-row combination of the group-related penalty
schemes so far discussed.

Note also that the results for this example show that each type
of two-row penalty problem can provide a strictly better bound than
either of its one-row relaxations. Thus, while not as strong as
BEQP(i,j), the two-row problems GP(i,j), BGP(i,j) and EQOP(i,j) are each
superior to corresponding cne-row prcblems. Moreover, the BECP(i,j) and
EOP(1,j) are relatively easy to solve. It is only necessary to solve
four two-row linear programs with different right—hand;sides to identify
the optimal solution.

3.5.2 Use of Two-Row Problems in a Branch-and-Bound Procedure

At least two different schemes might be devised for using two-
row problems lke EOP(i,j) and BEOP(i,j) in the branch-and-bound procedure
discussed at the beginning of this chapter. One would solve at least
one two-row problem for each row i still free at a given stage of the

branch-and-bound algorithm. The results of these penalty problems
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would then be used to bound completions of the current candidate solu-

tion, to identify elements of the sets 9. and @

D u® and to guide selection

of a branching variable y;.
A different scheme would be to use two-row problems only as a

*=+innal procedure (e.g. solution of
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CHAPTER IV
SPECIAL STRUCTURES OF THE FIXED CHARGE NETWORK FRCBLEM

As indicated in Section 1.2, the fiwed charge network problem is

the special case of FCP defined by

min ch + o.X,. + cTs ' (4-1)

s.t. Elxl + E2X2 =0 (4-2)
-le + Iy ~-Is =20 {(4-3)
(FCNP)

Uy =y =20 {4-14)

u, z X 2 0 (4-5)

uy > 5 =0 (4-5)

u, > X, > 12 (i4-7)

y = 0modu, (4-8)

where (El’EQ) is the neode-arc incidence matrix of a directed network.

In this chapter simplifications of the analysis of Chapter III resulting
from the very special structure of the constraints in FCNP will be pre-
sented. In particular, a number of the results of Chapter III will be

interpreted for the network case, and computational procedures for
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constructing and solving penalty problems will be presented which make

extensive use of the special properties of FCNP,

4,1 Review of Graph Theoretic Interpretations
of Continuous Network Problems

Because El in (4-2) is a node-arc incidence matrix, each of its
columns has exdactly cne -1 and one +1 non-zero entry. For a gilven
column J let that -1 entry be in row i, and consider replacing row i in
(4-2) by the difference of its current entries and those of row j in
(4-3). This transformation revises columns for le’ yj and Sj in FCNP,

with all other columns remaining unchanged. In particular, the revised

columns for x and Sj contain exactly one +1 and one -1 non-zero

137 75
entry. Thus, if such a transformation were performed for each column
i, the effect would be to convert the constraints (4-2) and (4-3) into
a node-arc incidence matrix.

The implication of this observation is that any problem FCNP or
FCNP can be interpreted as a minimal cost flow problem in a single com-
modity network. For a given network defined by (El’EQ) the corresponding

network for FCNP is constructed by replacing each arc le by a three-arc

set as shown in Figure 3.

three arc
] replacement

O——0

Figure 3. Construction of the I'CNP Network
from the Underlying Network



All constraints and properties of FCNP can then be interpreted in terms
of this expanded network., In particular, the problem TCNP is a con-
tinuous minimum cost flow problem on this expanded network, and the vast
thecory of such problems is applicable.

Cne of the principal ideas developed in Chapter III was that an
optimal solution, optimal tableau, and associated group and other penalty
problems for the continuous relaxation FCP of any problem FCP could be
easily constructed from the reduced problem RP. In particular, rows of
the group or other penalty problems assoclated with FCP can be extracted
directly from correspeonding rows of the optimal tableau for RP,

For FCNP, the corresponding reduced problem is

. T T
min )%y + X, (u-92)
s.t. Elxl + E2x2 =0 (4-10)
(RNE)
uy > X, >0 (4-11)
u, 2 X, 2 22 (4-12)

Thus RNP is a continuous minimum cost flow problem on the original prob-
lem network.

Cne set of theory and procedures for network problems like FCNP
and RNP is the work of Dantzig [16], Johnson [63], Glover, Klingman
and Kearny [36], Langley [75], Kennington and Langley [69], and others
on graph theoretic interpretations of such problems. Later in the

chapter, this graph theoretic approach will be exploited in procedures
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for FCNP. Before proceeding to those discussicons, however, a number of
relevant definitions and results from the graph theoretic approach will
be reviewed. In the interest of brevity, proofs of most of the results
will be omitted, and the reader referred to more complete discussions
in the original works. Only intultive discussions and examples will be
given here, and discussions will be limited to the (sometimes special)
cases which can occur in RNP and FCNP.

4.1.1 Description of a Basis

As defined above, the constraint sets of the minimum cost flow
problems for FCNF and RNP are not of full rank because the sum of the
rows is a zero vector. Thus, in order to talk of a basis for these
problems, it will be useful to think of adding an identity matrix to E2
and appending appropriate components to Xe The new components of X5
can be thought of as one-ended artificial arcs pointing into each node.

In the terminology of the graph theoretic approach to network
problems, a graph is a collection of arcs and nodes associated with some
network; a cycle is a connected set of two-ended arcs of the graph which
touches nodes in such a way that every node is touched by exactly two
arcs; a tree is a connected set of two-ended ares which contains no
cycles; and a forest is a set of trees. A forest is said to span a
graph if each node is touched by exactly one tree. If a one-ended arc
is added to each tree so that the number of nodes is equal to the number
of arcs, the one-ended arc is called a root, and the tree is said to be
a rooted tree. A collection of such rooted trees is a rooted forest,

and a rooted forest which spans a network is a rooted spanning forest.
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In terms of these definitions, the fundamental result on which the graph
theoretic appreach to network flow problems is based can be stated as

follows:

4.1.1.1 Theorem [16,p.356)}. The decision and artificial arcs associ-

ated with any basis of a network flow problem like RNP form a rooted
spanning forest for the mnetwork.

Define the neode of a rooted tree touched by the root as the base
of the tree. Then the importance of Theorem 4.1.1.1 derived from the
fact that by systematically searching from the base of each tree in the
spanning forest associated with a basis for a problem like RNP, it is
possible to reach all basic arcs and all nedes without cycling., As the
following sections will demonstrate, this implies that all Simplex
operations can be performed on the basis of a network problem with a
minimum of effort.

To avoid dealing with a number of special cases in these discus-
sions, it will be convenient to think of adding an artificial node to
the network of RNP called the base of the forest. Artificial arcs will
then run from the base of the forest to the base of each tree.

Also, it will be useful to define the direction up in a tree as
away from the base of the forest, and down as toward the base. Simi-
larly, nodes or arcs will be said to be gbove a given node or arc in a
tree if they can be reached by proceeding up the tree from the given
node or arc.

An example of a basis forest is given in Figure 4, The bases of

and x

the three trees are nodes 1, 7 and 3, with roots Xogs Ko 29>
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respectively. Moving from node 4 to node 7 is proceeding down in the

forest, and the part of the tree above arc x._. is the branch consisting

29

of and nodes 2, 3, 5 and 6 and 8.

Rozr ¥ *120 ¥o1

basic arc

o — —~ nonbasic arc

Figure 4. Example of a Basis Forest for RNP

L,1.2 Columns of the Simplex Tableau

One important step in any Simplex-type algorithm is to generate
columns of the updated Simplex tableau, i.e. representations of the
effect on basic variables of changes in the value of nonbasic variables.,
For the case of a network problem, Theorem 4.1,1.1 greatly simplifies

this process. Since any basis is a rooted spanning forest, the
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introduction of any nonbasic arc into the forest causes a cycle. Thus
a flow change on a nonbasic arc effects exactly those basic arcs along
its cycle, and such basic arcs will be the only ones with non-zero
entries in the updated tableau column corresponding to the nonbasic arc.

Consider, for example, the case of x _ in Figure 4, Basic arcs

15

with non-zero entries in the updated tableau column of x._ would be

15
Xl2’ x23 and x21. Similarly, the column of x26 would have non-zero
entries for x22, Xoqs Xios and the artificial variables x27 and Xpge A

precise statement of these principles is given in the following theorem.

4,1.2.1 Theorem [ 75, Section 3.3]. For a nonbasic, lower~bounded arc

in a network problem define the forward direction as the direction of
flow of the arc, and the reverse direction as the opposite of the for-
ward direction. For a nonbasic, upper-bounded arc, define the forward
and reverse directions exactly oppositely. Then in the updated Simplex
tableau associated with a particular basis forest for the network prob-
lem, the column associated with a given nonbasic variable will have a -1
coefficient for every basic variable which points in the forward direc-
tion along the cycle introduced by adding the nonbasic arc to the basis
forest, a +1 coefficient for every basic variable which points in the
reverse direction along this cycle, and 0 coefficients for all other
basic variables,

4.1.3 Rows of the Basis Inverse

Ancother important element of Simplex operations is the inverse of
the basis matrix. It is well known that the updated Simplex tableau for

a given basis can be obtained by multiplying the original tableau by
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the basis inverse,
In the network case the basis inverse, like many other Simplex

elements, can be generated in terms of the basis forest representation.

B _B,-1

In particular, note that a row of the basis inverse [(El,E2) ]i must

satisfy
B.-1
)

B B
[(El,E2 ,E2) = (0,...,0,1,0,...,0) (4-13)

H

1 (E

where the 1 of the vector on the right is in the ith position. Remem-
ber, however, that every cclumn of the basis (E?,Eg) contains at most
one +1 and one -1, with all other entries 0. Thus the entries in a row
of the basis inverse corresponding to a given basis ferest can be con-
structed by proceeding up the trees in the forest and calculating the
entries for each node so that the difference of the entries at the ends
of each basic arc will satisfy (4-13).

Tor example, consider the row of the inverse corresponding to
arc X,_, in Figure 4. If the entry for the base of the forest is fixed

23

at 0, then entries for all nodes not above %oq in the forest must also
be 0 in order to obtain 0 differences on the right-hand side of (4-13).
Similarly, the entries for nodes 2, 5 and 6 must be equal in order to
obtain 0 differences in (4-13), But the entry for node 2 must be one
less than that of node 3 in order to produce the single 1 in (4-13).

Thus, the row of the basis inverse corresponding to x,., is given by

23

node |[base 1 2 3 4 5 & 7 8 §
entry l 0 o -1 0 o -1 -1 0 0 0
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A more formal statement of these principles is given in the fol-

lowing theorem.

4.1.3.1 Theorem [[68, p.55]. The row of the basis inverse corresponding

to any basic arc of RNP will have +1 entries for all nodes above the arc
in the basis forest if the arc is directed away from the base of the
forest and -1 entries for all nodes above the arc in the bhasis forest
if the arc is directed toward the base of the forest. All nodes not

above the arc in the basis forest will have O entries.

4L,1.4 Rows of the Simplex Tableau

From the rasults of Chapter III, it is clear that an important
element of any group-thecory-based algorithm is the ability to generate
rows of the optimal Simplex tableau for RNP. In particular, it is
necessary to produce the parts of rows of the optimal tableau corre-
sponding to nonbasic variables.

A constructive method for generating such rows is given by
Theorem 4.1.3.1, After generating the row of the basis inverse for a
given basis variable, it is only necessary to subtract the entries for
the end nodes of a nonbasic arc to calculate the entry in the updated
Simplex tableau for that arc. In Figure 4, for example, the column

corresponding to x, . in the updated Simplex tableau would have the entry

15

+1 (-1) -1 (0) = -1

in the row of x23.



102

For some of the development which follows, however, it will be
useful to have a more intuitive concept of the rows of the updated
Simplex tableau. Recall the principle of Section 4.1.2 that the only
basic arcs affected by the intrcduction of a given nonbasic arc into a
basis forest are those aleng the cycle the nonbasic arc produces in the
forest. This implies that the row of the updated tableau for a given
basic arc will contain non-zero entries for nonbasic arcs only when the
basic arc is part of the cycles corresponding to those nonbasic arcs.

Membership of a basic arc in the cycle corresponding to a nornbasic
arc can be characterized in terms of the branch of the basis forest
above the basic arc. If a nonbasic arc touches exactly once in this
branch, then the basic arc must be part of the cycle associated with the
nonkbasic arc because a path from any part of the basis forest to the
branch above an arc must include that arc. Similarly, if a nonbasic
arc touches twice in the branch above a basic arc, or does not touch at
all, then the basic are is not part of the cycle associated with the
nonbasic arc.

For example, consider the row of the optimal tableau for the
basis in Figure 4 corresponding to érc X Arc x_ . touches only once

29° 26

in the branch of the tree above Xpqs and thus Xog is part of the cycle

On the other hand, x touches twice in the

corresponding to x 15

26"

branch above x g° and x

5 " does not touch at all. Thus x is not a part

1 29

of the cycles for either x or x

15 1y°

A formalization of these principles is given in the following

theorem.,
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L.1.4.1 Theorem [75, Section 3.4]. Let xij be a basic arc in a network

problem and W(xij) be the set of nodes above xij in the corresponding
basis forest. Then any nonbasic arc flowing from node w to node z will
have an entry in the updated Simplex tableau row for Xij as follows:

(i) 1If we?(xij) and zéT(xij), the entry is -1 if the nonbasic
arc is lower-bounded and xij is oriented away from the base of the
forest, or if the nonbasic arc is upper-bounded and Xij is oriented
toward the base of the forest, and the entry is +1 otherwise.

(iiy 1f wé?(xij) and ze?(xij), the entry is +1 if the nonbasic
arc is lower-bounded and Xij is oriented away from the base of the
forest, or if the nonbasic arc is upper-bounded and Xij is oriented
toward the base of the forest, and the entry is -1 otherwise.

(iii) In all other cases the entry is 0.

4,1.5 Labeling of the Basis Forest

The previcous fowr sections have shown how important components of
the optimal basic solution for poblems like RNP can be generated from
the basis forest associated with an optimal soluticn. In order to actu-
ally perform the procedures described, however, a set of labels which
define the basis forest would be required.

In particular, review of the processes described in the previous
sections will show that labels must support at least three functions.
First, it must be possible to identify the bases of all trees. Second,
labels must facilitate searching down the forest from a given point to
identify the cycle associated with a nonbasic are. Finally, labels must

permit moving up basis trees to construct basis inverses, etc.
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Johnson (641, Langley [75], and Kennington and Langley [63],
Glover Klingman and Kearny [36], and others have proposed a number of
labeling schemes which will permit such functions. The one which appears
to be the most satisfactory for FCNP 1s given in the following defini-

tion.

4.1.5.1 Definition., The basig label of a node w in a network problem

like RNP is [S(W),u(w),y(w),a(w)) where

8(w) = the number of the node directly below w in the basis
forest (0 if the node is the base of the forest)}.

u{w) = the number of a node directly above w in the basis
forest (0 if no such node exists).

y(w} = the number of a node z such that &(w) = §(z) and
y(z) # z for all z # w satisfying &(w) = 8(z)
(0 if no such node exists),

a(w) = the number of the arc connecting w and §(w).

The components of the basis label are referred to as the down node, up
node, right node and down arc, respectively.

Figure 5 provides one of several such sets of basis labels for
the basis forest in the example of Figure 4, Tor example, the down node
label of nede 4 is 7 because 7 in the next closer node to the base of
the forest, and the down arc label of node & is 17 because arc 17 con-
nects nodes 4 and 7. The chain of nodes immediately above node 3 begins
with node 2, which is the up node from 3, and proceeds right to node 8.

By using the basis labels of Definition 4.1.5.1, all the network
functions mentiocned in the previocus sections can be performed. Bases of

trees are identified by those nodes having down node equal to 0.
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(2,0,0,22) « (2,0,5,12)

(7,0,9,17)

{(0,0,0,28)

A —

(0,2,0,29)

base

Figure 5., Basis Labels for the RNP Example

The basic arcs in the cycle associated with a non-basic arc can be
identified by proceeding down from both ends of the nonbasic arc to the
base of the forest. All down arcs encountered exactly once in this

search are members of the cycle, To identify the part of a tree above
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a given node, first follow up node labels from that node. When a 0 up
node label is encountered, follow the right node label one step and
proceed up again. If both up node and right node labels are 0, proceed
down cne node and then right. All desired nodes have been searched when
the original node is re-encountered,

For the example of Figure 5, the cycle associated with nonbasic

arc x is identified by proceeding down from both its ends, Down arcs

15
from the node 6 end are X155 Xpy and Xog Thaose from the 8 end are X51
and Xog Thus the cycle is K50 x23 and X501

To identify the branch of the tree above arc x begin at node

29°
3. Then successively move up to node 2, up to node 6, right to node §,
down to node 2, right to node 8, and back to node 3. The nodes in the
branch are thus nodeé 2, 3, 5, 6 andgé; and the arcs in the branch are
the down arcs from nodes 2, 5, & and 8.

One final observation about the labels of Definition #.1.5.1 is
that the functions they support are not only the ones necessary for
generating updated tableaux in group problems, but also the ones re-
quired to perform pivots of the primal Simplex method.l Thus when a
Simplex algorithm using such labels is employed to solve RNP, tﬂe labels

for an optimal basis forest will automatically be available for group

analyses at the completion of the Simplex procedure,

lsee section A.2.2 of Appendix A for discussion of how the steps
of a Simplex pivot are performed with the labels.
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4.2 Group-Related Praoblems in Terms of the
Group Theoretic Description

Analogously to Section 3.3, define

fa ¥

R

1t
Ol
[N R o B o
R

o

el(i) = -1

e,(1) = 0o o

where ai, S

B . .
12 Sps Co» Eys By and k= are derived from the optimal

tableau of FCNP as indicated in Section 1l.4#. Then group problems GP(I')

for FCNP can be stated
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T, N T, N T _—
i B-1h
min dlel + d2Ax2 t e bs 4 v({FCNP) (4-14)
T, N T, N = : )
s.t. el(l) Axl + 62(1) sz - Agi =Y, mod Uiy for iel (4-15)
(GP(T))
Axi, Axg, As 2 0, (4-16)

When the constraints (4-15) are replaced by
T, N .. T, N - - )
el(l) Ax) f e, (1) Ax, - bs; =y, ory., - u,, for iel (4-17)
the either-or problem EQP(T') is obtained, and if the constraints

(4-18)

o=
v
=
Fd
Q
=
v
>
>
=
[\
>
%]

are added to GP(I') and EQP(TI'), the bounded problems BGP(T) and BEOQP(I)
result. In this section interpretations and simplifications of these
group-related problems will be developed in terms of the graph-theoretic
ideas presented in Section 4.1.

