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ABS T RA CT

 
 

 

This study addresses the optimization of rational fraction approximations for the discrete- time calculation of fractional derivatives. The 

article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates 

the problem in an optimization perspective by tacking advantage of the flex- ibility of the genetic  algorithms. 
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1. Introduction 

 
Fractional calculus (FC) deals with the generalization of integrals and derivatives to a non-integer order and, in the last 

decades, its application verified a large development in the areas of physics and engineering. 

The fundamental aspects of the FC theory and the study of its properties can be addressed in Refs. [1–4]. A significant 

progress occurred in the application of the FC concepts and we can mention a large volume of research about viscoelasticity, 

biology, electronics, signal processing, diffusion and wave propagation, modeling and control [5–14]. Nevertheless, FC is still 

considered an ‘exotic’ mathematical tool and its adoption requires some efforts towards the development  of  clear 

algorithms. 

One of the reasons for this state of affairs is the complexity of the algorithms involved in the calculation of fractional 

derivatives.  The  generalization  of  the  integrodifferential  operator  requires  the  adoption  of  approximations  of irrational 

functions through series or rational fraction expansions [15–22]. While the main volume of contributions has focused in get- 

ting expansion schemes, the problem of a systematic optimization procedure was not yet tackled. 

In this line of thought, this paper addresses the optimal calculation of fractional order expressions and is organized as 

follows. Section 2 introduces the calculation of fractional derivatives and formulates the problem of fraction approximation 

of irrational formulae through genetic algorithms. Section 3 presents a set of experiments that demonstrate the effectiveness 

of the proposed optimization method. Finally, Section 4 outlines the main conclusions. 
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2. Problem formulation and adopted tools 

 
This section introduces the main mathematical concepts and algorithms used in the rest of the article. Section 2.1 pre- 

sents the definition of fractional derivative adopted together with the discretization rules for real time calculation. Section 

2.2 outlines the fundamental aspects underlying the GA optimization scheme. 

 
2.1. Fractional order expressions 

 
Since the foundation of the differential calculus the generalization of the concept of derivative and integral to a non- 

integer order a has been the subject of several approaches such as the Riemann–Liouville, the Grünwald–Letnikov, the 

Caputo and the Fourier/Laplace definitions. 

The Grünwald–Letnikov definition of a derivative of fractional order a of the signal x(t), Dax(t), is given by: 
 

 

 

where C is the gamma function and h is the time increment. This formulation inspires a discrete-time calculation algorithm, 

based on the approximation of the time increment h through the sampling period T, yielding the equation in the z domain: 
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The implementation of expression (2) corresponds to an r-term truncated series given by: 

  

 

Expression (2) represents the Euler (or first backward difference) approximation in the so-called s ? z conversion scheme. 

Another possibility, often adopted in control system design, consists in the Tustin (or bilinear) rule. The Euler and Tustin ra- 

tional expressions, H0 ðz-1 1 ð1 - z-1
 Þ and H1 ðz-1

 
2  1-z-1

 
Þ ¼ 

T  1þz-1 , are often called generating approximants of zero and first order, 

respectively. Therefore, the generalization of these conversion methods leads to the non-integer order a results: 

  

  

 

 

We can obtain a family of fractional differentiators generated by Ha(z-1) and Ha
ðz-1 Þ weighted by the factors p and 1 - p, 

0 1 

yielding: 

  
  

In order to get a rational expression, the final approximation corresponds to a truncated Taylor series or a rational fraction 

expansion. Due to its superior performance often it is used a fraction: 

 

 

 

where k 2 @ denotes the order of the approximation. Moreover, usually it is adopted a Padé expansion in the neighborhood of 

z-1  = 0 and, since one parameter is linearly dependent, it is established b0  = 1. 

 
2.2. Optimization through genetic algorithms 

 
A GA is a computational technique to find exact or approximate solutions to optimization and search problems [23–25]. 

GAs are simulated in a computing system, and consist in a population of representations of candidate solutions, of an opti- 

mization problem, that evolve toward better solutions. 
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Once the genetic representation and the fitness function are defined, the GA proceeds to initialize a population of solu- 

tions randomly, and then to improve it through the repetitive application of mutation, crossover and selection operators. 

The evolution usually starts from a population of randomly generated individuals. In each generation, not only the fitness 

of every individual in the population is evaluated, but also several individuals are stochastically selected from the current pop- 

ulation and modified to form a new population. The new population is then used in the next iteration of the algorithm. The GA 

terminates when either the maximum number of generations N is produced, or a satisfactory fitness level has been reached. 

