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Abstract  

This thesis proposes a modified Particle Swarm Optimization (PSO) approach for the 

day-ahead scheduling of Distributed Energy Resources (DER) in smart grids, 

considering Electric Vehicles (EVs) with gridable capability (vehicle-to-grid). 

The proposed methodology introduces several changes in traditional PSO meta-heuristic 

to solve effectively the scheduling problem of DER with EVs. This thesis proposes an 

intelligent mechanism for adjusting the velocity limits of the swarm to alleviate 

violations of problem constraints and to improve the quality of the solution, namely the 

value of the objective function. In addition, a hybridization of PSO method is used, 

which combines this meta-heuristic with an exact method, a full ac power flow in order 

to validate network constraints of the solutions explored by the swarm. 

This thesis proposes a trip reduce demand response program for EVs users. A data-

mining based methodology is used to support the network operator in the definition of 

this program and to estimate how much demand response is adequate for a certain 

operation condition. 

The case studies included in the thesis aim to demonstrate the effectiveness of the 

modified PSO approach to the problem of DER scheduling considering EVs. An 

application named EV Scenario Simulator (EVeSSi) has been developed. EVeSSi 

allows creating scenarios considering EVs in distribution networks. A case study 

comparison of the modified PSO with an accurate mixed integer non-linear 

programming is presented. Furthermore, it is also compared with other variants of PSO, 

and the traditional PSO. Addionatly, different methods of EV battery management, 

namely uncontrolled charging, smart charging and vehicle-to-grid, are compared. 

Finally, a test case is presented to illustrate the use of the proposed demand response 

program for EVs and the data-mining methodology applied to a large database of 

operation scenarios. 

 

Keywords 

Electric Vehicles, Electric Vehicles Demand Response, Optimization, Particle Swarm 

Optimization,  
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Resumo  

Esta tese apresenta uma aplicação modificada e adaptada da meta-heurística Particle 

Swarm Optimization (PSO) para o escalonamento de recursos energéticos em redes de 

distribuição inteligentes vulgo smart grids, considerando a utilização de veículos 

eléctricos. Este conceito em que os veiculos podem carregar e descarregar energia para 

a rede eléctrica é denominado na giria anglo-saxónica por vehicle-to-grid. 

Esta tese apresenta várias modificações na meta-heuristica PSO original para resolver 

mais eficazmente o problema do escalonamento de recursos energéticos com veículos 

eléctricos. Realça-se nesta tese a prosposta de um mecanismo inteligente para o 

ajustamento do limite das velocidades do swarm com vista a aliviar violações de 

restrições do problema e a melhorar a qualidade da solução, isto é, o valor da função 

objectivo. Adicionalmente, refere-se a hibridização desta meta-heurística com  um 

método exacto, nomeadamente um trânsito de potências com o objectivo de verificar o 

cumprimento das restrições da rede eléctrica das soluções exploradas pelo swarm.  

Um programa de demand response para veículos eléctricos é apresentado na tese. Além 

disso, uma metodologia baseada em técnicas de data-mining é proposta para suportar as 

decisões do operator de sistema na definição e na estimativa do uso desse programa. 

Os casos de estudo incluídos nesta tese pretendem demonstrar a eficácia do PSO 

modificado no problema do escalonamento de recursos energéticos considerando os 

veículos eléctricos. Uma aplicação com a designação de EVeSSi foi desenvolvida e 

apresentada nesta tese para criar cenários de penetração de veículos eléctricos e simular 

os movimentos dos veículos ao longo dos nós das redes de distribuição. Um caso de 

estudo de comparação com um método exacto de programação não linear inteira mista é 

apresentado. Além disso, a aplicação proposta é comparada com outras variantes do 

PSO, incluindo a versão original. São ainda incluídos casos de estudo que abordam 

diferentes metodologias de interação do veículo com a rede, nomeadamente 

uncontrolled charging, smart charging e vehicle-to-grid. Por fim, é apresentado um 

caso de estudo com o programa de demand response e a metodologia de data-mining. 

Palavras Chave 

Gestão da Procura para Veículos Eléctricos. Optimização, Particle Swarm Optimization, 

Veículos Eléctricos,  
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Nomenclature 

Notation Description 

cd  Duration of charging, typically cd =1 

t
 

Period t duration (e.g. 15 min. (0.25), 30 min. (0.50), 1 hour (1)…) 


 

Learning parameter with a range between 0 and 1 

b  Voltage angle at bus b (rad) 

bkB  
Imaginary part of the element in YBUS corresponding to the b row 

and k column (S) 

max

b  
Maximum voltage angle at bus b (rad) 

min

b  Minimum voltage angle at bus b (rad) 

k  Voltage angle at bus k (rad) 

( )c V
 

Grid-to-Vehicle Efficiency when the Vehicle V is in charge mode 

(%) 

( )d V
 

Vehicle-to-Grid Efficiency when the Vehicle V is in discharge 

mode (%) 

age Actual age of the battery considering 6 years of calendar life 

batCap Limit of battery capacity 

ib  Best past experience of particle i 

bG  Best global experience of all the particles 

boostSpeed  Vector with the variables boost speed 

classesNum Total number of classes available 

classesSetj Set of model types i that belong to  class j 

classesWeigthj 

Weight for class type j (e.g. 90% passenger vehicles, 10% 

commercial vehicles) 

( , )j tc  Price for generator j in period t 

( , )Discharge V tc  Discharge price of vehicle V in period t (m.u.) 

( , )DG DG tc  Generation price of DG unit in period t (m.u.) 

( , )EAP DG tc  Excess available power price of DG unit in period t (m.u.) 

( , )NSD L tc  Non-supplied demand price of load L in period t (m.u.) 
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( , )Supplier S tc  Energy price of external supplier S in period t (m.u.) 

( , )Trip Red V tc
 

Trip reduce price contracted with vehicle V in period t (m.u.) 

Damage 

Represents the damage caused to the battery 0 (new battery) and 1 

(wear-out) 

DOD Depth of discharge between 0 and 1 

di 

Represents the damage caused by cycle i using equation of 

Damage with DOD of the given i cycle. 

( )BatteryCapacity VE
 

Battery energy capacity of vehicle V (Wh) 

arg ( )Ch e tE
 

Energy charged in period t (W) 

arg ( , )MinCh e V tE
 

Minimum stored energy to be guaranteed at the end of period t, for 

vehicle V (Wh) 

( )Stored tE
 

Battery’s energy stored in period t (Wh) 

( )Trip tE
 

Energy consumed by vehicle trip in period t 

( , )Trip V tE
 

Vehicle V energy consumption in period t (Wh) 

( , )Trip Red V tE
 

Demand response energy reduce of vehicle trip V in period t (Wh) 

( , )TripRedMax V tE
 

Maximum energy reduce for vehicle V trip in period t (Wh) 

( , )Stored V tE
 

Active energy stored in vehicle V at the end of period t (Wh) 

evNum Total number of electric vehicles 

bkG
 

Real part of the element in YBUS corresponding to the b row and k 

column (S) 

initialBatState Initial battery state of the battery 

modelNum Total number of models available 

nCycles Represents the total number of cycles of the battery 

nslowCharge Charging efficiency in slow charge mode 

nfastCharge Charging efficiency in fast charge mode 

bN
 

Total number of  buses b 

DGN
 

Total number of  distributed generators 

b

DGN
 

Total number of  distributed generators at bus b 

LN
 

Total number of  loads 

b

LN
 

Total number of  loads at bus b 

SN
 

Total number of  external suppliers 

b

SN
 

Total number of  external suppliers at bus b 
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VN
 

Total number of  vehicles 

b

VN
 

Total number of  vehicles at bus b 

( , )Charge V tP
 

Power charge of vehicle V in period t (W) 

( , )

b

Charge V tP
 

Power charge of vehicle V at bus b in period t (W) 

( , )ChargeLimit V tP
 

Maximum power charge of vehicle V in period t (W) 

( , )DG DG tP
 

Active power generation of distributed generation unit DG in 

period t (W) 

( , )

b

DG DG tP
 

Active power generation of distributed generation unit DG at bus b 

in period t (W) 

( , )DGMaxLimit DG tP
 

Maximum active power generation of distributed generator unit 

DG in period t (W) 

( , )DGMinLimit DG tP
 

Minimum active power generation of distributed generator unit DG 

in period t (W) 

( , )Discharge V tP
 

Power discharge of vehicle V in period t (W) 

( , )

b

Discharge V tP
 

Power discharge of vehicle V at bus b in period t (W) 

( , )DischargeLimit V tP
 

Maximum power discharge of vehicle V in period t (W) 

( , )EAP DG tP
 

Excess available power by DG unit in period t (W) 

( , )

b

EAP DG tP
 

Excess available power by DG unit at bus b in period t (W) 

arg ( )FastCh eRate tP
 

Fast charge rate in period t 

arg ( )SlowCh eRate tP
 

Slow charge rate in period t 

( , )

b

Load L tP
 

Active power demand of load L at bus b in period t (W) 

( , )NSD L tP
 

Non-supplied demand for load L in period t (W) 

( , )

b

NSD L tP
 

Non-supplied demand for load L at bus b in period t (W) 

( , )Supplier S tP
 

Active power flow in the branch connecting to upstream supplier S 

in period t (W) 

( , )

b

Supplier S tP
 

Active power flow in the branch connecting to upstream supplier S 

at bus b in period t (W) 

( , )SupplierLimit S tP
 

Maximum active power of upstream supplier S in period t (W) 

( , )

b

DG DG tQ
 

Reactive power generation of distributed generation unit DG at bus 

b in period t (var) 

( , )DGMaxLimit DG tQ
 

Maximum reactive power generation of distributed generator unit 

DG in period t (var) 

( , )DGMinLimit DG tQ
 

Minimum reactive power generation of distributed generator unit 
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DG in period t (var) 

( , )

b

Load L tQ
 

Reactive power demand of load L at bus b in period t (var) 

( , )

b

Supplier S tQ
 

Reactive power flow in the branch connecting to upstream supplier 

S at bus b in period t (var) 

( , )SupplierLimit S tQ
 

Maximum reactive power of upstream supplier S in period t (var) 

max

bkS
 

Maximum apparent power flow established in line that connected 

bus b and k (VA) 

signalingPositives Vector with the signaled variables (positive velocity) 

signalingNegatives Vector with the signaled variables (negative velocity) 

techTypesNum Total number of technology types available 

techTypeSetj Set of model types i that belong to tech type j 

techWeigthj 
Weight for technology type j (e.g. 40% BEV, 60% PHEV) 

tLast
 

Last connected period of vehicle V before current trip 

T  Total number of  periods 

bV
 

Voltage magnitude at bus b (rad) 

max

bV
 

Maximum voltage magnitude at bus b 

min

bV
 

Minimum voltage magnitude at bus b 

kV
 

Voltage magnitude at bus k (rad) 

,i jv
 Velocity of variable j of particle i  

*

,i jv  New calculated velocity of variable j of particle i 

max

jVel  Original initial max. velocity of variable j 

max

,j tVel  Maximum velocity of particle’s variable j for period t 

min

,j tVel  Minimum velocity of particle’s variable j for period t 

VVechicleNeeds  Vehicle V total periods trips energy consumption 

iw  Weights of particle i 

*

iw  New mutated weights of particle i 

 
*

i coop
w

 Cooperation weight component of particle i 

 
*

i inertia
w  Inertia weight component of particle i 
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*

i memory
w  Memory weight component of particle i 

ix
 

Integer variable where each xi represents the number of vehicles of 

model i 

*

,i jx  New calculated position of j variable  the i particle 

,i jx  Position of variable j of particle i 

tx
 

Slow charge binary variable in period t 

( , )V tX
 

Binary variable of vehicle V related to power discharge in period t 

bky
 

Admittance of line that connect bus b and k (S) 

_Shunt by
 

Shunt admittance of line connected bus b (S) 

tY
 

Fast charge binary variable in period t 

( , )V tY
 

Binary variable of vehicle V related to power charge in period t 

tZ
 

Boolean trip decision in period t (0/1) and fixed before 

optimization 
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1 Introduction 

 

 

 

1.1 Motivation  

ower systems are one of the most complex systems built by man. It is a field 

where several optimization goals must be pursued but that is plagued with 

pervasive nonlinearities and uncertainties, and that it is also limited by various 

operational constraints.  Therefore, these optimization problems are far from trivial and 

include optimal power flow, voltage and frequency control and power generator 

scheduling, among others. 

The optimization problems, in which both the objective functions and the constraints 

often contain nonlinearities and binary variables, have traditionally been addressed by 

various techniques which include Non-Linear Programming (NLP) and Mixed Integer 

Non-Linear Programming (MINLP) [1]. This and other deterministic optimization 

techniques have difficulties dealing with uncertain variables and require increasing 

computational resources to deal with real-world problems [2, 3]. In fact, large complex 

problems such as the ones in future power systems, characterized by an intensive use of 

Distributed Energy Resources (DER), are hard to be addressed with deterministic 

approaches due to the time constrainsts related with operation tasks. 

Therefore, some alternative techniques, coming from Artificial Intelligence (AI) 

quarters, like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) have 

been used to address this problem purpose. GAs draw inspiration from the field of 

P 
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evolutionary biology, offering operators for crossover, mutation and selection of the 

best solutions [4]. For certain optimization problems though, the overhead resulting 

from the application of these operators make this technique less efficient than other 

simpler algorithms, like PSO [5, 6]. 

The PSO began with a simulation of simple social systems like the flocks of birds or the 

schools of fish [7]. The  main  advantage  of  PSO is  its  simplicity,  while  being  

capable  of  delivering  accurate results  in  a  consistent manner.  It is fast and also very 

flexible, being applicable to a wide range of problems, with limited computational 

requirements [6].  

That said, the present work focuses on metaheuristics optimization approaches, namely 

PSO, applied to the energy resource scheduling at the distribution system level and 

including charging and discharging of Electric Vehicles (EVs). The possibility of using 

the energy stored in the gridable EVs batteries to supply power to the electric grid is 

commonly referred to as Vehicle-to-Grid (V2G) and is also considered in the present 

thesis. 

The energy resource scheduling problem is become increasingly important, as the use of 

distributed resources is intensified and massive V2G use is envisaged. Governments in 

Europe as well as in United States and Asia are promoting and implementing incentives 

to increase electric mobility use of EVs. The transportation sector will change from 

fossil fuel propelled motor vehicles to EVs as fossil fuels are being depleted and rules 

about CO2 emissions are getting stricter worldwide [8, 9]. EVs can include Plug-in 

Hybrid Electric Vehicle (PHEV), Battery Electric Vehicle (BEV), Extended-Range 

Electric Vehicle (EREV) and Fuel-Cell Vehicle (FCV).  Although there are several 

prototypes of FCVs, they are less likely to be introduced as fast as the PHEV and BEV 

because fuel-cell units are currently very expensive. FCVs are behind EVs in terms of 

development and the hydrogen economy is still not competitive [10, 11]. 

The electrification of the transportation sector brings more challenges and offers new 

opportunities to power system planning and operation. Continued improvements of EVs 

envisage EVs massive use, meaning that large quantities of EVs must be considered by 

future power systems, in terms of the required supply to ensure their users’ daily travels 

[12, 13]. In future scenarios of intensive EVs penetration, the typical electric load 
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diagram can be significantly changed. On the other hand, power systems can use V2G 

as DERs when the vehicles are parked. This adds further complexity to the planning and 

operation of power systems. Therefore, new scheduling methods are required to ensure 

low operation costs while guaranteeing the supply of load demand. 

Apart from EVs, power systems will have to deal with other types of DERs at the 

distribution network level, such as Distributed Generation (DG), Storage Systems (SS), 

and Demand Response (DR). DER management can be executed by Virtual Power 

Player (VPPs) or by Distribution Network Operators (DNO) [14, 15]. All the mentioned 

resources have to be considered in the energy scheduling problem, consequently 

considering their characteristics and requirements [16]. 

The energy resource scheduling problem is a MINLP problem when including binary 

variables and network constraints. If the problem does not consider network constraints 

it can be addressed with a quadratic or a linear programming model. However, to have a 

suitable solution in a real-world application, the network constraints must be 

considered. This thesis considers a multi-period optimization within a day-ahead time 

frame with the forecasted demand.  

When including V2G resources in the optimization scheduling it is necessary to take 

into account the available resource information, namely accurate information of electric 

vehicles (EVs). This information must be detailed including the geographical area 

where vehicles are parked during each considered period, as well as the minimum 

battery energy requirement defined by the users to allow their daily trips. This 

information enables to determine EVs minimum battery charge required for each period 

in order to guarantee the aimed range [17].  

Depending on the network size, the optimization can turn naturally into a large 

combinatorial problem due to the huge number of network elements and to the diversity 

of energy resources with different specifications and requirements. This fact makes the 

optimization problem suitable for the use of Artificial Intelligence (AI) based 

techniques, namely metaheuristics such as PSO.  

This thesis introduces several changes in traditional PSO meta-heuristic to solve 

effectively the scheduling problem of energy resources with electric vehicles. One of 
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the changes is the hybridization of PSO method combining this meta-heuristics with an 

exact method, including a full ac power flow in order to enable the verification of 

network constraints of the solutions explored by the swarm. In addition, this thesis 

proposes an intelligent mechanism for adjusting the velocity limits of the swarm to 

alleviate violations of problem constraints and to improve the quality of the solution, 

namely the value of the objective function. 

Demand response programs in the context of EVs is proposed in the scope of this thesis, 

namely trip reduce demand response program for EVs users. A data-mining based 

methodology is presented to support network operator in the definition of trip reduce 

demand response program. This methodology enables to estimate how much demand 

response is adequate for a certain operation condition. 

The case studies included in this thesis aim to demonstrate the effectiveness of the 

modified PSO to the problem of DER scheduling considering electric vehicles. An 

application named Electric Vehicle Scenario Simulator (EVeSSi) was developed in the 

scope of this thesis to create scenarios simulating penetration and movements of 

vehicles in distribution networks. A comparison of the modified PSO with an accurate 

MINLP method is presented. Furthermore, the modified PSO is compared with other 

variants of PSO, including the traditional version and some of its most successful 

variants. A case study is included to compare different methods of vehicle grid 

interaction, particularly uncontrolled charging, smart charging and vehicle-to-grid. To 

conclude case studies chapter, the proposed trip reduce demand response program for 

EVs is demonstrated and the data-mining methodology is applied to a large database of 

operation scenarios.  

1.2 Objectives 

The key contribution of this thesis is the proposal of a modified Particle Swarm 

Optimization to effectively address the hard combinatorial problem of the day-ahead 

DER scheduling considering EVs in future smart grids context. 

To accomplish that goal the following list of work objectives were proposed:  
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 Design and develop electric vehicle scenario simulator tool to allow the creation 

of scenarios that simulate the movements of vehicles in distribution networks; 

 Provide a comparison of performance and solution quality analysis using 

deterministic and metaheuristics tools, specifically PSO, to solve the problem of 

day-ahead scheduling of DER, including V2G, in the context of smart grids; 

 Improve metaheuristics methods, namely Particle Swarm Optimization (PSO), 

to address the envisaged problem in a more effective and efficient way; 

 Address the design and use of DR programs for electric vehicles in the context 

of demand side management; 

 Test the proposed methodologies with large-scale test cases, in order to 

demonstrate their advantages to address realistic problems. 

1.3 Outline of the thesis  

This thesis is composed by five chapters, including introduction and conclusions, and 

two appendices regarding case studies data. 

After the introduction chapter, chapter 2 presents a brief review of EVs technology 

including battery modeling and battery costs. A general overview of EVs market 

penetration and driving patterns is presented. The electric vehicle scenario simulator 

tool developed in the scope of this thesis is also presented in this chapter. 

Chapter 3 starts with a brief state of the art of the day-ahead DER scheduling and PSO. 

After that, the modified PSO is exposed and the intelligent mechanism for adjusting the 

velocity limits of the swarm is described. The implementation of the modified PSO 

approach to the DER scheduling problem considering V2G is also presented in this 

chapter. Finally, a model of demand response for electric vehicles users is proposed. 

Chapter 4 presents several case studies. A comparison of the modified PSO approach 

with an exact method (MINLP) is included using a 33 bus distribution network. 

Moreover, the modified PSO is compared with Evolutionary Particle Swarm 

Optimization (EPSO), New Particle Swarm Optimization (NPSO) and the traditional 

PSO. A large-scale case study with a 180 bus distribution system with 8000 gridable 

vehicles is presented. A case study comparing uncontrolled charging, smart charging 

and vehicle-to-grid is presented and analyzed using a 33 bus distribution network. 
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Chapter 5 presents the most significant conclusions of the undertaken work as well as 

some ideas for its future development. This thesis opens excellent opportunities to 

continue the research in scheduling optimization including V2G in smart grids. Some of 

the potential ideas are already being worked by the author and are presented in this 

chapter as future and present research directions. 

Some of the work related and presented in this thesis already resulted in some high 

quality publications. The following list of publications is presented: 

Published: 

 J. Soares, T. Sousa, H. Morais, Z. Vale, and P. Faria, "An Optimal Scheduling 

Problem in Distribution Networks Considering V2G," in IEEE SSCI Symposium 

on Computational Intelligence Applications in Smart Grid (CIASG) Paris, 

France, 2011. 

