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Abstract This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by 

adopting an optimization for- mulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a 

hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established. 
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1 Introduction 

 
Fractional calculus (FC) deals with the generaliza- tion of 

integrals and derivatives to a non-integer, or even 

complex, order [1–4]. FC encompasses a wide range of 

potential fields of application by bringing into broader 

paradigm concepts of physics, chemistry and engineering 

[5–10]. Nevertheless, until recently, FC was an ‘unknown’ 

mathematical tool for the applied sciences, the present 

day interest being motivated by the developments in the 

areas of non-linear dynamics, chaos and modeling. 

 

  

 

 

 

One of the reasons for this state of affairs is the lack 

of a simple interpretation for a fractional-order derivative. 

In fact, while for the integer-order case we have a 

common geometric concept, in the fractional- order case 

we have problems in finding a clear and comprehensive 

reasoning scheme. Several researchers proposed different 

approaches for the interpretation of fractional-order 

integrals and derivatives, but the fact is that a final 

paradigm is not yet well established [11–19]. 

A second reason for the difficulties in applying FC is due 

to the higher complexity of algorithms for the calculation 

of fractional derivatives and integrals. The generalization of 

the integrodifferential operator re- quires the adoption of 

approximations based on se- ries or rational fraction 

expansions [6, 8]. While the main volume of contributions 

is focused in getting the best approximation scheme, the 

problem of its calcu- lation for real data was not yet 

tackled. In fact, besides the quality of the approximation, 

two aspects must be considered in the calculation of 

fractional derivatives and integrals, namely, the 

computational load and the noise effect. The first aspect 

poses a small impact in today’s computing systems, but 

the second remains to be investigated. 

The problem of calculating integer-order deriva- tives 

for noisy data is well known. To avoid the emer- gence of 

high amplitude peaks the classical approach consists in 

adopting polynomials of increasing order, or a plethora of 

distinct types of low-pass filters, that somehow smooth 

the data [20, 28, 29]. However, it 
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was verified that, in many cases, these measures are not 

successful. Bearing these facts in mind, it was 

The implementation of expression (2) corresponds to a r 

-term truncated series given by: 

recognized more recently that the problem was ill- 

posed and that an inverse formulation, incorporating an 

optimization scheme, was the best strategy [22]. 

In this line of thought, this paper addresses the cal- 

   

 
 

 

 

  

culation of fractional derivatives of non-smooth data, and 

is organized as follows. Section 2 introduces the 

calculation of fractional derivatives for ideal data, the 

problem of noise and the formulation of the inverse 

problem, and the optimization scheme based on ge- netic 

algorithms. Section 3 presents a set of experi- ments 

that demonstrate the effectiveness of the pro- posed 

method. Finally, Sect. 4 outlines the main con- clusions. 

 
 
 

2 Problem formulation and adopted tools 
 

2.1 Fractional derivatives 
 

Since the foundation of the differential calculus, the 

generalization of the concept of derivative and inte- gral 

to a non-integer order α has been the subject of several 

approaches such as the Riemann–Liouville, Grünwald–

Letnikov, Caputo, and, based on trans- forms, the 

Fourier/Laplace definitions. 

From the discrete-time point of view the Grünwald– 

Letnikov definition seems more attractive and, conse- 

quently, will be adopted in the sequel. 

Based on the concept of fractional differential of order 

α, the Grünwald–Letnikov definition of a deriv- ative of 

fractional order α of the signal x(t), Dαx(t), is: 

This series can be implemented by a rational  frac- 

tion expansion which leads to a superior compromise in 

what concerns the number of terms versus the qual- ity of 

the approximation [8, 9]. Nevertheless, since the study 

focuses mainly on the problem of noise, the sim- ple series 

approximation will be adopted. 

 

2.2 Calculation of derivatives of noisy data 

 
In many scientific applications, it is necessary to calcu- late 

the derivative of numerical data. Classical finite- difference 

approximations amplify greatly any noise present in the 

data. Data denoising, before or after dif- ferentiating, does 

not generally give satisfactory re- sults. A method that 

leads to good results consists in the regularization of the 

differentiation process itself. This guarantees that the 

computed derivative will have some degree of regularity, 

to an extent that is under control by adjusting parameters. 