During the successive generation, a part or the totality of the population is selected to breed a new generation. Individual 

solutions are selected through a fitness-based process, where fitter solutions (measured by a fitness function) are usually 

more likely to be selected. The pseudo-code of the GA    is: 
 

1. Choose the initial population 

2. Evaluate the fitness of each individual in the population 

3. Repeat 

3.1. Select best-ranking individuals to reproduce 

3.2. Breed new generation through crossover and mutation and give birth to offspring 

3.3. Evaluate the fitness of the offspring individuals 

3.4. Replace the worst ranked part of population with offspring 

4. Until termination 
 

The present article adopts also the common technique of elitism, which is the process of selecting the better individuals to 

form the parents in the offspring   generation. 

 
3. Fractional order differentiation 

 
In this section we study the fraction approximation for the calculation of fractional expressions. In Section 3.1 we analyze 

the properties of Padé fractions and, in Section 3.2, we formulate a new optimization method based in a GA scheme. 

 
3.1. Padé fraction expansions 

 

Bearing in mind expressions (3–6) we examine the approximation of Da, a = 1/2, when p = 3/4 for  Padé  fraction 

expansions of orders k = {1,2,3,4}. The comparison can be established either in the time, or the frequency domains. Although 
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Fig. 1.  Polar diagrams and amplitude Bode diagrams of D1/2  Padé fraction expansions Hk(z
-1), k = {1,2,3,4}, based on the expressions 5,6, with p = 3/4, versus 

the ideal case Hd(jX) = (jX)1/2,  0 6  X < 3 rad s-1, T = 1. 

 

conceptually equivalent, for the purpose of defining a optimization criteria simple to implement in the AG fitness function,  in 
this paper it is adopted the frequency response. Therefore, for the frequency-based expressions is considered the transfor- 
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mation z-1  = e-jX, X = xT, j ¼ 

pffiffiffiffi
1
ffiffiffi

. 

Fig. 1 depicts the polar  and amplitude Bode  diagrams versus the ideal plot for T = 1. We observe that the charts of  Hk, 
k = {1,2,3,4}, are of the same type, but vary with the order k of the approximation. The frequency response is not the opti- 

mization objective since the criteria for the fraction expansion is simply the approximation in the neighborhood of z-1  = 0. 
Therefore, we conclude that the problem is ill posed and that it should be clearly formulated as an optimization process. 

 
3.2. Fraction optimization with genetic algorithms 

 

In this section we develop the GA optimization of rational fraction approximation to fractional order expressions. 

The GA population, with P individuals, is constituted by a series of candidate fraction coefficients ½ a1  · · ·   ak  b1  · · ·   bk J, 

with b0  = 1.0. In the optimization two possible criteria, leading to distinct fitness functions, are   studied: 
 
 

 

 

  

 

 

 

 

where Hd(Xi) and Hk(Xi) denote the desired and the kth-order fraction frequency responses at frequency Xi, respectively, and 
Re[ ] and Im[ ] represent the real and imaginary parts. For the fitness evaluation two alternative sets of frequency sampling 
points, Si(X)= Xmin 6 X 6 Xmax, i = 1, 2, are adopted, namely with a linear variation (S1) and with a logarithmic variation 
(S2). Moreover, the evaluation verifies if the transfer function Hk is stable, assigning a large value J10 or J20 for the unstable 
case, or calculating the deviation between Hd(Xi) and Hk(Xi), for the stable case. 

In what concerns the fitness functions, the expression of J1 points to the minimization of the absolute error, while the 
expression of J2 is inspired in the minimization of the relative error. With respect to the frequency sampling sets, S1 ad- 
dresses representations with linear scales, while S2 suggests representations with logarithmic scales. 

In the experiments, the GA adopts a population of P = 103  individuals, mutation probability pm  = 10-1, single point cross- 

over and reproduction within all population considering elitism. The GA terminates when reached N = 105  generations. It 
was verified that the GA converges more easily when the initial population is composed of stable transfer functions. There- 

fore, the fractions coefficients are generated through a uniform probability distribution function, but all unstable fractions 
are  eliminated,  being substituted by  new elements,  before initiating the  GA  evolution.  It  is examined the  evaluation of  a 

derivative of order a = 1/2 through the fraction approximations Hk,k = {1,2,3}, with T = 1. Furthermore, n = 30 sampling points 

are adopted in the intervals S1(X)   {Xmin, Xmax}   {0,3}[rad/s] or S2(X)   {Xmin, Xmax}   {10-3,3}[rad/s]. 
Figs. 2–4 depict the frequency response, namely the polar and amplitude Bode diagrams, for all combinations of fitness 

functions and frequency sampling sets, versus the ideal plot. Tables 1–3 show the coefficients (truncated to five digits) of the 

corresponding  fraction  approximations  Hk,k = {1,2,3}. 