 T. Sousa, H. Morais, Z. Vale, P. Faria, and J. Soares, "Intelligent Energy 

Resource Management Considering Vehicle-to-Grid: A Simulated Annealing 

Approach," IEEE Transaction on Smart Grid, Special Issue on Transportation 

Electrification and Vehicle-to-Grid Applications., 2011. 

 Sérgio Ramos, Hugo Morais, Zita Vale, Pedro Faria, and J. Soares, "Demand 

Response Programs Definition Supported by Clustering and Classification 

Techniques," presented at the ISAP 2011 - 16th International Conference on 

Intelligent System Application  to Power Systems, Hersonissos, Crete, Greece, 

2011. 

 P. Faria, Z. Vale, J. Soares, and J. Ferreira, "Demand Response Management in 

Power Systems Using a Particle Swarm Optimization Approach," Intelligent 

Systems, IEEE, vol. PP, pp. 1-1, 2011. 

 P. Faria, Z. Vale, J. Soares, and J. Ferrante, "Particle Swarm Optimization 

Applied to Integrated Demand Response Resources Scheduling," in IEEE SSCI 

Symposium on Computational Intelligence Applications in Smart Grid (CIASG) 

Paris, France, 2011. 

Additionally the following papers are under review: 

 T. Sousa, H. Morais, J. Soares, Z. Vale, “Day-ahead Resource Scheduling in 

Smart Grids Considering Vehicle-to-Grid and Network Constraint” 
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 J. Soares, S. Ramos, Z. Vale, H. Morais, P. Faria, “Data Mining Techniques 

Contributions to Support Electrical Vehicle Demand Response” 
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2 Electric Vehicles in Smart Grids 

 

 

 

he present power systems have several resources available that should be 

adequately managed, requiring players in a liberalized market to change their 

strategies and the way they act. Some of these resources such as  Distributed 

Generation (DG), Demand Response (DR), and storage systems have been gaining 

increased importance [2]. Electric Vehicles (EVs) are emerging as a reliable alternative 

solution to the typical internal combustion vehicles, with the advantage of being a good 

way to reduce CO2 emissions [8, 9], as well as to decrease dependence from fossil 

energy sources [18-20].  

Power system operators and other power system players should consider the use of EVs 

as a new Distributed Energy Resource (DER) in the scope of the diverse resources 

connected to the system. However, EVs have very specific characteristics, namely in 

what concerns location change and their possible dual role as energy sources 

(discharging batteries when connected to the power grid) or loads (when charging their 

batteries, consuming energy from the grid) [2]. In an adavanced stage of network 

automation, the EVs charge and discharge should be controlled by the system operator, 

maintaining the constraints on the whole system including electric vehicle customers’ 

requirements. However, this requires an appropriate infrastructure that is expensive but 

allows intelligent integration with the grid and efficient use of energy [20].  

Fig. 2.1 shows a diagram of electric vehicles in the smart grid context. Vehicle-to-Grid 

(V2G) can be anywhere between home, parking lots and companies parks with V2G 

capabilities. The communication with the Distribution Network Operator (DNO) or the 

T 
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Virtual Power Player (VPP) (referred as aggregator in the figure) can be done using 

wireless communication when vehicles are not connected to the grid, for instance, with 

Global System for Mobile (GSM) communications technology or by wire with Power 

Line Carrier (PLC) when vehicles are plugged in [21]. The communications between 

DER and VPPs should be based on contracts respecting legal policies. These 

communications should be secured through computer security mechanisms such as data 

encryption and authentication. 

 

Fig. 2.1 – Electric vehicles in smart grids context [3] 

The work in this thesis assumes that adequate infrastructure is in place, namely in what 

concerns charging points and devices as well as integrated communications. Thus, EV 

batteries charging and discharging can be used in the scope of intelligent resource 

management, using the V2G concept.  

2.1 Current EV technology 

This section provides a review of the current available EV technology; furthermore, EV 

battery parameters for use in electricity grid system modeling are presented. Part of this 
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review was supported by a recent deliverable of MERGE European project provided in 

[22]. In that report a database containing more than 100 published specifications of 

current and proposed EVs (up to 2010) can be found. The EVs included in this database 

are of the following types:  

 Plug-in Hybrid Electric Vehicle (PHEV): It is a regular hybrid vehicle that 

combines both an electric motor and an internal combustion engine for motive 

power and has a large capacity battery bank. However, unlike hybrids, PHEVs 

can be charged using the electricity grid (usually connecting a plug to an electric 

socket). Batteries in a PHEV can be charged using the on-board charging 

capabilities of normal hybrids as well; 

 Extended Range Electric Vehicle (EREV): The main energy source is the battery 

for daily trips; however, an internal combustion engine running on hydrocarbons 

is present and works as a range-extender by recharging battery on-board; 

 Battery Electric Vehicle (BEV): the only source of energy is the battery. The 

range is far more limited than in PHEVs and EREVs. However, this type of 

vehicles does not use up fuel, instead the charging of batteries depends on the 

electricity grid. Typically, the batteries of BEVs are of larger capacity than those 

installed on PHEVs and EREVs, though making the vehicle expensive. 

In Europe, motor vehicles fall into the categories presented in Table 2.1 [23].  

Table 2.1 – Europe vehicle categories 

Vehicle class 
Common 

definition 
Passenger/Commercial 

Seats(excluding 

driver) 
Mass limit 

M1 Passenger car Passenger Limit of 8 - 

M2 Bus Passenger More than 8 5 tonnes 

M3 Bus Passenger More than 8 - 

N1 Van Commercial - 3.5 tonnes 

N2 Light truck  Commercial - 12 tonnes 

N3 Heavy truck Commercial - - 

L1 to L7 Motorcycles, Tricycles and Quadricycles (L7e) 

The majority of the vehicles that are sold in Europe are passenger vehicle, i.e. M1 

vehicles representing 87% of the total vehicle fleet [24]. The vehicles considered in the 

EV review presented in [22] belong to the categories presented in Table 2.2. This table 

concerns the European vehicles categories of EV that were found in that review, i.e. 

only M1, N1, N2 and L7e vehicle classes. 
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Table 2.2 – Electric vehicle categories [22] 

Vehicle 

class 
Vehicle examples [22] 

M1 

 

81 

N1 

 

12 

N2 

 

4 

L7e 

 

19 

2.1.1 Battery parameters modeling 

A summary of the battery specifications of the models presented in the MERGE review 

report can be seen in Table 2.3. This data provides support for EV battery modeling and 

enable the creation of different scenarios based on BEVs, PHEVs and EREVs. It can be 

seen that the present EREVs models in the market do not allow the fast charge mode.  

Table 2.3 – EV battery specifications [22] 

Vehicle class 

Battery capacity (kWh) Charging rates (kW) 

Max Mean Min Slow charge rate Fast charge rate 

BEV 

M1 72 29 10 2-8.8 3-240 

N1 40 23 9.6 1.3-3.3 10-45 

N2 120 85 51 10 35-60 

L7e 15 8.7 3 1-3 3-7.5 

PHEV 
M1 13.6 8.2 2.2 3 11 

N1 13.6 8.2 2.2 3 11 

EREV 
M1 22.6 17 12 3-5.3 - 

N1 22.6 17 12 3-5.3 - 

The typical slow charge rate mode is 3 kW for the majority of classes [22]. N2 class 

vehicles present a higher slow charge rate mode of 10 kW because the battery capacity 

tends to be much larger than normal passenger vehicles [22]. 
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In spite of different fast charge rates between vehicle classes, 80% of EV’s potential 

users answered in a survey that the preferred charging place would be at home [22]. 

This means that the slow charge rate, which is available at home, will be often used. 

2.1.2 Battery cell ageing and effects of discharge cycles on battery lifetime  

The battery capacity is known to be reduced over its lifetime with discharge and charge 

cycles. The Miner's Rule method of evaluating battery aging was first introduced by 

Facinelli [25, 26]. Facinelli observed that cycling damage to a battery is primarily a 

function of the depth of discharge (and corresponding recharge) to which the battery is 

subjected. For example, going from 10% to 30% discharge and back was seen to be 

approximately the same as from going from 50% to 70% and back. Facinelli's Miner's 

Rule method was originally developed for discrete, non-overlapping cycles, which 

might typically be found in photovoltaic based battery charging system.  These would 

be subjected to approximately one cycle per day. When batteries are subjected to more 

irregular cycling, Facinelli's Miner's Rule approach cannot be applied directly [26]. 

Such irregular cycling has been found to occur in modeling of wind/diesel systems [26, 

27]. 

In [28] the authors suggested a set of equations for battery capacity reduction over 

cycles number depending on its technology. The reduction of battery capacity as 

proposed by the authors can be seen in Fig.2.2. 

 

Fig.2.2 – Reduction of battery capacity as a function of cycle nymber [28] 
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Li-ion batteries are recognized by their superior characteristics in terms of energy and 

power density and are preferred in applications for which size, weigth and performance 

are considered very important [29]. Li-ion batteries are expected to be used in mass by 

electric vehicles because of their higher energy density instead of Nickel-Metal-Hybride 

(NiMH) batteries. The present energy density of Li-ion batteries is around 180 Wh/kg 

with prospects for even higher densisites and lower weigth in the near future [30]. 

Li-ion battery curve equation as presented in Fig.2.2 is: 

  
       

       
 

(2.1) 

where,   represents the State Of Charge (SOC) swing for the desired battery life cycles 

   .  

The above equation assumes that  , i.e. the SOC swing (depth of discharge) remains 

constant in each battery charge/discharge cycle. 

Solving equation (2.01) in order to battery life cycles    , we obtain: 

  
       

     
 

(2.2) 

Using the above equations (2.1) and (2.2) together, the damage of a battery, considering 

a lifespan of 6 years, can be calculated as follows [22]: 

        
                

                
 

   

 
 

(2.3) 

where: 

                                                  y: 0 (new battery) and 1 

(wear-out); 

     is the depth of discharge between 0 and 1; 

     is the actual age of the battery considering 6 years of calendar life.  
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To calculate battery capacity and internal resistance the following rules apply: 

 Capacity (%) = 100 - (20*Damage). 

 Internal resistance (%) = 100 + (20*Damage). 

The reduction of battery capacity is represented in Fig. 2.3, for a 3 year old battery 

using equation (2.3). The flat red square is the limit of acceptable battery wear-out, 

which is 80% of the battery capacity [22]. It can be seen that for high depth of 

discharges this limit is rapidly reached. For a depth of discharge around 0.9 the battery 

wears-out after 900 cycles. Considering a battery which is 3 years old with around 1000 

cycles of charge/discharge, and with a constant DOD of 0.7 (70%), results in an actual 

capacity of 82% over the original. 

 

Fig. 2.3 – Reduction of battery capacity for a 3 years old battery 

The approach presented above does not allow calculating damages caused to the battery 

when different DOD applies. Therefore Facinelli’s Miner’s Rule can be used allowing 

the estimation of the total wear-out damage caused by subjecting the battery to different 

DOD over its lifetime. This allows modeling the effects of different combinations of 

charge/discharge cycles in simulation and optimization models.  The damage caused to 
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the battery as the calculated by the Facinelli Miner Rule (DamageFMR) can be 

represented by equation (2.4): 

          ∑
 

  

       

   

 
(2.4) 

where: 

         represents the  total number of cycles of the battery. 

    represents the damage caused by cycle i using equation (2.3) with DOD of the 

given i cycle. 

2.1.3 Battery costs 

EVs are projected to cost an additional $6,000-16,000 more than a conventional vehicle 

in the next 5-10 years [31]. Fig. 2.4 presents the impact of the battery pack on a PHEV 

drive system cost. It can be seen that it represents about 80% of the total cost. 

 

Fig. 2.4 – Breakdown of PHEV drive system cost by component [31] 

Nowadays, battery cost estimates vary widely from $260/kWh to $1,300/kWh [31]. 

These costs should be taken into account by the network operators or VPPs managing 

V2G cars, due to the use of the battery to supply energy back to the grid that causes 

extra battery wear-out with no-travelling purposes. The extra battery wear-out resulting 

from the discharging for this purpose should be paid by the operator. As the price of 

current battery varies with the type and the quantity of battery units producted and also 
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with the battery technology, the tariff or the contracted price to use the energy of a V2G 

car should be negotiated with the respective owner. 

Fig. 2.5 presents an estimate of battery wear-out cost as a function of battery cost. This 

cost is to be supported by the operator that uses the V2G concept. This estimate 

assumes the following: 

 Battery capacity equal to 28.5 kWh; 

 1000 battery life cycles using a depth of discharge of 80%; 

 A new battery pack is bought by the owner after 1000 cycles of use; 

 The battery cell ageing model presented in subsection 2.1.2.  

 

Fig. 2.5 – Battery wear-out cost per kWh as a function of battery cost per kWh 

For the best battery cost scenario ($260/kWh) the cost to be supported by the operator 

would be about 1.1 cents of dollar per kWh (not taking into account the energy itself). 

The V2G owner should contract a higher price of battery discharging, e.g. 1.5 or 2 cents 

of dollar per kWh (plus energy) in this case, to make a profit by placing his vehicle 

resource to the operator. 

2.2 EV market penetration and driving behaviors 

The authors in [32] claim that the impact of EVs on the distribution network can be 

determined using driving patterns, charging characteristics, charge timing and vehicle 

market penetration. A study from department for business enterprise and regulatory 
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reform in United Kingdom estimated that with adequate policy incentives to electric 

mobility, a fleet penetration of 37% in 2030 can be expected [18]. Fig. 2.6 shows how 

many EVs, PHEVs, and Internal Combustion engine Vehicles (ICVs) will predictively 

be on the UK car park if proactive measures are taken to bring EVs to the market. The 

graph displays predictive data of accumulated EVs and PHEVs as well as ICVs sales 

until 2030. It can be seen that the simulated penetration predicts a slower and gradual 

infiltration on the first decade. Power system and network investments must be planned 

for the future considering this expected significant market share of EVs [18, 32-35]. 

 

Fig. 2.6 – Number of predicted cars in UK by 2030 [18] 

The charge rate is another important characteristic that must be considered, e.g. in the 

U.S. a 120V 15A socket in theory would be 1.8 kW, while a 20A circuit would ensure 

about 2.4 kW. In Europe, the standard home outlet is 230V 16A corresponding to a 

maximum load of 3.7 kW. The proposed faster charging connections in Europe are 

expected to enable to reach much higher power values [36].  

The driving patterns are important because the impact on the power system depends on 

where and when the vehicles are charging which affects the energy costs. Let us 

consider a typical daily drive for a person: starting from his/her house, then going to 

work, maybe the person has lunch in another place, comes back home and/or makes a 

detour to the store. This means that during the day the vehicle can be in different places: 

for instance in the garage, in an employer’s parking lot, a store parking lot and on the 

road. The main issue is to know where and when will the EV charge the battery and 

how many of them will do it simultaneously. This behavior must be studied in order to 

allow an adequate resource management. Controlled charging of EV can help to reduce 
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consumption impacts on the grids [34, 37]; however, good control strategies must be 

implemented to avoid secondary system peaks. 

In the U.S. [35] near 50% of the Americans drive less than 42 km per day and 90% 

drive less than 150 km per day. In Western Europe Cities (WEU), these  values are 

lower: an average of 41 km driven per capita and per vehicle in European cities 

contrasting with 85 km in the US cities [38] (see Fig. 2.7). Thus, the EVs in general 

have the potential to meet almost America's daily automotive transportation and 

certainly WEU cities needs on battery alone, considering that most future commercial 

EVs will have more than 150 km of vehicle range [22]. In 2009, the U.S. Department of 

Transportation studied the percentage of trips in a day, and the results have shown that 

almost all cars are parked at night [39] (see Fig. 2.8). 

 

Fig. 2.7 – European average travelled per day on weekday [22] 

 

Fig. 2.8 – Distribution of vehicle trips by trip purpose and start time of trip [39] 
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2.3 EVs scenario simulator tool 

An application named Electric Vehicle Scenario Simulator (EVeSSi) was developed in 

the scope of this thesis to allow the creation of different scenarios in distribution 

networks. This tool enables a fast and organized way to deploy different case studies. 

The EV scenarios case studies presented in this thesis were created using this tool. 

2.3.1 Parameters of EVeSSi 

EVeSSi enables to create EV custom tailored scenarios in a flexible and rapid way. This 

section presents the parameters used by EVeSSi, which are organized in the following 

way: global parameters, trip parameters, EV classes and types parameters, and EV 

specific model parameters.  

Table 2.4 presents EVeSSi global parameters. These parameters are related to general 

considerations of the scenario. For instance, the value of chargingEfficiency, 

batteryEfficiency, initialStateOfBats, batteryMaxDoD parameters are applied for every 

EV present in the scenario. This is the default setting although these parameters can be 

applied individually. The recommended values according to [22] are 90% and 85% for 

chargingEfficiency and batteryEfficiency, respectively. 

Table 2.4 – EVeSSi global parameters 

Parameter Description 
Example 

value 

initialStateOfBats Initial state of batteries 30% 

stepRate Simulation time step (30 min, 1 hour) 1 hour 

totalStep Total number of steps (periods) 24 

batteryMaxDoD Battery max. depth of discharge permitted (DoD) 80% 

chargingEfficiency 1 Slow charge mode efficiency 90% 

chargingEfficiency 2 Fast charge mode efficiency 90% 

batteryEfficiency Battery efficiency 85% 

evNum Number of electric vehicles 2000 

sameInitalEndBusProb 
Probability of the EV to end in the same starting network 

bus in the simulation scenario 
85% 

parkedAllDay 
Cars percentage that are always parked and connected to 

the grid 
1% 

carsInsideNetwork Cars percentage that remain inside distribution network 50% 

carsGoingOutsideNetwork Cars percentage that leave distribution network 25% 

carsGoingInsideNetwork 
Cars percentage that arrive from other distribution 

network 
25% 

Table 2.5 presents the trip parameters. It is possible to define the distribution of trips 

along each period to simulate real-world conditions; for instance, using data supplied 
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from [39] (see Fig. 2.8). The same is applied to define trip distance distribution (see Fig. 

2.7). 

Table 2.5 – EVeSSi trip parameters 

Parameter Description 

Trip distribution by period Distribution of trips by each period 

Trip distance distribution Distribution of travelled distance 

Table 2.6 presents the parameters related to the definition of vehicle classes and types. 

Recalling Table 2.1 and Table 2.2 of vehicles classes, it is possible to define the desired 

classes using EVeSSi parameters and setting classes distribution of the car fleet 

according to the aimed values, e.g. 90% of class M1 and 10% of class N2. Vehicle types 

and their distribution on the scenario can also be defined, e.g., 50% BEV and 50% 

PHEV. The tool accepts any number of vehicles types as well as vehicles classes. 

Table 2.6 – EVeSSi classes and types parameters 

Parameter Description 

Vehicle classes 
Specification of vehicles 

classes present in the network 

Vehicle classes distribution Distribution of vehicle classes 

Vehicle types 
Specification of vehicles types 

present in the network 

Vehicle types distribution Distribution of vehicle types 

Table 2.7 presents specific EV model parameters. The tool enables to specify any 

number of desired models. The parameters that are available for each model are 

depicted in the table. The parameter average km day, when supplied, overrides the 

average of trip distance distribution parameter (see Table 2.5), however a similar 

pattern distribution is adjusted to the average km day parameter. 

Table 2.7 – EVeSSi EV model parameters 

Parameter Example value 

Battery capacity 29 kWh 

Slow charging rate 3 kW 

Fast charging rate 57 kW 

Average economy 0.16 kWh/km 

Average km day 38 km 

Average speed 35 km/h 

Vehicle type Plug-in hybrid vehicle 

Vehicle class M1 
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2.3.2 EVeSSi process 

A schematic view of the process used by EVeSSi to create a given scenario is presented 

in Fig. 2.9. The parameters described in subsection 2.3.1 are supplied to EVeSSi using a 

database. In the figure two main models can be identified:  

1. Distance for each EV; 

2. Generated scenario.  

The parameters required by each module are highlighted within a label. In the figure 

only EV and global parameters appear due to figure size restriction and design appeal. 

However, all the parameters described in 2.3.1 are loaded from the database. 

 

Fig. 2.9 – EVeSSi framework 

In module 1 – Distance for each EV – a sub-module to calculate number of cars of each 

model was developed. This sub-module intends to guarantee user defined parameters 

and the mathematical formulation uses an Integer Linear Programming (ILP) model. 

The objective function is neutral (0 – neither minimizing or maximizing the objective 

function) because the reason of using ILP method in this sub-module is to guarantee 

problem constraints. These constraints depend on the defined parameters. This sub-
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module will return the number of cars per each defined model (see Table 2.7) according 

to classes and types parameters (Table 2.6). 