A common frame- work for the regularization [21–24] 

corresponds to the formulation of the inverse problem. In 

this perspective, u(t ), the derivative of a function f (t ) over 

the interval 

t ∈ [0, L], is the minimizer of the functional: 

 

  
 

where R{u} is a regularization term that penalizes ir- 

regularity in  u(t ),  A[u(t )        
t 

udt is  the  operator of 
antidifferentiation, S{A[u] −f } is a data similarity term that 

penalizes discrepancy between A[u] and f , and a ∈ H+ is a 
regularization parameter that controls 

 
 

 
  the balance between the two terms. 

The regularization and similarity terms, R{}   and 

 

  S{ }, adopt often the squared L2  norm. Therefore,  it is 

considered that the total-variation regularization and 

where  r is the gamma function and  h  is the  time 

increment. This formulation inspires a discrete-time 

calculation algorithm, based on the approximation  of 

the computation of the derivative of f over the interval 

[0, L] is the minimizer of the functional: 

the time increment h through the sampling period T , 

yielding the 

equation in the z 

domain: 

    
  

 

       



 

 

 

 
 

  where for 
convenienc
e it is 
assumed 
that f (0) = 0 
which, in 
practice, 
consists in 
subtracting 
f (0) from f (t 
). 
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A simple approach to minimizing (5) is gradient 

descent as described in [22]. However, in the present 

study, due to its superior flexibility a different opti- 

mization technique will be adopted, based on genetic 

algorithms (GAs). In fact, the standard numerical op- 

timization has difficulties in achieving an adequate 
compromise between the terms R{} and S{ }. The opti- 
mization requires several attempts, with distinct values 

of the regularization parameter a, and, often, we verify that 

there is no good tuning. 

Bearing these ideas in mind, in the next sub-section we 

adopt the GA evolutionary scheme. We start by an- alyzing 

the performance of a standard GA in the opti- mization of 

expression (5) and, afterwards, we develop a novel 

technique consisting in two GAs in series, each one 

optimizing a separate term. 

 

2.3 Optimization through genetic algorithms 

 
A GA is a search technique used in computing to find exact 

or approximate solutions to optimization and search 

problems [25, 26]. GAs are simulated in a com- puting 

system, and consist in a population of repre- sentations of 

candidate solutions, of an optimization problem, that 

evolve toward better solutions. 

Once the genetic representation and the fitness 

function are  defined,  the  GA  proceeds  to initialize a 

population of solutions randomly, and then to im- prove it 

through the repetitive application of mutation, crossover, 

inversion and selection operators. 

The evolution usually starts from a population of 

randomly generated individuals. In each generation, not 

only the fitness of every individual in the popu- lation is 

evaluated, but also several individuals are sto- chastically 

selected from the current population    and 
modified to form a new population. The new popula- 

3. Repeat 

3.1. Select best-ranking individuals to reproduce 

3.2. Breed new generation through crossover and 

mutation and give birth to offspring 

3.3. Evaluate the fitness of the offspring individu- als 

3.4. Replace the worst ranked part of population with 

offspring 

4. Until termination 

The present article adopts also the common tech- 

nique of elitism, which is the process of selecting the 

better individuals to form the parents in the offspring 

generation. 

 

 

3 Fractional-order differentiation of non-smooth data 

 
In this section, we evaluate the proposed technique in the 

numerical evaluation of a fractional derivative of a function 

corrupted by additive noise [27]. 

In Sect. 3.1, we start by analyzing the performance of a 

GA in the optimization of expression (5). We ver- ify that 

the GA accomplishes the task but reveals prob- lems similar 

to those encountered by standard gradient descent 

methods. In fact, as mentioned in the previ- ous section, 

the minimization of F (u) in    expression 

(5) poses problems of establishing a compromise be- 
tween the terms R{} and S{ }, leading to the necessity of 
several trials for the tuning of the regularization pa- 

rameter a. Therefore, given the flexibility of the evo- 
lutionary schemes, in Sect. 3.2 a new hierarchical GA is 
being developed, composed by a series of two GAs, that is 
GA12 = {GA1 + GA2}, each one having a dis- tinct fitness 

function corresponding to: 

tion is then used in the next iteration of the algorithm. The 

GA terminates when either the maximum number 

 

  
of generations N  has been produced, or a satisfactory 

fitness level has been reached. 
  

