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A  B S T R A C T    
  

In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the 

wing angle of attack and the velocity of the bird, the tail influ- ence, the gliding flight and the flapping flight. The results 

are positive for the construction of flying robots. The development of computational simulation based on the dynamic of 

the robotic bird should allow testing strategies and different algorithms of control such as inte- ger and fractional 

controllers. 
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1. Introduction 

 

Life on Earth has appeared approximately at 2.5 billions of years, as a result of physicals and chemicals processes, and evolved 

towards today’s existing species. One of those species is the bird that derived from a trunk of reptiles about 150 mil- lion years 

ago, at the same time of the first mammals. In the group of vertebrate animals, the birds are one of the  most numerous, 

being found almost everywhere in the world. Birds have many similar characteristics to the reptiles but  they are different 

from all the other animals because of their feathers [1] and unique flying characteristics [2]. A robot can be de- fined as a 

programmable, self-controlled device consisting of electronic, electrical, or mechanical units. More generally, it is a machine 

that functions in place of a living agent. Having as inspiration the behaviors of the animals, some work have been developed 

with the purpose of implementing similar robotic behaviors. Examples of some robot-animals already built are spiders [3] 

and snakes [4]. Other interesting works focus specific characteristics of animals such as the application of morp- hing materials 

[5]. Based on the knowledge stemming from the state of the art, our objective is to simulate and to construct a robot that 

resembles to a bird. Bearing these ideas in mind the paper is organized as follow. Section two presents the state of the art in the 

area. Sections three and four provide an overview of the physical structure and the kinematics of the  bird, respectively. 

Sections five and six describe the bird dynamics and the flight process implemented through the   proposed model. In 

section seven and eight it is developed a dynamical analysis and the action of control algorithms, respectively. Fi- nally, section 

nine outlines the main   conclusions. 
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2. State of the art 

 
This work implements a system that includes a physical and dynamic model of a bird, in the perspective of using a real- 

time animated model taking aerodynamics into consideration [6]. In this model, a bird flies by the wing beat motion, while 

using its tail feathers. The trajectory is established by determined points in the space and by adjusting the bird’s orientation 

and flapping such that it passes through these points in sequence. This allows the bird to fly along an arbitrary path. A meth- 

od for producing realistic animations from numerical solutions is given for generic bird models with various levels of com- 

plexity [7]. The study describes the development of models, implemented in the analysis of flapping flight, balancing the 

scientific analysis and model-based animation. The results show numerical data and visual simulations able to produce real- 

istic flapping flight with physical strong foundations. The aerodynamic coefficients of lift and drag are based on the blade- 

element theory. This method requires an input of the angle of attack, along with the key aerodynamic properties of the wing, 

in order to determine the lift and drag coefficient. The birds tail also plays an important aerodynamic role in mechanical 

flight power and flight performance [8]. Theory provides a conventional explanation for how bird’s tail works. In [6] the 

influence of the tail and feathers is taken in consideration. 

 
3. Physical structure 

 
In order to visualize the behavior of the bird during the simulation we developed a 3D model in AutoCAD inspired in a 

seagull as can be seen in Fig. 1. Each adjacent part (with different colors) corresponds to individual elements connected 

through joints. For simplicity, the structure of the wings is defined in the sense of a human arm, using the terms arm and 

hand accordingly. The corresponding wing joints will be denoted the shoulder and wrist. 

We can subdivide flight in two distinct types: quasi-steady and unsteady states. For large birds the flight can be approx- 

imated using quasi-steady state assumptions because their wings flap at lower frequency during cruising. This means that 

the wing tip speed is low compared to the flight speed. Thus large birds, such as eagles and seagulls, tend to have a soaring 

flight. Their wings behave closely to fixed wings. On the other hand, small birds and insects fly in an unsteady state regime [9] 

in which their wing tip speed is faster than their flight speed. The forces and flows around a flapping wing are still a chal- lenge 

in fluid dynamics [10]. Some characteristics of real birds when considering a bird flight simulation can be found in Table 1. 

 
 

 

 

 

Fig. 1.  3D model of the robotic bird. 
 

 

Table 1 

Some characteristics of different  
birds. 