The mathematical model is defined bellow: 

        ∑   

        

   

   (2.5) 

Subject to the following constraints: 

∑   

        

   

       (2.6) 

∑ ∑   

                

            

   

                   (2.7) 

∑ ∑   

               

          

   

                      (2.8) 

where: 

       is the total number of electric vehicles including all models 

    is an integer variable where each    represents the number of vehicles of 

model i 

             is the weight for technology type j (e.g. 40% BEV, 60% PHEV) 

                is the weight for class type j (e.g. 90% passenger vehicles, 

10% commercial vehicles) 

              is the set of model types i that belong to tech type j 

             is the set of model types i that belong to  class j 

          is the total number of models available 

              is the total number of technology types available 

            is total number of classes available 

With the information returned by the sub-module, module 1 – Distance for each EV – 

will use EV parameters (Table 2.7) and trip distance distribution parameters (see Table 

2.5) to calculate the total distance allocated to each EV. Also in this module, the 
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carsParkedAllDay parameter (Table 2.4) is used for setting some cars to be parked all 

day. Module 1 – Distance for each EV – will return the total distance for each EV.  

Module 2 – Generated scenario – depends from the result of module 1. With the EVs’ 

distance information returned by the first module, a scenario is attempted to be created. 

Fig. 2.10 presents a flowchart of the algorithm thst is the basis of module 2. Travelling-

periods are calculated using the distance for each EV returned by module 1. This value 

corresponds to the number of periods that each vehicle will be disconnected from the 

grid for travelling purposes. As an example, if the distances returned by module 1 for 

vehicle 1 and vehicle 2 are 10 km and 50 km, respectively, using average speed 

parameter for the corresponding model of each vehicle (see Table 2.7), assuming 35 

km/h for both vehicles, then the travelling-periods would be 1 and 2 for vehicle 1 and 2, 

respectively, considering a time step of 1 hour, i.e. ceiling the result to the neareast 

integer of the divisions 10/35 and 50/35. If vehicle 1 distance was 35 km and the 

average speed parameter the same 35 km/h the corresponding travelling-periods would 

also be 1, however, the energy consumption during the disconnected period would be 

different.  

In this stage, there is only the information of the number of traveling-periods 

(disconnected periods) for each EV. The next step of the algorithm is to calculate the 

number of trips that will occur in each period using travelling-periods information and 

trip distribution by period (see Table 2.5) resulting in a vector with the information of 

scenario trips number per period. 
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Fig. 2.10 – Module 2 algorithm flowchart 



Modified PSO for Day-Ahead Distributed Energy Resources Scheduling Including Vehicle-to-Grid 2011 
 

2-18 

João Soares 

After that, with the number of trips per period, the algorithm will attempt different 

possibilities of disconnected periods. For example, if vehicle 2 has 2 travelling-periods, 

then the algorithm randomly allocates this 2 travelling-periods to the available number 

of periods, for instance, periods 8 and 18. This guarantees the trip distribution by period 

parameter. Mixed Integer Linear Programming (MILP) is used to ensure feasibility of 

the randomly generated EV disconnected scenario. The objective function minimizes 

the use of fast charge in order to avoid early battery wear-out. If a feasible solution is 

found using MILP, the disconnected scenario is accepted for the given EV; otherwise, 

another randomly disconnected scenario is attempted. In the case of continued failed 

trials, the EV is marked as infeasible on the network and discarded from the scenario. 

The mathematical formulation of the feasibility check is defined as follows: 

        ∑  

 

   

 (2.9) 

Subject to the following constraints: 

                                      (2.10) 

                                                               {     } (2.11) 

                          (2.12) 

                              {     } (2.13) 

                                                            

                                    {     } 

(2.14) 

                    {     } 

where: 

            is the energy charged in period t 

             is the battery's energy stored in period t 

           is the energy consumed by vehicle trip in period t 

                    is the fast charge rate in period t 

                    is the slow charge rate in period t 
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    is the slow charge binary variable in period t 

     is the fast charge binary variable in period t 

     is a Boolean for trip decision in period t (0/1) and fixed before optimization 

     is the duration of charging, typically      

        is the limit of battery capacity 

                 is the initial battery state of the battery 

   is the number of periods 

             is the charging efficiency in slow charge mode 

             is the charging efficiency in fast charge mode. 

 

2.4 Conclusions 

This chapter starts by addressing several important aspects that support this thesis work, 

namely the state of the art concerning EV technology regarding types of EVs, current 

batteries capacity and charging rates. 

Battery cell ageing as well as battery costs of EVs are also addressed as they should be 

taken into account in V2G applications. Estimated battery wear-out cost can be between 

1 and 6 cents of a dollar per kWh of used energy. 

Market penetration and driving behaviors studies are also considered in this thesis. The 

impact of EVs on the distribution network can be determined using driving patterns, 

charging characteristics, charging time and EVs market penetration. 

The EVeSSi tool designed and developed in the scope of this thesis has been presented 

in this chapter. It enables the creation of specific EV scenarios in distribution networks 

according to the defined parameters that catch EV technology, driving behaviors and 

market penetration. 
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3 Optimization Methodologies 

 

 

 

ptimization methodologies for the day-ahead Distributed Energy Resources 

(DER) scheduling problem require adequate and competitive tools. In this 

thesis Particle Swarm Optimization (PSO), firstly introduced by Kennedy et 

al. in 1995 [40], was selected as the preferred optimization method due to previously 

demonstrated benefits in scheduling problems [2, 15]. Though, a deterministic approach 

method is also presented in this chapter, namely Mixed Integer Non-Linear 

Programming (MINLP). The use of MINLP is used in this thesis for comparison 

purposes, since it is important to have a reference technique to be compared with 

stochastic methodologies such as metaheuristics, in this case PSO.  

The mathematical model of the day-ahead DER scheduling problem is presented in this 

chapter including all the relevant constraints related to distribution network operation, 

Distributed Generation (DG), Electric Vehicles (EVs) and batteries requirements needs, 

and Demand Response (DR) programs for EVs. 

During this work, the original version of PSO was modified to better suit the day-ahead 

scheduling problem. PSO problem-specific heuristics, user independent 

parameterization and an intelligent mechanism were developed in this thesis. It can be 

considered a new PSO variant but, at the same time, an application-specific 

implementation of PSO to the problem of day-ahead DER scheduling. The modified 

PSO model includes an algorithm to identify which problem variables can improve the 

objective function and relieve constraint violations. Thus, the identified variables will 

O 
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be marked to be differently addressed by the modified PSO in the successive iteration in 

order to achieve the desired objective. 

3.1 State of the art 

This section is divided in two parts for better readability. The first part concerns the 

optimization problem of day-ahead DER scheduling considering Vehicle-To-Grid 

(V2G). The second part concerns the state of the art regarding PSO. 

3.1.1 Day-ahead DER scheduling 

A review literature of day-ahead DER scheduling with V2G reveals very few works. 

Authors in [41, 42] present a unit commitment model with V2G using the meta-

heuristic PSO to reduce costs and emissions in smart grids. In these works no 

comparisons are made with other methodologies, namely in what concerns the use of an 

exact method for solution quality comparison. Besides that, the network model is not 

considered because these works address the unit commitment problem. In [2] a PSO 

approach is presented for the DER scheduling problem using V2G resources. A case 

study using 500 vehicles is addressed. The results of the case study show that PSO is 

about 148 times faster than Mixed Integer Non-Linear Programming (MINLP). Authors 

in [3] propose a simulated annealing approach to solve the DER scheduling problem 

with V2G resources using a single objective function (operator costs). The methodology 

is compared with MINLP and the case study results with 1000 V2G units show that the 

meta-heuristic approach presents a worst objective function value with 3%. Both works 

from [2] and [3] lack the inclusion of a power flow model in the metaheuristics 

methodology approach. Instead, a validation of solution after optimization is made. A 

hybrid approach using power flow could result in better solution quality and avoid 

network solution validation after optimization. Besides that, vehicles are aggregated in 

groups of 10 to reduce the number of variables and, consequently, the problem size. An 

improved model using individual V2G contracts should be further investigated.  

Several research works concerning DR programs for loads are reported in the literature 

[43-46]. However, DR opportunities for V2G are not yet addressed and further 

investigation is required in this field [47]. 
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3.1.2 Particle Swarm Optimization review 

The PSO concept began as a simulation of simple social systems like the flocks of birds 

or the schools of fish [7]. The main advantage of PSO is its simplicity, while being 

capable of delivering accurate results in a consistent manner. It is fast and also very 

flexible, being applicable to a wide range of problems, with limited computational 

requirements [6]. A PSO system starts with an initial population of random individuals,  

representing solutions  of  a  problem,  to  which  are  assigned  random  velocities. The 

individuals, called particles, evolve throughout the problem space, searching for the 

optimal solution for the specific problem. In every PSO iteration every particle is 

evaluated against a fitness function to determine the one that offers the best solution 

found so far. Each particle keeps also track of its own best. Therefore, every particle 

flies through the problem space chasing two beacons: the global best and its own best. 

Usually its velocity is clamped to avoid overshooting. Fig. 3.1 represents the flowchart 

of the basic algorithm of PSO. The particle velocities are governed by three main 

vectors: particle’s inertia, the attraction towards its best position so far and the attraction 

to the best global position. 

 

Fig. 3.1 – Traditional PSO flowchart 
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Nevertheless, the traditional PSO algorithm is not immune to limitations that hang 

mainly on the fact that it depends on several user-defined and problem-dependent 

parameters [48, 49]. In fact, the weights of the velocity equation are tuned by the system 

implementer to fit then to the specific problem. For instance, the inertia weight value 

carries a strong influence on the evolution of the particle, determining to a certain extent 

whether it will fall into a local optimum, converge to a global maximum or simply 

overshoot. It is therefore common to apply to this component a function that decreases 

as it converges to the global solution, but even the decreasing rate of this function must 

be carefully defined. This method is also complemented with the clamping of the 

particle’s velocity to maximum and minimum allowed values [50]. The setting of these 

values is another externally defined operation, which is critical to obtain accurate 

results: if the velocity is too high the particle risks passing beyond a good solution, but 

if it is too low it is probable that it will get stuck in a local optimum. 

The acknowledgment of this and other limitations led to the proposal of variants to the 

traditional PSO algorithm. One possible path to the improvement has been the 

hybridization of PSO with evolutionary algorithms [51]. A good example of this 

technique is the Evolutionary Particle Swarm Optimization (EPSO) algorithm [48].  

EPSO can be seen as a self-adaptive evolutionary algorithm where the recombination is 

replaced by an operation called particle movement. It does not rely on the external 

definition of weights and other PSO crucial parameters. The basic gist of this method 

can be summarized as follows: 

 Every particle is replicated a certain number of times; 

 Every particle’s weights are mutated; 

 A movement rule is applied to each mutated particle; 

 Each new particle is evaluated according to the problem-specific fitness 

function; 

 Using stochastic tournament, the best particles are picked to form the new 

generation. 

In [52] the authors proposed a modification to the velocity equation in order to include 

particle’s bad experience component besides the global best memory introduced before 

[40, 53]. The bad experience component helps to remember the previously visited worst 
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position. The method is called New Particle Swarm Optimization (NPSO). The authors 

claim superiority over conventional PSO in terms of convergence and robustness 

properties. Time execution is slightly worsened when compared with classic PSO due to 

the additional computation requirements to process bad experience component.  

Another interesting approach is Gaussian PSO (GPSO) that has its acceleration factors 

replaced by random numbers using Gaussian distributions, discarding the weight factor 

and avoiding the fixed external definition of the other weights [54]. 

3.2 Day-ahead scheduling mathematical model 

The energy resource management [14] methodology is described in this section, in 

terms of problem description and mathematical formulation. This methodology is used 

to support Virtual Power Players (VPP) or Distribution Network Operators (DNO) to 

obtain an adequate management of the available resources, including V2G, in the smart 

grid context. 

In terms of problem description, VPPs have contracts for managing the resources 

installed in the grid, including load demand. The load demand can be satisfied by the 

distributed generation resources, by the discharge of electric vehicles, and by external 

suppliers (namely retailers, the electricity pool, and other VPPs). The use of V2G 

discharge, and the respective charge, considers V2G user profiles and requirements. The 

network influence is included in this methodology, through ac power flow calculation, 

voltage limits and line thermal limits. 

The energy resource scheduling problem is a Mixed Integer Non-Linear Programming 

(MINLP) problem. The objective function aggregates all the costs with the energy 

resources. The energy resource model includes: DG, energy acquisition to external 

suppliers, the V2G discharge or charge energy, the non-supplied demand, the excess 

available power [2, 3] and trip reduce demand response model for electric vehicles. All 

the involved resources costs function are considered as linear. The VPP goal is to 

minimize the objective function value or, in other words, the total operation cost. 

In order to achieve a good scheduling of the available energy resources, it is necessary 

to apply a multi-period optimization; the presented formulation is generic for a specified 
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time period (from period t=1 to t=T) [3, 14]. The model includes an ac power flow 

algorithm that allows considering network constraints, leading to a Mixed Integer Non-

Linear Programming (MINLP) problem. 
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(3.1) 

where: 

t
 

Period t duration (e.g. 15 min., 30 min., 1 hour…)  

( , )Charge V tc  Charge price of vehicle V in period t 

( , )DG DG tc  Generation price of DG unit in period t 

( , )EAP DG tc  Excess available power price of DG unit in period t 

( , )NSD L tc  Non-supplied demand price of load L in period t 

( , )Supplier S tc  Energy price of external supplier S in period t 

( , )Discharge V tc  Discharge price of vehicle V in period t 

( , )Trip Red V tc
 

Trip reduce price contracted with vehicle V in period t 

( , )Trip Red V tE
 

Demand response energy reduce of vehicle trip V in period t 

DGN  Total number of  distributed generators 

LN  Total number of  loads 

SN  Total number of  external suppliers 

VN  Total number of  vehicles 
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( , )Charge V tP  Power charge of vehicle V in period t 

( , )DG DG tP  
Active power generation of distributed generation unit DG in 

period t 

( , )Discharge V tP  Power discharge of vehicle V in period t 

( , )EAP DG tP  Excess available power by DG unit in period t  

( , )NSD L tP  Non-supplied demand for load L in period t  

( , )Supplier S tP  
Active power flow in the branch connecting to external 

supplier S in period t 

T  Total number of  periods. 

The objective function considers Δt to allow different period t duration. For instance, 

for a 30 minutes period t duration, the value of Δt should be 0.5 if the costs function are 

specified in an hour basis. 

In order to improve the solution feasibility the mathematical model includes variables 

concerning the excess available power ( ( , )EAP DG tP ) and non-supplied demand ( ( , )NSD L tP

). ( , )EAP DG tP  is important because the VPP can establish contracts with uninterruptible 

generation (“take or pay” contracts) with, for instance, producers based on renewable 

energy sources. In extreme cases, when the load is lower than uninterruptible generation 

the value of ( , )EAP DG tP is different from zero. ( , )NSD L tP is positive when the available 

resources are not enough to satisfy load demand. 

The minimization of objective function (3.1) is subject to the following constraints: 

 

 The network active (3.2) and reactive (3.3) power balance with power loss in each 
period t: 
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(3.3) 

where: 

b  Voltage angle at bus b (rad) 

k  Voltage angle at bus k (rad) 

bkB  
Imaginary part of the element in YBUS corresponding to the b 

row and k column 

bkG  
Real part of the element in YBUS corresponding to the b row 

and k column 

bN  Total number of  buses b 

b

DGN  Total number of  distributed generators at bus b 

b

LN  Total number of  loads at bus b 

b

SN  Total number of  external suppliers at bus b 

b

VN  Total number of  vehicles at bus b 

( , )

b

Charge V tP  Power charge of vehicle V at bus b in period t 

( , )

b

DG DG tP  
Active power generation of distributed generation unit DG at 

bus b in period t 

( , )

b

Discharge V tP  Power discharge of vehicle V at bus b in period t 

( , )

b

EAP DG tP  Excess available power by DG unit at bus b in period t  

( , )

b

Load L tP  Active power demand of load L at bus b in period t 

( , )

b

NSD L tP  Non-supplied demand for load L at bus b in period t  

( , )

b

Supplier S tP  
Active power flow in the branch connecting to upstream 

supplier S at bus b in period t 

( , )

b

DG DG tQ  
Reactive power generation of distributed generation unit DG at 

bus b in period t 

( , )

b

Load L tQ  Reactive power demand of load L at bus b in period t 

( , )

b

Supplier S tQ  
Reactive power flow in the branch connecting to upstream 

supplier S at bus b in period t 
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bV  Voltage magnitude at bus b (rad) 

kV  Voltage magnitude at bus k (rad) 

 

 Bus voltage magnitude and angle limits: 

 

 ( ) 1,..,min max

b b t bV V V t T     (3.4) 

 ( ) 1,..,min max

b b t b t T     

 

(3.5) 

where: 

max

b  Maximum voltage angle at bus b (rad) 

min

b  Minimum voltage angle at bus b (rad) 

max

bV  Maximum voltage magnitude at bus b 

min

bV  Minimum voltage magnitude at bus b 

 

 Line thermal limits: 

   ( ) ( ) ( ) ( ) _

1
1,..,

2

max

b t b t k t bk b t Shunt b bkV V V y V y S t T


               

 
(3.6) 

where: 

max

bkS  
Maximum apparent power flow established in line that 

connected bus b and k 

bky  Admittance of line that connect bus b and k 

_Shunt by  Shunt admittance of line connected bus b 

 

 Maximum distributed generation limit in each period t: 

 

   

( , ) ( , ) ( , )

1,..., ; 1,...,

DGMinLimit DG t DG DG t DGMaxLimit DG t

DG

P P P

t T DG N

 

     
(3.7) 

   

( , ) ( , ) ( , )

1,..., ; 1,...,

DGMinLimit DG t DG DG t DGMaxLimit DG t

DG

Q Q Q

t T DG N

 

     
(3.8) 
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where: 

 

( , )DGMaxLimit DG tP  
Maximum active power generation of distributed 

generator unit DG in period t 

( , )DGMinLimit DG tP  
Minimum active power generation of distributed 

generator unit DG in period t 

( , )DGMaxLimit DG tQ
 

Maximum reactive power generation of distributed 

generator unit DG in period t 

( , )DGMinLimit DG tQ  
Minimum reactive power generation of distributed 

generator unit DG in period t 

 

 Upstream supplier maximum limit in each period t: 

 

   ( , ) ( , ) 1,..., ; 1,...,Supplier S t SupplierLimit S t SP P t T S N      (3.9) 

   ( , ) ( , ) 1,..., ; 1,...,Supplier S t SupplierLimit S t SQ Q t T S N    
 

(3.10) 

where: 

( , )SupplierLimit S tP  Maximum active power of upstream supplier S in period t 

( , )SupplierLimit S tQ  Maximum reactive power of upstream supplier S in period t 

 

 Vehicle technical limits in each period t: 

 

 The vehicle charge and discharge are not simultaneous: 

 

     

( , ) ( , )

( , ) ( , )

1

1,..., ; 1,..., ; 0,1

V t V t

V V t V t

X Y

t T V N X and Y

 

      
(3.11) 

where: 

 

( , )V tX  
Binary variable of vehicle V related to power discharge in 

period t 

( , )V tY  
Binary variable of vehicle V related to power charge in 

period t 
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 Battery balance for each vehicle. The energy consumption for period t travel has to 

be considered jointly with the energy remaining from the previous period and the 

charge/discharge in the period: 

 

   

( , ) ( , 1) ( ) ( , )

( , ) ( , )

( )

( , ) ( , )

( )

1

1,..., ; 1,..., ; ;

Stored V t Stored V t c V Charge V t

Trip V t Discharge V t

d v

V Trip V t Trip V t

E E P t

E P t

t T V N E P t





   

  

     

 
(3.12) 

where: 

 

( , )Stored V tE  Active energy stored in vehicle V at the end of period t 

( , )Trip V tE  Vehicle V energy consumption in period t 

( )c V  
Grid-to-Vehicle Efficiency when the Vehicle V is in charge 

mode 

( )d V  
Vehicle-to-Grid Efficiency when the Vehicle V is in discharge 

mode 

 

 Discharge limit for each vehicle considering the battery discharge rate: 

 

     

( , ) ( , ) ( , )

( , )1,..., ; 1,..., ; 0,1

Discharge V t DischargeLimit V t V t

V V t

P P X

t T V N X

 

      
(3.13) 

where: 

 

( , )DischargeLimit V tP  Maximum power discharge of vehicle V in period t 

 

 Charge limit for each vehicle considering the battery charge rate: 

     

( , ) ( , ) ( , )

( , )1,..., ; 1,..., ; 0,1

Charge V t ChargeLimit V t V t

V V t

P P Y

t T V N Y

 

      
(3.14) 

where: 

( , )ChargeLimit V tP  Maximum power charge of vehicle V in period t 
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 Vehicle battery discharge limit considering the battery balance: 

 

   

( , ) ( , 1)

( )

1

1,..., ; 1,..., ; 1;

Discharge V t Stored V t

d V

V

P t E

t T V N t


  

     
 

(3.15) 

 

 Vehicle battery charge limit considering the battery capacity and previous charge 

status: 

 

   

( ) ( , ) ( ) ( , 1)

1,..., ; 1,..., ;

c V Charge V t BatteryCapacity V Stored V t

V

P t E E

t T V N

    

     
(3.16) 

 

 Battery capacity limit for each vehicle: 

 

   ( , ) ( ) 1,..., ; 1,...,Stored V t BatteryCapacity V VE E t T V N      (3.17) 

where: 

 

( )BatteryCapacity VE  Battery energy capacity of vehicle V 

 

 Minimum stored energy to be guaranteed at the end of period t. This can be seen as a 

reserve energy (fixed by the EVs users) that can be used for a regular travel or a 

unexpected travel in each period: 

 

( , ) ( , ) ( , )Stored V t MinCharge V t TripRed V tE E E   (3.18) 

   ( , ) ( , ) 1,..., ; 1,...,MinCharge V tLast Trip V t VE E t T V N    
 

(3.19) 

   ( , ) ( , ) 1,..., ; 1,...,TripRed V t TripRedMax V t VE E t T V N    
 

 

where: 

( , )MinCharge V tE  Minimum stored energy to be guaranteed at the end of 

period t, for vehicle V 

( , )TripRedMax V tE
 Maximum energy reduce for vehicle V trip in period t  

tLast
 

Last connected period of vehicle V before 
( , )Trip V tE  
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3.2.1 Problem dimension 

The introduction of V2G resources in the optimization problem represents new demands 

in terms of computational power requirements. Considering a future scenario [2] of a 

distribution network with 66 DG units and 2,000 V2G contracts, the day-ahead 

optimization problem size would correspond to about 100,000 problem variables in a 

scheduling for 24 periods intervals, just by considering DG and V2G resources and 

excluding network variables. 96,000 of the 100,000 variables are from V2G resources 

alone. The total number of variables results from 66 DG * 24 periods * 2 (active and 

reactive power) + 2,000 V2G * 24 periods * 2 (discharge and charge active power). 