4,2.1 Interpretation of the Group-Related Problems

To interpret the meaning of these group-related problems on the
network of FCNP, it is first necessary to comnstruct the basis for FCNP
implied by Theorem 3.1.1.4, Given a basis forest for RNP, the corre-
sponding forest for FCNP is constructed by replacing each arc cofre—

sponding to a component of x. by a three-arc set with an artificial node

1
as shown in Figure 3. In accordance with Theorem 3.1.1.4, the arc xlj

is basic only if it was basic for RNP, the arc yj is always basic, and
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the arc sj is always nonbasic.
Figure & shows this full basis forest for the case of Figure 4.

Arc x for example, has been replaced by the three-arc set x

17° 17 V7

and s7. The new XK.

basic because all yj are basic in the solution of Theorem 3.1.1.4, and

L7 is basic because it was basic in Figure 4, Yq is

o in nonbasic because all sj are nonbasic in the Theorem 3.1.1.4 solu-

tion. The construction for S is similar, except that only Yy is basic

because X1, Was nonbasic in Figure 4.

Recall that the introduction of any nonbasic arc into this basis
forest produces a cycle. Moreover, the forward direction of flow arcund
this cycle is the direction of flow on the nonbasic arc if it is lower-
bounded and the opposite if the arc is upper-bounded.

With these concepts in mind, review of the definitions of pertur-
bation variables in (3-18) will show that increasing a perturbation vari-
able from 0 to an amount h is exactly equivalent to intrecducing a flow
change of size h in the forward direction around the cycle corresponding
to the nonbasic arc with which the perturbation variable is associated.

For example, if x__ is lower-bounded in the case of Figure 6, then set-

26
ting Ax o = h is equivalent to introducing a flow change of size h

around the cycle {x }. This additional flow

26°Y7°%172%27:%29%235% )
will add to the existing flow aleng basic arcs oriented in the forward
direction and subtract from the flow on those oriented in the reverse
direction.

Next cbserve that the rows of the full group problem GP(FCNP)

and the corresponding either-or problem ECP(FCNP) require that the
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base

Figure 6. Basis Forest for FCNP Corresponding to the RNP Example
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flows along all ares yj must be forced into either congruence with ulj

or equality with 0 or ulj' Thus the ith constraint of (4-15) or (4-17)
can be interpreted as requiring that flow changes be introduced in the
forward direction around cycles for nonbasic arcs which include v in

such a way that the flow along Y5 is congruent to u_ . in the GP(FCNP)

11
case, and egual to 0 or Uy in the EOP(FCNP) case.
Consider, for example, the case of v, in Figure 6, This arc is
part of cycles corresponding to Xng and S Thus the sewventh row of
(4-15) would require that flow changes in the forward direction be
introduced on either the cycle for Xy OF the ¢ycle for S5 OF both in

such a way as to make the flow on Yo congruent to u The correspond-

177
ing row of (4-17) requires the stronger result that the flow on Yy equal
either 0 or Upge

When the bounding constraints (4-18) are also consideved, flow
adjustments around cycles corresponding to nonbasic arcs are further
restricted. The additional constraints require that in seeking to
satisfy (4-15) or (4-17), flow changes on cycles for nonbasic arcs are
not so large as to render infeasible the flows on the nonbasic arcs
themselves.

Finally, the above interpretation can be used to show why even
BEOP(FCNP) is not equivalent to FCNP. The constraints of BEOP(FCNP)
require that all constraints on arcs yj be satisfied, and that implied
values of flows on nonbasic arcs remain feasible. However, it might

still be true that the effect of flow changes around various cycles is

to force some basic xlj or x?j to take on infeasible flows.
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In the case of Figure 6, for example, recall that a flow change

might need to be introduced around the cycle of x.. in order to make Yq

26
satisfy (4-17). 1In BEOP(FCNP) this flow change would be restricted to

one which keeps %55 feasible and makes Yo satisfy (4-17). However, it

could be that the change would alsc make arc x X take

27° Xog2 Xp3 OF X5

on an infeasible flow, 1.e. a flow which did not satisfy its upper or
lower bound.

4,2.2 The Group Tree and Reduced Inverse

By taking advantage of the interpretation of the previous sec-
tion, a number of computational simplifications can be obtained. First,
observe the cycles associated with the slack arcs sj in Figure 6. Each
such cycle contains only one basic arc, i.e. yj. Thus, in finding a set
of flow changes arcund cycles which will satisfy one of the group-
related problems defined above, cycles for the Sj could easily be
handled implicitly. Only the more complex cycles of nonbasic xij
require explicit attention.

With this observation, it becomes possible to again deal with
group-related problems in terms of the reduced problem RNP., All cycles
for nonbasic xij can be just as effectively traced on the basis forest
for RNP as on the forest for ?Eﬁ?, and nonbasic Sj can be handled
separately.

For the example of Figure 6 this simplification reduces the
problem once again to Figure 4. The following definition leads to an

even further reduction.
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4.2.2.1 Definition. A macro-node of a basis forest for RNP is a single

node used to replace any maximal set of ordinary nodes in the forest of
RNP which are connscted by a tree of basic arcs drawn entirely from the
vector X,. The reduced version of the basis forest obtained by re-
placing the nodes of each macro-node, and the arcs which connect them,
by the macro-node is called the group tree for RNP.

To illustrate the concepts of macro-nodes and group trees, con-
sider again the case of Figure 4. Figure 7 shows the group tree which

results from the basis forest of that example when all nodes are col-

lapsed into macro-nodes.

Figure 7. Example of a Group Tree for RNP
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For example, the nodes 1, 7, 3, 2, 5 and 8, and the tree of basic arcs
connecting them, have been replaced by a single macreo-nede. This is
possible, because all such arcs are components of Ky Nodes 4%, 9 and %
could not be collapsed because they are connected to the rest of the
forest by basic components of g+ Note that it is proper to refer to
the reduced version of the basis forest as a tree because roots are
always components of X, and thus the bases of all trees in the ordinary
basis forest will always be a part of the same macro-node.

Several other observations about the group tree can be made.
First, note that one interpretation of a macro-node is that of a col-
lapsed segment of cycles associated with a nombasic are. All such

cycles are still visible in the group tree, but components x2j of the

cycles have been absorbed into macro-nodes so that the effects on basic

xlj are highlighted, The values of the basic xlj are, of course, the

flows of interest in group-related problems because they correspond

directly to the wvalues of the yj.

Next, note that the cycles in the forest of RNP corresponding to
two different nonbasic arcs which connect the same macro-nodes in the

group tree will contain exactly the same basic arcs x For example,

1j°
}

in the case of Figure 4, the full cyecles for x,. and x,. are {x22,x

25 15 12

}, respectively. Both involve only the component x_ . of

and {x 12

217%23°%12
X and thus both have exactly the same appearance in the group tree.

Finally, observe that any nonbasic arcs connecting nodes in the

same macro-node contain no components of x, in their cycles. Thus they

1

affect no basic arcs yj (except possibly ones associated with the
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nonbasic xlj themselves) and have little effect in group-related prob-
lems.

Examples of such arcs are Xy and X3 of Figure 7. Flows along
these arcs might be changed to correct Yy OF ¥g» but changes can have no
effects on yj not directly related to the nombasic arcs themselves.

Thus these nonbasic arcs can largely be disregarded in group-related
problems for FCNP.

The above obhservations about the group tree can be developed more

formally in terms of the properties of a basis inverse for RNP presented

in Section 4.1.3. The next several results provide such a formalization.

4,2.2,2 Theorem. The columns of a basis inverse for RNP corresponding

to any two nodes w and z which are part of the same macro-nede in the

group tree of RNP will have equal entries in all rows associlated with

B

components of X,

. B
Procf. Consider some component X1 of X1 and let T(xhk) be the set of

nodes in the branch above X in the basis forest for RNP, and P(x )‘be

hk hk

the set containing all other nodes of RNP., Now nodes w and z are con-
nected by a chain of components of xg because they are in the same

macro-node of the group tree for RNP. Thus Xk cannot be a part of the

chain between w and z and so either

w and z ¢ W(xhk)

or

¥ .
wand z ¢ (xhk)
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By Theorem 4%,1.3.1 this implies w and z have identical entries in the
row of the basis inverse corresponding to xhk'

Q.E.D.

4,2.2.3 Corollary. Any nonbasic arc connecting two nodes of RNP which

are part of the same macro-node in the group tree for RNP will have zero
. . . B .
entries in each of the first kK rows of the group-related constraints

(4-15) and {(4-17), i,e. in all rows corresponding to components of x?.

Proof. The entry for a nonbasic variable in any of the first kB rows of
{4-15) or (4-17) can be obtained by multiplying an appropriate row of
the basis inverse for RNP by the original tableau column for the non-
basic variable. But that original tableau column has only a +1 in the
row associated with one node touched by the arc and a -1 in the row
associated with the other touched node. Since by Theorem 4.2.2.2 the
components of the row of the basis inverse opposite these non-zero
entries must be equal, it follows that the result of the vector multi-
plication will be 0.

Q.E.D.

4,2.2.4 Corollary. Define the forward direction for a nonbasic arc of

RNP as in Section #.2.1, i.e. equal to the direction of flow on the arc
when it is lower-bounded and opposed to the direction of flow when the
arc is upper-bounded. Further let X 1 and X 1t be two nonbasic arcs
of RNP connecting, in the same direction, nodes which are members of the

same two macro nodes, i.e. either both arcs have forward direction lead-

ing from two nodes in the same macro-node to two nodes which are both in
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a different macro-node, or the same is true in the reverse direction.
Then the entries in the first kB rows of (4-15) and (4-17) corresponding

to Axn and Ax will be equal.

Kk n'k’
Proof. Follows from Theorem 4.2.2,2 by direct multiplication of the
appropriate columns for nonbasic variables and rows of the basis in-
verse as in the proof of Corollary 4.2.2.4.

Q.E.D.
The importance of Corollary 4.2.2.4 lies in its implication that
a reduced basis inverse for RNP, which contains one row for each com-

B . . .
ponent of x. and one column for each macro-nede, is all that is required

1
to generate the non-trivial elements of the constraints (4-15) and
(4-17)}. Thus the group-related problems GP(Tl') and EQP(I') can be easily

constructed if the following labels are identified.

4.2.2.5 Definition. For each node w in the basis forest for RNP,

n{w) = the number of the macro-node to which w belongs.
For each macro-node z in the group tree for RNP,
A{i,z) = the element of the reduced basis inverse for RNP
associated with the itk component of XE and the
macro-node z.
Moreover, the labels of the basis forest for RNP presented in
Section 4.1.5 make it very easy to construct such group tree labels. It
is only necessary to trace up the forest for RNP, recording a macro-node

change whenever a basic component of x. is encountered and setting ele-

1

ments of the reduced inverse according to Theorem 4.1.3.1. The details

of such a precedure are provided in the following algorithm,
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4,2.2.6 Algorithm., Let [6(n),u(n),y(n),a(n)) be the labels of an

optimal basis forest for RNP as defined in Definition 4.1.5.1. Then

the labels n(n), and A(i,k) can be obtained as follows:

Step 0. Set the next available macro-node k = 1 and A(ik) =0

for all i and k.

Step 1. Scan sequentially the nodes until a new tree base
[i.e. a node n with 6(n)=0] is found. If none is found, stop; the
algorithm is complete. Otherwise, set the arc index set A = ¢, the
current node n' = the number of the node which is the new base, n{n') =

1, and the current macro-nede k' = 1, and go to Step 2.

Step 2. Proceed up by letting n = u(n'). If n = 0 go to Step S.

Otherwise, proceed to Step 3 if a(n) is a component of %, and to Step &

1
if it is a component of Xy
Step 3. Let A = A u {a(n)} if a(n) is oriented away from the
base of the forest, and A = A u {-o(n)} if a(n) is oriented toward the
base of the forest. Also let k = k + 1, k' = E, A{i,k') = +1 for all i

in A such that 1 » 9, and A(~i,k') = -1 for all i in A such that i < Q.

Then go to Step 4.
Step 4. Set n' = n and n(n') = k'. Then go to Step 2.

Step 5. Proceed right by setting n = y(n'). If n = 0 go to

Step 6. Otherwise remove #a(n') from A if a(n') is a component of X1

set k' = n(é(n')), and then go to Step 3 if oa(n) is a component of X1

and to Step 4 if it is a component of Xy



Step 6.

Proceed down by setting n =

§(n').
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If n =0, go to Step

1. Otherwise remove *a(n') from A if a{n') is a component of xl, set

n' =

n and k' = n(n'), and go to Step 5.

Table 1 illustrates the algorithm for the case of Figure 4 with labels

as in Figure 5.

Table 1. Steps in Algorithm 4.2.2.6 for Example Problem RNP
Algorithm Variables Assigned Algorithm Variables Assigned
Step Values Step Values
0 k=1, all A(i,k)=0 2 n=0
1 A=%, n'=1, n(l)=1, k'=1 5 n=0
2 n=0 6 n=3, n'=3, k'=1
5 n=_0 5 n=0
B n=o0 6 n=0
1l A=¢, n'=3, n(3)=1, k'=1 1 A=¢, n'=7, n(7)=1, k'=1
2 n=2 2 n=y
n n'=2, n(2)=1 3 A={-17}, k=3, k'=3,
5 - A(L17,3)=-1
3 A={-12}, k=2, k'=2, * n'=4, n(4)=3
A(12,2)=-1 2 n=0
4 n'=6, n(6)=2 5 n=9, A=¢, k'=1
2 n=0 3 A={+11}, k=4, k'=y,
. n=5, Ase, k'l A1, 4)=+1
4 n'=5, n(s)=1 ! n'=9, n(9)=4
5 n=0 2 n=4_
5 n=0
> n=0 6 n=7, A=¢, n'=7, k'=1
6 n'=2, k'=1l 5 n=Q
5 n=8, k'=1 6 u=0
4 n'=8, n(8)=1 1 Stop
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4.3 Unimodularity of the Group-Related Problems

A matrix M is said to be totally unimodular if the determinant of
every square sub-matrix of Mis equal to +1, 0 or -1, In this section
it will be demonstrated that the main constraint matrix of the group-
related problems GP(I'), BGP(T), EOP(T) and BEOP(I'} possesses this con-
venient property.

4,3.1 Review of Unimodularity Theory

In order to prove total unimodularity for the group-related prob-
lems of FCNP, two results from the theory of unimodular matrices are

required. They are stated in the following lemmas.

4,3.1.1 Lemma (Heller and Tompkins [56]). Every basis of the matrix M

has determinant *1 if the following are satisfied.
(1) Every column of M has at most two non-zerc entries.
(ii) Every element of M is either 0, +1 or -1,
{(iii) The rows of M can be partitioned into two sets Ql and 92
such that the rows for non-zerc entries with like signs in any column
are members of different sets, and rows for non-zero entries with

opposing signs in any column are members of the same set,

Proof., Let k be the rank of M. Then the proof proceeds by induction on
k. For k = 1 the lemma follows trivially from property (ii). Now assume
the lemma holds for k < n and consider a n by n basis M of M. Every

column of ﬂ‘must have at least one non-zero entry because M is a basis

matrix. Moreover, if any column of i contained only one non-zere entry

+1 or -1, then exparsion by minors on that element would prove the lemma
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because the minor of the element must have determinant +1, 0 or -1 under
the inductive hypothesis. Thus the lemma can only fail to be true if M
has exactly two non-zero entries in each column. For this case property
(1ii) implies the sum of the rows of M which are members of Ql is
exactly equal to the sum of the rows of M which are members of 92. But
this implies the rank of M is less than n which contradicts the fact

that M is a basis matrix.

Q.E.D.

4.3.1.2 Lemma (Dantzig and Veinott [17]). If every basis of the

matrix (M,I) has determinant +1 or -1, then M is totally unimodular.

-~

Proof. Consider some square sub-matrix M of M., If M is singular then
det(M) = 0 and the lemma follows trivially. If M is non-singular then

a basis of the form

=
o

=
-

can be constructed from the columns of (M,I). But expansion by minors
shows the determinant of this basis matrix is equal to det(M), and so
det(M) = #1.

Q.E.D.

4,3.2 Results for Group-Related Problems

With these two lemmas it is possible to prove the following

theorem.
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4,3.2.1 Theorem. Let R(I'} be the matrix of coefficients for the left-

hand side of (4-15) or (4-17). Then R{(I') is totally unimodular.

Proof. Every R(T) will obvicusly be totally unimodular if R{FCNP) where
r = {l,2,...,nl} is totally unimodular, and Lemma 4%.3.1.2 demonstrates
R(FCNP) will be totally unimodular if every basis sub-matrix of
(R(FCNP),I) has determinant +1 or -1. Moreover, every column of R(FCNP)
is by definition +1 or -1 times a column of the optimal Simplex tableau
for FCNP. Since the absolute value of the determinant of a matrix does
not change if signs are reversed on some columns, it follows that the
theorem will be true if every basis of the optimal Simplex tableau for
FCNP has determinant +1 or -1.

Thus, consicer a basis matrix R from the optimal FCNP tableau.
Recall from Section 4.1 that the original tableau for FCNP can be re-
arranged so that it becomes a node-arc incidence, followed by an identi-
ty matrix; let R' be the basis matrix of this rearranged original
tableau corresponding to R in the optimal tableau; and let B' be the
basis matrix of the rearranged original tableau which produces the
optimal FCNP solution. The original tableau for FCNP trivially satis-
fies the requirements of Lemma #.3.1.1, and so each of the basis
matrices R' and B' has determinant #1. But this implies (B')-l has

determinant *l. Thus,

det(R) = det ((B")7IR') = det ((B')™Y)det(R') = +1 or -1.

Q.E.D.
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One use of this result is given by the following corollary.