During the successive generation, a part or the to- 

tality of the population is selected to breed a new 

generation. Individual solutions are selected through a 

fitness-based process, where fitter solutions (measured by 

a fitness function) are usually more likely to be se- lected. 

The pseudo-code of the GA is: 

1. Choose the initial population 

2. 2. Evaluate the fitness of each individual in the pop- 

ulation 

For the calculation of a fractional derivative of order α, 

Dα , expression (6b) needs to be modified, namely, with 
the introduction of the fractional antidiferentia- tion 

operator A[u(t )]= Iα [u(t )]|t . 
The GA population is constituted by a series of can- 

didate values U = [ui ], established at the discrete sam- pling 
points T = [ti ], i = 0 , . . . ,  n, and the evolution consists in a 
loop of iterations of the GA according to 

the pseudo-code: 
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1. Choose the initial population 

2. Repeat 

2.1. Execute N1 iterations of GA1 with fitness 

function F1 

2.2. Execute N2 iterations of GA2 with fitness 

function F2 

3. Until termination 

where termination occurs for a total number of  itera- 

dividuals, mutation probability pm = 0.1, single point 

crossover and reproduction within all population con- 

sidering elitism. For comparison purposes the operat- 

ing conditions are maintained similar to those adopted 
previously. Identical operating conditions are adopted, 
namely, the number of sampling points  n = 30,   the 

function f (t ) = t , t ∈ [0, 1], and the additive  noise 

[−X, +X]. We  investigate the GA12  performance for 
3 4 5 −2 

tions N12  proportional to N1 + N2. 

3.1 Optimization with one genetic algorithm 
 

In the experiments, the GA adopts a population of P = 
100 individuals, mutation probability pm = 0.1, single 
point crossover and reproduction within all pop- 

ulation considering elitism. Moreover, a number of 
sampling points is considered to be n = 30, the func- tion 
f (t ) = t is defined over the interval t ∈ [0, 1], and an 
additive noise is given by a uniform probability density 
function in the interval [−X, +X]. 

The GA performance is sensitive to the number of 

iterations N and  the  noise  amplitude  X. Therefore, in 
Fig. 1 we analyze the GA performance for N = 
{103, 105} iterations, noise amplitude X = {0.0, 10−2} 
and regularization parameter a = {10−2, 10−1}. 

N12 = {10 , 10 , 10 } iterations and X = {0.0, 10  }. 
Moreover, a derivative of order α = 1/2 is  eval- uated  
through  the  series  approximation  (3),  where 
T = 1/n and r = n = 30 in order to  avoid trunca- tion 
errors.  For  initialization,  it  is  considered  that f (t ) = 0, 
t < 0, and that noise affects f (t ) only in the interval t ∈ 
[0, 1]. The experiments are repeated for NT = 10 cases 
with different initial random GA populations. 

Figure 2 depicts the results of the new computa- 
tional scheme for the case of f (t ) without any noise (i.e., 

X = 0.0) and N12  = {103, 105} iterations. We 

verify again that the GA has a poor performance   for 

a low number of iterations, but it captures adequately the 

derivative when a high number of iterations are ex- ecuted 

leading to a chart very close to the  theoretical value of D1/2t =  2   1/2 

√
π 

t . The slow GA convergence 

The evaluation of a derivative of order α = 1/2 
through the series approximation (3) is considered, where 
T = 1/n and r = n = 30 in order to avoid truncation errors. 
For initialization, it is considered that f (t ) = 0,t < 0, and, 
consequently, that additive noise affects f (t ) only in the 
interval t ∈ [0, 1]. More- over, due to the stochastic nature 
of the evolutionary schemes, the experiments are 
repeated for N T  =  10 

cases with different initial random GA populations. 

We verify that the GA requires a large number of 

iterations N to produce a good estimate of the deriva- 

tive. Furthermore, it is visible that the value adopted for  

the  regularization  parameter  a  perturbs  the re- 

is, in fact, due to the requirement posed by the series of 

the two distinct fitness functions. 

Figure 3 shows the corresponding result for an additive 
noise with amplitude  X = 0.01  and  N12   = 

{104, 105}  iterations.  We   observe  that  noise  poses 
more stringent requirements; nevertheless, after a suf- 

ficient number of iterations, we get good results. 