When including network constraints and more resources such as demand response, this 

value can easily reach 500,000 variables without even increasing the number of V2G 

resources. 

In [2], the MINLP technique took 858 seconds to solve the optimization problem with 

500 grouped V2G resources and including network constraints. A similar scheduling 

problem with 1000 grouped V2G in [3] took more than 5 hours on the same network 

using MINLP deterministic approach. Both works were performed in similar machines, 

thus meaning that the given problem presents an exponential complexity with the 

increase of problem size. It is important to note that both works use grouped V2G 

resources that simplify the optimization problem by reducing the amount of V2G 

variables by a fold of ten. This can be a good technique to reduce computational time 

when evaluating network impacts or generation cost estimation. However, in real 

scheduling applications individual V2G contracts should be considered and cannot be 

simplified this way. In this thesis only individual contracts were used. 

Taking into account that this type of scheduling problem will increase with every new 

V2G contract with the owner of an electric vehicle, it is important to develop specific 

optimization packages and evolve the present optimization tools to handle hard 

combinatorial large scale problems more effectively and efficiently. In this case, the use 

of metaheuristics to solve DER scheduling is of high value to network system operators. 
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3.3 Modified Particle Swarm Optimization 

In this section the modifications introduced to the early versions of Particle Swarm 

Optimization (PSO) [40, 53] are presented. Modifications to PSO have the goal of 

improving robustness, convergence time and solution quality and, at the same time, 

requiring less tinkering of parameters by the user. 

This new adaptation of the standard PSO technique developed during this work is 

somewhat inspired by some already published PSO variants [48, 51, 55]. It may be 

considered a hybrid algorithm, but being a hybrid it leans more heavily to PSO than to 

Genetic Algorithms (GA) side. From the GA-PSO hybrids it takes the use of mutation 

in the definition of the inertial weight but discards the recombination and selection 

steps. The mutation is governed by a Gaussian distribution. The major feature of the 

proposed method, though, lies in the manipulation of the upper and lower bounds of the 

particles velocity.  

As already referred, the bounds limiting this velocity are keys to ensure the convergence 

of the process. These boundary values are problem-specific. Work has been done by 

other authors [56] showing that PSO performance can be improved by the dynamic 

modification of the velocity upper limit.  

3.3.1 Velocity limits intelligent adjustment 

The traditional PSO relies on externally fixed particles’ velocity limits, inertia, memory 

and cooperation weights without changing these values along the swarm search process 

(PSO iterations)  [40, 57]. In very complex problems this can compromise solution 

diversity because swarm movements are limited to the initially fixed velocities and 

weights. 

In [48] the authors introduced mutation of the strategic parameters (inertia, memory, 

cooperation) and selection by stochastic tournament. The method is called Evolutionary 

Particle Swarm Optimization (EPSO) and proved to be proficient in several 

optimization problems [48]. The authors also propose replicating the particles in order 

to increase the probability of finding more solutions that enhance the diversity of the 

search space. 
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Although with EPSO it is possible to change weights through the search process adding 

more diversity to the search space, particles velocity limits remain unchanged during the 

iterative process. In some cases it can be desirable to change the velocity limits based on 

an intelligent mechanism, since mutation implemented in EPSO is still a stochastic 

process. This idea is discussed in the present work and originated a new method to 

implement PSO.  

In the proposed method, mutation of the strategic parameters already seen in EPSO is 

used due to its benefits. The originality of the methodology proposed in this thesis is 

that variables can be marked up to allow changing the maximum and minimum velocity 

limits along the search process. These changes are undertaken according to the results of 

an intelligent mechanism. The main innovative characteristic of the algorithm consists 

in the communication between particles’ evaluation stage and movement stage. That is, 

when evaluating a given solution, it may be possible to conclude that changing certain 

variables in a specific direction (velocity) could improve solution fitness or even help in 

constraints violations. Therefore, a mechanism called signaling has been adopted. This 

mechanism allows an intelligent adjustment of the velocity limits that are initially set. In 

the traditional version of PSO the velocity limits are prefixed and cannot be changed 

during PSO iterations. In other words, with this algorithm it is possible to boost velocity 

magnitude during the evolving process in an intelligent way with the objective to 

significantly change its value. 

The proposed methodology uses three strategic parameters ( iw ) already seen in EPSO, 

namely: inertia, memory, and cooperation. At the beginning of the process the values of 

these weights are randomly generated between 0 and 1. After that, the particle’s weights 

are changed in each iteration using a Gaussian mutation distribution according to (3.20): 

 * 0,1i iw w N   (3.20) 

where: 

*

iw  New mutated weights of particle i 

iw  Weights of particle i 


 

Learning parameter with a range between 0 and 1 
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A high value of δ adds more importance to mutation whereas N(0,1) is a random 

number following a normal distribution with mean equal to 0 and variance equal to 1. 

Once again, the strategic parameters are limited to values between 0 and 1 in this stage.  

Equation (3.21) allows the calculation of the new particle’s velocity that depends on 

particle’s present velocity, best past experience (memory) and best group’s experience 

(cooperation). The traditional PSO uses pre-fixed weights times a random value in 

memory and cooperation terms  of velocity equation [40]. 

         * * * *

, , , ,i j i j i i j i ji inertia i memory i coop
v w v w b x w bG x      (3.21) 

where: 

ib  Best past experience of particle i 

bG  Best global experience of all the particles 

,i jv
 Velocity of variable j of particle i  

*

,i jv  New calculated velocity of variable j of particle i 

,i jx  Position of variable j of particle i 

 
*

i inertia
w  Inertia weight component of particle i 

 
*

i memory
w  Memory weight component of particle i 

 
*

i coop
w

 Cooperation weight component of particle i 

The new positions (
*

,i jx ) for each particle are then calculated according to the 

movement equation (3.22). 

* *

, , ,i j i j i jx x v   (3.22) 

where: 

*

,i jx  New calculated position of j variable  the i particle 

Fig. 3.2 shows a representative illustration of the particle movement for a given variable 

using strategic parameters of PSO: inertia, memory and cooperation. 
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Fig. 3.2 – Illustration of particle movement (adapted from [49]) 

After applying the movement equation to each particle, the algorithm evaluates the 

fitness of the new positions and the best bG solution is stored across iterations. During 

the evaluation stage the variables that improve fitness function or eliminate constraints 

violations are marked. The identification of the variables that should be signaled 

depends on the optimization problem that is being addressed. The optimization engineer 

should identify which variables are best suitable to be signaled during the evaluation 

stage and design an algorithm to recognize which variables should be signaled across 

iterations to improve solution fitness or handle constraints violations. The criteria to 

define which variables are selected to be signaled may be included in the following list, 

although they are not restricted to: 

 Variables that can easily relive constraints violations if changed in a certain 

direction; 

 Variables that cannot be changed by direct repair method; 

 Variables that are not easily corrected by direct repair method. 

Direct repair method is an on fly technique that enables correcting a bad solution to a 

good solution, e.g. correct problem’s variables limits or problem’s constraints 

violations, during or before evaluation phase. An indirect repair method consists in 

accepting a bad solution throughout the heuristic search. The most common method is 

adding a penalty to fitness function in order to enable metaheuristics to perceive it as a 

bad solution. Direct repair methods are generally superior when compared with indirect 

repair methods in terms of effectiveness and efficiency. However, they are not always 

trivial to implement in metaheuristics and sometimes impossible or impracticable to 
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program. Thus, indirect repair methods such as penalty functions are used in order to 

attempt to achieve solutions without constraint violations. As said before, the algorithm 

proposed here for PSO can be used to improve fitness function but also in constraints 

handling. In this case it is as an indirect repair method, though without adding penalties 

to fitness function. Nevertheless, penalties, direct repair methods and the proposed 

algorithm can be used together in the same implementation. More information on 

constraints handling techniques can be found in  [58]. 

To support the proposed algorithm, a signaling vector for each particle is maintained 

across the process to enable the communication between evaluation and movement 

stages. These array elements assume one of the following values: 0, 1, -1 or special 

codes. The size of this array (number of columns) corresponds to the number of 

variables in the problem. The set of signaling vectors constitutes a signaling matrix for 

the swarm, with as many lines as the number of particles set. The value 0 means that a 

given variable has not been signaled. The value 1 means that the variable has been 

signaled to gain more speed in the positive direction and -1 means that the variable has 

been signaled to gain speed in the opposite direction. Special codes are values different 

from 0, 1 and -1 that can be used for extended functions of the proposed algorithm. 

They can be used for, setting some variables of the swarm to a desired value in special 

conditions of the optimization problem. These variables should be signaled with a given 

special code for subsequent identification. 

The resulting new maximum and minimum velocity limits of a given particle’s variable 

are evaluated according to (3.23) and (3.24), respectively: 

max max

j j j jVel Vel BoostSpeed SignalingPositives  
 

(3.23) 

min min

j j j jVel Vel BoostSpeed SignalingNegatives    (3.24) 

where: 

max

jVel  Original initial max. velocity of variable j 

min

jVel  Original initial min. velocity of variable j 

boostSpeed  Vector with the variables boost speed  

signalingNegatives  Vector with the signaled variables (negative 
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velocity) 

signalingPositives  
Vector with the signaled variables (positive 

velocity) 

signalingPositives is obtained from the signaling vector, built with its positive values 

(equal to 1) and with zeros in the other positions. signalingNegatives is also obtained 

from the signaling vector, being built with its negative values (equal to -1) and with 

zeros in the other positions. The boost speed vector contains the values that influence 

the change of maximum or minimum velocity limits when a given variable is signaled. 

This vector can be defined by hand for each variable or using an algorithm, for instance 

200% of the initial maximum or minimum velocity limits or other adequate algorithm 

for the problem under implementation. 

Fig. 3.3 presents the signaling process of the modified PSO described in this chapter. In 

the evaluation stage the variables are identified and in the movement stage the velocity 

limits of the marked variables are updated. Each iteration, the velocity values are 

randomly generated between the lower and upper velocity limits. In early versions of 

PSO the velocities are generated once, in the beginning of the process, according to the 

fixed maximum and minimum velocity limits. 

 

Fig. 3.3 – Modified PSO signaling process 
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For a better understanding of how the signaling mechanism works, let us follow a 

simple example for one particle considering an optimization problem of n variables.  

Table 3.1 presents the data for a given particle with n variables (V1 to Vn column). This 

table presents the state of variables’ velocity limits before and after the signaling. The 

boost speed vector is initially fixed. The elements of the boost speed vector represent 

the variation on the velocity limit when the variable is signaled. Let us consider that the 

vectors were initialized as shown in Table 3.1. The signaling vector is always initialized 

with zeros. 

Table 3.1 – Algorithm example 

  Variables 

  V1 V2 V3 V4 … Vn 

S
ig

n
al

in
g
 B

ef
o
re

 Signaling Vector 0 0 0 0 … 0 

Max. Velocity 10 10 20 10 … 10 

Min. Velocity 0 0 -10 0 … -5 

Initially fixed Boost Speed Vector 100 50 150 200 … 100 

A
ft

er
 Signaling Vector 0 1 0 -1 … 0 

Max. Velocity 10 60 20 10 … 10 

Min. Velocity 0 0 -10 -200 … 10 
 

The values for max. velocity and min. velocity in Table 3.1 represent the velocity limits 

for two different states, namely before the signaling process and after the signaling 

process. After the signaling process, considering that the signaling vector took the 

values presented in Table 3.1 the resulting values for max. velocity and min. velocity 

are shown. Analyzing these values, V2 and V4 were identified to change their velocity 

limits in the next PSO iteration movement. For V2, the maximum velocity, after 

signaling, changes from 10 to 60; for V4, the minimum velocity changes from 0 to -200, 

according to the boost speed vector and to the signaling vector. For instance, V2 velocity 

limit was boosted by 50 (boost speed vector) from its initial velocity of 10 (max. 

velocity before signaling) resulting in a new velocity of 60 (max. velocity after 

signaling). 
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3.3.2 Self-parameterization 

PSO Parameterization is an important aspect of its implementation success to a given 

problem. However, optimal parameterization depends on the specific problem and it is 

not a trivial task. For this reason, a user independent automatic parameterization was 

implemented.  

The initial stopping criterion is defined to be at least 50 iterations. Nevertheless, if 

during the last 5 iterations (of 50) the best fitness is still improving, the proposed 

implementation increments 1 iteration. After that, this incrementing occurs until there is 

no improvement in the fitness function in the last 5 iterations or when a maximum of 

300 iterations are reached. The number of swarm particles is 10. When applied to the 

present scheduling problem this number of particles and the stop criterion proved to be 

adequate in case studies. 

In this thesis a PSO’s particle means a solution comprising several variables, i.e. each 

particle contains the problem variables. The variables controlled by the swarm are the 

generators active and reactive power variables, the V2G charge/discharge variables and 

V2G DR when available. In the proposed implementation the variables for charge and 

discharge of V2G are the same, where a positive value means that the vehicle is 

charging and a negative value means that it is discharging. This way the binary 

variables for charge and discharge (3.11) are not required as in MINLP implementation, 

reducing correspondently the computational execution time. Minimum and maximum 

positions of variables are set to the lower and upper bound of each problem variable, 

therefore the maximum and minimum limits of variables are always guaranteed in the 

swarm. 

One of the most important parameters in PSO is the maximum and minimum velocities 

of particles. It is important to note that if these values are too high, then the particles 

may move erratically, going beyond a good solution. On the other hand, if they are too 

small, then the particle’s movement is limited and the solution compromised [51, 56]. In 

the modified PSO the initial maximum and minimum velocity limits are calculated in 

the beginning of the program according to a specific algorithm. The algorithm that 

calculates the maximum and minimum velocities is described below. 
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The maximum velocities for generators (DG and suppliers) active power variables are 

calculated according to (3.25): 

   

max

,

( , )

1

1,..., ; 1,...,

j t

j t

DG S

Vel
c

t T j N N



    

 (3.25) 

where: 

max

,j tVel  Maximum velocity of particle’s variable j for period t 

( , )j tc  Price for generator j in period t 

The minimum velocities for generators (DG and suppliers) active power variables are 

calculated according to (3.26): 

   

min

, ( , )

1,..., ; 1,...,

j t j t

DG S

Vel c

t T j N N



    
 (3.26) 

where: 

min

,j tVel  Minimum velocity of particle’s variable j for period t 

The values of the maximum and minimum velocities described above are normalized 

between the lower bound and the upper bound of the generation active power limits. 

The maximum velocities for generators reactive power variables are set to the upper 

limits of reactive power. Minimum velocities are the same as maximum velocities, 

however in the opposite direction. 

The maximum velocities for V2G charge active power variables are calculated 

according to (3.27): 
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max

,

( , )

1

1
*

1,..., ; 1,..., ;

1,..., ; 1,...,

L
j t V N

Load L t

L

DG S V

V L

Vel VechicleNeeds

P

t T j N N N

V N L N





     

 



 

(3.27) 

where: 

VVechicleNeeds  Vehicle V total periods trips energy consumption 

The maximum velocities of V2G charge variables are normalized between the lower 

bound and upper bound of V2G charge rate limit. 

The minimum velocities for V2G discharge active power variables are calculated 

according to (3.28): 

     

min

,

( , )

1

1,..., ; 1,..., ; 1,...,

j t

Discharge V t

DG S V V

Vel
c

t T j N N N V N



      

 (3.28) 

where: 

( , )Discharge V tc  Price of discharge of vehicle V in period t 

The minimum velocities of V2G discharge variables are normalized between the lower 

bound and upper bound of V2G discharge rate limit.  

The maximum and minimum velocity of DR V2G variables are set to zero, because they 

are only activated in special conditions, e.g. energy cost. 

With the above algorithm there is no need for specifying maximum and minimum 

values empirically and manually. The above problem-specific algorithm is suited for 

problems with similar mathematical formulation (see subsection 3.2). 
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3.3.3 Problem implementation 

The original PSO relies on fixed velocity limits that are not changed during the swarm 

search process (PSO iterations)  [40, 57]. Research work performed by Fan and Shi [40, 

56] has shown that an appropriate dynamic change of maximum velocities can improve 

the performance of the PSO algorithm.  

In the present implementation to the problem of day-ahead scheduling, maximum and 

minimum values of velocity limits can change dynamically according to the specific 

mechanism formerly theorized. The initial maximum and minimum velocities are set 

according to subsection 3.3.2 and changed dynamically as the mechanism described in 

subsection 3.3.1. In the evaluation phase the mentioned mechanism will check for 

constraints violations, namely: 

 Bus lower voltage violations (3.4-3.5); 

 Bus overvoltage violations (3.4-3.5); 

 Line thermal limits (3.6). 

If there is any violation of the above constraints the algorithm will mark the variables 

that can possibly help to alleviate these violations. In the case of bus lower voltage 

violations, the mechanism will mark DG reactive power and V2G resources variables, 

to increase reactive power and discharges, respectively. In the case of bus overvoltage 

violations, the mechanism will mark DG reactive power variables to decrease and 

nearby EVs to charge. The buses selected to get the appropriate V2G and DG resources 

are the buses where violations occurred as well as the buses that were preceding it. 

Line thermal limit violations can be corrected in two ways: reducing V2G charge or 

increasing generation in the downstream lines. The mechanism marks V2G charge to be 

reduced and DG generation production to be increased. More information about voltage 

drop in radial distribution networks can be found in [59]. 

Fig. 3.4 presents the selection of buses according to the type of violation. It helps to 

understand the described mechanism above. 
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Fig. 3.4 – Described mechanism buses selection in the case of violations  

The velocity limits of the marked variables are changed according to the type of 

signaling. For instance, when DG reactive power variables are marked, the maximum 

velocities of these variables are increased by 20%. When the DG reactive power 

variables are marked to decrease, the minimum velocities of these variables are 

decreased by 20%.  

The described mechanism contributes to a faster convergence to a solution without 

violations, as well as improving the solution fitness. To improve fitness function the 

mechanism works as follows: 

 It tries to increase V2G charge variables values when V2G charge price is lower 

than mean generation cost acting on maximum velocity limits of corresponding 

variables; 

 It tries to increase V2G discharge variables values when V2G discharge price is 

lower than mean generation cost acting on minimum velocity limits of 

corresponding variables; 

 It tries to apply DR V2G trip reduce program (when available) by increasing 

corresponding variables when DR program price is lower than the sum of mean 

generation cost and the repesctive vehicle charge price. 

Looking at the problem formulation presented in 3.2, namely the objective function, it 

can be seen why the above aspects improve the solution. 
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The initial swarm population is randomly generated between the upper and the lower 

bounds of variables, except from V2G variables that are initialized with zeros. During 

swarm search the algorithm checks whether to charge or discharge vehicles as well as to 

apply DR programs as needed or advantageous. 

A robust power flow model from [60, 61] is included in the modified PSO approach to 

check solutions feasibility during swarm search process. The load system balance (3.2-

3.3) is validated by a power flow algorithm, and the power losses are compensated by 

the energy suppliers or DG generators. Vehicle battery balance constraints (3.12, 3.15-

3.19) are checked before fitness evaluation. If the values from swarm solutions are not 

according to the constraint limits, the solution is corrected by direct repair method. 

Direct repair method can be used instead of indirect repair method such as penalty 

factors providing an efficient way of correcting solutions before evaluating the fitness 

function [58]. 

3.4 Electric vehicles demand response 

Demand Response (DR) for load management is well addressed in the literature [43-

46]. Thus, the focus in the scope of this thesis is concentrated on demand response 

programs for EVs. Trip reduce demand response program for electric vehicles in the 

context of day-ahead is proposed. 