4,3,2.2 Corollary. In two rows i1 and j drawn from the constraint

matrix R{i,j), either columns from the set

+1 -1
’ (4-19)
-1 +1
or .columns from the set
+1 -1
. (4-20)
+1 -1

may be present, but not both.

Proof. 1If any combination of a column from the set of (4-19) and a
column from the set of (4-20) were present in the same problem, then the
2 by 2 sub-matrix of these two columns would have determinant *#2., For

example,

det = 42,

But by Theorem 4.3.2.1, every square sub-matrix of the constraints
R(i,3) must have determinant +1, 0 or -1. Thus no combination of ele-

ments of the sets cf (4-19) and {4-20) is possible,. Q.E.D.
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4.4 Generation and Solution of Penalty Problems

Sections 3.3 and 3.5 developed a variety of one and two-row
penalty problems for FCP. In Section 3.5.1 relations between these
problems were investigated, and it was demonstrated that the bounded
either-or problems BEOP(1) and BEOP(i,j) were the strongest one and
two-row problems, respectively.

For the case of FCNP, these strongest problems are defined as

follows:
BEOP{i) = the problem defined by (u4-14), (u4-16), (4-18),
and the ith row of (4-17).
BEOP(i,j} = the problem defined by BEOP{i) with the addition

of the jth row of (u4-17).
Taking advantage of the analysis in previous sections of this chapter,
procedures for constructing and solving these penalty problems for FCNP
will now be presented. Moreover, since all the other one and two-row
penalty problems of Chapter III are relaxations of scme BEQP, the fol-
lowing constructions also provide the necessary methods for obtaining
GP's, BGP*s and EOP's.

4.4,1 Generation of Penalty Problems

Assume that an optimal solution {§1,§2,§,§} has been obtained for
FCNP by the Simplex method of Appendix A,2.2 and the construction of
Theorem 3.1.1.4. Let m{(n) be the optimal Simplex multipliers obtained
with this optimal solution. Finally, assume that Algorithm 4.2.2.6 has
been executed so that the functions n(n) and A{i,k) are available. Then
the elements of the problems BEOP(i) and BEOP(i,j) can be generated by

the following procecures.
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4b.4,1.1 Objective Function. The objective function (4-14)} is

derived directly from the updated cost row of the optimal tableau for

RNP. Calculating these entries according to the well-known formula,

a5 = |Cij +m(ky) - k)|,

where the arc corrssponding to xij runs from node kl to node k2.

The coefficients caj of the Asj are given in the original statement of
¥
the problem and thus require no calculation.

4.4.1.2 Right-Hand-Sides. The right-hand-sides of the con-

straints (4-17) are derived directly from the optimal FCNP flows y.

For the itk row, the values are s and Y; - U

4.4.1.3 Upper Bounds on Perturbation Variables. In each case,

the upper bounds on perturbation variables {4-18) are obtained as the
difference of the upper and lower bounds on the non-basic variable cor-
responding to the perturbation variable.

4.4.1.4 Constraint Rows Up to Row kB. For a row n of (4-17)

. B .
corresponding to a component of X1, 1.e. numbered less than or equal to

kB, the main coefficients of the left-hand side are derived by multi-

plication of the original columns and row n of the reduced inverse as

follows:

eij(n) = A(n,n(kQ)] - A[n,n(kl)J if the arc corresponding to Xj{ Tuns
from node kj to node k, and x;3 is

nonbasic lower-bounded in the optimal
solution to FCNP.
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e..(n) = A(n,n(kl)J - A[n,n(kz)] if the arc corresponding to Xjj runs

] from node k; to node ko and xj: is
nonbasic upper-bounded in the optimal
solution to FCNP.

The coefficient of Asn is -1.

4,4,1,5 Constraint Rows Below Row kB. For a row n of (4-17)

. . B . .
corresponding to a compeonent of x,, i1.e. numbered above k , coefficlents

1°
of the left-hand side are all zero except for a -1 on Asn, and either a
-l or a +1 on Axln according to whether X0 is nonbasic lower-bounded or
nonbasic upper-bounded in the optimal solution to FCNP.

4.4,.2 Solution of Cne-Row Problems

Recall from the discussion of Section 3.5 that the one-row prob-
lems BEOP(i) and BGP(i) have identical optimal solutions. Thus, Theorem
3.3.3.1 provides the outline for a procedure to solve any BECP(i) of
FCNP, i.e. BEOP(i) can be solved by constructing two linear knapsack
problems and solving them by the well-known minimum ratio procedure.

However, the minimum ratic method is simplified in the network
case by the fact (implied by Theorem 4.3.2.1) that every coefficient of
row 1 is +1, 0 or -1. The down and up penalties pD(i) and pU(i) can
thus be calculated by ranking the coefficients of the objective function
(4-14%) in ascending order, and proceeding sequentially up this list.

The cost of each perturbation variable with a +1 coefficient in row i
which is encountered in this search is evaluated at the minimum of its
upper bound and the amount of 9i not yet fulfilled, and the result is
added into a total which becomes pD(i). Similarly, the cost of each
perturbation variable with a -1 coefficient in row i1 which is encoun-

tered in this search is evaluated at the minimum of its upper bound and
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the amount of (uli—§i) not yet fulfilled, and the result is added to a
total which becomes pU(i). The optimal solution value for BEOP(i) is

then given by
. = . D,. 0. .
V[BEOP(l)) = v(FCNP) + min{p (i),p (i)}.

4,4,3 Sclution of Two-Row Problems

For the two-row problems BEOP(1,j) of FCNP, four two-row linear
programs must be solved to calculate v(BEOP(i,j)). Each of the four
corresponds to a different combination of the two possible right-hand-
sides of each row.

Unfortunately, it does not appear that a simple list search
scheme like the one presented in the previaus section can be devised to
solve these two-row linear problems.l Thus some iterative procedure
like the Simplex method would probably be required to solve the linear
programs associated with BEOP(i,j).

However, a great simplification in the structure of such two-row
linear programs is provided by Corollary 4.3.2.2. Since columns of any
BEOP(i,j) with two non-zero entries must be drawn from either the set
of (4-19) or that of (4-20), any of the linear programs for BEOP(i,j)
can be converted into a three-node minimum cost flow prcblem by multi-
plying the first row by +1 or -1, creating a third row by multiplying -1

times the sum of the second row and the revised first row, and adding

lFor the unbounded case of EOP(i,j), however, a search method
is presented in Appendix A.2.5.
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arcs corresponding to the revised right-hand-sides of the linear program.

Consider for example the BEOP(1l,2) constraints

Ax2l - Ax22 + Ax23 - Asl = 4 or -5
szl - Ax22 + Ax24 - A32 = 7 or -11
52 4x, 20,724k, 20,1228x,, 20
4 = Ax2q 20, 9z Asl 20, 18 2 As2 > 0.

For the case of the linear program with right-hand-sides % and 7, multi-
plication of the first row by -1, calculation of a third row as the
negative sum of the two existing rows, and addition of variables z) and

z. to carry the right-hand-sides, produces the constraint set:

2

—szl + Ax22 - Ax23 + Asl + zl =0
+Ax2l - Ax22 + Aqu - As2 -z, = 0
+ Ax23 - AXQH - Asl + A32 -z + z, = 0
52 Ax2l z 0, 7;2Ax22 =20, 12 =z Ax23 =0, 4 = Ax2L+ z 0
9 2z Asl z 0, 182:/_\.52 z 0, b =z zy z 4, 7= z, z 7.

Since every column of this constraint set has exactly one +1 and one -1
this linear program can now be interpreted as the network problem

depicted in Figure 8. A labeling procedure like the one described in
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Appendix A,2.2 could then be used to obtain an optimal solution.

w
v

Ax

A
o

21 ~

~J
v

Ax22

v
<

Pigure 3. Network Problem Corresponding to One
Linear Program of an Example BEQP(1i,j)
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CHAPTER V

LAGRANGEAN STRENGTHENING OF PENALTY PROBLEMS

The equivalent problem EFCP of Section 3.2.1 can be restated

\ T N T, N T —
min dlel + d2Ax2 + csAs + w(FCP) (5-1)
s.t. F AxN + F AxN + F As z 1 (5-2)

o 171 22 s

{ B\ r_B‘ [
ul xl 0
B -B N N B
> - - - > -
(EFCP) u2 b x2 Hlel H2Ax2 HSAS p 22 (5-3)
u § 0
\ lJ o L
AxN z 0, a2 0, As 2 0 (5-4)
1 2
N N N
uy 2 Axl, °, z Ax_, u, 2 As - (5-5)
N m+l _ -
[Hlel + H2Ax2 + Hsbs]m+nl_ y mod s, (5-6)

where the matrices Hl, H2 and Hs are derived from an optimal tableau for

the reduced problem RP by
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(-1 U ) ((zL ;U [
- - 0
Al Al A2 A2
-L <U-l =L U 1
Ay -Adp (A, -83)
H = K, h, = U, H = |-I
l" ’ 2"‘ ] S- ’
-1 0
0]
Lo | u
N N N . .
dl, d2, Axl, sz, As and o, are defined as in Chapter III, and the

matrices F,, I, and F define a set of redundant constraints (5-2}, each

1”2

row of which is a wvalid inequalityl for the problem defined by (5-1),
{(5-4), (5-5) and (5-6). In the strongest one or two-row problems so

far proposed, (5-1) and the constraints (5-4) and (5-5) were combined
with rows m + 1 and m + j of (5-3), and rows i and j of (5-6) to produce
BEOP(i,j). Section 3.5 demonstrated that v(BEOP(i,j)) provides a gen-
erally stronger bound on vw({FCP) than any of the other one and two-row
group-related penalty problems defined in Chapter III.

In this chapter an extension of BEOP(i,j) providing partial con-
sideration of the remainder of the constraints (5-3) and (5-6) will be
developed by using the methods of Lagrangean relaxation presented in
Section 2.1.2. These remaining constraints, which appear computationally
difficult to include explicitly in penalty problems, will thus be dealt
with implicitly by including them in the objective function of the

penalty problems.

Specifically, let p, q and r be non-negative Lagrange multiplier

lSee Section 3.4 for a definition of wvalid inequalities.
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vectors of appropriate dimension corresponding to the constraints of the
right inequality of (5-3), the left inequality of (5-3), and (5-2),
respectively. Then the penalty problems of interest will be one and

two-row relaxations of the Lagrangean either-or problem

min dTAxN + dTAxN + cTAs + v(FCP) (5-7)
171 272 S
r Al
r N [—B‘
0 xl
T B -B N N
+p 22 - 1%, + Hlel + H2Ax2 + HSAS
\DJ \;vl
. 4
(LEoP(rcP))
.
[uB (}-{B‘
1 1
T B -B N N
- (U] 7[Ryt Hlel + H2Ax2 + HSAS
u y
LlJ \J
T N N
+ (1 - Fax) - FyAx, - F_as)
s.t. [H AxN + H AxN + HAas]l., =y, ory, - u {5-8)
1970 T Ry T RGRSAy T Yy or Yy - Uy T
1= mtl,. ,m+nl
N N N N
uy 2 Ax; 20, 0, 2 Ax, 2 0, U 2 As 2 0. (5-9)

Note that both the bound constraints (5-3) and the valid
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inequalities (5-2) have been included in the objective function (5-7).
If all rows of (5-8) were always enforced, there would be no advantage
in including the redundant constraints (5-2). However, when one or two-
row relaxations of LEOP(FCP) are solved, having the valid inequalities
in the cbjective function is equivalent to partial enforcement of the
relaxed rows of (5-8).

Note also tanat the bounded either-or problems can be thought of
as special cases of Lagrangean either-or problems where all Lagrange
multipliers are set to zero. Thus, since it is only necessary that the
multipliers be non-negative for v[LBOP(FCP)J to be a lower bound on

v(FCP), a better choice of the multipliers might be possible.

5.1 Alternative Multiplier Calculations

While a proper choice of Lagrange multipliers might make relaxa-
tions of LEOP(FCP) attractive penalty problems, the development of good
multipliers is not straightforward. Some alternative calculation
approaches are analyzed in the following discussion.

5.1.1 Optimal Multipliers

For a given constraint set (5-2}, the optimal choice for p, q and

r are p, q and r where

v[LEOP(FCP): p=§,q=a,r=5) = max {u[LEOP(FCP): p=ﬁ,q=@,r=ﬁ)}. (5-10)
$,4,P=0

Such multipliers yield the maximum bound on v(FCP) which can be produced

from LEOP(FCP). Moreover, if (5-2) is a sufficiently exact representa-

tion of the convex Lull of solutions to (5-6), the next theorem
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demonstrates that this bound is stronger than one obtained from

v (BEOP(FCP)).

5.1.1.1 Theorem. Let I be a subset of the integers m + 1 through

m+ ng and the problems BECP(I') and LEQP(l') be the versions of BEOP(FCP)
and LEOP(ICP) where row j of (5-8) is enforced if j ¢ I'. Alsoc let Pl,
F2 and Fy be such that the constraints (5-2) and (5-9) define the convex
hull of feasible solutions to BEOP(I') or LEOP(I'). Then, if p, q and r
are as in (5-10), v(BEOP(I)) < v{LEOP(T: p=p,q=q,r=r), and if every

optimal solution to BEOP(I') violates (5-3),
v(BEOP(I')) < v(LEOP(T: p=p,q=q,r=r)).

Proof.
V(BEOP(F)] = v(min dzﬁxi + dzAxg + czAs

s.t. AxT,AxE,As satisfy (5-2) and (5—9)]
because the minimum of a linear objective function over a bounded set
will occur at an extreme point of the convex hull of that set. Thus

obviously

N

T T, N
v(BEOP(M)) < vmin d Ax] + d Ax, + c_As (5-11)

N N .
s.t. Axl,Ax2,As satisfy (5-2), (5-3) and (5-9)),

and the inequality will be strict if every optimal solution to BEOP(T)
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violates (5-3). MNow, the problem on the right in (5-11) is a linear
program and thus has value of an optimal solution equal to that of its

dual,

min
max {Ax?,Axg,As (5-7) evaluated at

{p,q,r20} p,q,r,Axi,AxN As

satisfying 2?

(5-4) and (5-5)}

which is exactly LEOP(¢: p=p,q=q,r=r). Clearly U[LEOP(Q: p=ﬁ,q=a,r=5)]

< v(LEOP(T: p=§,q=ﬁ,r=5)). Thus,
v(BEOP(T)) < v(LEOP(® : p=p,g=g,r=r)} s v(LEOP(T: p=p,q=q,r=r))

and the first inequality is strict when every optimal solution to
BEOP(T) wviolates (5-3).

Q.E.D.

In [25], Shapire and Fisher proposed a method for obtaining
similar optimal Lagrange multipliers for the case of all-integer
programs. As applied to FCP their method would deal with the Lagrangean

problem
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T, N T, N T —_—
min d dx, + d A, + c_As + v(FCP) (5-12)
[ oy
-B
0 xl
T!|.B -B N N
+ p 22 - 1%, + Hlel + H2Ax2 + HSAS
\kD / \y / J
t r 3 4 b )
u? e
1 1l
QB - RB] 4 AN 4 HoAx' + H As
L 2 1771 7%y g
u y
\ lJ \ 4
'3 At
N N
ul - Axl
T| N
-t o2 - sz
- A
\Ul S P
N N m+rl _ -
s.t. [Hlel + H2Ax2 + HSAs]m+nl = y mod g (5-13)
Ax?'z 0, Axg 2 0, 4s z 0. (5-1u)

The explicit constraints are thus those of GP(FCF), with all other
constraints being moved to the objective function.

The method these researchers used to find p, q and t which
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maximized the value of an optimal solution to the above problem is a
variant of Dantzig-Wolfe decomposition [18]. Sub-problems consisting of
minimizing a linear objective function over the constraints {5-13) and
(5-14} are solved repeatedly in order to obtain optimal p, g and t from
a master problemn.

For the cases considered by Fisher and Shapiro, such a calcula-
tieon procedure may be feasible. In the case of FCP, however, solution
of GP(FCP) even once would be an extensive process, Thus it is not
computationally feasible to consider repeated solution of GP{FCP) as a
subproblem in a procedure for finding optimal Lagrange multipliers,

5.1.2 Continuocus Program Multipliers

A much simpler method proposed by Geoffrion [31] for certain
integer programming problems obtains Lagrange multipliers from the dual
solution to the continuous analogs of integer programs. In the context
of LEOP(FCP) this method would relax (5-2) and (5-6) in EFCP and solve
the resulting EFCP. Dual multipliers for the constraints of (5-3) then
provide values for p and g, and r is fixed at 0.

Recall, however, that an optimal solution to EFCP is provided by
Axi,ﬂxg, As = 0 because EFCP is derived from an optimal tableau for FCP.
Moreover, the constraints (5-3) correspond to bounds on the basic vari-
ables in FCP. Thus, if the solution to FCP was nondegeneréte, these
constraints cannot be binding in the all-zero solution to EFCP, and the
dual multipliers for the constraints will be 0. Therefore, at least in

the nondegenerate case, if the simple method of obtaining Lagrange

multipliers from the dual of EFCP is attempted, all multipliers wiil be
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zero, and LEOP(FCF) will reduce to BEOP(FCF).