It should be noted that new fitness functions, different sets of sampling points, and other values for the limits of the inter- 

val of approximation, lead to distinct fraction coefficients. By other words, the GA produces a particular solution for each 

distinct optimization formulation and for  each different set  of   restrictions. 

The GA has a stochastic nature and, as usual when applying evolutionary algorithms, the results of a given GA execution 

may correspond to a local minimum, instead of a global minimum. Therefore, it is required a careful check of the final frac- 

tion before accepting the results. Nevertheless, several distinct experiments demonstrated that with the present set of 

numerical parameters the GA-generated results have a small    variance. 

It was verified that the GA-generated fractions were stable; however, in several cases, it was found that the roots of the 

denominator were close to the limit condition jzj = 1. If more demanding stability conditions are necessary, it is straightfor- 

ward to adapt conditions 7,8 for getting a condition of the type jzj = c, with 0 < c 6 1. 

Analyzing the results we conclude that: 
 

– In general, the higher the order of the fraction, the better the approximation. 

– The fitness J1 produces superior results for the polar diagram, while J2 produces better results for the Bode diagram. 
– The frequency sampling set S1 seems well adapted to the polar diagram, while S2 produces better results for the Bode 
diagram. 

 
Obviously, the optimization GA requires a larger computational time, the larger the number of sampling points, the high- 

er the number of population elements and the larger the number of coefficients, that is, the higher the order of the fraction 

approximation. Nevertheless, since the fraction calculation is performed off-line, there is no problem about the computa- 

tional load and the numerical experiments demonstrated that the algorithm requires common computer resources. 
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Fig. 2. Polar and amplitude Bode diagrams for approximations H1 generated through a GA with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 

 

Comparing the Padé expansions and the GA-generated fractions we verify clearly the superior frequency response of the 

optimization  evolutionary scheme. 
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Fig. 3. Polar and amplitude Bode diagrams for approximations H2 generated through a GA with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 

The evolutionary optimization approach is not restricted to the calculation  of  fractional-order  derivatives  and inte- 

grals. In fact, the scheme can be easily used in the fraction approximation of any fractional expression, being a typical 
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Fig. 4. Polar and amplitude Bode diagrams for approximations H3 generated through a GA with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 
 

case  the  fractional  PIkDl  controller  with  transfer  function  G(s) = Kp    + Kis
-k  + Kdsl,  0 < k,  l 6 1,  where  s  represents  the  La- 

place  variable. 
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Table 1 

Coefficients of the fraction approximation H1  for D1/2  with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 
 

n m a0 a1 b0 b1 Jn 

1 1 0.85147 -0.45036 1.0 0.35111 7.23979 

1 2 1.09732 -0.71955 1.0 0.16026 2.08937 

2 1 0.98643 -0.92363 1.0 -0.42581 0.32000 

2 2 3.14041 -3.08235 1.0 -0.02754 3.70924 

 
 

Table 2 

Coefficients of the fraction approximation H2  for D1/2  with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 
 

n m a0 a1 a2 b0 b1 b2 Jn 

1 1 0.97602 -0.15552 -0.76935 1.0 0.72657 -0.27340 3.26990 

1 2 1.15168 0.58865 -0.42819 1.0 1.42696 0.42697 2.00957 

2 1 -0.40260 4.50186 -3.57756 1.0 1.82223 0.82239 0.66531 

2 2 0.29881 5.06626 -5.20914 1.0 1.19292 0.19306 3.41291 

 
 

Table 3 

Coefficients of the fraction approximation H3  for D1/2  with finesses Jn,n = {1,2} and sampling sets Sm,m = {1,2}. 
 

n m a0 a1 a2 a3 b0 b1 b2 b3 Jn 

1 1 0.97172 -0.71945 -0.69868 0.47786 1.0 0.17364 -0.74699 0.07901 2.73850 

1 2 0.90883 -2.68420 2.58361 -0.81651 1.0 -1.73551 0.52496 0.21039 2.63784 

2 1 -0.86396 5.12498 0.02425 -3.24367 1.0 2.82189 2.65523 0.83178 0.69388 

2 2 -1.67377 1.90666 18.66101 -18.44336 1.0 2.78033 2.56945 0.78788 3.56635 

 
4. Conclusions 

 
The recent advances in fractional calculus point towards important developments in the application of this mathematical 

concept. During the last years several algorithms for the approximate calculation of fractional derivatives and integrals were 

proposed, namely based on Padé fraction expansions. Nevertheless, the resulting expressions are non-optimal revealing the 

approximation should be formulated as an optimization problem. In this paper a new method, based on evolutionary con- 

cepts, for the calculation of fractional expressions, was proposed. In this line of thought, two alternative fitness functions and 

two possible frequency sampling sets were introduced for the optimization through genetic algorithms. The results demon- 

strate the excellent performance and the adaptability to different types of expressions. 
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