3.4.1 Trip reduce demand response program 

Trip reduce demand response program for EVs is proposed in this thesis. The gist is to 

provide network operator with another useful resource that consists in reducing vehicles 

charging necessities. This demand response program enables vehicle users to get some 

profit by agreeing to reduce their travel necessities and minimum battery level 

requirements. 

Fig. 3.5 presents the proposed framework of DR trip reduce program. An initial 

optimization is made assuming that EVs which contracted DR option will participate. 

With the optimization results it is possible to identify if any EVs users are scheduled to 

participate in the DR programs. After that, these EV users can be invited to participate 

by some means, e.g. internet application, mobile message. Network operator should 



Modified PSO for Day-Ahead Distributed Energy Resources Scheduling Including Vehicle-to-Grid 2011 
 

3-27 

João Soares  

wait for a response within a time limit. With the responses of users the network operator 

should reschedule, by running the optimization program again with the updated 

information. If new EVs users are given by the optimization results to participate the 

operator should follow the same procedure in order to lower operation costs. This task 

should be integrated automatically. The users that do not respond within the time limit 

should be considered as not participating in the DR program. 

 

Fig. 3.5 – Framework of DR trip reduce program 

In a real environment to enable an attractive commercial model and a fair choice of EV 

users participating in this type of DR programs a list of already participated should be 

maintained and included in the optimization model. It can happen that two users have 

the same contracted DR trip reduce price, however user number one might be chosen 

often due to network location for instance. If an already participated list is maintained it 

is possible to work out the users that have never participated and invite them to 

participate in the next opportunities.  

3.4.2 Trip reduce demand response program definition 

For supporting network operator in the definition of trip reduce demand response 

program a methodology is proposed in this section. Fig. 3.6 presents the methodology 

framework. It enables to estimate how much demand response is adequate for a certain 

operation condition. 
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Starting from an initial operation condition, e.g. based on a case study database, a range 

of scenarios should be created. For instance, the available Distributed Generation (DG), 

price of network suppliers and base load. The criteria to modify such data should be 

carefully investigated by the operator taking into account the experience and knowledge 

of its own network operation. After creating some operation scenrios to simulate real 

world conditions, the modified PSO technique can be executed for each of the created 

scenarios and the optimization results stored. If the operator has already a large number 

of operation scenarios in the database and the corresponding scheduling results this step 

can be skipped. 

 
Fig. 3.6 – Implemented methodology framework  

Data pre-processing phase consists in converting the optimization results (in a 24 period 

basis) to a one period basis. After the data pre-processing phase a clustering algorithm is 
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used in order to identify similar patterns among trip reduce demand response usage per 

period, namely the K-means clustering algorithm. Typically the choice of the number of 

clusters may be supported by the analysis and evaluation of measurement distances 

[62]. However, the contribution of expert opinions is taken into account.  

In order to estimate the usage of trip reduce demand response per period for a given 

operation condition a classification model is created. For the implementation of the 

classification model, rule-based modeling technique C5.0 classification algorithm is 

used. The classification model generates the decision tree to provide the rules set. 

3.5 Conclusions 

Day-ahead scheduling with Vehicle-to-Grid (V2G) is treated in very few works in the 

literature. In this chapter the mathematical model of the day-ahead scheduling including 

V2G is presented. The problem is a Mixed Integer Non-Linear Programming (MINLP) 

model and due to its nature it is classified as a large combinatorial problem.  

Metaheuristics are useful in solving this type of hard problems in reasonable execution 

time and with satisfactory results. For this reason, PSO is selected in this thesis to be 

compared with MINLP. A modified version of PSO with application-specific 

ingredients is proposed in the scope of theis thesis and presented in this chapter as a 

result of this work. 

The described mechanism for the modified PSO can be extended by using other 

functions. This can be done, for instance, using mark codes to reset some variables to 

zero or to the upper/lower limit as needed. In the present case only increase/decrease 

functions on the velocity limits were used. This mechanism allows an intelligent 

adjustment of the initial velocity limits.  

Electric vehicle demand response program for EVs users is proposed in this chapter, 

specifically the trip reduce demand response model. The aim is to provide the network 

operator with another useful resource to lower operation costs while at the same time 

motivating the active participation of EVs users in demand response programs. A data-

mining based methodology to support the definition of trip reduce demand response 
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program is proposed in this chapter. The methodology enables to estimate how much 

trip reduce is adequate for a certain operation condition 
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4 Case studies 

 

 

 

his chapter presents the case studies used in this work to illustrate the 

application and support the advantages of the modified Particle Swarm 

Optimization (PSO) approach proposed in this thesis. For that, an exact 

method, namely Mixed Integer Non-Linear Programming (MINLP), is compared with 

the aforementioned methodology in terms of execution time and solution quality. 

There are many versions of PSO that can be found in the literature [51]. In this work, 

three versions were selected to be compared with the proposed methodology, 

specifically traditional PSO, Evolutionary Particle Swarm Optimization (EPSO) and 

New Particle Swarm Optimization (NPSO). A comparison analysis is made including 

robustness and convergence tests. 

A large-scale case study with a 180 bus distribution system with 8,000 gridable vehicles 

is included in this chapter. 

Three different charging methodologies are compared in a case study: uncontrolled 

charging, smart charging and vehicle-to-grid. The aim is to demonstrate which concept 

provides best suitabilitty to deal with the high presence of electric vehicles in the grid. 

One case study including electric vehicle demand response is presented in this chapter, 

namely trip reduce program. A comparison is made with a scheduling that does not 

include the demand response program model. The same case study conditions, e.g. price 

conditions, are used in the comparison. The demand response program for electric 

T 
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vehicles aims to provide network operator with more network resources and the 

possibility to reduce operational costs. 

4.1 Implementation tools 

MATLAB language (MATLAB 7.10.0 R2010a) [63] and GNU Linear Programming 

Kit (GLPK) were used to create the EV scenario simulator tool (EVeSSi). This tool 

enables the creation of a specific EV scenario in distribution networks according to the 

defined parameters that catch EV technology, driving behaviors and EV penetration. 

PSO metaheuristics was developed using MATLAB software. MINLP mathematical 

model was implememted in General Algebraic Modeling System (GAMS) [64], which 

is a high-level modeling system for mathematical programming and optimization. This 

model was developed in the scope of a master thesis [65]. DIscrete and Continuous 

OPTimizer (DICOPT) was the solver used within GAMS to solve the MINLP 

optimization problem. 

All related data-mining algorithms were executed in Clementine 12 software [66], 

though data analysis was performed in MATLAB. These algorithms include K-means 

clustering methods but also classification C5.0 decision tree algorithm. 

All the case studies were executed on a machine with two Intel® Xeon® E5620 

2.40GHz processors; each one with 4 cores, 6GB of random-access-memory and 

Windows 7 Professional 64 bits operating system.  

The used computer systems have multi-core processors, however, both MATLAB and 

GAMS applications used only one processor core for the results presented in this work. 

4.2 Modified PSO performance 

The performance of the modified PSO (see 3.3) is presented in this subsection. The 

solution quality and execution time are compared with MINLP method developed in 

GAMS. The case study is also described in this section. 
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4.2.1 Case study description 

This case study considers a 12.66 kV 33 bus distribution network as can be found in [3, 

67, 68]. The network in the case study presents a 2040 scenario with intensive use of 

distributed resources (Fig. 4.1).The distribution network serves 218 consumers with 

total peak consumption around 4.2 MW (Fig. 4.2) as defined in the consumer set 

scenario developed in [69]. It includes 66 DG units (33 photovoltaic, 8 fuel cells, 4 

wind farm, 2 small hydro, 1 waste to energy, 3 biomass units, and 15 cogeneration 

units). A time step of 1 hour is used for a total of 24 periods. The data of this case study, 

including resources and network data can be seen in appendix A. 

 

Fig. 4.1 – 33 bus distribution network configuration in 2040 scenario [3, 67, 68] 

 

Fig. 4.2 – Load demand without electric vehicles 
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The number of V2G units will depend on the type and amount of consumers that are 

connected to the network. The consumers of the distribution network were divided into 

6 groups: Domestic Consumers (DC), Commerce Consumers (CC), Medium Commerce 

(MC), Large Commerce (LC), Medium Industrial (MI) and Large Industrial (LI) [43]. 

Table 4.1 shows the number of V2G units considered in this case study. The columns 

and rows contain the consumer type and bus number respectively. For each bus it is 

indicated the number of consumers for each type and the total number of consumers 

[69].  

Table 4.1 – Consumers and V2G scenario 

Bus Load (kW) 
Number of consumers 

DC CC MC LC MI LI Total 

1 113 - 2 2 1 - - 5 

2 101.1 2 5 - - - - 7 

3 136.1 4 4 - - - - 8 

4 65.9 7 2 - - - - 9 

5 230.2 8 - - - - - 8 

6 230.2 4 1 - 2 - - 7 

7 65.9 - 1 1 2 - - 4 

8 65.9 9 1 - - - - 10 

9 48.3 10 - - - - - 10 

10 65.9 4 2 - - - - 6 

11 65.9 6 1 - - - - 7 

12 136.3 7 - - - - - 7 

13 65.9 5 2 2 - - - 9 

14 65.9 6 - - - - - 6 

15 65.9 7 1 - - - - 8 

16 101.1 5 2 - - - - 7 

17 101.1 2 4 1 - - - 7 

18 101.1 - - 2 2 - - 4 

19 101.1 3 - 3 1 - - 7 

20 101.1 - 4 4 - - - 8 

21 101.1 - 2 2 1 - - 5 

22 101.1 2 5 - - - - 7 

23 488.4 2 1 - - - 4 7 

24 488.4 - 1 - - 1 4 6 

25 65.9 7 - - - - - 7 

26 65.9 5 1 - - - - 6 

27 65.9 8 - - - - - 8 

28 136.3 2 2 3 - - - 7 

29 230.2 - 1 1 - 3 - 5 

30 171.5 - 1 - - 3 1 5 

31 242.4 - - 2 4 - - 6 

32 65.9 5 - - - - - 5 

Total 4,250.9 120 46 23 13 7 9 218 

Vehicles/ 

consumer 
3 12 60 200 40 100 - 

Assumed penetration (%) 30 28 28 35 34 45 - 

V2G 108 155 386 910 95 405 2,059 
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The assumed V2G penetration delivers an estimated number of 2,059 cars to the given 

network. The number of cars set in the simulations was 2,000 for simplifying data 

analysis. General parameters of the simulated scenario are given in Table 4.2. The stats 

resulting from the use of EVeSSi tool for this network are shown in Table 4.3. This case 

study scenario uses the modeling parameters given in subsection 2.1.1 for EVs battery. 

Identical share of about 33% for EVs types were assumed in the scenario, e.g. for BEV, 

PHEV and EREV types. The distribution of trips along the day is based on the data 

provided in [39] (see Fig. 2.8). The data concerning vehicle definition for this case 

study can be seen in appendix A. 

Table 4.2 – Scenario parameters 

 
Parameter value 

Battery efficiency 85% 

Cars parked all day (no movements) 1% 

Charging efficiency (slow and fast mode) 90% 

Initial state of battery 30% 

Maximum depth of discharge 80% 

Number of EVs 2,000 

Number of periods 24 

Time step 1 hour 

Table 4.3 –Scenario driving stats 

 
Driving stats 

Trip Distance (km) 

Mean 29 

Maximum 482 

Minimum 0 

Total Distance (km) 58,438 

Mean Battery Capacity (kWh) 15 

To simulate movements to and from the network, it was assumed that 50% of the cars 

remained inside the network, i.e. 1,000 cars, 25% of cars remained inside the network 

from 9AM to 18PM and 25% from 19PM to 8AM. The outcome of movements using 

such assumptions is expressed in Fig. 4.3. 
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Fig. 4.3 – Cars expected to be connected to the grid 

4.2.2 Solution comparison with MINLP 

To demonstrate the effectiveness of the modified PSO a comparison with MINLP has 

been carried out. This section provides the results for both methods and the 

corresponding analysis. 

Fig. 4.4 presents the optimal scheduling resulting from MINLP whereas Fig. 4.5 

presents the scheduling for a random run using modified PSO. The optimization 

corresponds to the formulation presented in subsection 3.2 without EV demand 

response programs. The objective function cost is 6,175 m.u. and 6,180 m.u. in the case 

of MINLP and the modified PSO, respectively. This corresponds to an operation cost 

increase of 0.08% when compared with the solution obtained with MINLP, which is 

negligible. 
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Fig. 4.4 – Optimal scheduling obtained with MINLP in GAMS 

 

Fig. 4.5 – Scheduling resulting from a random run in modified PSO 

In spite of the cost of both solutions being virtually the same, the resulting scheduling 

from both methodologies carry some differences, even so they are quite similar. The 

modified PSO discharges more vehicles in period 20 and 21 than MINLP approach. In 

period 19 only MINLP approach presents vehicles discharge. The peak load in modified 

PSO is 4.326 MW while in MINLP is 4.309 MW both in period 20. The peak power 

loss in MINLP solution occur in period 20 whereas in PSO occur in period 19. The 

power loss in period 20 is alleviated in PSO solution due to the high presence of 

vehicles discharge, which acts as distributed generation. 

Fig. 4.6 shows the objective function of 100 trials using the modified PSO. The 

maximum objective function cost in 100 trials was 6,209 m.u. and the minimum was 

6,179 m.u. with a mean value of 6,192. A random trial for the given case study will fall 
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into these values with high chance. When compared with MINLP this represents almost 

no variability of the objective function value with a minimum and maximum variation 

of 0.06% and 0.55%, respectively. 

 

Fig. 4.6 – Objective function cost for 100 trials using the modified PSO 

Table 4.4 presents the summary of the results for MINLP and of the modified PSO. In 

this case study PSO is 2,600 times faster than MINLP methodology and delivers almost 

the same objective function cost as MINLP. MINLP takes more than 25 hours to solve 

the optimization problem. This execution time is expected to rise exponentially with the 

increase of the number of resources and network size. To note that this case study 

presents a modest 33 bus network size and 2,000 V2G resources without any demand 

response programs available. The execution time of MINLP approach is high, which is 

prohibitive for the day-ahead decision. 

Table 4.4 – Results comparison over 100 trials 

Methodologies 
Best Worst Mean 

Execution 

time 

Violated 

solutions 

(m.u.) (m.u.) (m.u.) (s) (#) 

MINLP 6,175 --- --- 91,018 --- 

Modified PSO 6,179 6,209 6,192 35 0/100 
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4.3 Comparison with other PSO versions  

To demonstrate the superiority of the modified PSO in day-ahead scheduling with V2G, 

the proposed method is compared with other well-known versions, namely Evolutionary 

Particle Swarm Optimization (EPSO), traditional PSO and New Particle Swarm 

Optimization (NPSO). There are many more variants of PSO in the literature however it 

is impracticable to implement all. The metaheuristics parameters used are depicted in 

table Table 4.5 according to its authors’ recommendations. Self-parameterization from 

proposed implementation of PSO (see subsection 3.3.2) was coded in the comparing 

versions. The initial swarm population is randomly generated between the upper and the 

lower bounds of variables for traditional PSO, NPSO and EPSO. For each of the 

versions a robustness and convergence test was carried out. The data of the used case 

study is the same as the one presented in subsection 4.2.1 

Table 4.5 – Parameters of PSO versions 

Parameters 

PSO Methodologies 

Traditional PSO 

[40] 
NPSO [52] 

EPSO 

[48] 

Modified PSO 

Minimum 

Iterations 
50 

Initial swarm 

population 

Randomly between the upper and the lower bounds of 

variables 

Refer to 

subsection 3.3.3 

Stopping Criteria Refer to subsection 3.3.2  

Max. velocity Refer to subsection 3.3.2 

Min. velocity Refer to subsection 3.3.2  

Inertia Weight 1 
0.9-0.4 (linearly 

decreased) 
Gaussian mutation weights 

Acceleration 

Coefficient 

Worst Position 

Not present 0.1 Not present 

Acceleration 

Coefficient Best 

Position 

2 1.9 Gaussian mutation weights 

Cooperation 

Coefficient 
2 2 Gaussian mutation weights 

4.3.1 Traditional Particle Swarm Optimizaiton 

Traditional PSO has been implemented according to [40]. Fig. 4.7 shows the objective 

function cost over 100 trials using this version. The variability of the costs when 

plotting the overall trials results is negligible  
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Fig. 4.7 – Objective function cost for 100 trials using traditional PSO 

Fig. 4.8 illustrates a convergence test for a random trial in traditional PSO. The 

objective function decreases smoothly over iterations and improvement stops after some 

iterations. Due to the definied stopping criteria (see subsection 3.3.2) the optimization 

stops in 50 iterations. 

 

Fig. 4.8 – Convergence of a random trial using traditional PSO 
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4.3.2 New Particle Swarm Optimizaiton 

In [52] the authors propose a modification of the velocity equation to include particle’s 

bad experience component. The traditional PSO includes best experience component. 

NPSO include both best and bad experience. The bad experience component helps to 

remember its previously visited worst position. The authors claim superiority over 

conventional PSO. Time execution is slightly higher when compared with traditional 

PSO due to the additional computation requirements to process bad experience 

component.  

Fig. 4.9 presents the objective function cost over 100 trials using NPSO. When 

compared with traditional PSO, NPSO presents slightly improved robustness.  

Fig. 4.10 illustrates a convergence test for a random trial in NPSO which turns out to be 

very comparable with traditional PSO. 

 

Fig. 4.9 – Objective function cost for 100 trials using NPSO 
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Fig. 4.10 – Convergence of a random trial using NPSO 

4.3.3 Evolutionary Particle Swarm Optimizaiton 

The EPSO approach, introduced by [48], aims at joining together the benefits of 

evolutionary programming with the benefits of PSO. It is a self-adaptive algorithm that 

relies on the mutation of the strategic parameters of the particle movement. EPSO adds 

replication of each particle and selection of the best particles by stochastic tournament. 

Fig. 4.11 depicts the objective function cost for 100 trials using EPSO. This 

methodology presents more variability when compared with traditional PSO and NPSO, 

however better solution quality is achieved. Fig. 4.12 shows a convergence test for a 

random trial in EPSO. In this case study better solutions are expected to be obtained 

using EPSO instead of traditional PSO and NPSO. The mutation, replication and 

selection process in EPSO makes it computational heavier than traditional PSO and 

NPSO. 
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Fig. 4.11 – Objective function cost for 100 trials using EPSO 

 

Fig. 4.12 – Convergence of a random trial using EPSO 

4.3.4 Comparison analysis 

Fig. 4.13 plots the robustness test of each considered methodology together along with 

the modified PSO test. Traditional PSO is lined up with NPSO, being NPSO relatively 

better over traditional PSO. The modified PSO meta-heuristic presents better local 

optimum escaping with consistency results over 100 run tests. 
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Fig. 4.13 – Robustness test of the modified PSO and PSO versions 

Fig. 4.14 depicts the convergence for a random trial including the modified PSO and 

implemented variants. Clearly, the modified PSO presents a different behavior in 

convergence test. The sudden drop at iteration 4 in the objective function operation cost 

is related to quick variations in the swarm positions in the space. The intelligent 

adjustment included in the modified PSO (see subsection 3.3.1) significantly increases 

the likelihoods of high solution variations. 

 

Fig. 4.14 – Convergence test of the modified PSO and PSO versions for a random trial 
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Table 4.6 shows the resulting robustness test results. The robustness variability 

coefficient is defined as the ratio between the standard deviation and the mean of the 

results over 100 trials. MINLP appears in the table for objective function cost reference 

and execution time comparison with the other techniques. No unfeasible solutions were 

found in 100 trials for the presented methodologies. Though the modified PSO presents 

more variability in the results, i.e. the high robustness variability coefficient, the worst 

objective function over 100 trials is well below from the other tested versions. The 

execution time of the modified PSO is faster due to the improved convergence 

properties. EPSO is the meta-heuristic that takes longer execution time due to 

replication and selection concept. 

Table 4.6 – Robustness test result comparison over 100 trials 

Methodologies 
Best Worst Mean 

Robustness  

variability 

coefficient 

Mean 

execution 

time per 

trial 

Violated 

solutions 

(m.u.) (m.u.) (m.u.)  (s) (#) 

MINLP 6,175 --- --- --- 91,018 --- 

Modified PSO 6,179 6209 6192 0.1192 35 0/100 

Traditional PSO 6,463 6470 6467 0.0199 42 0/100 

NPSO 6,462 6468 6465 0.0190 45 0/100 

EPSO 6,384 6410 6396 0.0846 156 0/100 

That said it becomes evident that a specific modified PSO for the problem of day-ahead 

scheduling with V2G offers advantages in execution time and most importantly solution 

quality. In critical situations (grid operation on network limits) the proposed PSO can 

handle with optimization constraints violations better than the tested versions due to the 

intelligent mechanism. 

4.4 Large-Scale case study 180 bus network with 8,000 V2G 

The present case study aims to demonstrate the behavior of the proposed PSO with a 

larger network in order to understand how performance is affected when the number of 

variables increases. The distribution network is a 30 kV, 180 bus system with 116 DG 

generators and 1 external supplier. The peak consumption of the case study is around 

12.4 MW without EVs. The total number of EVs in the distibution network was set to 

8,000. The EVeSSi tool presented in subsection 2.3 was used for simulating the EVs 

movement in the 180 bus network. 
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Fig. 4.15 depicts the results of the scheduling using the modified PSO. The high share 

of generation comes from the network external supplier (energy supply in the figure) 

meanwhile DG presens lower share of the total generation. The discharging of vehicles 

did not happen mainly due to cheap supplier energy price.  