5.1.3 Obtaining Multipliers with Gomory Cuts

The alternative proposed in this dissertation falls between the
optimal case of Section 5,1.1 and the trivial case of Section 5.1.2,
Specifically, it is proposed that the set of Gomory cuts obtained from
the optimal Simplex tableau for FCP be used as the constraint set (5-2).
Values for the Lagrange multipliers can then be derived from the dual
solution to the linear program
; x§ + dEAxg

minn, d + CEAS + w(FCP) (5-15)

N N
s.t. Glel + GQAx2 + GSAs =z 1 (5-16)
r - R 3
B -B
ul xl 0
s Bl , |zB N N B
(FCP) Uy 2 Xt - Hlel - HQAXQ - HSAs = 22 (5-17)
u § 0
L 1 L / \
N N N N
uy z Axl = 0, °, = Ax2 =0, uy =z As 2 0, {5-18)

where the constraints (5-1%6) are the Gomory cuts. In particular, opti-
mal dual multipliers for the constraints of the right-hand inequality of
(5-17) provide a value for p, dual multipliers for the left-hand in-
equality of (5-17) provide g, and those of the constraints (5-16) provide

r,
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This Gomory cut approach has a number of advantages over the
other two schemes presented, First, in comparison to repeated solving
of GP(FCP) required by Fisher and Shapiro's method, imposition of Gomory
cuts on a linear program is relatively simple computationally. In addi-

tion, no Gemory cut is satisfied by the solution

Thus, it is likely that values of p, q and r obtained from the dual
solution to FCP will not all be zero as can occur with the method of
Section 5.1.2,

Unfortunately, it does not appear possible to prove that Lagrange

multipliers p, 4 and T obtained from FCP will always yield

v(BEOP(T)) < v(LEOP(T': p=p,q=q,r=r)]. (5-19)

However, Theorem 5.1.1.1 demonstrated that if the constraints (5-2) and
(5-9) define the convex hull of seclutions to BEOP(T), then (5-19) holds,
Even with the bounds (5-9), the Gomory cuts certainly do not fully de-
fine the convex hull of seolutions to BEOP(TI'). However, the results of
Section 3.4 demonstrate that the Gomory cut derived from row i, i.e.
GC(1), always provides a face of convex hull of solutions to GP(T) if

i € I', and under some conditions also provides a face for EOP(T'). More-
over, it may be true that GC(i) is violated by some solutions to

BEOP(T) when 1 ¢ T. Thus, in some aspects the full set of Gomory cuts
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may be stronger than the convex hull of solutions to BEOP(T) because

some BEOP(T) solutions may not satisfy (5-16).

5.1.3,1 Simplifications. If this Gomory cut method is used for

constructing penalty problems LEOP(i,j) in a branch-and-bound procedure
like the one summarized at the beginning of Chapter III, several simpli-

fications can be noted. First, it is obviously true that

w(FCP) < w(FCP) < v(FCP).

Thus the problem FCP itself is a penalty problem, and if the value of an

A~

optimal solution to FCP exceeds that of some known feasible solution to
FCP, the current candidate problem can be fathomed.
Next, note that it is not really p, q and r that are required

in LEOP(i,j), but the objective function constant and coefficients of

N N
l! Ax2!

respectively, then they are expressed by

As. If these coefficients are denoted by %, d., d, and ¢_,

Ax 1* 92 s

¢ ¢ B-\ [-*BN
0 ul xl
- _ - B - B - o~ - -
z = y{(FCP) + pT £ - qT u - (p-q)T xB + rTl
2 2 2
50 4 \ull \y J
T ~ ~. T ~T
d; =d + {p-q) H -6
T o= T ~T
d, = d, + (p-q) H, - r'G,
~ Lo ~aT ~T
e, = ¢t {(p-q? HS -r GS
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where p, q and.é are the optimal dual solution to TCP. Comparison of
these values to the formulation of FCP will demonstrate that the
required objective function values are exactly the updated cost row of
an optimal Simplex tableau for FCP. Thus, if a Simplex procedure is
used to solve ?Eﬁ, D, q and r need not be identified explicitly. The
objective function for LEOP can be obtained directly from the optimal
tableau of FCP.

Finally, recall that V(LBOP(F)] provides a lower bound on
w(FCP) whenever p, q and r are non-negative, Thus, if a dual Simplex
procedure is used 1o impose the Gomory cuts in EE;, it is not necessary
that the process be carried to optimality. The values of p, q and r at
any stage of the dual process will be non-negative, and so the value of
the dual solution at each Simplex iteration will provide a lower bound
on v(FCP). If this bound reaches the value of a known feasible solution
to FCP, the process can be terminated.

5.1.3.2 Complication. Unfortunately, one complication of the

computational procedures developed in Chapter III will also result ffom
the use of FCP. It does not appear possible to devise a general proce-
dure for constructing a solution to FCP from a solution for the reduced
problem RP. Thus, iIf the computational simplicity of RP is to be
exploited, it would be necessary to first solve RP, then construct the
full Simplex solution for FCP, and lastly impose the Gomory cuts on this

L Y]

full version of FCP in order to sclve FCP.
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5.2 Imposing Gomory Cuts by Decomposition

An additiomal computational complication arises when the linear
program RP or FCP has a special structure which can be exploited by a
special version of the Simplex method. For such cases, FCP may not
possess this same special structure, and thus computational efficiency
would be lost if FCP were used to calculate Lagrange multipliers.

An example of this case is FCNP. In Chapter IV it was demon-
strated that RNP and FCNP are suitable to solution by a very efficient
graph-theoretic version of the primal Simplex method. Such a solution
procedure is applicable because every basis of a minimum cost flow net-
work problem can be shown to contain no cycles. A similar property
does not hold for the problem FCNP. If the Gomory cuts were directly
imposed on the network, the special basis structure would be lost.

This quandary suggests use of a procedure which indirectly
imposes the Comory cuts on problems like FCNP. In particular, a decom-
position method is required which solves the easier problems RP or FCP
as a single sub-problem to a master problem constrained by the Gomory
cuts.

An important requirement on such a decomposition method would be
that it maintain dual feasibility for fEF, i.e. that intermediate values
of p, q and r provide valid Lagrange multipliers for LEOP(T). Such a
property makes it possible to take advantage of the simplifications pre-
sented in Section 5.1.3.1. In particular, it would permit stopping the
procedure before an optimal solution to FCP had been reached without

sacrificing the bounding value of LEOP(T).
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One published decomposition method which has this property is
Balas' Infeasibility Pricing method [1]. The remainder of this section
describes the application of this method to the FCP case.

5.2.1 An Infeasibility Pricing Method

The general concept of the Infeasibility Pricing method, as pro-
posed by Balas [1] and specialized to the network case by Bazaraa [8],
is to treat sub-problems as Lagrangean relaxations of the full linear
program of interest. Successively better and better Lagrange multi-
pliers for the linking constraints are produced until the optimal solu-~
tions of all sub-problems corresponding to some multipliers also satis-
fy all linking constraints.

At each iteration the multipliers are improved in three steps.
First, a master problem is solved which seeks to obtain a perturbation
of the current optimal solutions for the sub-problems which will satisfy
the linking constraints. If one is found, the procedure terminates.
Otherwise, the dual solution of the master problem provides a direction
of improvement on the current Lagrange multipliers for the linking con-
straints.

However, it may happen that any movement in this direction will
cause Simplex optimality (i.e. dual feasibility) requirements to be lost
in the sub-problems. Thus, a second step is required to adjust the
optimal bases of the sub-problems so that infinitesimally small move-
ments in the desired direction will not disturb Simplex optimality.

Finally, the third step is to move as far as possible in the

desired direction. A limit is provided by the maximum movement which
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retains Simplex cptimality for the sub-problems.

In the FCP case this approach consists of finding optimal La-
grange multipliers for placing the Gomory cuts in the objective function
of FCP. This modified version of FCP is the single sub-problem. At
each iteration of the algorithm, a master problem i1s solved in an
attempt to find a perturbation of the current optimal scolution of the
sub-problem which will satisfy the Gomory cuts. If none is found, the
objective function of the sub-problem is revised and the sub-problem
is reoptimized. The process continues until an objective function is
obtained which will yield an optimal solutien to the sub-problem which
satisfies the Gomory cuts.

For more ccmplete development of the general procedure see [1]
and [8]. In particular, a proof of the convergence of the Infeasibility
Pricing method is given in [1].

5.2.1.1 Notation. Before proceeding to a detailed statement of

the implementation of the Infeasibility Pricing method for solvingrfaﬁ,
it will be useful to define certain deviations from the standard nota-
tion of this dissertation. In particular, the B and N superscripts will
be used in this discussion only to refer to the segments of various
vectors and matrices corresponding to parts of Am?L Amg and As which
were bastc in the most recent solution of the sub-problem. Thus, the
superscripts B and N associated with the basis of FCP will be dropped,
and, for example, Axi and Axi will refer to the parts of Ax? in TCP

which were respectively basic and nonmbasic in the last sub-problem.

Similarly, a new superscript 0 will be used to denote the parts of
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vectors and matrices corresponding to nonbasic variables in the mést
recent solution of the sub-problem which had adjusted costs equal to
zero, e.g. Aso is the part of As which was nonbasic in the most recent
sub~problem and had adjusted costs of 0. Since the superscript B, N

and 0 parts of As and Ax, will no longer be directly associated with

1

xi and xﬁ, it will also be necessary to denote the upper bounds on As

and Axl by distinct symbols oy and o)~ Finally, the convention will be
adopted that every solution value, tableau part, etc. taken from the

most recent sub-problem will be marked with a tilda (7).

5.2.1.2 Algorithm. With these notational conventions, an

Infeasibility Pricing method for FCP can be defined as follows:

Step 0. TFrom the optimal Simplex tableau of FCP construct the
sub-problem consisting of the Lagrangean relaxation of FCP with Lagrange

multipliers for the Gomory cuts equal to 0, i.e.

. 5T ST ~T —
min. dlel + d2Ax2 + cSAs + w(ICP) (5-20)
W) (%) ]
(SP) u, %, 0
o - - - -
s.t. ug 2 X2 Hlel H2Ax2 HSAS b 22 {5-21)
o y J 0
L S/ Ay L v
z > el > > -
oy > Axl z 0, 0, 2 Ax2 z 0, o_ 2 As =2 0 {5-22)
where dl = dl’ d2 = d2’ cg T cg- No optimization is necessary since
an optimal solution to this problem is AX, = 0, A%, = 0, AS = O.

1
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Thus, proceed immediately to Step 1.

Step 1. From the final Simplex tableau of the most recent SP,

construct the following master problem.

min 1°'f (5-23)
[ ;B
Axl
B B B ~B ~0 0 ,~0 ~0 0 ,~0 ~{ 0 ,~0
s.t. (Gl’GQ’GS) Ax2 - Hl(Axl—Axl) - H2(Ax2—Ax2) - Hs(As -As™)
~B
\As
0 0 . -0 0 0 ,~0 0 0 . -~0
{(MP) + Gl(Axl—Axl) + G2(6x2—6x2) + GS(AS -AsT) {5-24)
u,. -0 u,, ~U u,, -0
+ Gl(Axl) + G2(Ax2) + GS(As )+ £ 21
'B‘ ""’B (1
ol Axl 0
B ~B ~() o ,=~0 ~0 g ,~0 ~0 o ~0
o,| 2 sz - Hl(Axl-Axl) - HQ(Ax2~Ax2) - HS(AS -As ) 2 |0 (5-25)
oB AéB 0
L S, \ J \J
0 0 0 0 0 Q
o 2 As = 0, 5 2 Axl z 0, o, 2 Ax2 =0, f=zo0. (5-26)

Let the optimal dual multipliers for the constraints (5-24)} have the

value r, and the optimal value of f be £, Then go to Step 2.

Step 2. Intrcoduce into the basis of SP all nonbasic variables

corresponding to components of
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(5 2T ]
dl - (h)r Gl
~ AT
d2 - (h)r G2
- (h)Fig

which cannot satisfy Simplex optimality criteria in SP for any positive

value of the scalar h, i.e.

2x°. such that 430, = 0 and BG. > 0
15 13 1
Q ~0 0 ~T
. Ax., = . < 0
Axlj such that xlj Ol] and r Gl
ax°. such that 4x°. = 0  and fTG >0
2] 23 2
Axo such that Aio = oO and ETG < 0
27 23 23 2
Asg such that Aég = g and ﬁTGS > 0
- AT
As? such that As? = oO. and r G_ < 0.
J J 5] 5

Next, make any additional pivots necessary to restore optimality in SP,
let the final values of the adjusted costs be 4!, dé and cé, and let the
value of the optimal solution to SP be v'{(8P}. If vw'(SP) is greater
than or equal to the value of a known feasible solution to FCP, stop;

the current candidate problem can be fathomed. Otherwise, if f = 0, an

optimal solution for FCP has been obtained, and di, dé, c; are the
desired objective function coefficients for LEOP(T)'s. If neither of

these stopping criteria is met, proceed to Step 3.
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Step 3. Choose a scalar ﬁ so that

( X )
' ~T
dl - (h)r Gl
satisfies Simplex

~ . v ~T
h = supih = 0: \d (hr G? optimality in SP

2

v

' AT
Cy - {h)r GS

LY 4

i.e. move as far as possible in the direction r without violating dual
feasibility in SP. 1If h = +w, stop; FCP is infeasible, and the current
candidate problem can be fathomed. Otherwise update the objective func-

tion for SP by

£ ¢ 3

' ~ AT
dl dl - (h)r Gl
_ ' ~ . T
d2 = d2 - (h)r G2
' ~ T
\ch Lcs - (h)r st’

and go to Step 1.

5.2.2 Simplifications in the Network Case

When the above Infeasibility Pricing algorithm is applied to the
case of FCNP, a number of simplifications result. The next several sub-
sections detail some of these.

5.2.2.1 Solving Sub-Problems. By a direct change of variables

back to the origina’ cnes of FCNP, it is clear that the sub-problem SP

can be solved on the coriginal FCNP network. The only difference will be
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changes in the objective function. At any iteration of the Infeasibility

Pricing algorithm, the values of the FCNP variables Ax sz, and As can

l,
be obtained as the absclute difference between the current flow on arcs
which were nonbasic in the optimal solution of FCNP, and the optimal

FCNP flows on the arcs.

5.2.2.2 Generating Gomory Cuts. Suppose that the algorithm of

Section 4.2.2.6 was executed after an optimal solution to FCNP had been
obtained. Then elements of the Gomory cuts [defined in (3-63) and
(3-64)) can be generated for a variable in MP corresponding to an arc
from nede w, to node W, by using the reduced inverse entries A(i,z) as

1

follows:

>
v

§/§i if ¢ and Ekj is lower-bounded

ﬁi/ﬁi if A £ 0 and ;kj is upper-bounded

gkj(i) = i

A/(Yi—uli) if A < 0 and ij is lower-bounded

-X/(§i-uli) if A » 0 and Ekj is upper-bounded

where A = l(i,n(wQ)] - A[i,n(wl)).

) if je=i

_l/(ii'ull

g .{(i) =
sJ 0 otherwise.

Thus the columns of MP which involve segments of the Gomory cut matrices

G G2 and GS could »e rapidly constructed at the beginning of an MP

l’
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execution, or regenerated as needed during the solution of MP by a
revised Simplex algorithm,

5.2.2.3 Generating Updated Tableau Columns from SP. In a

similar way, the slements of MP involving segments of the updated sub-

problem matrices H ﬁz and ﬁs can be generated rapidly from the network

1°
of FCNP. Theorem 4.1.2.1 provides a method for constructing any column
of the updated tableau cerresponding to a nonbasic arc in a network
problem by scanning the cycle formed in the basis forest by the given
nonbasic arc., Only one slight change in this approach is required to
generate the colurnns of ﬁl’ ﬁz or ﬁs used in MP. If an arc was nonbasic
in both the optimal solution to FCNP and that of the current SP, then

it is only necessary to redefine the forward direction in Theorem
4.1.2.1 to be the direction of flow on the arc if the arc was lower-
bounded in the optimal solution to FCNP, and the direction opposed to
direction of flow on the arc if the arc was upper-bounded in the FCNP

solution, Columns of ﬁl, H. and ﬁs for variables which were nonbasic

2

in FCNP but basic in SP could also be generated easily, but they are

not required for MP.
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CHAPTER VI

GROUP-RELATED PENALTY ALGORITHMS

In the previcus three chapters a number of methods were proposed
for improving the efficiency of branch-and-bound solution procedures fer
fixed charge problems which use group-theory-related penalty problems in
obtaining bounds and branching rules, A general outline of such an ap-
proach was presented at the beginning of Chapter III, and numerous
schemes for constructing, augmenting and solving group-related penalty
problems make up the remainder of Chapter III, and all of Chapters IV
and V.

In this chapter, an integration of these discussions will be pro-
vided by the detailed statement of algorithms for FCP and FCNP which are
based on the results of the previous analysis. For the convenience of
the reader, notation terminology and step numbers will be kept con-
sistent with the branch-and-bound method presented at the beginning of

Chapter I1I and summarized in Figure 1.

5.1 Algorithm for General Fixed Charge Problems

In terms of the terminology of Chapters III and V, an algorithm
for general fixed charge problems in the form of FCP is given below.

Details of Steps 5 and 6 are also summarized in Figure 9.

Step 0. Place FCP in the candidate list, set B(FCP) = 0 and

vk = 4o, and go to Step 1.
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Sa. Construct FCP, from the optimal i To Step 8
Simplex tableau for RP. | and Fathom
_i 4
_ .| 5b. Perform a dual Simplex iteration
on [CP..
Sc.

3d. Identify the sets

9, = {i: v[LEOPC(i): yi:O] 2 i}
op = {i: v(LEOP (1): y.=u ;) = vi
T =

{i: max{v(LEOPc(i): yi=0], v[LEOPC(i): yi=uli]}}

is among the t highest for i 4 GD u GU

1

Se. Construct and solve a LEOP.(i,j;) for each
i € T with jj chosen by Criterion 3.5.2.1.

6a. Add to the set GD and OU by
B =0, u {ieT: u[LEOPC(i,ji): yi=0] z uk}
6, = 0, u {ieT: v[LEOPC(i,ji): yi=uli) 2y}
1
6b. Choose i as the ieT and éop U @U which maximizes
max{v[LEOPc(i,ji): yi=o), v[LEOPc(i,ji): yi—uli]}

To Step 7
and Partition

Figure 9. Flow Chart of Details in Steps 5 and 6 of Algorithm for FCP
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Step 1. Choose as the current candidate, FCPC, the element of

the candidate list satisfying
B(FCPC) = min{B(FCPC,): FCP_, in candidate list},

and proceed to Step 2.

Step 2. Sclve the continuous relaxation of FCP_, i.e. ?E?;,
by solving the corresponding reduced problem RPC and constructing a
solutien to fE?; according to the rules of Theorem 3.1l.l.4., If v(FEFE)
2 v¥%, proceed to Step 8 because no completion of FCPc can produce a
solution to FCP with value less than that of the incumbent. If v(fﬁﬁé)

< v, proceed to Step 3.