The GA scheme is, obviously, not restricted to the 

calculation of fractional derivatives. Nevertheless, for 

derivatives with a higher order α, that lead to disconti- 

nuities, the algorithm reveals convergence difficulties in 

the neighborhood of these points. This problem   is 
known to occur for the classical optimization methods, 

sults, similarly to what occurs in classical optimization 
methods, requiring several experiments to get the best 

and the substitution of R{u}=   
L
 

  L 
u̇2 dt  by R{u}=  

tuning. In order to avoid the coupling between the two 

optimization criteria, in the next sub-section we ana- lyze 

the performance of the series of two GAs,   each 
with its own distinct optimization fitness. 

0   |u̇| dt was proposed [22]. Several experiments with 
the  GA revealed that  such  assumption is not    valid 

and that, in fact, it leads to inferior results. There- fore, 

we decided to evaluate the performance of    fit-   L β 
ness functions of the type F1(u) = R{u} =  0   |u̇| dt , 

3.2 Optimization with a series of two genetic 

algorithms 

 

In  the  experiments,  the  hierarchical  GA12     adopts 

N1  = N2  = 1 iterations, a population of P  = 100 in- 

β > 0. The first three charts of Fig. 4 depict the  first- 

order derivative, D1, for noise amplitude X = 0.01 and N12 

= 105 iterations, when β = {1, 2, 4}. We ver- ify that the 
best result occurs for β = 4; therefore, we may consider 
the future formulation of an   automatic 



 

 

 

 

 

 

 

 

Fig. 1   Chart of D1/2t , t ∈ [0, 1],X = 0.0, for N = {103, 105} iterations, a = {10−2, 10−1} (n = 30, NT = 10) 

 
 

adjustment method that evaluates the best β for a given 

function and derivative. Yet another possible strategy is 

simply to have a large number of GA iterations. The fourth 

case in Fig. 4 shows the first-order  derivative, 

D1, for X = 0.01, β = 2 and N12  = 106 iterations. 

The evolutionary optimization scheme is also not 
limited to the function f (t ) = t . For example, using 

expression (6a), Fig. 5 depicts the results for D1/2 in the 

case of f (t ) = t 2, t ∈ [0, 1], when X = 0.01 and N12 = 105 

iterations. 



 

 

3
√
π 

 

 

 

Fig. 2   Chart of D1/2t , t ∈ [0, 1], X = 0.0, for N12 = {103, 105} iterations (n = 30, NT = 10) 

 

 

 

 

Fig. 3   Chart of D1/2t , t ∈ [0, 1], X = 0.01, for N12 = {104, 105} iterations (n = 30, NT = 10) 

 

As expected, we verify that the chart follows the 

expression D1/2t 2 =   8    t 3/2, t ∈ [0, 1]. 

The calculation of derivatives through the mini- 

mization of the functionals (5) and (6) consists in find- ing 

its solution in the perspective of an inverse prob- lem 

formulation. This strategy leads to the require- ment of an 

optimization algorithm, either classical or evolutionary. 

Therefore, as often occurs in optimiza- tion problems, the 

calculation poses a considerable computational burden, 

making it not adapted to real- time applications. 

Moreover, the inverse problem for- mulation is suited to 

the cases where α >  0 and, there- fore, the case of α <  0 is 

not addressed since it repre- sents simply the numerical 

calculation of integrals. 

 
4 Conclusions 

 
The recent advances in fractional calculus point to- ward 

important developments in the application of this 

mathematical concept. During the last years, several 

algorithms for the approximate calculation of frac- tional 

derivatives and integrals were proposed. Never- theless, 

the real case of data with noise was somewhat overlooked. 

In this paper, a new method, based on evolutionary 

concepts for the calculation of fractional derivatives, was 

proposed. In this line of thought, an optimization 

formulation and a hierarchical genetic algorithm were 

introduced, consisting in a series of two GAs capable of 

handling the distinct requirements 



 

 

 

 

 
 

 

 

 

 
      

 

Fig. 4  Chart of D1t , t ∈ [0, 1], X = 0.01 for β = {1, 2, 4}, N12 = 105 iterations, and β = 2, N12 = 106 (n = 30, NT = 10) 

 
 

posed by the derivative calculation and the noise elim- 

ination. The results demonstrate the excellent perfor- 

mance, namely, the convergence and the robustness for 

high levels of noise. 
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