 

Fig. 4.15 – 180 bus network scheduling using the modified PSO method 

Fig. 4.16 shows the load and the vehicles load profile. The peak generation is 13.92 

MW whereas the peak load is 13.75 MW in period 12. 

 

Fig. 4.16 – Load and EVs charge profile 

Table 4.7 summarizes the scheduling results using the modified PSO. The execution 

time of 401 seconds is higher when compared with the previously presented case study 

of 33 bus distribution network with 2,000 vehicles which took about 35 seconds. 

However, the execution of this case study is reasonable for the day-ahead context. 
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Table 4.7 – Scheduling results summary 

Objective function 

cost 

Execution 

time 

Peak 

load 

Peak power 

loss 

Total EVs 

load 
Violations 

(m.u.) (s) (MW) (kW) (MWh) Yes/No 

13,510 401 13.75 167.28 24.71 No 

4.5 Different charging methodologies comparison 

Three different approaches for managing EVs in the smart grid are used for comparison, 

namely Uncontrolled Charging (UC), Smart Charging (SC), Vehicle-to-Grid (V2G). 

The data for this case study is the same as the one presented in subsection 4.2.1. The 

modified PSO presented in this thesis is used for solving the above approaches 

scheduling optimizations. 

4.5.1 Uncontrolled charging 

UC refers to charging EVs whenever possible without grid control. The battery is 

charged until it has reached maximum charge or the owner has to leave. A case study 

using this principle is carried out in this section assuming that when vehicles are 

connected to the grid they charge. Therefore, vehicle charging is not controlled by the 

operator. The optimization problem do not include discharge of the vehicles to the grid 

and the vehicles charging decision variables are not considered, instead the charges 

occur every time that the vehicle is connected unless the battery is already full charged.  

Fig. 4.17 depicts the resulting scheduling using UC principle. The solution was obtained 

in random run of modified PSO. The objective function cost is 7,413 m.u. The peak 

load occurs at period 1 with a value of 7.12 MW. 

The presented solution is unfeasible at network level because the total load at period 1 

and 2 creates high voltage drops and lines thermal capacity violations. 
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Fig. 4.17 – Uncontrolled charging mode scheduling 

4.5.2 Smart charging 

In the SC philosophy, there is an increase in the communication requirements between 

the EV and the grid. The operator can control the EV charging periods, however, 

respecting users’ constraints and minimum levels of battery for users’ trips. 

Fig. 4.18 show the resulting scheduling using SC. The solution was obtained in random 

run of modified PSO. The objective function cost is 6,222 m.u. The peak load occurs at 

period 20 with a corresponding value of 4.50 MW. 

 

Fig. 4.18 – Smart charging mode scheduling 
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4.5.3 Vehicle-to-grid opportunities 

V2G corresponds to the combined use of SC with the possibility of using EVs as an 

energy resource available to the grid operator. V2G is the long term goal of EVs smart 

grid integration 

Fig. 4.19 presents the resulting scheduling using V2G concept. The solution was 

obtained in a random run of modified PSO. The objective function operation cost is 

6,193 m.u. The peak load occurs at period 20 with a value of 4.36 MW. It can be seen 

that for another random run using the same case study situation and the same 

optimization principle, e.g. V2G, the solution is slightly different than the previously 

presented in subsection 4.2.2 due to the stochastic nature of the method. 

 

Fig. 4.19 – Vehicle-to-grid mode scheduling 

4.5.4 Comparison analysis 

Fig. 4.20 shows the total charge load of EVs for UC, SC and V2G methodologies. SC 

and V2G create similar load patterns while UC is far different.  
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Fig. 4.20 – Vehicle charge load power for the different charging methodologies 

 

Table 4.8 shows a summary of the results for each charging methodology. The total 

load created by EVs in UC is about 6 times higher than for SC and V2G approaches. 

Peak power loss is much higher in UC than the two other approaches. With V2G 

capabilities peak loss was reduced by about 36% when compared to SC in this case 

study. Peak load, in this case, was reduced from 4.50 MW to 4.36 MW. The total EVs 

load is higher in V2G than SC methodology because V2G approach uses EVs to 

discharge. The operation energy costs can be reduced in this case by about 0.5%. It is 

not conclusive neither significant, however EVs owners can have some profit by letting 

their vehicles serve the grid in the common well because discharging price includes the 

energy cost, battery wear-out and battery efficiency. 

Clearly, UC is not suited for this number of EVs in the grid. With such approach 

network contingencies would arise. A smaller limit of EVs would be recommended in 

this case. SC and V2G are the most appropriate modes for network operation being 

V2G the ultimate choice. 

The execution time presents almost a residual variation among the presented 

approaches. Even with far less decision variables, UC takes approximately the same 

execution time as the two other approaches. The most noticeable reason is that this 

approach integrates extra programming code in PSO to accommodate UC mode thus 

eliminating the effect of less decision variables. 
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Table 4.8 – Charging methodologies results comparison 

Charging mode 

Objective 

function cost 

Execution 

time 

Peak 

load 

Peak 

power 

loss 

Total EVs 

load 
Violations 

(m.u.) (s) (MW) (kW) (MWh) Yes/No 

Uncontrolled 

charging (UC) 
7413 35 7.12 239.63 31.46 Yes 

Smart charging 

(SC) 
6222 34 4.50 60.67 5.04 No 

Vehicle-to-Grid 

(V2G) 
6193 35 4.36 38.84 5.78 No 

4.6 Electric vehicles demand response test cases 

4.6.1 Trip reduce demand response program test case 

A case study following the same conditions of subsection 4.2.1 was carried out to test 

the trip reduce demand response approach, however with different suppliers energy 

prices, different base load and different renewable energy availability. See appendix B 

for the respective data.  

Fig. 4.21 presents the results of the scheduling with DR trip reduce available. The 

reduce occurs mainly between period 9 and period 22. The total reduced energy from 

vehicle trips amounts to 3.72 MWh. 

 

Fig. 4.21 – Scheduling with DR trip reduce available 

Fig. 4.22 shows the charge scheduling of the EVs. A total charge of 6.23 MWh was 

dedicated to EVs. The high EVs charge occurred at period 18.  
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Fig. 4.22 – EVs charge scheduling with trip reduce available 

Table 4.9 shows the summary results of trip reduce approach compared with the results 

of not using trip reduce demand response program.  

Table 4.9 – Summary results of using and not using trip reduce 

 

Objective 

function cost 

Execution 

time 

Peak 

load 

Peak 

power 

loss 

Total 

EVs load 

Total 

EVs 

discharge 

Total trip 

reduce 

(m.u.) (s) (MW) (kW) (MWh) (MWh) (MWh) 

With trip 

reduce 

available 

13,129 50 6.10 180 6.24 4.56 3.72 

No trip 

reduce 

available 

13,208 35 6.25 200 7.41 1.95 - 

As seen in the Table 4.9 the execution time is higher when using the demand response 

option due to added computational programming code. The difference in the objective 

function cost is residual. However, the peak load is reduced as well as the system power 

loss. The discharging of EVs is higher mainly because there is less use of EVs battery 

when using trip reduce. 

4.6.2 Trip reduce demand response program definition test case 

For supporting network operator in the definition of trip reduce demand response 

program several operation scenarios were simulated in this case study. The proposed 

methodology was presented in the previous chapter (see subsection 3.4.2). 

Starting from an initial case study database (see subsection 4.2.1) a range of scenarios 

was created and some data was modified such as the available Distributed Generation 
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(DG), price of network suppliers and base load. Distributed generation based on 

renewable energy was varied from 0% to 100% of the original case study in steps of 5% 

(21 variations). Price of network suppliers was varied from 100% to 150% in steps of 

5% (11 variations). Base load was varied from 60% to 140% in steps of 10% (9 

variations). With these combinations a total of 2,079 different operation scenarios were 

created to simulate real world conditions. The modified PSO technique was executed 

for each of the created scenarios and the optimization results were stored. 

Data pre-processing phase consisted in converting the optimization results (in a 24 

period basis) to a one period basis. The conversion resulted in the attributes of Table 

4.10 from exception of the class attribute. Thus, a total of 49,896 period scenarios were 

created. After the data pre-processing phase the K-means clustering algorithm was used 

in order to identify similar patterns among trip reduce demand response usage per 

period. In this case the number of clusters was chosen to be equal to 10 to enable a 

reasonable analysis by the network operator and a reduced group of rules set. The 

results of the obtained profiles using 10 clusters can be seen in Table 4.11. 97% of the 

created scenarios did not used trip reduce demand response program. 

In order to estimate the usage of trip reduce demand response per period for a given 

operation condition it was implemented a classification model using rule-based 

modeling technique C5.0 classification algorithm. The input attributes data sets have 

been divided to form a training group and a test group. The separation among test and 

training classes is to avoid spoiled results, so that the model accuracy is not erroneous 

influenced. The classification model generates the decision tree to provide the rules set. 

Table 4.10 shows the attributes of the database that were used by the clustering 

algorithm and by the classification model to generate the rules set. 

Table 4.10 – Attributes used by the clustering and classification algorithm  

Variables Description Clust. Class. 

PERIOD Time interval (1-24h)  X 

TOTAL_ LOAD Total load for the given period  X 

DG_GEN 
Total generation from distributed generation for 

the given period 
 X 

SUPLLIERS_GEN Total suppliers generation for the given period  X 

V2G_DR Total trip reduce demand response program used X  

LAST_GEN_PRICE Last generation price for the given period  X 

V2G LOAD Total load from EVs for the given period  X 

CLASS Class obtained by clustering  X 

Total number of inputs 1 6 
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Table 4.11 – Obtained cluster from the k-means clustering algorithm 

Class Average usage (kWh) Simulations per cluster 

1 0,00 48204 

2 56,29 197 

3 104,04 289 

4 139,19 265 

5 167,77 386 

6 205,12 173 

7 236,91 208 

8 267,63 132 

9 310,79 24 

10 359,28 18 

 

As an example, the rules set for class 2 are presented: 

 Rule 1 for CLASS 2 

   if PERIOD > 15 

   and PERIOD <= 17 

   and TOTAL_LOAD > 4,133 

   and V2G_LOAD <= 0,697 

   and DG_GEN <= 1,364 

   and LAST_GEN_PRIC > 0,189 

   then CLASS 2 

 Rule 2 for CLASS 2 

   if PERIOD > 12 

   and PERIOD <= 13 

   and LAST_GEN_PRIC > 0,182 

   then CLASS 2 

 Rule 3 for CLASS 2 

   if PERIOD > 15 

   and PERIOD <= 17 

   and V2G_LOAD <= 0,697 

   and LAST_GEN_PRIC > 0,189 

   then CLASS 2 

The classification model generated a rule set with an overall accuracy of 98.18%. Table 

4.12 summarizes the information concerning the overall accuracy of the used C5.0 

algorithm for this case study. This methodology supports network operator decisions in 

the definition of trip reduce demand response program in its daily operation. It enables 

to estimate how much demand response is adequate for a certain operation condition. 

Table 4.12 – Overall accuracy 

 Total number Accuracy (%) 

Correct decisions 16596 98.18 

Wrong decisions 308 1.82 

Total 16904 100.00 
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4.7 Conclusions 

In this chapter several case studies were presented and discussed. The performance of 

the modified PSO approach proposed in this thesis for the day-ahead Distributed Energy 

Resources (DER) scheduling was compared with an exact method, namely Mixed 

Integer Non-Linear Programming (MINLP). The results have shown that the modified 

PSO approach execution time is faster by a factor of 2,600 times when compared to 

MINLP in the 33 bus system network case study. The solution quality in terms of 

objective function varied slightly between 0.06% and 0.55% in a 100 trials run test 

when compared to the MINLP reference technique. This demonstrates the suitability of 

using an approximate algorithm such as the modified PSO for the day-ahead energy 

resources scheduling  

The comparison of the modified PSO with the different variants of PSO, namely EPSO, 

NPSO and the traditional version demonstrated its superiority in terms of solution 

quality and execution time.  

The modified PSO was tested with a small sized 33 bus network with 2,000 V2G and a 

larger one of 180 bus with 8,000 V2G. The scheduling optimization took an average of 

35 seconds on the smaller network and 401 seconds on the larger one. This value even 

when compared with the 91,018 seconds (more than 25 hous) of MINLP for the 33 bus 

network case approach is very low. It is expected that MINLP execution time for the 

180 bus test case is impracticable for the day-ahead context with the exponential nature 

of the MINLP problems. Further investigation is required to test MINLP approach with 

a larger test case using MINLP. 

Another important conclusion drawn from the case studies is that vehicle-to-grid and 

smart charging approaches are the suitable ways to deal with the intensive penetration 

of EVs. In spite of uncontrolled charging do not requiring investments in car-to-grid 

communications, this methodology will certainly cause more network contingencies 

with higher penetration of EVs unless appropriated network investments are made. 

A case study with the application of demand response for EVs users, proposed in 

chapter 3, was illustrated and compared with a case study without demand response. 

The trip reduce demand response program demonstrated that, in certain operation 



Modified PSO for Day-Ahead Distributed Energy Resources Scheduling Including Vehicle-to-Grid 2011 
 

4-26 

João Soares 

conditions, it is possible to reduce operation costs, the peak load and the system power 

loss. 
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5 Conclusions and Future Work 

 

 

 

The expected rise of Electric Vehicles (EVs) use poses new challenges and, at the same 

time, opens new opportunities for distribution network operators. With the adequate 

infrastructure in place and with the possibility of EVs being used as an energy resource 

using the Vehicle-To-Grid (V2G) approach, the day-ahead resource scheduling model 

needs to be revised in order to include these new requirements. This thesis focuses on 

that particular case of optimization.  

To deal with a high number of variables in the non-linear optimization process, 

metaheuristics are the appropriate tools to reduce execution time. Particle Swarm 

Optimization (PSO) was selected in this work due to its proven success in the power 

system field. 

This thesis addressed some aspects in the power system optimization field for the day-

ahead Distributed Energy Resources (DER) scheduling, namely providing:  

 EVs Scenario Simulator (EVeSSi) for the creation of custom scenarios in 

distribution networks with EVs; 

 Full mathematical model that supports the V2G concept in the day-ahead 

scheduling context; 

 Improved PSO for the presented problem; 

 Trip reduce model for electric vehicle demand response. 

The thesis presented a brief review of the current electric vehicle technology, including 

EVs batteries capacity and charging/discharging rates. The battery cell ageing as well as 
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battery costs of EVs should be taken into account in V2G applications involving 

economy costs. With the present battery production technology the estimated battery 

wear-out cost can vary between 1 and 6 cents of a dollar per kWh of used energy. 

A tool called EVs Scenario Simulator (EVeSSi) has been developed to enable the 

creation of custom scenarios in distribution networks with EVs. This tool can be 

parameterized by the user to catch EV technology, driving behaviors and market 

penetration. 

A mathematical model has been developed to include the V2G concept and the trip 

reduce demand response program. The vehicle users’ requirements and technical 

constraints are considered in the model as well as charging and discharging efficiency. 

The network constraints are also included for obtaining feasible solutions. 

The introduction of V2G resources in the optimization problem represents new demands 

in terms of computational power requirements. The meta-heuristic PSO was modified to 

better suit the problem of Distributed Energy Resources (DER) optimal scheduling. A 

classic method, namely Mixed Integer Non-Linear Programming (MINLP), has been 

used for comparison purposes. The performance of the modified PSO was compared 

with MINLP using a case study considering a 33 bus distribution network and 2,000 

gridable EVs. The performance of the modified PSO surpassed the MINLP execution 

time by a factor of 2,600 times with 35 seconds in PSO against 91,018 seconds (more 

than 25 hours) in MINLP. When compared to MINLP, the modified PSO presented only 

slightly worse solutions (a residual difference with a maximum of 0.55% in 100 trials). 

When compared with other variants, the modified PSO still managed to get better 

execution time and better solutions using the same case study. It is reasonable to 

conclude that the development of an application-specific PSO for the day-ahead DER 

scheduling proved its success in the comparison case studies. 

A large-scale case study using a 180 bus network with 8,000 V2G demonstrated that the 

modified PSO execution time is still acceptable when the number of variables is very 

high. The execution time in the large-scale case study was around 400 seconds against 

35 seconds for the 33 bus distribution system network. The execution time of MINLP 

approach in this case study is expected to be massive what makes it useless even for 

day-ahead scheduling requirements. 
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Three different vehicle grid interaction approaches have been tested, namely, 

Uncontrolled Charging (UC), Smart Charging (SC) and V2G. These approachs differ in 

the way vehicles interact with the grid. UC is the grid uncontrolled approach, e.g. 

vehicles starts charging whenether the owner plugs in. In the SC approach the grid 

operator can control when vehicles charge while respecting the owners requested 

battery levels for each period. In the V2G approach, besides SC philosophy the grid 

operator can use the vehicles to discharge power to the grid while paying to its owners. 

The case study revealed that UC is inappropriate to hold a large number of vehicles in 

the network because of simultaneous vehicles charges that cause network technical 

violations. Consequently, the UC approach can expose network operator to critical 

operation situations if the number of vehicles is high and no network upgrades are 

considered. SC and V2G are more appropriate for the tested number of vehicles, being 

V2G the best choice in terms of costs reduction while reducing peak load and network 

power loss. 

Electric vehicle demand response for EVs users has been proposed in this thesis 

considering the day-ahead context. A trip reduce demand response program has been 

designed and implemented. The case study considering the trip reduce demand response 

program demonstrated that it is possible to reduce operation costs, peak load as well as 

the system power loss. A data-mining based methodology to support the definition of 

trip reduce demand response program was developed enabling to estimate how much 

trip reduce is adequate for a certain operation condition. The trip shifting program 

framework is proposed as future work and further investigation is required to analyze its 

effectiveness. 

The work done in the scope of this thesis opens new horizons for future developments. 

Thus, the following list gives some suggestions for the upgrade of the proposed 

methodology: 

 Improve EVeSSi tool to create advanced realistic vehicle movements in the 

distribution network; 

 Experiment quadratic cost functions in the mathematical formulation with an 

appropriate case study; 

 Investigate multi-objective function problems in the day-ahead scheduling 

context using adequate versions of PSO for multi-objective problems; 
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 Extend the mathematical model to consider the low voltage distribution system 

level in order to improve the precision of the results, namely what concerns the 

network power lossin that level; 

 Prepare more test cases considering different scenarios of EVs penetration and 

other distribution networks and compare with MINLP and the modified PSO; 

 Demonstrate modified PSO ability to avoid solutions violations in critical 

network situations, e.g. operation in network limits, and compare with other 

variants and MINLP; 

 Compare the modified PSO with more PSO variants and other approximate 

algorithms such as firefly algorithm, mean variance optimization and 

glowswarm optimization;  

 Explore the parallelization of the PSO algorithm under a parallel computing 

plataform to improve execution time in large-scale problems; 

 Further investigation is required to analyse the viability of demand response 

programs for EVs; 

 Further investigation on additional demand response programs for EVs 

including the analysis of the proposed trip shifting demand response program. 

In what concerns the trip shifting demand response program for EVs some work has 

already been done. It aims to provide another useful resource for the network operator. 

This demand response program enables vehicle users to provide a list of optional 

travelling periods for their already expected travel trips. This enables the network 

operator to shift load by paying participating users, reduce operational costs and 

alleviate network contingencies. 

Fig. 5.1 presents the possible framework for this program. This framework is very 

similar as the presented previously for DR trip reduce program (see Fig. 3.5) however 

with a different purpose. For instance, in this example EV user 1 expects to travel in 

periods 9 to 10 and 18 to 19. The initial optimization result returned an EV user 1 

travelled in period 7 to 8 instead of 9 to 10. The shifting should be limited to the 

alternatives that users impose, limiting the computational execution time of 

optimization process at the same time. The acknowledgment of users’ participation in 

the demand response program is of extreme importance for network operator in order to 

obtain the appropriate resources scheduling and reduce operational costs. 
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Fig. 5.1 – Framework of DR trip shifting program 

 

 

Fig. 5.2 presents a brief framework for the future work. 
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Fig. 5.2 – Future work framework 
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Appendix A – Case study data 33 bus 

Resources price in monetary units (m.u.) – 33 bus network case study 

 

 

Resources price (m.u.) 