Step 3. Create a feasible solution for FCP by rounding "up" the

optimal solution to FCPC, i.e. by setting

u - X.. 1if x > 0
1] i] 1]
5, =
J 0 otherwise
y =5 + X1
xl = xl
Xy = Ky»

where il and ﬁz are the optimal values of %, and x, in the solution of

FCPC. If the value of this rounded solution is less than v¥, proceed to
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Step 4. Otherwise, go to Step 5a.

Step 4. A new incumbent scolution has been found. Save this
incumbent as a possible optimal solution to FCP, and eliminate from the
candidate list any problems with B value greater than or equal to the
value of the new incumbent. If the new v¥ = -», stop; FCP is unbounded.
Otherwise, proceed to Step 5a.

Step Sa. Construct the problem FCPC associated with ?E?; from
the optimal tableau for RP . The optimal tableau for FCP_ is obtained
according to Lemma 3.1.1l.2, and Gomory cuts are derived from this
optimal tableau according to the definition in Section 3.4.2., Next, go

to Step 5b.

Step 5b, Perform a dual Simplex pivot on FEI‘:"C, and calculate the
value of the dual solution to FE?C at the completion of this pivot. If
this dual solution value is greater than or equal to v®, go to Step 8
because no completion of FCPC can provide a better solution than the in-
cumbent. Otherwise, if optimality of ?EEC has been attained, go to

Step 5c, and if optimality has not been reached, repeat Step 5b,

Step Se. Construct and solve all one-row Lagrangean either-or
problems associated with ?E?;, i.e. all LEOPC(i). The objective func-
tion for these problems is given by the adjusted cost row of the optimal
tableau for fE?C, and the constraints can be constructed from the
optimal tableau for RP_ according to (3-42) and (3-43) in Section 3.3.1.
The problems are solved by the minimum ratio procedure of Theorem
3.3.3.1.

If the value of an optimal solution to any of these LEOPC(i) is
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greater than or equal to v*, go to Step 8 because no completion of FCPC
can have a better optimal solution than the incumbent. Otherwise, go

to Step 5d.

Step 6d. ‘Jsing the "down" and "up" penalties obtained in the
solution of the LEOPC(i), i.e. the values v[LEOP(i): yi=0] and

v(LEOP(i): yi=uli}, define the sets

v

9, = {i: v(LEOP_(i): y, =0) vk}

o)
H

{i: v(LEOPC(i): yi:uli]

v

i}

Y. v = . \
o= d5. max{v[LEOP (i): i 0) [LEOP (i): 1 ll }
is among the t hlghest values for 1&@ u U

Then go to Step 5e.

Step se. Construct and solve a two-row Lagrangean either-or
problem LEOPC(i,ji) for each i ¢ T. The problems are constructed
exactly as in Step 5¢, with ji being chosen according to the criterion
of Section 3.5.2.1. If the value of an optimal solution to any of these
penalty problems is greater than or equal to v%, go to Step 8 because no
completion of FCPc can provide a better sclution than the incumbent.

Otherwise, proceed to Step 6a.

Step Ba. Add to the sets OD and @U by

@
H
W
<
L
——

g = @y u lieT: v[LEOP (i,3.): y,=0]

o
1l

D OD u {ieT: {LEOP (1,] ) =u

v
<,
X

ll} -
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Then go to Step 6&b.

Step 6b, Choose the branching variable yz 8o that i is the

ie T and é@D U GU which maximizes

max{v[LEOPC(i,ji): yi=0J, v[LEOPc(i,ji): yi=uli]}.

Then go to Step 7,

Step 7. Replace FCPC in the candidate list by two more
restricted problems. One is defined by FCPC with the additional con-
straints that y: = 0, yj =0 for j ¢ OD, and yj = ulj for J ¢ OU. The

second problem is identical to the first except that i is restricted to

equal u B values for the two problems are v[LEOPC(i,ji); yi=O) and

1i
v(LEOPC(i,ji): y£=ul§), respectively. Next, go to Step 1.

Step 8. TFathom FCPC, i.e. eliminate FCPC from the candidate list
because no completion of it can produce a feasible solution to FCP with
value less than that of the incumbent solution v¥*. If the candidate
list is now empty, stop. If an incumbent solution exists, it is an
optimal solution for FCP, and otherwise FCP is infeasible. If the

candidate list is not empty, proceed to Step 1.

6.2 Algorithm for Fixed Charge Network Problems

In terms of the terminology of Chapters III, IV and V, an
algorithm for fixed charge network problems in the form of FCHP is given

below. Details of Steps 5 and 6 are also summarized in Figure 10.
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' Sa. Execute Algorithm 4.2.2.6 to obrain n {n) and lc(i,HJ
1
{_Sb. Construct precblem SPc from optimal forest for RNPC I
{LE:. Create and solve MPC from the tableaun of SPC To Step 8
I and
Fathom
5d, Revise SP. solutien as necessary to permit dual
improvement in directions specified by MPg
!
|

7 C
optimal?

N

5e, Change dual solution as much as possible
in direction specified by MP.

5g. Identify the sets defined by
8, = {i: v{LBOP (i): y,=0] = v#)
oy = {i: v(LEOP (1): y =u .} 2 v}
[, max{v(LEOPg(i): y;=0), w[LEOP,(i}: yi=ulg}}

is among the t highest for i ¢ OU ] GD

i

5h. Construct and solve a LEQP.(i,j;} fer each
s i e T with j; chosen by Criterion 3.5.2.1

8a. Add to the sets GU and oy by
OU = BU u {ieT: U{LEOPC(i,ji): yi:O) 2 %}
BD =8y v {ieT: v[LEOPC(l,]i): yi:uli) VS
6b, Choose i as the ieT and &GD v 9, which maximizes

max{u(LEOPc(i,ji): yi=0j, v[LEOPC(i,ji): yi=uli)}

To Step 7 and Partition

Flow Chart of Details in Steps 5 and 6 of Algorithm for FCNP
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Step 0. Place TCNP in the candidate list, set B(FCNP) = 0 and

v¥ = +o, and go to Step 1.

Step 1. Choose as the current candidate, FCNPC, the element of

the candidate list satisfying
B(FCNPC) = min{B(FCNPC,): FCNPC, in candidate list},

and proceed to Step 2.

Step 2. Sclve the continuous relaxation of FCNPC, i.e, faﬁﬁe,
by solving the corresponding reduced problem RNPC with a graph theory-
oriented algorithm and constructing a solution to fEﬁ?; according to the
rules of Theorem 3.1.1.4., If v(FEﬁ§;) 2 v*, proceed to Step 8 because
no completion of FCNPC can produce a solution to FCNP with value less

than that of the incumbent. If v(FCNPC) < v¥, proceed to Step 3.

Step 3. Create a feasible solution for FCNP by rounding "up" the

optimal solution to FCNPC, i.e. setting

. ulj - xlj if xlj >0
J 0 otherwise

y = s + X,

]

X, = X
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where il and EQ are the optimal values of Xy and X, in the solution of
FCNPC. If the value of this rounded solution is less than v¥*, proceed

to Step 4. Otherwise, go tc Step 5a.

Step 4. A new incumbent solution has been found. Save this
incumbent as a possible optimal solution to FCNP, and eliminate from the
candidate list any problems with B wvalues greater than or equal to the
value of the new incumbent. If the new v¥ = -w, stop; FCNP is un-

bounded. Otherwise, proceed to Step 5a.

Step Sa. Execute Algorithm 4.2.2.6 to identify the macro-node
assignments nc(n), and the reduced basis inverse entries Ac(i,k) from

the optimal basis forest for RNPC. Then go to Step 5b.

Step 5b. Construct problem §P, from the optimal basis forest for
RNPC. One additional node and two additional arcs are added for each

component of x. as in Figure 3, and basis labels are adjusted to corre-

1
spond to the FCNPC solution described in Theorem 3.1.1.4%. Then go to

Step Ge.

Step 5¢. Create and solve the Infeasibility Pricing master
problem MPC from SPC. Gomory cuts and SPC tableau columns are derived
as described in Section 5.2.2, and solution is by any Simplex procedure.

Next, go to Step 5d.

Step 5d. Revise the optimal solution of SPc as described in
Step 2 of Algorithm 5.2.1.2 to permit dual solution improvement in the

direction obtained from the dual multipliers of the Gomory cuts in the

last MPc' If the value of the dual solution for FCNPC implied by this
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revised SPC solution is greater than or equal to v¥, go to Step 8 and
fathom FCNPC. If infeasibility in the Gomory cuts was forced to zero in

the last solution to MPC, go to Step 5f. Otherwise, go to Step 5e.

Step Se¢., Change the dual solution to SPC as much as possible in
the direction obtained from the last MPC according to the procedure out-
lined in Step 3 of Algorithm 5.2.1.2. If there is no limit omn the

amount of change, i.e. FCNPc is infeasible, proceed to Step 8 and

fathom. Otherwise go to Step 5c.

Step 6f. Construct and solve all one-row Lagrangean either-or
problems associated with ?Eﬁ?;, i.e, all LEOPC(i). The objective func-
tion for these problems is given by the adjusted cost row of the final
solution for SPC, and constraints are generated from the nc(n) and
Ac(i,k) as specified in Section 4.4.1. The problems are solved by the
minimum ratio procedure of Section 4.4.2.

If the value of an optimal solution to any of these LEOPc(i) is
greater than or equal to v#, go to Step 8 and fathom. Otherwise, go to

Step 5g.

Step 6g. Using the "down" and "up" penalties obtained in the
solution of the LECP (i), i.e. the values u(LEOPC(i):.yi=O]:and

U(LEOPC(l): yi:uli)’ define the sets

@
H

{i: U[LEOPC(i): yi=OJ > it}

i }

(53]
i1

{1i: U[LEOPC(l): y;=u

v

1)
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max{v(LEOPC(i): yi=0), v(LEOPC(i): yi:uli]}

is among the t highest values for ié@u ubo

T =
D

Then go to Step 5Sh.

Step bh. Construct and solve a LEOPC(i,ji).for each igT, with
ji chosen by Criterion 3.5.2.1. The problems are constructed as in
Section 4.4.1 and solved as four network problems on a graph constructed
as in Section 4.4.3.

If the valve of an optimal solution to any of these penalty prob-
lems is greater than or equal to v*, go to Step 8 and fathom. Otherwise,

proceed to Step ba.

Step 6a. Add to the sets OU and OD by

o
1]

g = 8y v {ieT: v(LEOPC(l,]i): yi:o)

[\Y3

<
b d

-

@
1

D Oy v {1eT: v(LEOPC(i,ji): yi=uli)

%

v}

Then go to Step 6b.

Step 6b. Choose the branching variable y: 80 that i is the ieT

and éGD u @U which maximizes
max {v(LEOPc(l,ji): yi=0], U(LEOPC(I,]i): yi=uli)}.

Then go to Step 7.
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Step 7. Replace FCNPC in the candidate list by two more
restricted problems. One is defined by FCNPC with the additional con-

straints that yi = 0, yj = ¢ for jeBD, and yj = u, ., for jeGU. The

13
second problem is identical to the first except that ¥ye is restricted to

equal u B values for the two problems are v(LEOPc(i,ji): y£=0] and

11
v[LEOPC(i,ji): y{=uli), respectively. Next, go to Step 1.

Step 8. Fathom FCNPC, i.e. eliminate FCNPc from the candidate
list because no completion of it can produce a feasible solution to FCNP
with value less than that of the incumbent solution. If the candidate
list is now empty, stop. If an encumbent solution exists, it is an
optimal solution for FCNP, and otherwise FCNP is infeasible. If the

candidate list is not empty, proceed to Step 1.

6.3 Justification of the Algorithms

Justification of the above algorithms involves both showing the
validity of the bounds on v(FCP)} and w(FCNP) calculated in variocus steps
of the procedures and demonstrating the convergence of the overall
branch-and-bound scheme implicit in both algorithms. The validity of
bounds used in the algorithms has been extensively treated in Chapters
ITI, IV and V, and need not be demonstrated again here. Moreover, con-
vergence of the overall branch-and-bound scheme is guaranteed by the
observaticns that

1. The algorithms must terminate after processing of a

finite number of candidate problems because there are

only a finite number of settings for the components of
y, and no repetitions are permitted.
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2. The algorithms must produce an optimal solution or
demonstrate that none exists because the only settings
of components of y which are not explicitly pursued
are those which bounding demonstrates cannet produce
a better solution than some known one.

Thus it can be concluded that each of the above algorithms will produce
an optimal solution or demonstrate that none exists in a finite number

of steps.



le4

CHAPTER VII

COMPUTATIONAL ANALYSIS

Chapters I1I, IV and V presented a number of group-related
approaches to fixed charge problems in the form of FCP and FCNP, and
Chapter VI integrated these proposals into branch-and-bound algorithms.
The approaches chcsen for inclusion in the algorithms of Chapter VI
were those which theoretical analysis had indicated would be the most
promising in the sense that they would most expedite a branch-and-bound
procedure like the one presented at the beginning of Chapter III.

In this Chapter theoretical analysis of the value of various
approaches is complemented by empirical investigation. A series of
experiments are reported which analyze whether advantages suggested by
theoretical results are actually observed in representative test

probliems.

7.1 Description of Experiments

The approach selected to accomplish such an empirical analysis is
a classical factoral experimental design. A number of different group-
related sclution approaches which could be tested within available
computer resources were applied to randomly-generated test problems
possessing all combinaticns of the properties previous researchers have
indicated most affected computational efficiency of algorithms for fixed

charge problems.
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In particular, a version of the algorithm of Section 6.2 was used
to generate and solve fixed charge network problems in manners specified

by the following factors:

1. Type of problem - whether the problem is a general FCNP
(GNP), a fixed charge transportation problem (FCTP),!
or a warehouse location problem (wLp).1

2. Size of y - the number of arcs in the problem with fixed
charges (code 0 = 20, code 1 = 50, code 2 = 75, code 3 =
100).

3. Relative size of fixed costs - whether the fixed costs
in a problem are small or large relative to wvariable
costs {code 1 = small, i.e. fixed charges make up less
than 5% of the value of an optimal solution; code 2 =
large, i.e. fixed charges make up 15-30% of the value of
an optimal solution).

4. Solution method - the combination of group-related tech-
niques ised in solution of the problem (code ¢ = use no
group-related techniques; code 1 = use conly the EOP(i);
code 2 = use only the BEOP(i); code 3 = use the BEOP(i)
and randomly chosen EQOP(i,j); code 4 = use the BEOP(i)
and EOP{1,j) chosen by Criteria 3.5.2.1),.

Details of the generation and sclution routines employed are given in
Appendix A,

It was initially planned to test all combinations of the above
factors at the indicated level codes. However, preliminary testing
revealed that structures of GNP's, FCTP's and WLP's were so different
that results for different solution procedures could not be compared
across problem types. In addition, early results showed that problems
with the dimension of y greater than 50 could not be solved within

reasonable time limits without some penalty techniques being used.

Thus two replications of six separate factoral experiments

1 . . s s .
See Section 1.2 for definition of these special cases.
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were actually performed. The three principal experiments focused
separately on the GNP, FCTP and WLP cases. Each case was tested in all
combinations 6f large y sizes (codes 1, 2 and 3), relative fixed costs,
and group-related solution methods. In addition, three special experi-
ments were run to analyze the impact on smaller GNP's, FCTP's, and WLP's
of eliminating all group-related solution schemes.

Each combination of factors used in the experiments is presented
in the list of Table 2. Parameters and results for each combination are

then summarized in Tables 3, 4, 5 and 6,

7.2 Analysis of Experimental Results

General inspection of the results in Tables 3, 4, 5 and 6 sug~
gests that relatively large fixed charge network problems can be solved
in 10 to 15 minutes by any of the group-related penalty methods of Chap-
ters III and IV. Averages for every problem type, y size and fixed
charge pattern reported in those tables are within such reasonable
computational boundaries, yet the problems with 100 fixed charge arcs
are as large or larger than any FCNP's previously reported solved effi-
ciently.

In order to more precisely determine the effect of varicus fac-
tors on the experimental results, statistical analysis of variance was
applied to the results. The exact statistical assumptions underlying
the analysis of variance could not be verified in the relatively un-
structured domain of randomly-generated optimization problems, but since
all the problem factors other researchers have indicated had significant

effects on computational results were included in the experiments, the
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Definition of Test Problem Options

187

No. Fix Relative Size Group-Related Penalty
Code Chg. Arcs Fix Costs Problems in Solution Method
010 20 Small None
011 20 Small EOP(1i)
020 20 Large None
021 20 Large EQP(1i)
111 S50 Small EQOP(1)
112 50 Small BEQP(1)
113 50 Small BEOP(i) and randomly chosen EQP(i,j)
114 50 Small BEOP(i) and criteria chosen EQOP(i,j)
121 50 Large EOP(1)
122 50 Large BEOP(i)
123 50 Large BECP(i) and randomly chosen EOP(i,])
124 50 Large BEOP{i) and criteria chosen EOP(i,])
211 75 Small EOP(1)
212 75 Small BEOP(1i)
213 75 Small BECOP(i) and randomly chosen EQP(i,j)
214 75 Small BEQP(i) and criteria chosen EOP(i,])
221 75 Large EQP(i)
222 75 Large BEOP(1i)
223 75 Large BEQP(i) and randomly chosen EOF(i,j)
224 75 Large BEQP(i) and criteria chosen EOP(i,j)
311 100 Small EOP(1)
312 100 Small BEQP(i)
313 100 Small BEQP(i) and randomly chosen EOP(i,j)
314 100 Small BEQP(i) and criteria chosen EOP(i,j)
321 100 Large EOP(1i)
322 100 Large BEOP(1i)
323 100 Large BEQOP(i) and randomly chosen EOP(i,])
a2y 100 Large BEQP(i) and criteria chosen EOP(i,j)
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Table 3. Summary of General Network Test Problems
Average Average No,
Part Candidate Average
Problem No. No. Fix Chg. Solution Problems Solutiocn
Options Nodes  Arcs Arcs Fix Chg. Solved Time (sec)
111 34 159 50 .4L0 6 2.2
112 Ju 159 50 . 034 14 4.5
113 34 159 50 .0L48 17 6.2
1lu 34 159 50 .010 3 1.5
121 34 159 50 .067 149 3.2
122 34 159 50 .203 23 8.6
123 34 159 50 .055 3] 1.8
124 34 159 50 .198 8 4.2
211 50 238 75 .02y 13 6.8
212 50 238 75 .033 19 12.6
213 50 238 75 . 039 24 16.2
214 50 238 75 .031 14 16.9
22] 50 238 75 074 12 8.3
222 50 238 75 .072 6 5.0
223 50 238 75 .084 22 14.6
224 50 238 75 .076 7 7.2
311 66 317 100 .026 18 21.6
312 66 317 100 .024 33 35.0
313 66 317 100 .04l 16 22.1
314 66 317 100 .029 16 22.8
321 66 317 100 L2977 38 50.8
322 66 317 100 148 30 34%.9
323 66 317 160 .182 28 26.1
324 66 317 100 .098 8 11.4
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Table 4. Summary of Transportation Test Problems

Average Average No.