 

 Weight (kg) Wing area (m2) Maximum velocity 
(m/s) Common tern 0.117 0.05 7.8 

Black-headed gull 0.235 0.075 9 
Seagull 0.374 0.115 9.2 
Royal tern 0.480 0.108 10.7 
Herring gull 0.960 0.181 11.7 
Great skua 1.378 0.214 12.9 
Great backed-backed gull 1.959 0.272 13.6 
Sooty albatross 2.857 0.34 14.7 
Wandering albatross 8.878 0.62 19.2 



 

 

 

 

Fig. 2.  (a) Bird geometry, (b) wing flapping, (c) wing twisting, (d) tail twisting, (e) tail  bending. 
 

 

 

 

Fig. 3.  Kinematic structure of the   system. 

 

4. Kinematics 

 
With the kinematic model, we analyzed the bird flight movement and its behavior in different states such as taking off, 

flying with twists and turns, and others. Through this study, we obtained valuable specifications which helped choosing the 

initial mechanical design (Fig. 2). 

The multi-link model is shown in Fig. 3. The number of joints has been reduced when compared with a real bird, but this 

mechanical structure gives a good mobility. The joints are distributed as follows: two in the shoulder, one in the wrist and 

two in the tail. Differently from all the others, the wrist joint is not controlled. It is a mechanical spring mechanism that 

allows a movement of the wing similar to real birds. This structure provides a good mobility having a total of six controlled 

joints. 

In order to implement the animation of the bird in MatLab it is followed the Denavit–Hartenberg (D–H) notation [11] to 

represent frame (joint) coordinates in the robot kinematic chain. The next equation represents the homogeneous transfor- 

mation Ai , namely a matrix constituted by a product of four fundamental transformations Ai ¼ Rhi Tdi Rai Tai where Rhi and 

Tdi are, respectively, the matrix rotation and matrix translation in x-axis and Rai and Tai are, respectively, the matrix rotation 

and the matrix translation in z- axis. With a series of D–H matrix multiplications, the final result is a transformation matrix from a 

given frame to the initial  frame. 

 
5. Bird dynamics 

 
The relative wind acting on a wing produces a certain amount of force which is called the total aerodynamic force. This 

force can be resolved into two components, called lift and drag (Fig. 4). 

 
 

 

 



 

Fig. 4.  Force acting on the wing. 
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The lift (L) is the component of aerodynamic force perpendicular to the relative wind and the drag (D) is the component of 

aerodynamic force parallel to the relative wind. Those components can be expressed by the following  formulae: 

  

  

 

The lift and drag on the wing depends on the wing area S, the density of air q, the velocity of the air flow relative to the 

wing v2    and the lift and drag coefficients Cl  and Cd , respectively, expressed as functions of the angle of attack a. The lift 
and drag coefficients depend on the shape of the airfoil and will vary with changes in the angle of attack and other wing 
trim- 

mings. The characteristics of any particular airfoil section can conveniently be represented by graphs showing the amount of 

lift and drag obtained at various angles of attack, the lift–drag ratio, and the movement of the center of pressure. Similarly to 

[7] we adopted the blade-element theory representing the lift and drag coefficients Cl and Cd as functions of the angle of 

attack of the local  wind. 

 

 

 

  

We considered the following wing aerodynamics properties of maximum lift Clmax and drag Cdmax coefficients and 

zero drag Cd0 coefficient. 

  

 

 

 

 
6. Studying the flight 

 
6.1. Gliding flight 

 
Some birds take advantage of the air currents to remain aloft for long periods without flapping their wings. The bird’s 

aerodynamic characteristics determine how far and for how long it can glide, and how successfully it can soar in moving 

air. Those aerodynamic characteristics can be optimized by the bird during the flight by changing the wing spans and wing 

areas. For optimal gliding a bird’s wing must maximize lift and minimize drag. As a rule, the smaller the bird, the shorter the 

distance it can glide and the faster it sinks. During gliding the wings are stretched out stiffly. A good glider travels a long way 

horizontally with minimum loss of height, but eventually loses altitude due to the pull of gravity. The efficiency of a glider 

can be measured by calculating the angle between the track of its motion and the horizon. This angle depends not upon the 

weight of the bird but rather upon the forces of lift and drag, through wing shape has some influence. 