Generator ID Bus 
Price (m.u./MWh) 

Generator ID Bus 
Price (m.u./MWh) 

Period 1 to 24 Period 1 to 24 

1 1 110 39 19 212 

2 1 67 40 19 78 

3 2 145 41 20 199 

4 2 102 42 20 74 

5 2 132 43 21 205 

6 3 180 44 21 75 

7 3 64 45 22 210 

8 4 254 46 23 208 

9 4 98 47 23 74 

10 5 184 48 24 218 

11 5 95 49 24 136 

12 6 191 50 24 65 

13 6 74 51 25 194 

14 7 197 52 26 194 

15 7 62 53 26 58 

16 7 85 54 27 198 

17 7 105 55 27 98 

18 8 179 56 28 177 

19 8 190 57 28 57 

20 9 152 58 29 154 

21 10 210 59 29 81 

22 10 186 60 30 165 

23 11 204 61 30 75 

24 11 56 62 30 100 

25 12 197 63 31 174 

26 12 74 64 31 91 

27 13 198 65 32 184 

28 13 79 66 32 109 

29 14 210 67* 0 60 

30 14 60 68* 0 70 

31 15 178 69* 0 80 

32 15 110 70* 0 90 

33 16 189 71* 0 100 

34 16 226 72* 0 110 

35 17 176 73* 0 120 

36 17 87 74* 0 130 

37 18 156 75* 0 140 

38 18 89 76* 0 150 

* Network suppliers   



Modified PSO for Day-Ahead Distributed Energy Resources Scheduling Including Vehicle-to-Grid 2011 
 

A - 2 

   João Soares 

Vehicles charge and discharge price (m.u.) 

Charge Price (m.u./MWh) Discharge Price (m.u./MWh) 

Period 1 to 24  Period 1 to 24 

70 90 

 

 

Resources technology – 33 bus network case study 

Generator ID Bus Type Technology 
Generator 

ID 
Bus Type Technology 

1 1 1 Photovoltaic 39 19 1 Photovoltaic 

2 1 2 Cogeneration 40 19 2 Cogeneration 

3 2 2 Hydro small 41 20 1 Photovoltaic 

4 2 2 Fuel cell 42 20 2 Wind 

5 2 1 Photovoltaic  43 21 1 Photovoltaic 

6 3 1 Photovoltaic 44 21 2 Cogeneration 

7 3 2 Cogeneration 45 22 1 Photovoltaic 

8 4 1 Photovoltaic 46 23 1 Photovoltaic 

9 4 2 Fuel cell 47 23 2 Cogeneration 

10 5 1 Photovoltaic 48 24 1 Photovoltaic 

11 5 2 Fuel cell 49 24 2 Wind 

12 6 1 Photovoltaic 50 24 2 Cogeneration 

13 6 2 Cogeneration 51 25 1 Photovoltaic 

14 7 1 Photovoltaic 52 26 1 Photovoltaic 

15 7 2 Wind power 53 26 2 Cogeneration 

16 7 2 Fuel cell 54 27 1 Photovoltaic 

17 7 2 Cogeneration 55 27 2 Fuel cell 

18 8 1 Photovoltaic 56 28 1 Photovoltaic 

19 8 2 Biomass 57 28 2 Cogeneration 

20 9 1 Photovoltaic 58 29 1 Photovoltaic 

21 10 1 Photovoltaic 59 29 2 Cogeneration 

22 10 2 Biomass 60 30 1 Photovoltaic 

23 11 1 Photovoltaic 61 30 2 Wind 

24 11 2 Waste to energy 62 30 2 Fuel cell 

25 12 1 Photovoltaic 63 31 1 Photovoltaic 

26 12 2 Cogeneration 64 31 2 Cogeneration 

27 13 1 Photovoltaic 65 32 1 Photovoltaic 

28 13 2 Cogeneration 66 32 2 Fuel cell 

29 14 1 Photovoltaic 67 0 2 Supplier 

30 14 2 Wind 68 0 2 Supplier 

31 15 1 Photovoltaic 69 0 2 Supplier 

32 15 2 Fuel cell 70 0 2 Supplier 

33 16 1 Photovoltaic 71 0 2 Supplier 

34 16 2 Biomass 72 0 2 Supplier 

35 17 1 Photovoltaic 73 0 2 Supplier 

36 17 2 Cogeneration 74 0 2 Supplier 

37 18 1 Photovoltaic 75 0 2 Supplier 

38 18 2 Hydro small 76 0 2 Supplier 

Type:  

1 – Network cannot control generation 

2 – Network can control generation 
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Resources active power limits (p.u.) – 33 bus network case study 

 

Resources active power limits (p.u.) from period 1 to 12 

Generator ID 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

3 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

4 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

7 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

9 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

11 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

13 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

15 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

16 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.060 0.060 0.060 0.060 

17 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

19 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

22 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

24 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

26 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

28 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

30 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.060 0.060 0.060 0.060 

31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

32 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

34 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

36 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.050 0.090 

38 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 
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Generator ID 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.030 0.030 0.030 

40 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

42 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.045 0.045 0.045 0.045 

43 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

44 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

47 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

49 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.045 0.045 0.045 0.045 

50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

51 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

53 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

54 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

55 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

56 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

57 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

58 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

59 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

61 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

62 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.045 0.045 0.045 0.045 

63 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

64 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

65 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

66 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

67* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

68* 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

69* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

70* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

71* 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

72* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

73* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

74* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

75* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

76* 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

* Network suppliers 
 

Resources active power limits (p.u.) from period 13 to 24 

Generator ID 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

1 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

3 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

4 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

5 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

8 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

10 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

11 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

12 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

13 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

14 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 
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Generator ID 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

16 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.125 0.125 0.125 0.125 

17 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

18 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

19 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

20 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

21 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

22 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

23 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

24 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

25 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

26 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

27 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

28 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

29 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

30 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.125 0.125 0.125 0.125 

31 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

32 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

33 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

34 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

35 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

36 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

37 0.090 0.050 0.050 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

38 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

39 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 

40 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

41 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

42 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.085 0.085 0.085 0.085 

43 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

44 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

45 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

46 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

47 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

48 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

49 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.085 0.085 0.085 0.085 

50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

51 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

52 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

53 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

54 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

55 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

56 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

57 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

58 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

59 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

60 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

61 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

62 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.085 0.085 0.085 0.085 

63 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

64 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

65 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

66 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

67* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

68* 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

69* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

70* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

71* 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

72* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

73* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

74* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

75* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

76* 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

* Network suppliers 
  



Modified PSO for Day-Ahead Distributed Energy Resources Scheduling Including Vehicle-to-Grid 2011 
 

A - 6 

   João Soares 

Network lines data in per unit system (p.u.) – 33 bus network case study 

 

 

Network lines data 

From bus To bus Resistance (p.u.) Inductive reactance (p.u.) Capacitance (p.u.) Thermal limit (p.u.) 

0 1 0.00083 0.00029 0.00000 5.50 

1 2 0.00444 0.00157 0.00000 5.50 

1 18 0.00168 0.00060 0.00000 5.50 

2 3 0.00243 0.00065 0.00000 4.29 

2 22 0.00377 0.00133 0.00000 5.50 

3 4 0.00119 0.00032 0.00000 4.29 

4 5 0.00453 0.00122 0.00000 4.29 

5 6 0.00656 0.00177 0.00000 4.29 

5 25 0.00665 0.00179 0.00000 4.29 

6 7 0.00125 0.00034 0.00000 4.29 

7 8 0.00238 0.00064 0.00000 4.29 

8 9 0.00935 0.00252 0.00000 4.29 

9 10 0.00345 0.00093 0.00000 4.29 

10 11 0.00376 0.00101 0.00000 4.29 

11 12 0.00475 0.00128 0.00000 4.29 

12 13 0.00821 0.00221 0.00000 4.29 

13 14 0.00466 0.00126 0.00000 4.29 

14 15 0.00205 0.00055 0.00000 4.29 

15 16 0.01877 0.00506 0.00000 4.29 

16 17 0.00511 0.00138 0.00000 4.29 

18 19 0.00639 0.00226 0.00000 5.50 

19 20 0.00407 0.00144 0.00000 5.50 

20 21 0.00809 0.00286 0.00000 5.50 

22 23 0.00808 0.00285 0.00000 5.50 

23 24 0.00093 0.00033 0.00000 5.50 

25 26 0.00181 0.00049 0.00000 4.29 

26 27 0.00674 0.00182 0.00000 4.29 

27 28 0.00512 0.00138 0.00000 4.29 

28 29 0.00323 0.00087 0.00000 4.29 

29 30 0.00621 0.00167 0.00000 4.29 

30 31 0.00198 0.00053 0.00000 4.29 

31 32 0.00217 0.00059 0.00000 4.29 
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Load data per period (p.u.) – 33 bus network case study 

 

Active power per period in p.u. – period 1 to 12 

Bus 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0796 0.0575 0.0531 0.0487 0.0531 0.0575 0.0620 0.0988 0.1005 0.1087 0.1095 0.1103 

2 0.0849 0.0518 0.0478 0.0438 0.0478 0.0518 0.0786 0.0910 0.0932 0.0942 0.0941 0.0717 

3 0.0875 0.0690 0.0637 0.0584 0.0637 0.0690 0.0785 0.1193 0.1254 0.1369 0.1258 0.1105 

4 0.0614 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0478 0.0478 0.0478 0.0479 

5 0.0510 0.0345 0.0319 0.0292 0.0319 0.0345 0.0702 0.0644 0.0724 0.0910 0.0886 0.0478 

6 0.1514 0.1151 0.1062 0.0974 0.1062 0.1151 0.1521 0.1854 0.1899 0.2035 0.1912 0.1565 

7 0.1524 0.1151 0.1062 0.0974 0.1062 0.1151 0.1602 0.1814 0.1935 0.2502 0.2345 0.1568 

8 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0478 0.0478 0.0478 0.0478 

9 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0478 0.0478 0.0478 0.0478 

10 0.0279 0.0259 0.0239 0.0219 0.0239 0.0259 0.0279 0.0400 0.0500 0.0358 0.0358 0.0358 

11 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0600 0.0700 0.0700 0.0800 0.0600 

12 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0600 0.0700 0.0700 0.0700 0.0600 

13 0.0743 0.0690 0.0637 0.0584 0.0637 0.0690 0.1000 0.1000 0.1700 0.1800 0.1700 0.1100 

14 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0600 0.0478 0.0478 0.0478 

15 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0478 0.0478 0.0478 0.0478 

16 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0600 0.0478 0.0478 0.0478 

17 0.0558 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0637 0.0900 0.0717 0.0717 0.0717 

18 0.0558 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0500 0.0800 0.0717 0.0717 0.0717 

19 0.0558 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0500 0.0600 0.0717 0.0717 0.0717 

20 0.0558 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0637 0.0600 0.0717 0.0717 0.0800 

21 0.0558 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0637 0.0800 0.0717 0.0717 0.1000 

22 0.0800 0.0518 0.0478 0.0438 0.0478 0.0518 0.0558 0.0637 0.0800 0.0717 0.0717 0.1000 

23 0.2500 0.2416 0.2230 0.2045 0.2230 0.2416 0.2800 0.2974 0.3000 0.3346 0.3346 0.3000 

24 0.2500 0.2416 0.2230 0.2045 0.2230 0.2416 0.2800 0.2974 0.3000 0.3500 0.3500 0.3000 

25 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0500 0.0500 0.0700 0.0600 0.0478 

26 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0500 0.0500 0.0700 0.0600 0.0478 

27 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0425 0.0478 0.0700 0.0478 0.0478 

28 0.0743 0.0690 0.0637 0.0584 0.0637 0.0690 0.0743 0.1000 0.1100 0.1400 0.1300 0.0956 

29 0.1239 0.1151 0.1062 0.0974 0.1062 0.1151 0.1239 0.1600 0.2000 0.1700 0.1600 0.1593 

30 0.0929 0.0863 0.0797 0.0730 0.0797 0.0863 0.0929 0.1100 0.1500 0.1195 0.1195 0.1000 

31 0.1301 0.1208 0.1115 0.1022 0.1115 0.1208 0.1301 0.1400 0.2400 0.2000 0.1900 0.1600 

32 0.0372 0.0345 0.0319 0.0292 0.0319 0.0345 0.0372 0.0500 0.0478 0.0478 0.0478 0.0400 
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Active power in p.u.  per period. – period 13 to 24 

Bus 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

1 0.0655 0.0659 0.0666 0.0632 0.0680 0.0752 0.0859 0.0885 0.0797 0.0788 0.0664 0.0620 

2 0.0651 0.0604 0.0575 0.0633 0.0685 0.0677 0.0857 0.0797 0.0717 0.0775 0.0597 0.0558 

3 0.0830 0.0602 0.0585 0.0634 0.0685 0.0903 0.1234 0.1062 0.0957 0.0956 0.1014 0.0744 

4 0.0384 0.0299 0.0247 0.0251 0.0347 0.0451 0.0687 0.0531 0.0479 0.0490 0.0514 0.0372 

5 0.0425 0.0425 0.0399 0.0201 0.0425 0.0451 0.0787 0.0531 0.0478 0.0398 0.0398 0.0372 

6 0.1478 0.1351 0.1348 0.1399 0.1442 0.1505 0.2025 0.1770 0.1593 0.1225 0.1328 0.1239 

7 0.1435 0.1354 0.1325 0.1315 0.1442 0.1505 0.2054 0.1770 0.2321 0.1545 0.1521 0.1239 

8 0.0425 0.0425 0.0425 0.0370 0.0425 0.0451 0.0700 0.0531 0.0900 0.0300 0.0398 0.0372 

9 0.0425 0.0425 0.0410 0.0360 0.0425 0.0451 0.0478 0.0700 0.0600 0.0398 0.0398 0.0372 

10 0.0319 0.0319 0.0300 0.0319 0.0319 0.0339 0.0600 0.0800 0.0800 0.0400 0.0400 0.0279 

11 0.0300 0.0300 0.0260 0.0350 0.0360 0.0451 0.0478 0.0900 0.0700 0.0400 0.0398 0.0372 

12 0.0425 0.0425 0.0410 0.0425 0.0425 0.0451 0.0478 0.0700 0.0478 0.0400 0.0398 0.0372 

13 0.0850 0.0900 0.0850 0.0850 0.0850 0.0903 0.1500 0.1700 0.1800 0.1200 0.0900 0.0743 

14 0.0450 0.0420 0.0380 0.0430 0.0460 0.0500 0.0700 0.0700 0.0800 0.0900 0.0600 0.0372 

15 0.0425 0.0500 0.0500 0.0430 0.0460 0.0500 0.0478 0.0700 0.0800 0.0398 0.0398 0.0372 

16 0.0800 0.0600 0.0500 0.0430 0.0460 0.0500 0.0478 0.0700 0.0700 0.1300 0.0700 0.0372 

17 0.0800 0.0637 0.0637 0.0637 0.0637 0.0677 0.0900 0.1100 0.1000 0.1000 0.0597 0.0558 

18 0.0800 0.0637 0.0637 0.0637 0.0637 0.0677 0.0717 0.1200 0.0717 0.0900 0.0900 0.0558 

19 0.0800 0.0637 0.0637 0.0637 0.0637 0.0677 0.0900 0.0797 0.0717 0.1200 0.0900 0.0558 

20 0.0800 0.0900 0.0700 0.0637 0.0637 0.0677 0.0900 0.1200 0.1000 0.1100 0.0800 0.0558 

21 0.0800 0.0637 0.0637 0.0637 0.0637 0.0677 0.0900 0.1200 0.1000 0.1500 0.0900 0.0558 

22 0.0637 0.0700 0.0670 0.0637 0.0637 0.0677 0.0717 0.0797 0.1000 0.1000 0.0800 0.0558 

23 0.2974 0.2974 0.2974 0.2974 0.3000 0.3800 0.3800 0.4500 0.4600 0.3500 0.3000 0.3000 

24 0.2500 0.2974 0.2974 0.2974 0.3200 0.3800 0.4500 0.5000 0.4800 0.3500 0.3500 0.2500 

25 0.0425 0.0420 0.0410 0.0430 0.0460 0.0700 0.0700 0.1000 0.0800 0.0800 0.0700 0.0600 

26 0.0500 0.0360 0.0340 0.0350 0.0460 0.0600 0.0478 0.0531 0.0478 0.0500 0.0600 0.0600 

27 0.0425 0.0350 0.0400 0.0425 0.0425 0.0451 0.0478 0.0600 0.0800 0.1000 0.1000 0.0900 

28 0.0900 0.0790 0.0700 0.0650 0.0680 0.0800 0.1200 0.2000 0.2000 0.2000 0.1500 0.1500 

29 0.1400 0.1380 0.1300 0.1390 0.1400 0.1505 0.1900 0.2500 0.1900 0.1500 0.1000 0.1239 

30 0.1200 0.1200 0.1300 0.1300 0.1300 0.1300 0.1195 0.1328 0.1400 0.1900 0.2000 0.1500 

31 0.1500 0.1500 0.1450 0.1600 0.1500 0.1700 0.2000 0.3000 0.2500 0.2000 0.2000 0.1500 

32 0.0400 0.0390 0.0500 0.0500 0.0410 0.0600 0.0700 0.1000 0.1200 0.1500 0.0800 0.0500 
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Definition of EVs models in EVeSSi tool – 33 bus network case study 

 

Models definition 

Model ID Description 

Battery 

capacity 

(kWh) 

Slow 

charging 

rate 

(kW) 

Fast 

charging 

rate 

(kWh) 

Average 

economy 

(kWh/km) 

Average 

speed 

(km/h) 

Average 

km day 

(km/day) 

Vehicle 

type 

Vehicle 

class 

1 Passenger car 8.7 3 0 0.1122 20 20 BEV L7e 

2 Passenger car 28.5 3 57 0.1608 35 38 BEV M1 

3 Commercial van 23.0 3 46 0.1854 30 56 BEV N1 

4 Light truck 85.3 10 60 0.5867 40 136 BEV N2 

5 Passenger car 8.2 3 0 0.1560 35 20 PHEV M1 

6 Commercial van 8.2 3 0 0.1560 30 20 PHEV N1 

7 Passenger car 16.9 3 0 0.2530 35 20 EREV M1 

8 Commercial van 16.9 3 0 0.2530 30 30 EREV N1 

 

EV classes’ definition 

Vehicle 

class 
Share 

L7e 0.005 

M1 0.870 

M2 0.000 

M3 0.000 

N1 0.100 

N2 0.025 

N3 0.000 

 

EV types definition 

Vehicle 

type 
Share 

BEV 0.333 

PHEV 0.333 

EREV 0.333 
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Appendix B – Case study data trip reduce 

Resources price in monetary units (m.u.) – 33 bus network case study 

 

 

Resources price (m.u.) 

Generator ID Bus 
Price (m.u./MWh) 

Period 1 to 24 

67* 0 90 

68* 0 105 

69* 0 120 

70* 0 135 

71* 0 150 

72* 0 165 

73* 0 180 

74* 0 195 

75* 0 210 

76* 0 225 

* Network suppliers  

 

 

Vehicles charge and discharge price (m.u.) 

Charge price (m.u./MWh) Discharge price (m.u./MWh) 

Period 1 to 24  Period 1 to 24 

70 90 

 

 

Trip reduce demand response price(m.u.) 