Part Candidate Average
Problem No. No. Fizx Chg. Solution Problems Solution
Options Nodes  Arc Arcs Fix Chg. Solved Time (sec)
111 20 69 50 .020 3 .5
112 20 69 50 .019 22 2.2
113 20 69 52 .017 & .8
114 20 69 52 .018 7 1.0
121 20 69 52 .189 332 43.8
122 20 69 52 .218 52 5.7
123 20 69 52 .227 94 11.2
12y 20 69 52 .208 104 15.7
211 24 98 75 .020Q 14 3.2
212 24 98 75 .016 18 3.8
213 24 98 75 .022 11 2.2
214 24 98 75 .024 20 4.6
221 24 98 75 .202 652 146.2
222 24 98 75 .202 276 53.0
223 24 98 75 .230 262 76.6
224 24 a8 75 .188 is0 51.1
311 26 125 100 .022 33 10.6
312 26 125 100 .021 12 3.9
313 26 125 100 .023 34 10.4
314 26 125 100 .02y 31 1.4
321 26 125 100 .230 1358 557.0
322 26 125 100 .186 548 159.4
323 26 125 100 .206 459 150,1

324 26 125 1g0 .154 279 151.2
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Table 5. Summary of Warehouse Location Test Problems

Average Average No,
Part Candidate Average
Problem No. No. Fix Chg. Solutien Problems Solution
Options Nodes Arc  Arcs Fix Chg. Solved Time (sec)
111 62 311 50 .0u8 5 4.3
112 62 311 50 .030 6 5.2
113 62 311 50 .032 6 5.9
114 62 311 50 .038 L 5.0
121 62 311 50 .166 70 51.5
122 62 311 50 .208 249 242.1
123 62 311 50 142 18 15.6
124 52 311 50 142 148 187.0
211 92 LE6 75 .03 16 26.0
212 92 466 75 .054 13 19.4
213 92 466 75 .40 16 26.3
214 92 466 75 .039 1y 23.4
221 92 466 75 .139 16l 312.9
222 92 466 75 .156 71 128.6
223 92 456 75 .160 233 478.4
224 92 466 75 .154 77 187.7
311 122 621 100 .032 16 37.8
312 122 621 100 .037 10 26.6
313 122 621 100 .038 8 22.2
314 12z 621 100 .037 14 45,0
321 122 621 100 . 146 216 663.5
322 122 g21 100 .138 149 494 .4
323 122 621 100 .130 258 803.6
324 122 621 100 .138 160 521.6
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analysis of variance procedure was considered adequate for indicating

the importance of various effects.

Table 6. Summary of Special Analysis Problems

Average |Average No.

Fix Part Candidate | Average

Problem Prob. Chg. |Solution| Problems Solution

Type Options|Nodes |ArcsiAres |[Fix Chg.| Solved Time (sec)
General 10 18 69 20 .021 39 1.4
General 1l 18 69 20 .024 3 U
General 020 18 69 20 .128 228 5.0
General 021 18 69 20 .381 7 )
Transportation 010 14 33 20 .Q15 450 6.9
Transportation 011 14 33 20 .23 4 .2
Transportaticn 020 14 33 20 .202 1542 29.6
Transportation 021 1y 33 20 Y 12 L4
Warehouse 010 20 45 20 .018 2536 32.3
Warehouse 011 20 | 45 20 .010 3 .1
Warehouse 020 20 45 20 .100 1098 20.2
Warehouse 021 20 45 20 .075 6 .2

The response variable selected for analysis of variance calcula-
tions is the number of candidate problems explicitly investigated in
solving a FCNP. This variable was chosen because it appeared to give
the most accurate measure of the true impact of different group-related
penalty procedures, Sclution times are alse very important, but the
effect of the various penalty procedures on solution times is clouded
by the programming efficiency of routines to execute the penalty pro-
cedures.

Results of the analysis of variance for this response variable

are given in Tables 7 through 12, The significance of various
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Table 7. Analysis of Variance for
General Test Problems

Degrees

Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Size of y 1,325 2 662 4.80 %%%
Relative fixed cost 3 1 3 .022
Sclution method 889 3 296 2.15 *
Size-cost intersction 242 2 121 .877
Size-method interaction 717 6 120 .870
Cost-method interaction 210 3 70 . 507
Error 4,155 30 138 1.00

Table 8. Analysis of Variance for
Transportation Test Problems

Degrees

Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Size of y 578,314 2 289,157 2.97 %%
Relative fixed cost 1,603,814 1 1,603,814 16,5 s
Solution method 646,824 3 215,608 2.21 *
Size-cost interactien 503,331 2 251,666 2,58 %%
Size-method interaction 219,089 6 36,515 .375
Cost-method interaction 654,060 3 218,020 2,24 #®
Error 2,921,737 30 97,391 1.00

lSingle * denotes significant at a = .25 level; %% denotes
significant at o = .10 level, and **%* denotes significant at a =
.05.
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Table 9. Analysis of Variance for
Warehouse Location Test Problems

Degrees

Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Size of y 13,697 2 5,848 .890
Relative fixed cost 235,760 1 235,760  30.p WA
Solution method 2,543 3 8y7 .110
Size-cost interaction 11,244 2 5,622 731
Size-method interaction 53,701 6 8,950 1.16
Cost-method interaction 2,815 3 938 .122
Error 230,759 30 7,692 1.00

Table 10. Analysis of Variance for General
Problems in Special Analysis

Degrees
Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Relative fixed cost 17,860 1 17,860 1.13
Scolution methed 32,004 1 32,004 2.02 *
Cost-method interaction 17,133 1 17,133 1.08
Error 63,308 4 15,827 1.00

1. . s s

Single * denotes significance at o = .25 level; %% denotes
significance at a = .10 level, and *%% denotes significance at
a = .05.



Table 1L. Analysis of Variance feor Transportation
Problems in Special Analysis
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Degrees
Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Relative fixed cost 605,000 1 605,000 55,1 %
Solution method 1,955,288 L 1,955,288 178,2 #%%
Cost-method interactieon 548,528 1 548,528 53,3 W
Error 43,896 b 10,974 1.00

Table 12. Analysis of Variance for Warehouse
Location Problems in Special Analysis

Degrees
Sum of of Mean 1
Effect Squares Freedom  Square F-ratio
Relative fixed cost 1,030,330 1 1,030,330 2.02 %
Solution method 6,572,125 1 6,572,125 12,9 &&%®
Cost-method interaction 1,037,520 1 1,037,520 2.03 ®
Error 2,044,017 4 511,004 1.00
lSingle % denotes significance at a = .25 level; #% denotes
significance at a = .10 level, and **% denotes significance at

a = .05,
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factors implied by the results is discussed in the next several sub-

sections.

7.2.1 Size of y Effects

Since the possible number of candidate problems increases
exponentially with the size of the y vector, it could be expected that
the number of candidate problems actually solved would also be greatly
affected by the size of y. Analysis of variance results for GNP's and
FCTP's generally confirm this expectation. Both Table 7 and Table 8
show fairly significant size effects.

It is interesting, however, that the same significance is not
observed in the results for WLP's. Great variatibns in the response
were observed at all sizes of y.

7.2.2 Relative rFixed Cost Effects

Most previously reported research on fixed charge problems has
also indicated that computational efficiency is highly effected by
the relative size of the fixed and variable costs. If fixed costs are
small, v(FCNP) provides a good estimate of v(FCNP), and only a few
candidates need to be explicitly explored. When fixed costs are high,
however, numercus possibilities for y must be investigated.

Experimental results for FCTP's and WLP's strongly confirm this
previous experience. Relative fixed cost effects appear very sig-
nificant in both Table 8 and Table 9.

However, results for GNP's show the relation between fixed and
variable costs is relatively insignificant. A possible explanation

of this phenomenon is that higher fixed costs in GNP's tend only to
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force all flows along arcs without fixed charges. Thus, the value of
a v(FCNP) as a bound on v(FCNP) is not diminished as fixed charges
increase.

7.2.3 Solution Method Effects

The experimental factor of greatest interest to the research
of this dissertation is the effect of changing the solution procedure
used. Any group-related techniques shown to be significantly superior
would provide suitable focuses for future research and applications.

Results in Tables 7 through 12 do show significant soluticn
method effects except in the case of large WLP's. The most outstand-
ing of these effects is the difference between the no-group analysis
and one-row analysis methods. Even for the relatively small case of
20 fixed charge arcs, results in Tables 10 through 12 indicate sig-
nificant improvements are obtained by using at least some group-
related penalties.

Unfortunarely, the differences among group-related techniques
are not so clear from experimental results. Both GNP's and FCTP's
showed some significant effects of variation in solution methods,
but differences Lbetween particular methods cannot be statistically
verified.

The clearest pattern arises in the FCTP case presented in
Figure 1ll. This graph shows the mean number of candidate problems
investigated as a function of problem size and solution method. The
results strongly imply that simple one-row group penalties are in-

ferior to other techniques. Some advantage is apparently gained by
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Figure 11. Mean Nunbers of Candidate Problems Solved for Transportation
Problems by Size of y and Solution Method
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using two-row approcaches, but the greatest single improvement derives
from consideration of the bounds on perturbation variables,

The GNP pattern of Figure 12 i1s somewhat more confused because
performance of the solution methods varies widely. However, the
appreoach of using both one-row and criteria-selected two-row problems
appears to be the most effective method. Since results of Figure 11
also show this method to be the most effective, it appears safe to

conclude the method has some promise for efficient solution of FCNP's,
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Figure 12. Mean Numbers of Candidate Problems Solved for General
Test Problems by Size of y and Sclution Method
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CHAPTER VIII

CONCLUSICNS AND RECOMMENDATIONS

The principal objective of the research reported in this dis-
sertation was to identify effective techniques for exploiting the
special structures of fixed charge problems in group-theory-related
branch-and-bound solution procedures, A number of such techniques
were developed in Chapters III, IV and V, and computational experience
was reported in Chapter VII. The principal results of those chapters
can be summarized as follows:

1. Extension of Kennington's Work to General Fized Charge
Problems. The great majority of results for fixed charge transporta-
tion problem in [68] were shown to generalize to any fixed charge
linear program., In particular, the solution of the continucus analog
of FCP and all group-related penalty problems can be simply constructed
from the optimal solution to a reduced linear program, one-row group
penalty problems can easily be solved exactly because ail congruence-
constrained variables can be made basic, and one-row group penalties
are exactly equal to those of Tomlin [90] and thus can be interpreted
as having an "up" or "down" orientation.

2. Investigation of Interactions Between Rows of the Group
Problem for FCP. Some understanding of the interactions between rows
of the group problem asscciated with FCP can be obtained by investi-

gating the conditions under which individual rows can be independently
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satisfied. 1In this connection, the Gomory cuts for FCP can be shown
to be faces of the convex hull of solutions to the associated group
prcblem because of a limited independence between rows, and the
property of connectedness is related to the degree of independence,

3. Spectalization to the Network Case. The group problem
for a fixed charge network problem can be interpreted as the problem
of finding an optimal set of flow adjustments around cycles in the
network corresponding to nonbasic arcs. Using this interpretation,
the full problem network can be collapsed for purpcses of group-
related aﬁalysis into a reduced network on macro-nodes. Moreover, the
constraints of the group-related problems can be shown to be totally
unimodular.

4. Lagrangean Enforcement of Bounds on Basic Variables. A
computationally feasible methed for including constraints relaxed in
penalty problems in the objective function via Lagrange multipliers
can be obtained by imposing Gomory cuts on the optimal continuous
solution to FCP and using appropriate dual variable wvalues for the
multipliers. Moreover, this approach can be extended to the fixed
charge network case without sacrificing the special network structure
by a decomposition approach.

5. Computational Experience with Fized Charge Network Prob-
lemg. Randomly selected fixed charge network problems with as many as
100 fixed charge variables can be efficiently solved by a group-
related branch-and-bound algorithm. Moreover, the value of group-

related penalty approaches can be statistically verified.
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At the completion of this research, however, a number of pos-
sibilities for fixed charge problems still require investigation,
Among these are the following:

1., Additional Computational Experience. The relatively
promising computational results for fixed charge network problems
which were presented in Chapter VII suggest the more complex computa-
tional procedures omitted from initial experiments are worthy of
testing. Specifically, implementations of the group-related penalty
procedures proposed for general fixed charge problems and of the
Lagrangean techniques presented in Chapter VII should be pursued.

2. Improved Selection Criteria. The results in Chapter VII
indicate some advantage of two-row penalty problems selected according
to Criteria 3.5.2.1, but greater improvement might derive from a bet-
ter criterion. Additional research into measures of interaction
between rows of group problems appears warranted,

3. Alternative Group Problems. Section 3.2 defined several
group problems which could be derived from a given solution to the
reduced problem RP, The alternative involving congruence constraints
on perturbation variables was not pursued in this dissertation because
of the difficulty of solving the resulting penalty problems. However,
this alternative group problem could be approached by the approximate
techniques of Gomory and Johnson [43,44,65]. Improved penalties might
derive from dealing with this alternative group formulation and using
such approximate methods,

4. Graph of the Group Problem. In Section 4.4.3 it was
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demonstrated that two-row group-related penalty problems could be
viewed as minimum cost flow problems on a particular graph. However,
Tutte [92,93] has shown that such a graph can be constructed for many
totally unimodular matrices., Since Theorem 4.3.2.1 demonstrated that
the constraint matrix of the group problem for every fixed charge
network problem is totally unimodular, it may thus be possible to
identify an underlying graph for penalty problems of more than two
Pows.

More generally, certain of the principles presented in this
research on fixed charge problems may be applicable to other integer
and mixed-integer programs. Any class of problems for which a feasi-
ble solution to the full problem can always be constructed from a
solution to its continuous relaxation would probably possess most of
the properties demonstrated in Chapter III because some "independence"
of integer variables would have to be present, i.e. it would have to
be possible to perturb the continuous sclution to satisfy congruence
constraints cne by one. Similarly, the Gomory cut approach for
deriving Lagrange multipliers which was presented in Chapter V is
applicable to improving group problems for any mixed-integer program.
In fact, any set of valid inequalities could be used in the suggested
manner to cbtain Lagrange multipliers for the bounds on basic vari-

ables.
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APPENDIX A
ALGORITHM USED IN COMPUTATIONAL EXPERIMENTS

In Chapter VII some computaticnal experiments with fixed charge
network problems were reported. All those experiments were run with a
version of the algorithm of Section 6.2 implemented in FORTRAN on the
Georgia Institute of Technology's Unlvac 1108,

For the convenience of other researchers, an outline of this
algorithm is presented in this Appendix., A first section summarizes
the algorithm in a step-by-step fashion, and later sections add comments
on some techniques not detailed elsewhere in the dissertation and offer
some computational observations. The notation of Chapter VI and the

-step numbers of Figure 1 are used throughout.

A,1 Statement of the Algorithm

In terms of the notation of Chapters III through VI, and the step
numbers of Figure 1, the fixed charge network algorithm used in experi-

mentation can be stated:

Step Oa. Generate a random problem FCNP according to input
specifications and construction techniques outlined in Section A.2.1.

Then go to Step Ob.

Step 0Ob. GSolve RNP using the algorithm summarized in Section
A.2.2, and save the optimal solution and basis forest for restart solu-

tion of later sub-problems as described in Section A.2.3. Then, go to
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Step Oc.

Step O0c. Initialize all pointers in the candidate list defined
in Section A.2.4, and place FCNP in the candidate list with B(FCNP) =

v(RNP). Also, sef v% = 4o, FCNPC = FCNP and go to Step 3.

Step 1. Select as FCNPC the lowest cost bound element of the

candidate list chain defined in Section A.2.4, Then go to Step 2a.

Step Za. Use the saved optimal solution to RNP to create a basic
feasible solution for RNPc according to the method outlined in Section

A.2.3. Then, go to Step 2b.

Step 2b. Starting from the solution and basis forest constructed
in Step 2a, solve RNPC. If v(RNPC) 2 v®, go to Step 8 and fathom.
Qtherwise, go to Step 3.

Step 3. Create a feasible solution for FCNP by rounding 'up" the

optimal solution to PCNPC, i.e. by setting

—— . if L
.. ul] xlj 1 le 0
] 0 otherwise
y =8 + xl
X) =X
Xy = X,

where il and §2 are the optimal values of X and x, in the solution to

RNPC. If the value of this rounded solution is less than v¥, go to
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Step 4a. Otherwise, go to Step 5a.

Step 4a. Save the rounded FCNPc solution as the new incumbent
solution. If the new v® is greater than the B8 value of every candidate
in the candidate list, go to Step 5a. If the new v¥# = -=, stop; FCNP

is unbounded. Otherwise go to Step bb.

Step 4b. Scan up the candidate chain defined in Section A.2.4
until a candidate is found with B value at least equal to v*. Eliminate
from further consideration all problems in the part of the chain begin-

ning with that cardidate. Then, go to Step 5a.

Step da. Co to Step 8 and fathom if the optimal solution to
FCNP  satisfies all congruence constraints on y. Otherwise, go to Step
c
5b if group-related penalties are to be used for this test, and to Step

ba if not.

Step 5b., Execute Algorithm 4.2.2.6 to identify the macro-node
assignments nc(n), and the reduced basis inverse entries Ac(i,k) from

the optimal basis forest for RNPC. Then go to Step 5c.

Step Se. Calculate the adjusted cost coefficients of nonbasic
arcs in the optimal sgolution to RNPC by the method of Section 4.4.1.1 to
provide the objective function for group-related penalty problems. Then

go to Step 3d.

Step 5d. Construct an increasing cost sequential chain of all
arcs which were nonbasic in the optimal solution to FCNPc and whicgh
connect two nodes that are not members of the same macro-ncde, Then,

go to Step 5Se,
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Step Se. If bounds on one-row problems are to be considered in
this test solve all BEOP(i), and otherwise solve all EOP(i). In either
case, the method of solution is the one specified in Section 4.4.2 with
nonbasic arcs being considered in the order of the chain of Step 5d.

If the value of the optimal solution to any of these one-row
problems is greater than or egual to v¥, go to Step 8 and fathom.

Otherwise, go to Step 5f.

Step of. Using the "up" and "down'" penalties obtained in the

solution of the one-row problems of Step 5Se, define the sets

5 = di. the "down" (i.e. y;=0) case of the ith
U " problem in Step S5e had value = v¥

g = dj. the "up” (i.e. y;=u;j) case of the ith
D " problem in Step 5e had value = v#

If no two-row group-related penalty problems are to be used in this

test, go to Step $Bb. Otherwise, go to Step 5g.

Step 5g. Using the results of Step 5e and 5f define the sets

the maximum of the value of the "up'" and
the "down'" case in the itk problem of Step
S5e is among the t greatest values for such
maxima among i&OU u OD.

Then, go to Step 5h,

Step 5h. Construct and solve an EOP(i,ji) for each ieT. The
problems are constructed as in Segtion 4,4.1 and solved according to the
minimum ratio procedure of Section A.2.5. The second row ji is chosen

randemly if criteria are not to be used in this test, and otherwise as
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the j which maximizes wl(j) + m2(j) where,

(1 if xlj was nonbasic in the

optimal sclution to RNPP

A 2 if x.. was basic in the optimal
(.Lil(]) S l]
optimal solution to RNP_ and

either xlj = 0 or xlj = ulj

|3 otherwise.

1 if either row i or row j is

connected in EOP(i,j), but not both.

2 if both rows i and j connected in

EOP(i,j)

0 otherwise,

If the value of the optimal solution to any of these penalty
problems is greater than or equal to v¥, go to Step 8 and fathom. Other-

wise, proceed to Step 6c.

Step 6a. Choose the branching variable e randomly, set
OD = OU = ¢, and let

B(FbNPC: yi=0) = B(FCNPC: y1=ul£) = v(FCNPC).

Then, go to Step 7.
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Step 6b. Choose the branching variable yi so that 1 is the i
which maximizes for i%OU U @D the maximum of the values of the "up" and

the "down" cases in the ith problem solved in Step 5e. Let

the "down" value for i in Step Se.

H

B(ECNP : y3=0)

B(FCNPC: y£=uli) the "up" value for i in Step Se.

Then, go to Step 7.

Step 6ec. Add to the set OU and OD by

0y = Oy v {ieT: v[EOPc(i,ji): yi=O] > y*}

o, = 0y U {ieT: v[EOPc(l,]i): yi=uli]

IV

<
W

—

Then go to Step &d.

¢ b X . . 3.
Step 6d. Choose the branching variable y; so that i is the

ieT and ¢OU v o, which maximizes

max{v(EOPc(i,ji): yi=0J, v[EOPC(i,ji): yi=uliJ}.

Let

B(FCNP: y(=0) v(EOPC(i,ji): y£=0]

and

B(FCNPC: y£=uli) = v(EOPc(l,ji): yi=u 5t
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Then, go to Step 7.

Step 7. Remove FCNPc from the candidate list chain defined in
Section A.2.4% anc create two new candidate problems. One is defined by
FCNPC with the additional constraints that yi = a, yj = 0 for jeOD, and
yj = ulj for jeOU. The second problem 1s identical to the first except

that y; is restricted to equal u g values for the two problems are

10
as defined in Step 6.
After the two problems have been created, scan up the candidate

chain to insert the problems in proper cost bound segquence. Then, pro-

ceed to Step 1.

Step 8. Fathom FCNPC, i.e. eliminate FCNPC from the candidate
list chain. If the candidate list is now empty, stop. If an incumbent
solution exists, it is optimal solution for FCNP, and otherwise FTCNP is

infeasible. If the candidate list is not empty, proceed to Step 1.

A.2 Detailed Description of Important Components

The majority of the procedures included in the above algeorithm
are either self-explanatory or documented in the main text of this dis-
sertation at the points indicated by references in the statement of the
algorithm. However, certain computational techniques not directly con-
nected with the theory of this dissertation do require additional
explanation. The following sub-sections provide such detail on five

important components of the above algorithm.
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A.2.1 Generation of Random Procblems

The method used to generate random problems at Step Oa of the
above algorithm is a variaticon of the scheme proposed by Klingman,
Napier and Stutz in [72]. Input cards are read which specify certain
parameters of the desired network and a seed for a pseudo-random number
generator. A FORTRAN routine then creates a feasible network problem
safisfying the specifications in the input cards.

Specific items in the input card are defined in Table 13. Before
outlining how these parameters are used to create a test network prob-
lem, however, it will be useful to define the term random partitioning.
A random partitioning of a given quantity into sub-quantities associated
with the elements of some finite set is achieved by

1. OCbtaining a prorata share by dividing the total quantity
by the number of elements in the set.

2. Randomly dividing the prorata share for each element of
the set into two parts, one added to the sub-quantity
for that element and the other added to the sub-quantity
for a randomly chosen element.

3. Adding any remaining part of the total quantity due to
rounding in previous steps to the sub-quantity for a
randomly chosen element.

With this definition and the parameters of Table 13, the problem

generating routine can be outlined as shown below. Costs for generated

arcs are calculated as specified in Table 1.

Step 1. Randomly partition the total supply over all sources

{(pure and transshipment source nodes).

Step i, If any pure transportation nodes are to be included,

randomly partition them over all sources.
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Table 3. Input Parameters for Problem Generation

Parameter Name

Definition

Problem type

Pure sources

Pure sinks

Transshipment sources

Transshipment sinks

Pure transshipment

Ares

Fizxed charge arcs

Variable cost

Prorata fixed cosi range

Upper bound range

Total supply

Percent excess supply

Seed

Whether the problem is a general fixed charge
network problem, a fixed charge transporta-
tion problem, or a warehouse location problem.

The number of nodes which are to be pure
sources or supply points.

The number of nodes which are to be pure sinks
or demand points,

The number of nodes which are to be both sup-
ply points and transshipment points.

The number of nodes which are to be both
demand points and transshipment points.

The number of nodes which are to be purely
transshipment points.

The total number of arcs in the network.

The total number of arcs with fixed charges
in the network,

The upper and lower limits on.variable costs
for arcs in the network.

The upper and lower limits on prorata fixed
costs for fixed charge arcs in the network.

The upper and lower limits on upper bounds
for arcs in the network.

The total supply for all sources in the
network.

The fraction by which total demand is less
than total supply. '

The seed for the pseudo-random nunber
generator of the generating routine.
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Arc Type

Problem Case

Variable Cost

Pro Rata
Fixed Cost!

Super-source to

solrce

Sink to super-
sink

Super-sink to
super-source

Non-circularizing

General FCNP, fixed charge
arc?

General FCNP, non-fixed
charge arc?

Fixed charge transporta-
tion problem

Warehouse location problem

All cases

All cases

General FCNP, fixed charge
arc?

General FCNP, non-fixed
charge arc?

Fixed charge transporta-
tion problem

Warehouse location problem

Random within
input range

Randem within
input range

0

Random within
input range

Random within
input range

Random within
input range

Random within
input range

Random within
input range

None

None

Random within
input range

None

None

Random within
input range

None
Random within
input range

None

1

Note that pro rata, not full fixed costs are generated.

Thus

the full fixed charge on a given arc is correlated with its upper bound.

2In general fixed charge network problems, it is randomly decided
whether or not an arc should have a fixed charge according to the aver-
age density of fixed charge arcs implied by input parameters.
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Step iii. Create arcs to make a chain between each source and
any pure transshipment nodes allocated to it. Lower bounds for the arcs

are zeroc, and upper bounds are assigned by the formula

upper _ .. lower limit on upper supply allocated
bound bounds specified on input’® to this chain

If no pure-transshipment nodes are assigned to a given source its chain

consists sclely of the supply node itself.

Step iv., Connect each chain to a randomly chosen set of sinks
(pure and transshipment sink nodes). Bounds for such arcs are assigned

exactly as in Step iii.

Step v, Calculate the preliminary demands for each sink by
randomly partitioning the supply on each chain over the sinks connected

to the chain.

Step vi. If total supply is not to equal total demand, reduce
the calculated demand at each sink by an amount equal to the percentage

of excess specified on input.

Step vii. Build circularizing arcs connecting each source to a
super-source, each sink to a super-sink, and the super-sink to the

super-source. Bounds on these arcs are given by
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0 if arc connects super-source to source
Demand . . s
lower _ \ if arc connects sink to super-sink
= qat sink
bound
Total if arc connects super-sink to super-
|[demand  source
rSupply
at if arc connects super-source to source
source
upper _ [Total if arc connects sink to super-sink
bound supply
Total if arc connects super-sink to super-
|SUpply source,

Step viti. Build the remaining fixed charge and non-fixed charge
arcs required to reach the total numbers specified on input. Lower
bounds are 0, and upper bounds are chosen randomly within the range

specified on input.

Step ix. If the problem is a transportation problem or a ware-
house location problem, revise the upper bounds on arcs connecting

sources to sinks ¢ conform teo the formula

upper _ _. supply at demand at )
= min . . .
bound arc's source arc's sink

A.2.2 Solution of Network Problems

The continuous network problems RNP and RNPc in the algorithm of
Section A.l were solved by a primal Simplex procedure which takes advan-

tage of the rooted spanning forest representation of a basis., In
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addition to the concepts presented in Section 4.1, the important
theoretical result on which the procedure is based is that it is only
necessary to change w(n) and basis labels in the part of the basis
forest above the outgoing arc to execute a Simplex pivot. For a proof
of this result ses Langley [75].

Table 15 presents the information stored about each arc and each
node. Using this information, a Simplex procedure for RNP or RNPC can

be outlined as follows:

Step ¢. Create an initial basic solution by setting the flow on
each arc equal to its lower bound and introducing an artificial arc to
balance flows at each node. Artificial arcs are treated as having the

very large positive cost m. Next, go to Step ii.

Step ii. Search all nonbasic arcs until one is located which is
lower-bounded with negative adjusted cost or upper-bounded with positive
adjusted cost. If no such arc is found, stop; the algorithm is com-
pleted. Otherwise define the located arc to be the incoming are for

the current Simplex pivot.

Step 111. Use the down node and down arc labels to search down
from both ends of the incoming arc until the cycle formed in the basis
forest by the incoming arc has been identified. Define the forward
directicn around this cycle as the direction of flow on the arc, if the
arc is lower-bounded, and the opposing direction if the arc is upper-
bounded. Choose as the outgoing are for this Simplex pivot the basic

arc in this cycle which allows the minimum flow change where permissible
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Table 15. Information Stored for Network Algorithm
Associated
Name With Definition

Begin node arcs The number of the node where the arc
begins,

End node arcs The number of the node where the arc ends,

Lower bound arcs The lower bound on flow on the arec.

Upper bound arcs The upper bound on flow on the arc.

Fixed cost arcs The pro rata fixed charge associated with
the arc.

Variable cost arcs The variable cost associated with the arc.

Flow arcs The current flow on the arc,

Bagis status arcs Whether the arc¢ is currently basic, non-
basic lower-bounded or nonbasic upper-
bounded.

Down node [é(n)] nodes The number of the node immediately below
the labeled node in the basis forest
(0 if none).

Up node (u(n)) nodes The number of a node immediately above the
labeled node in the basis forest (0 if
none).

Right node [Y(n)) nodes |[The number of another node sharing the same
down node with the labeled node (0 if none).

Down are (a(n)) nodes The number of the arc connecting the
labeled node to its down node,

Dual vartable nodes |The current value of the dual multiplier

(m(n))

for the labeled node.
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change for arcs in the forward direction is the difference of their up-
per bounds and their current flows, and permissible change for arcs in
the reverse direction is the difference of their current flows and

their lower bounds. If no such arc exists because the flow change
around the cycle is unrestricted, stop; the current problem i1s unbounded.

Otherwise, go to Step iv.

Step tv. Use the down node, up node and right node labels to
search through the part of the tree above the outgoing arc and revise
basis labels as required to "disconnect" this part of the forest at the

outgoing arc and "connect" it at the incoming arc. Then go to Step v.

Step v. Use the revised basis labels to search the part of the
forest previously above the outgoing arc and revise the dual variables
m{n} as required to restore complementary slackness, i.e. as required to
make adjusted costs equal to zero along all basic arcs. Then go to
Step ii.

A.2.3 Restart of the Network Algorithm

Execution of an algorithm like the one presented in Section A.1l
requires solution of many reduced problems RNPc derived from candidate
problems FCNPC. Recognizing that each fﬁﬁﬁé is merely FCNP with the
values of some yj constrained to particular values, the strategy of
beginning the solution of each fﬁﬁﬁe from the optimal solution to FCNP
was adopted for the computational experimentation of this dissertation,

To see how this can be accomplished with the reduced problems
RNPC, recall that the cost coefficients c¢.. on variables with fixed

13

charges include two components. Specifically,
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where vj = the variable cost on the arc associated with xlj'

s the pro rata fixed cost on the arc associated with le'

c

Thus, when a given yj is fixed in FCNPC these coefficients can be

represented by

vj +m if yj igs fixed at 0
v, + 0 if yj is fixed at ulj’
where m is a very large constant. Moreover, this representation implies
that only the objective function changes when RNP is replaced by RNPC.
Thus, the optimal basic solution to RNP is a basic feasible solution to
RNPC.
In particular, the above observations demonstrate that the opti-
mal flows and basis forest from RNP may be used as a starting point for
RNPC. However, the dual solution defined by the w{n) labels must be
changed to obtain complementary slackness for the starting network of
RNPC, i.e. to make the adjusted costs of all basic arcs equal to 0.
Thus, the procedure adopted for this dissertation saves all flows and
basis labels at Step Ob of Algorithm A.l, but starting m(n)} are recalcu-

lated for each RNPC. The details of Step 2a in Algorithm A.l can be

stated as follows:

Step i. Restore all arc flows and basis labels to their optimal

RNP status and determine ¢y for RNPC. Then go to Step ii.
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Step 11, If all trees in the RNPc basis forest have been
labeled, stop; the algorithm is completed. Otherwise, locate the next
unlabeled tree, and let n = the node number of its base. Next, set

m(n) = m and go to Step iii.

Step iti. Proceed up by letting n' = u(n). If n' = 0, go to

Step iv. Otherwise, set

‘7(n) + the cost of a(n') if a(n') is oriented
away from the base
! of the tree.
m{n') =<
m(n} - the cost of a(n') if a(n') is oriented
! toward the base of
i the tree.

\

Next, set n = n' and repeat Step iii.

Step tv. Proceed right by letting n' = y(n). If n' = 0, go to

Step v. Otherwise, set

‘n(6(n')) + the cost of aln') if a(n') is oriented
away from the base
of the tree.

m(n') =
w[é(n')] - the cost of a(n') if a(n') is oriented
toward the base of
the tree.

Next, set n = n' and go to Step iii.

Step v. Proceed down by letting n' = 8(n). If n' is the base of
the current tree, go to Step ii. Otherwise, set n = n' and go to Step

iv.
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A.2.4 Handling and Storage of the Candidate List

In order to efficiently store the possibly large number of candi-
date problems awaiting investigation at various times in the execution
of the algorithm of Section A.l, a doubly chained list technique was
adopted. More specifically, the portion of core storage allocated for
candidate problems was divided into seven-word segments packed on a

bit-by~bit basis with the items listed in Table l6&.

Table 16, Items Stored on Candidate Problems

Item Name Definition

Chain successor pointer The number of the next segment in the chain to
which this candidate list area segment cur-
rently belongs.

Cost bound The best available lower bound on the value of
any completion of the problem stored in this
segment of the candidate list area.

Variable fixed statuses Indicators for each i = 1,2,...,n; of whether
y; is fixed at value 0, fixed at value u;; or
free in the problem stored in this segment of
the candidate list area.

At any point in the sclution of a problem, these segments were connected
in two chained lists. The first connected the segments containing
information about candidate problems which were still members of the
candidate list. These segments were linked in ascending order of cost

bound. The second chained list connected segments of the candidate list
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area in core which were available for storage of newly created candidate

problems.
In order to fully explain the handling of these lists, define the

following variables:

b = the segment number of the pending candidate problem
with the lowest cost bound.

t = the segment number of the pending candidate problem
with the highest cost bound.

n = the segment number of the next segment available for
a newly created candidate.

B8(k) = the cost bound of the problem in segment number k.

¢(k) = the chain successor peointer of segment number k.

The following sections describe the processing of these variables at
each relevant step of the algorithm of Section A.l.

A,2.4.1 Initialization at Step Oc. The steps in initializing

the candidate list chains a Step Oc are the following:

Step . BSet P(k) = k + 1 for all segments k in the candidate

list area of core memory.

Step ii. Place the problem FCNP in segment number one of the

~

candidate list area, and set b =t = 1, n= 2.

A.2.4.2 3electing at Step 1. Because the candidate list chain

is in sequence by cost bound, the candidate problem selected for inves-
tigation is always the one stored in segment b.

A.2.,u,3 Testing for Fathoming at Step 4a. The test of whether

a new incumbent solution is as low as any member of the candidate list

is merely to check if B(%) < v&.
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A.2.4.4 Eliminating Candidates at Step 4b. If at least ocne

candidate can be eliminated because its cost bound is as large as the
new incumbent solution value, the following procedure is used to update

the candidate list area chains.