Trip reduce demand response price (m.u./MWh) 

Period 1 to 24 

100 
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Resources active power limits (p.u.) – 33 bus network case study 

 

 

Resources active power limits (p.u.) from period 1 to 12 

Generator ID 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.015 0.015 0.020 0.030 

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

13 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

16 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.060 0.060 0.060 0.060 

17 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

19 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

22 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

24 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

26 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

28 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

32 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

34 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

36 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

38 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Generator ID 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

43 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

44 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

47 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

49 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

51 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

53 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

54 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

55 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

56 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

57 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

58 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

59 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

62 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.045 0.045 0.045 0.045 

63 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

64 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

65 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

66 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

67* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

68* 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

69* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

70* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

71* 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

72* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

73* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

74* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

75* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

76* 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

* Network suppliers 
 

 

Resources active power limits (p.u.) from period 13 to 24 

Generator ID 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

5 0.030 0.020 0.020 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

13 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

16 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.125 0.125 0.125 0.125 

17 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

19 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Generator ID 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

22 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

24 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

26 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

28 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

32 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

34 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

36 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

38 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

43 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

44 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

47 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

49 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

51 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

53 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

54 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

55 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

56 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

57 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

58 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

59 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

62 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.085 0.085 0.085 0.085 

63 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

64 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

65 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

66 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

67* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

68* 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

69* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

70* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

71* 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

72* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

73* 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 

74* 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

75* 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

76* 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

* Network suppliers 
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Load data per period (p.u.) – 33 bus network case study 

Active power per period in p.u. – period 1 to 12 

Bus 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.1114 0.0805 0.0743 0.0682 0.0743 0.0805 0.0867 0.1383 0.1407 0.1522 0.1533 0.1544 

2 0.1188 0.0725 0.0669 0.0613 0.0669 0.0725 0.1100 0.1274 0.1305 0.1319 0.1318 0.1004 

3 0.1226 0.0967 0.0892 0.0818 0.0892 0.0967 0.1100 0.1670 0.1756 0.1916 0.1761 0.1547 

4 0.0860 0.0483 0.0446 0.0409 0.0447 0.0483 0.0521 0.0595 0.0669 0.0669 0.0669 0.0670 

5 0.0714 0.0483 0.0446 0.0409 0.0446 0.0483 0.0983 0.0901 0.1013 0.1274 0.1240 0.0669 

6 0.2120 0.1611 0.1487 0.1363 0.1487 0.1611 0.2129 0.2596 0.2658 0.2849 0.2677 0.2191 

7 0.2134 0.1611 0.1487 0.1363 0.1487 0.1611 0.2243 0.2540 0.2709 0.3503 0.3283 0.2195 

8 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0669 0.0669 0.0669 0.0669 

9 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0669 0.0669 0.0669 0.0669 

10 0.0390 0.0362 0.0335 0.0307 0.0335 0.0362 0.0390 0.0560 0.0700 0.0502 0.0502 0.0502 

11 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0840 0.0980 0.0980 0.1120 0.0840 

12 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0840 0.0980 0.0980 0.0980 0.0840 

13 0.1041 0.0967 0.0892 0.0818 0.0892 0.0967 0.1400 0.1400 0.2380 0.2520 0.2380 0.1540 

14 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0840 0.0669 0.0669 0.0669 

15 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0669 0.0669 0.0669 0.0669 

16 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0840 0.0669 0.0669 0.0669 

17 0.0781 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0892 0.1260 0.1004 0.1004 0.1004 

18 0.0781 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0700 0.1120 0.1004 0.1004 0.1004 

19 0.0781 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0700 0.0840 0.1004 0.1004 0.1004 

20 0.0781 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0892 0.0840 0.1004 0.1004 0.1120 

21 0.0781 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0892 0.1120 0.1004 0.1004 0.1400 

22 0.1120 0.0725 0.0669 0.0613 0.0669 0.0725 0.0781 0.0892 0.1120 0.1004 0.1004 0.1400 

23 0.3500 0.3383 0.3123 0.2862 0.3123 0.3383 0.3920 0.4164 0.4200 0.4684 0.4684 0.4200 

24 0.3500 0.3383 0.3123 0.2862 0.3123 0.3383 0.3920 0.4164 0.4200 0.4900 0.4900 0.4200 

25 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0700 0.0700 0.0980 0.0840 0.0669 

26 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0700 0.0700 0.0980 0.0840 0.0669 

27 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0595 0.0669 0.0980 0.0669 0.0669 

28 0.1041 0.0967 0.0892 0.0818 0.0892 0.0967 0.1041 0.1400 0.1540 0.1960 0.1820 0.1338 

29 0.1735 0.1611 0.1487 0.1363 0.1487 0.1611 0.1735 0.2240 0.2800 0.2380 0.2240 0.2230 

30 0.1301 0.1208 0.1115 0.1022 0.1115 0.1208 0.1301 0.1540 0.2100 0.1673 0.1673 0.1400 

31 0.1822 0.1691 0.1561 0.1431 0.1561 0.1691 0.1822 0.1960 0.3360 0.2800 0.2660 0.2240 

32 0.0520 0.0483 0.0446 0.0409 0.0446 0.0483 0.0520 0.0700 0.0669 0.0669 0.0669 0.0560 

Active power in p.u.  per period. – period 13 to 24 

Bus 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

1 0.0917 0.0922 0.0932 0.0885 0.0952 0.1053 0.1202 0.1239 0.1115 0.1103 0.0929 0.0867 

2 0.0912 0.0846 0.0804 0.0887 0.0959 0.0948 0.1199 0.1115 0.1004 0.1084 0.0836 0.0781 

3 0.1162 0.0843 0.0819 0.0887 0.0959 0.1264 0.1728 0.1487 0.1339 0.1339 0.1420 0.1041 

4 0.0538 0.0418 0.0346 0.0352 0.0486 0.0632 0.0962 0.0744 0.0670 0.0685 0.0719 0.0520 

5 0.0595 0.0595 0.0558 0.0282 0.0595 0.0632 0.1102 0.0743 0.0669 0.0558 0.0558 0.0520 

6 0.2069 0.1891 0.1887 0.1959 0.2019 0.2107 0.2835 0.2478 0.2230 0.1715 0.1859 0.1735 

7 0.2009 0.1896 0.1855 0.1841 0.2019 0.2107 0.2876 0.2478 0.3249 0.2163 0.2129 0.1735 

8 0.0595 0.0595 0.0595 0.0518 0.0595 0.0632 0.0980 0.0743 0.1260 0.0420 0.0558 0.0520 

9 0.0595 0.0595 0.0574 0.0504 0.0595 0.0632 0.0669 0.0980 0.0840 0.0558 0.0558 0.0520 

10 0.0446 0.0446 0.0420 0.0446 0.0446 0.0474 0.0840 0.1120 0.1120 0.0560 0.0560 0.0390 

11 0.0420 0.0420 0.0364 0.0490 0.0504 0.0632 0.0669 0.1260 0.0980 0.0560 0.0558 0.0520 

12 0.0595 0.0595 0.0574 0.0595 0.0595 0.0632 0.0669 0.0980 0.0669 0.0560 0.0558 0.0520 

13 0.1190 0.1260 0.1190 0.1190 0.1190 0.1264 0.2100 0.2380 0.2520 0.1680 0.1260 0.1041 

14 0.0630 0.0588 0.0532 0.0602 0.0644 0.0700 0.0980 0.0980 0.1120 0.1260 0.0840 0.0520 

15 0.0595 0.0700 0.0700 0.0602 0.0644 0.0700 0.0669 0.0980 0.1120 0.0558 0.0558 0.0520 

16 0.1120 0.0840 0.0700 0.0602 0.0644 0.0700 0.0669 0.0980 0.0980 0.1820 0.0980 0.0520 

17 0.1120 0.0892 0.0892 0.0892 0.0892 0.0948 0.1260 0.1540 0.1400 0.1400 0.0836 0.0781 

18 0.1120 0.0892 0.0892 0.0892 0.0892 0.0948 0.1004 0.1680 0.1004 0.1260 0.1260 0.0781 

19 0.1120 0.0892 0.0892 0.0892 0.0892 0.0948 0.1260 0.1115 0.1004 0.1680 0.1260 0.0781 

20 0.1120 0.1260 0.0980 0.0892 0.0892 0.0948 0.1260 0.1680 0.1400 0.1540 0.1120 0.0781 

21 0.1120 0.0892 0.0892 0.0892 0.0892 0.0948 0.1260 0.1680 0.1400 0.2100 0.1260 0.0781 
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Bus 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 

22 0.0892 0.0980 0.0938 0.0892 0.0892 0.0948 0.1004 0.1115 0.1400 0.1400 0.1120 0.0781 

23 0.4164 0.4164 0.4164 0.4164 0.4200 0.5320 0.5320 0.6300 0.6440 0.4900 0.4200 0.4200 

24 0.3500 0.4164 0.4164 0.4164 0.4480 0.5320 0.6300 0.7000 0.6720 0.4900 0.4900 0.3500 

25 0.0595 0.0588 0.0574 0.0602 0.0644 0.0980 0.0980 0.1400 0.1120 0.1120 0.0980 0.0840 

26 0.0700 0.0504 0.0476 0.0490 0.0644 0.0840 0.0669 0.0743 0.0669 0.0700 0.0840 0.0840 

27 0.0595 0.0490 0.0560 0.0595 0.0595 0.0632 0.0669 0.0840 0.1120 0.1400 0.1400 0.1260 

28 0.1260 0.1106 0.0980 0.0910 0.0952 0.1120 0.1680 0.2800 0.2800 0.2800 0.2100 0.2100 

29 0.1960 0.1932 0.1820 0.1946 0.1960 0.2107 0.2660 0.3500 0.2660 0.2100 0.1400 0.1735 

30 0.1680 0.1680 0.1820 0.1820 0.1820 0.1820 0.1673 0.1859 0.1960 0.2660 0.2800 0.2100 

31 0.2100 0.2100 0.2030 0.2240 0.2100 0.2380 0.2800 0.4200 0.3500 0.2800 0.2800 0.2100 

32 0.0560 0.0546 0.0700 0.0700 0.0574 0.0840 0.0980 0.1400 0.1680 0.2100 0.1120 0.0700 
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Appendix C – Case study data 180 bus 

Resources price in monetary units (m.u.) – 180 bus network case study 

Resources price (m.u.) 

Generator ID Bus 
Price (m.u./MWh) 

Generator ID Bus 
Price (m.u./MWh) 

Period 1 to 24 Period 1 to 24 

*1 1 50 60 83 45 

2 3 45 61 84 45 

3 4 80 62 85 45 

4 5 110 63 86 45 

5 6 200 64 87 45 

6 7 45 65 88 30 

7 8 200 66 89 200 

8 9 200 67 91 45 

9 10 45 68 93 45 

10 11 200 69 95 45 

11 12 200 70 97 45 

12 13 150 71 99 200 

13 14 200 72 101 45 

14 15 200 73 103 45 

15 16 200 74 105 45 

16 17 200 75 107 45 

17 18 200 76 109 200 

18 19 150 77 111 45 

19 21 45 78 113 300 

20 23 200 79 115 200 

21 25 200 80 117 200 

22 27 200 81 119 45 

23 29 200 82 121 45 

24 31 200 83 123 45 

25 33 150 84 125 200 

26 36 80 85 127 45 

27 37 200 86 129 300 

28 39 200 87 131 45 

29 41 200 88 133 45 

30 43 200 89 135 45 

31 45 200 90 137 45 

32 47 110 91 139 45 

33 49 200 92 141 45 

34 51 200 93 143 45 

35 53 200 94 145 45 

36 55 200 95 147 45 

37 57 30 96 148 45 

38 59 200 97 149 45 

39 61 200 98 150 45 

40 63 200 99 151 45 

41 64 200 100 152 45 

42 65 200 101 153 200 

43 66 200 102 154 200 

44 67 200 103 155 150 

45 68 200 104 156 45 

46 69 45 105 157 150 

47 70 45 106 158 45 

48 71 45 107 159 150 

49 72 45 108 160 45 

50 73 45 109 161 200 

51 74 45 110 162 45 

52 75 45 111 163 45 

53 76 45 112 164 200 

54 77 300 113 165 200 

55 78 45 114 166 200 

56 79 45 115 167 30 
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Generator ID Bus 
Price (m.u./MWh) 

Generator ID Bus 
Price (m.u./MWh) 

Period 1 to 24 Period 1 to 24 

57 80 45 116 170 300 

58 81 45 117 173 45 

59 82 45    

* Network suppliers   
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Network lines data in per unit system (p.u.) – 33 bus network case study 

 

 

Network lines data 

From bus To bus Resistance (p.u.) Inductive reactance (p.u.) 
Capacitance 

(p.u.) 
Thermal limit (p.u.) 

1 2 0.00003 0.00002 0.00000 11.115 

2 3 0.00005 0.00008 0.00000 14.04 

3 4 0.00019 0.00030 0.00000 7.02 

3 5 0.00005 0.00008 0.00000 14.04 

5 6 0.00011 0.00018 0.00000 7.02 

5 7 0.00007 0.00013 0.00000 14.04 

6 8 0.00003 0.00003 0.00000 11.115 

7 10 0.00026 0.00042 0.00000 7.02 

7 11 0.00004 0.00006 0.00000 14.04 

8 9 0.00005 0.00005 0.00000 11.115 

11 12 0.00011 0.00018 0.00000 7.02 

11 13 0.00004 0.00006 0.00000 14.04 

13 14 0.00019 0.00030 0.00000 7.02 

13 15 0.00004 0.00006 0.00000 14.04 

15 16 0.00023 0.00036 0.00000 7.02 

15 17 0.00006 0.00009 0.00000 7.02 

15 18 0.00014 0.00025 0.00000 14.04 

17 19 0.00015 0.00024 0.00000 7.02 

17 22 0.00023 0.00036 0.00000 7.02 

18 25 0.00033 0.00049 0.00000 4.68 

18 29 0.00017 0.00030 0.00000 14.04 

19 20 0.00004 0.00004 0.00000 11.115 

20 21 0.00003 0.00002 0.00000 11.115 

22 23 0.00019 0.00030 0.00000 7.02 

22 24 0.00023 0.00036 0.00000 7.02 

25 26 0.00015 0.00024 0.00000 7.02 

25 27 0.00008 0.00012 0.00000 7.02 

27 28 0.00002 0.00002 0.00000 11.115 

29 30 0.00059 0.00088 0.00000 4.68 

29 31 0.00014 0.00025 0.00000 14.04 

31 32 0.00019 0.00030 0.00000 7.02 

31 33 0.00113 0.00180 0.00000 7.02 

31 34 0.00018 0.00032 0.00000 14.04 

34 35 0.00030 0.00048 0.00000 7.02 

34 36 0.00017 0.00030 0.00000 14.04 

36 37 0.00025 0.00043 0.00000 9.36 

36 95 0.00097 0.00146 0.00000 5.265 

37 38 0.00011 0.00019 0.00000 14.04 

38 39 0.00034 0.00054 0.00000 7.02 

38 42 0.00004 0.00006 0.00000 14.04 

39 40 0.00023 0.00036 0.00000 7.02 
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From bus To bus Resistance (p.u.) Inductive reactance (p.u.) 
Capacitance 

(p.u.) 
Thermal limit (p.u.) 

39 41 0.00023 0.00036 0.00000 7.02 

42 43 0.00008 0.00012 0.00000 7.02 

42 44 0.00015 0.00028 0.00000 14.04 

44 45 0.00008 0.00012 0.00000 7.02 

44 46 0.00009 0.00017 0.00000 14.04 

46 47 0.00019 0.00030 0.00000 7.02 

46 50 0.00011 0.00018 0.00000 7.02 

46 51 0.00015 0.00025 0.00000 9.36 

47 48 0.00011 0.00018 0.00000 7.02 

47 49 0.00015 0.00024 0.00000 7.02 

51 52 0.00078 0.00117 0.00000 4.68 

51 53 0.00015 0.00025 0.00000 9.36 

53 54 0.00033 0.00049 0.00000 4.68 

53 55 0.00017 0.00028 0.00000 9.36 

55 56 0.00023 0.00036 0.00000 7.02 

55 61 0.00078 0.00117 0.00000 4.68 

55 62 0.00023 0.00039 0.00000 9.36 

56 57 0.00011 0.00018 0.00000 7.02 

56 59 0.00026 0.00042 0.00000 7.02 

57 58 0.00004 0.00004 0.00000 11.115 

59 60 0.00007 0.00004 0.00000 8.19 

62 63 0.00052 0.00078 0.00000 4.68 

62 68 0.00025 0.00043 0.00000 9.36 

63 64 0.00046 0.00068 0.00000 4.68 

63 66 0.00019 0.00030 0.00000 7.02 

64 65 0.00010 0.00006 0.00000 8.19 

66 67 0.00010 0.00006 0.00000 8.19 

68 69 0.00030 0.00048 0.00000 7.02 

68 92 0.00039 0.00059 0.00000 4.68 

69 70 0.00010 0.00006 0.00000 8.19 

69 71 0.00026 0.00042 0.00000 7.02 

71 72 0.00046 0.00068 0.00000 4.68 

71 73 0.00034 0.00054 0.00000 7.02 

73 74 0.00024 0.00014 0.00000 8.19 

74 75 0.00018 0.00011 0.00000 8.19 

75 76 0.00019 0.00030 0.00000 7.02 

76 77 0.00026 0.00039 0.00000 4.68 

76 78 0.00046 0.00068 0.00000 4.68 

78 79 0.00023 0.00036 0.00000 7.02 

78 80 0.00046 0.00068 0.00000 4.68 

80 81 0.00046 0.00068 0.00000 4.68 

80 83 0.00039 0.00059 0.00000 4.68 

80 86 0.00033 0.00049 0.00000 4.68 

81 82 0.00008 0.00007 0.00000 11.115 

83 84 0.00046 0.00068 0.00000 4.68 

83 85 0.00005 0.00005 0.00000 11.115 

86 87 0.00026 0.00039 0.00000 4.68 

86 88 0.00023 0.00036 0.00000 7.02 

86 89 0.00052 0.00078 0.00000 4.68 

89 90 0.00039 0.00059 0.00000 4.68 

89 91 0.00033 0.00049 0.00000 4.68 

92 93 0.00046 0.00068 0.00000 4.68 

92 94 0.00033 0.00049 0.00000 4.68 

95 96 0.00038 0.00060 0.00000 7.02 

96 97 0.00026 0.00039 0.00000 4.68 

96 100 0.00023 0.00036 0.00000 7.02 

97 98 0.00019 0.00030 0.00000 7.02 

97 99 0.00020 0.00029 0.00000 4.68 

100 101 0.00019 0.00030 0.00000 7.02 

100 102 0.00038 0.00060 0.00000 7.02 

102 103 0.00019 0.00030 0.00000 7.02 

102 104 0.00038 0.00060 0.00000 7.02 

104 105 0.00019 0.00030 0.00000 7.02 

104 106 0.00056 0.00090 0.00000 7.02 
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From bus To bus Resistance (p.u.) Inductive reactance (p.u.) 
Capacitance 

(p.u.) 
Thermal limit (p.u.) 

106 107 0.00039 0.00059 0.00000 4.68 

106 128 0.00034 0.00054 0.00000 7.02 

106 142 0.00098 0.00146 0.00000 4.68 

107 108 0.00046 0.00068 0.00000 4.68 

107 111 0.00046 0.00068 0.00000 4.68 

108 109 0.00015 0.00024 0.00000 7.02 

108 110 0.00019 0.00030 0.00000 7.02 

111 112 0.00033 0.00049 0.00000 4.68 

111 114 0.00046 0.00068 0.00000 4.68 

112 113 0.00011 0.00018 0.00000 7.02 

112 115 0.00023 0.00036 0.00000 7.02 

114 117 0.00015 0.00024 0.00000 7.02 

114 118 0.00015 0.00024 0.00000 7.02 

114 119 0.00065 0.00098 0.00000 4.68 

115 116 0.00010 0.00006 0.00000 8.19 

119 120 0.00033 0.00049 0.00000 4.68 

119 121 0.00072 0.00107 0.00000 4.68 

121 122 0.00019 0.00030 0.00000 7.02 

121 123 0.00052 0.00078 0.00000 4.68 

123 124 0.00033 0.00049 0.00000 4.68 

123 125 0.00049 0.00078 0.00000 7.02 

125 126 0.00015 0.00024 0.00000 7.02 

125 127 0.00019 0.00030 0.00000 7.02 

128 129 0.00026 0.00042 0.00000 7.02 

128 130 0.00098 0.00146 0.00000 4.68 

130 131 0.00046 0.00068 0.00000 4.68 

130 134 0.00072 0.00107 0.00000 4.68 

131 132 0.00026 0.00039 0.00000 4.68 

131 133 0.00019 0.00030 0.00000 7.02 

134 135 0.00033 0.00049 0.00000 4.68 

134 136 0.00011 0.00018 0.00000 7.02 

134 137 0.00059 0.00088 0.00000 4.68 

137 138 0.00026 0.00039 0.00000 4.68 

137 139 0.00052 0.00078 0.00000 4.68 

139 140 0.00019 0.00030 0.00000 7.02 

139 141 0.00026 0.00039 0.00000 4.68 

142 143 0.00030 0.00048 0.00000 7.02 

142 144 0.00023 0.00036 0.00000 7.02 

142 145 0.00104 0.00156 0.00000 4.68 

145 146 0.00033 0.00049 0.00000 4.68 

145 147 0.00059 0.00088 0.00000 4.68 

145 150 0.00072 0.00107 0.00000 4.68 

147 148 0.00011 0.00018 0.00000 7.02 

147 149 0.00026 0.00039 0.00000 4.68 

150 151 0.00026 0.00039 0.00000 4.68 

150 152 0.00078 0.00117 0.00000 4.68 

150 155 0.00085 0.00127 0.00000 4.68 

152 153 0.00026 0.00039 0.00000 4.68 

152 154 0.00026 0.00039 0.00000 4.68 

155 156 0.00072 0.00107 0.00000 4.68 

155 159 0.00059 0.00088 0.00000 4.68 

155 161 0.00059 0.00088 0.00000 4.68 

156 157 0.00026 0.00042 0.00000 7.02 

156 158 0.00033 0.00049 0.00000 4.68 

159 160 0.00019 0.00030 0.00000 7.02 

161 162 0.00026 0.00039 0.00000 4.68 

161 163 0.00052 0.00078 0.00000 4.68 

163 164 0.00085 0.00127 0.00000 4.68 

163 171 0.00059 0.00088 0.00000 4.68 

164 165 0.00033 0.00049 0.00000 4.68 

164 166 0.00052 0.00078 0.00000 4.68 

166 167 0.00033 0.00049 0.00000 4.68 

166 168 0.00026 0.00042 0.00000 7.02 

168 169 0.00026 0.00042 0.00000 7.02 
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From bus To bus Resistance (p.u.) Inductive reactance (p.u.) 
Capacitance 

(p.u.) 
Thermal limit (p.u.) 

168 170 0.00023 0.00036 0.00000 7.02 

171 172 0.00046 0.00068 0.00000 4.68 

171 176 0.00078 0.00117 0.00000 4.68 

172 173 0.00019 0.00030 0.00000 7.02 

172 174 0.00052 0.00078 0.00000 4.68 

174 175 0.00033 0.00049 0.00000 4.68 

176 177 0.00019 0.00030 0.00000 7.02 

176 178 0.00072 0.00107 0.00000 4.68 

178 179 0.00046 0.00068 0.00000 4.68 

178 180 0.00039 0.00059 0.00000 4.68 
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Network diagram screenshot – 180  bus network case study 

 