Step 1. Let k = b (i.e. the segment number of the problem which

just produced a new incumbent solution). Then, go to Step ii.

Step i11. Advance up the candidate chain by letting k' = k,
k = ¢(k'). If B(k) 2z v¥, the desired break point in the chain has been

reached, so proceed to Step iii. Otherwise, repeat Step ii.

Step iii. Transfer all segments above k' in the candidate chain

to the available segments chain by setting w(é) =nand n = k. Next,

make k' the new end of the candidate chain by setting t = k'. Then

stop; the chain update is completed,

A.2.4.5 Adding Candidates at Step 7. The steps for replacing

the current candidate problem with two new candidates are as follows:

Step 1. Let il = b and store information about the new candidate

Next, let i, = n and store in-

with the lower cost bound in segment i 9

1°
formation about the new candidate with the higher cost bound in segment
i Then update pointers by setting b = w(B), n o= w(ﬁ); and go to Step
ii,

Step ii. Let k = b. If the new B(il) < B(B) insert i, at the
bottom of the candidate chain by setting ¢(il) = 5, b = il’ and go to

Step v. Otherwise, go to Step 1ii.



204

Step iii. Advance up the candidate chain by setting k' = k,
k = ¢(k*'). If g{k) =z B(il), go to Step iv and insert il in the candi-

date chain., Otherwise, repeat Step iii.
Step iv. Insert i, in the candidate chain by setting w(ll) =k,

p(k') = i+ Then let k' = i, and go to Step vi.

Step v. If the new 8(i,) s 8(b) insert i, at the bottom of the

~

, b= 12, and stop; the procedure is

"
o>

candidate chain by setting ¢(i2)

complete. Otherwise, go to Step vi.

Step vi. If B(k) 2z 8(12) go to Step vii and insert i, in the
candidate chain. Otherwise, advance up the candidate chain by setting

k' = k, k = ¥(k') and repeat Step vi.

Step vii. Insert i, in the candidate chain by setting w(12) =

k, (k') = 1 Then, stop; the procedure is complete.

5"

A.2.4.6 TFathoming at Step 8. Removal of a candidate from future

consideration requires removing b from the candidate chain and placing
it in the available segment chain by setting k = b, b = w(ﬁ), u(lk) = ﬁ,
and n = k.

A.2.5 Solving Two-Row Problems EOP(i,j)

Though considerably more complicated than the one-row case, two-
row linear programs derived from the penalty problems EOP(i,j) can be
solved by an extension of the minimum ratio approach for one-row linear
knapsack problems when the constraint matrices are totally unimodular.
Recall from Corollary #.3.2.2 that total unimodularity implies only cer-

tain combinations of columns can appear in two-row group-related
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problems. Either columns of the form (+l,—l)T and (-l,+l)T, or columns
of the form (+l,+l)T and (-l,-l)T may be present in a problem, but not
both. Thus three possible cases can occcur. Either no columns have two
nen-zero entries, or columns with two non-zero entries have entries of
like sign, or columns with two non-zerc entries have entries of opposing
sign.

Suppose functions e:(i,j,z) are defined from two-row problems

EOP(i,j) so that for example

minimum cost coefficient in the
group objective function for a

column having a +1 in row 1 and
a -1 in row j of EOP(i,j).

e'(i,5.2) = (2)

Then the value of a solution to EQP(i,j) and the associated penalties
D,. . D,. . .. . u,. . .

pD(l,j), DU(l,]), DD(l,]), and p(i,j) can be obtained for the three
cases by the expressions given below.

A.2.5.1 (ase of No Columns with Two Non-Zero Coefficients.

v(EOP(3,1)) = W(FTNE) + min{pD(i,1),0y(1s3)2pp(1,3)s00(1,3)

where

D,. . +,., . = 0,. . -
QD(lyj) Eo(l’]’yi) + 5+(la],Yj)

D,. . t,.. . = a,. . -
pU(l’]) = Eo(lsjayi) + E_(ls]sulj'Yj)
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U, oy _ =04 & - ,. . =
pD(l:]) - eO(l’j’uli-yi) + €+(ls]an)
o (1,3) = €(5,3,u.-7.) + €%i,9,u. =)

U 0 7*-271i Y1 -T2

]

A.2.5.2 Case of Columns with Coefficients of Like Sign.

.. — . D,. . D,. . .. u,. .

v[Eop(l,j)) = vw(FCNP) + mln{pD(l,j),DU(l,j),Dg(l:]):DU(ls])}
where
+,., . - Q,. . =
€O(l,j,yi) + €+(l:JSYj)
e (1,9,min{y., 7. 1) + € (i,5,max{0,7.-7.})
+ ] i? j a 2l LA j
0
+

D,. . . o -
pD(l,j) =min < + ¢ (1,],max{0,yj—yi})

+,. . - - - . o= -
e+(1,],max{yi,yj}) + eo(l,],max{O,yj-yi})

0,. . ==
+ e_(l,j,max{o,yi—yj})

+,.., . = 0,., . -
eo(lsjayi) * 6'(1’]’ulj—yj)
D,. .\ _ _. .. - 0,. . - -
pU(l,j) = min €+(l,],yi) + e«(l’]’ulj yj+yi)

€ (1,550, c-F2) + € (i,F 0. =54y, )
- )]9 lj yj EO l):laulj yj yi
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- _ 0. -
[eo(l,j,uli-yi) + E+(Yj)

O,. .+ _ . +,: 2 = —rs s - =
DD(ls]) = min <E+(l’]syj) + EO(l’]’uli-yi+yj)

- - Gps - - =
\E_(l’]suli'yi) + €+(l’]’uli_yi+yj)

.

- . - 0 -
eo(l,j,uli-yi) + E_(ulj—yj)

e (i,] ,mm{uli-yi sUy 7Y ;5 ot eo(l , 3 ,max{0 ,uli—yi-ulj-t-yj b

Uy ooy L s 0,. . - -
pU(l:]) = min < + e_(l,],max{O,ulj—yj-uli-yi})

= . = - t,. - iyl =
e_(l,j,max{uli—yi,ylj-yj}) +€0{1,],max{O,ulj-yj-uli+yi})

C,. . - =
+ e+(1,],max{O,uli-yi-ulj+yj})

A,2.5,3 Case of Columns with Coefficients of Opposite Signs.

- e . D,. . D,, . . U,. .
v[EOP(l,])) = v(FCNP) + mln{pD(l,]),DU(l,]),Dg(l,]),pu(l,])}
where

+, . . - 0,. . -
eo(l,],yi) + €+(l,]ayj)

) U [ 0,0 & = .=
pp(i,3) = min g€ (1,3,y;) + € (1,3.5;475)

e s o= to, .- -
\6+(1,J,ij + eo(l,j,yi+yj)
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R 0,. . ~

uo(l,],yi) + 6-(l,j’ulj—yj)

¥ (i,3,min{y, .y, 7. D) + €f(i,3,max{0,y ~u +y.})
(1,3, 17713775 ¢ 7 RESRES

D, .. . 0,. . -
DU(l,]) = min + e_(l,j,maﬁ{o,ulj—yj-yi})

5.1

+,. . - = . ot
e_(l,j,max{yi,ulj—yj}) + € (l,j,max{o,ulj—y]

+ €

0
O(i j,max{0,y.-u, .+y.})
§ (12 15max0,Y 5 muy g4y 4

[ - . . - 0.-
eo(l,j,uli—yi) + e+(yj)

€+(l’j’mln{uli‘yi’yj}) + € (ls]smaX{O)uli*yi_Yj})

)
u,.. .. _ . G -
pD(l,]) = min < te, i+yi})

(i,j,max{0,§j-ul

E+(l’j’maX{uli-Yi’yj}) + € (1,],max{0,yj-uli+yi})

+
o
]

+ € (l,j,max{o,uli—yi-yj})

ST - 0,. . -
€,(i,3,0.-y.) ¢+ e_(l,J,ulj-yj)

Uyt ooy _ s +,. . - - s ~ -
pyli,3) = min <e_(1,3,ulj yj) + eo(l,J,uli-Yi+ulj-yj)

~r = 0, . . = =
_E+(l’3’uli-yi) t E—(l’]’uli—yi+ulj—yj)

A.3 Computational Notes

As a by-product of the experiments reported in Chapter VIT,
information about the computaticnal effectiveness of some of the above
techniques was compiled. The following sections briefly analyze this

information.
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A.3.1 Effect of Macro-Node Analysis

In Step 5d of Algorithm A.l all arcs were eliminated from penalty
problems if they connected two nodes in the same macro-node. Results
for the three main experiments reported in Chapter VII show that this
test eliminated from consideration an average of 64 per cent of the
variables in group problems for general FCNP's, 39 per cent of the vari-
ables for fixed charge transportation problems, and 33 per cent of the
variables for warehouse location problems., Thus a considerable reduc-
tion in the computational effort required to solve one and two-row
penalty problems was obtained through macro-node analysis,

A.3.2 Efficiency of Restart Procedure

The restart procedure described in Section A.2.3 proceeds by
starting the solution of each problem RNPC from the optimal solutien to
RNP. Results from the principal experiments described in Chapter VII
showed a considerable savings in computation resulted from this proce-
dure. RNP's associated with general FCNP's required an average of 223
pivots to reach optimality, yet the restarted problems RNPC required an
average of only 26 pivots to reach optimality. Similarly, RNP's asso-
ciated with fixed charge transportation problems required an average of
114 pivots, while corresponding RNPC'S solved in an average of 16
pivots, and RNP's associated with warehouse location problems required
an average of 29; pivots, while corresponding RNPC'S solved in an aver-

age of 25 pivots.
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A.3.3 Size of the Candidate List

It is often suggested that the candidate list approach detailed
in Section A.2.4 requires too much computer storage to be feasible for
large problems. If a very large number of candidate problems had to be
simultaneously stored, this criticism would be valid. However, results
for the main experiments described in Chapter VII show that no more than
26 problems were ever in a candidate list for general FCNP's, and that
similar maximums for fixed charge transportation problems and warehouse
location problems were 733 and 510, respectively. Thus it appears that
candidate lists required for relatively large FCNP's are well within the

storage capabilities of modern scientific computers.,



APPENDIX B

GROUP PROBLEMS WITH GENERAL UPPER AND LOWER BOUNDS

The linear mixed-integer program with general upper and lower

bounds can be formulated

211

min cixl + ch2 (B-1)

s.t. Ajx, +AX, =D (B-2)

({MIP) uy > %, 2 ll {B-3)
u, 2 %, = 22 {B-4)

x, = 0 mod w, (B-5)

where c Rl’ w and Xl are n,-vectors, c2, u £, and x, are n,-

1? Y10 1 2% %3 2 2

vectors, b is an m-vector, A. is an m by nl-matrix, A2 is an m by n

1
= 0 mod w. Gomory and Johnson [40,41,42,43,44,65]

2

matrix, and Ql,ul

have derived a number of important properties for a group problem asso-.

ciated with MIP in the case of w = 1, u, and u, infinite, 2%

1 o and 22

1

zero. In this Appendix, their derivation will be extended to the case

of any MIP. All notation is as defined in Section 1.4 unless otherwise

noted.

For a mixed-integer program in non-negative variables Gomory and

Johnson derive the group problem by the following steps:
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1l. Solve the relaxation of the problem obtained by
ignoring integrality constraints.

2. Represent the basic variables in the optimal solution
of the relaxed problem in terms of the nonbasic vari-

ables by using the coptimal standard Simplex tableau.

3. Use this representation to restate the objective
function entirely in terms of the nonbasic variables,

4. Re-impcse the integrality constraints directly on the
nonbasic variables, and indirectly on the basic vari-

ables through their representation in terms of the
nonbasic variables.

5. Relax non-negativity requirements on all basic variables.

Suppose now that the continuous relaxation of MIP, i.e. MIP, is
solved by a bounded Simplex procedure. In order to derive the group
problem for MIP it is necessary to find a procedure like the one above
to obtain a problem which minimizes a revised objective function subject
to equivalent forms of the congruence constraints (B-5), and nonnega-
tivity on variables nonbasic in the optimal MIP solution.

In terms of the optimal bounded Simplex tableau for ﬁfﬁ; the

B B
and X, can

variables considered basic in that optimal solution, i.e. x)

be represented

(B-6)

Thus, if the dimension of xB is kB, an equivalent form of the part of

1

(B-5) referring to xB is given by

1
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LL,-UU_  -LL_ zUUl _ =.1 B ,
[Alxl + Alxl + A2x2 + A2x2] g = [(b] B mod w . (B-7)
k k
Also, the remainder of (B-5) is given by
xi = 0 mod wL and XT = 0 mod wU. (B-8)

Recall that applying the bounded Simplex procedure to a given

problem is equivalent to applying the ordinary Simplex procedure to the

expanded problem obtained by treating the bound constraints as part of

the main constraints, letting the decision variables be unrestricted in

sign, and adding twe non-negative slack variables for each decision

variable.l

One slack measures the absolute difference between the vari-

able and its upper bound, and the other measures the absolute difference

between the variable and its lower bound. In this expanded problem, the

decision variables are always basic, and the slacks are basis or non-

basic according to the following rules:

1.

If the decision variable was basic in the bounded
Simplex solution, both the bound slack associated
with its lower bound and the bound slack associated
with its upper bound are basic in the full Simplex
solution.

If the decision variable was nonbasic lower-bounded in
the bounded Simplex solution, the bound slack asso-
ciated with its lower bound is nonbasic at value 0,
and the bound slack associated with its upper bound

is basic in the full Simplex solution.

If the cecision variable was nonbasic upper-bounded
in the bounded Simplex solution, the bound slack

lSee for example Hadley [48, Section 11.7].
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associated with its upper bound is nonbasic at value
0 and *the bound slack associated with its lower bound
is basic in the full Simplex solution.

Let the nonbasie bound slacks for such cases in MIP be defined as

fellows:

L _ L L U_ U U

Axl = xl - Rl Axl = ul - % {B-9)
- b u_ U u

Ax2 =%, - 2 Ax2 = u2 - X, (B-10)

Then an equivalent form of (B-7) and (B-8) is given in terms of these

non-negative nonbasic variables by

=L L _L <U, u U =L L _L U, U Uu,1 - 1 B
[Al(Axl+Zl)4-Al(ul—Axl)4-A2(Ax2+22)+ Az(uQ—Ax2]kB = [kaB mod w (B-11)

(Axi+£i) 0 mod w' and (ug—AxE) = 0 mod w. (B-12)

Moving all constant terms te the right-hand side of (B-11) yields

= x. mod w . (B-13)

Similarly, moving constant terms to the right-hand side of (B-12) and

recalling that Ei = 0 mod wL and ug 0 mod wU yields

th

Axi 2 0 mod w Axg = 0 mod wU. (B-14)

Thus the congruence constraints (B-5) can be equivalently represented in



215

terms of the non-negative nonbasic variables defined in (B-9) and (B-10)
by (B-13) and (B-14).
Proceeding in an exactly similar way, the objective function of
MIP is given in terms of the bounded Simplex nonbasic variables by
T L

min (EL) X

T L
1 1l 2

-L T U
+ (c2) X o

-J. T U -y _
+ (cl) %) + (02) X, t z (B-15)
where z is the adjusted right-hand-side of the cost row in the optimal
bounded Simplex tableau for MIP. Substituting the definitions (B-9) and
(B-10) and simplifying yields the equivalent form

T, L T

. -5 =U
min (Cl) Ax, - (cl) AX

T, L
1 2

Y+ @ axg - (G ax) + w(HTP).  (B-16)
Thus both the congruence constraints and the objective function of MIP
can be restated in terms of non-negative, nonbasic variables by using
the nombasic variables for the standard Simplex method in place of those
for the bounded Simplex method. The remaining problem in reproducing
Gomory and Johnson's derivation is to identify which constraints are
equivalent to non-negativity requirements on basic variables in the
solution of the ordinary Simplex method. Such constraints must be
relaxed in formulating the group problem.

By the rules given above, the basic variables for the full Sim-
plex method include the two bound slacks for any variable considered

basic in the bounded Simplex scolution to MIP, the upper bound slacks for

variables considered lower-bounded in the hounded Simplex solution, and
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the lower bound slacks for any variables considered upper-bounded in the
bounded Simplex solution. Thus non-negativity of the basic variables in

the full solution is equivalent to the original constraints

B B B B B B
> > > >
ul b xl 2 Rl u2 2 x2 = 22
L L L L
> >
ul = xl u2 > x2
U U U L
> >

xl 2 El x2 ped 22 .

Expressing these constraints in terms of the variables defined in

(B-9) and (B-10) yields

uB 22 g3
1 1 =L L U U =L, L U, U 1
> - - -
B > B Alel + Alel A2Ax2 + AQAX2 2 gB (B-17)
2] \F2 2
L L L U U U L L L U U U
(ul-zl) = Axl, (ul—zl) = Axl, (u2—22) z sz, (u2-22)l2 Ax2. (B-18)

Thus, the constraints which must be relaxed in the group problem for
MIP include upper and lower limits on the variables considered basic in
the bounded Simplex solution, as well as upper limits on the nonbasic
slack variables defined in (B-9) and (B-10).

In summary then, the group problem for MIP is given by
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. -L.T, L -U., T, U -L. T, L -U.T, U —
min (Cl) Axl (cl) Axl + (c2) sz - (c2) Ax2 + w(MIP)
=L, L =-U, U =L, L =U, U1l _ -B
s.t. [Alel - Alel + AQAXQ - A2Ax2]kB =% mod w
(aP(MIP)) U U
AT = 0 mod w o, Axl Z 0 mod w

GP(MIP) can be viewed as the problem of finding the minimum cost pertur-
bation of the optimal values of variables considered nonbasic in the
bounded Simplex solution of MIP which satisfies all congruence con-
straints of MIP while conforming to lower bounds on variables which

were lower-bounded in the MIP solution and to upper bounds on variables
which were upper-bounded in the MIP solution. If an optimal perturba-
tion for GP(MIP) also satisfies (B-17) and (B-18), then the implied

values of X and %, provide an optimal solution to MIP.
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