 
6.2. Flapping flight 

 
Aerodynamics involving flapping wings differs in many ways from conventional aerodynamics, but some conventional 

rules still apply. A conventional airplane uses a propeller for thrust and fixed wings for lift. An ornithopter’s wing must pro- 

vide both of these forces. The forces on the wing vary throughout the flapping cycle as we will see in the dynamical analysis. 

On the down stroke air is displaced in a downward and backward direction. On the upstroke, the situation is reversed being 

the area of the wing smaller than before in order to make a positive global lift. Therefore, for making the area of the wing 

smaller, birds uses different techniques such as manipulating the wings. To simplify we considered the area in the upstroke 

half the area in the down stroke. The science behind flapping flight is complex and research is still ongoing [12]. 

 
6.3. Tail influence 

 
The precise use of the tail in flying birds has not been thoroughly documented [6]. The tail feathers are instrumental in 

stabilizing the flight, changing the direction of the forward movement, compensating for the lift force and acting as a brake 

 



 

 

 
Fig. 5. Action of bird tail. 



 

 

when the bird lands. We are using the tail in order to cause a drag force changing the moment of the bird and, consequently, 

producing a rotation around an axis equal to the axis of rotation of the tail. That is, if the tail is bending up, the bird will 

rotate around the same joint bending up too. If the tail bends up and twists right, for example (Fig. 5), the bird will then 

rotate around both the joints of the tail up and right. The angle of rotation of the tail is always relative to the movement 

of the bird. 

 
7. Dynamical analysis 

 
We have undertaken a dynamical analysis to test the validity of the system model. In order to easily change the param- 

eters (e.g., wing area, weight) we built a computer program highlighting the fundamentals of robot mechanics and control. 

The computer programs emphasize capabilities such as the 3D graphical simulation and the programming language giv- 

ing some importance to mathematical aspects of modeling and control  [13]. 

The project lead to the SIRB – simulation and implementation of a robotic bird (Fig. 6) program which was adopted as an 

educational tool in flying robotics birds [14]. 

We will start by showing some results of the bird dynamics during the gliding flight. In each simulation the wind has a 
constant velocity of v ¼ 5:0 m=s against the movement of the bird that has an initial velocity of v0  ¼ 4:0 m=s. We will change 
the weight m and the area of the wing S in order to analyze the bird dynamics. The initial parameters are a total weight of 3 
m ¼ 0:4 kg and the wing an area of S ¼ 10- m2 . 

 

7.1. Analyzing the gliding flight 
 

Figs. 7–10 show the relation between the angle of attack a and the velocity of the bird vx  while gliding in a straight line. 

We verify that, for the bird to fly in a straight line without flapping its wings, he needs to change continuously the angle of 

attack to keep a vertical resulting force equal to zero. The angle of attack will then increase increasing the lift and the drag 

forces. An higher drag force results in the reduction of the velocity. This process stops when the velocity reaches zero, since 
we do not want the bird to be dragged by the wind. In Figs. 7 and 8, we increased the weight of the bird by Dm ¼ 0:1 kg in 
each experiment. As can be seen, increasing the weight will requires a higher angle of attack in order to fly straight. The 

velocity does not change dramatically since the drag force does not increases significantly for angles of attack lower than 

20°. Moreover, we verify that if the angle of attack increases the velocity decreases less than previously. 

In Figs. 9 and 10, we change the area of the bird wings with increments DS ¼ 0:1 x 103 m2 for each experiment. As ex- 
pected, when increasing the area of the wing the bird is able to glide in a straight line with a smaller angle of attack. The 
velocity does not change significantly. 

The second experiment (Figs. 11–15) show the horizontal vx  and vertical vz  velocities of the bird as well as the vertical 

distance obtained when the bird is gliding down a vertical distance of 5.0 m considering an angle of attack of 5.0° in both 
wings. Fig. 11 reveals that the bird oscillates when gliding down, without changing the angle of attack. As the bird goes down 
the horizontal velocity increases as well as the lift force. There is an instant where the resulting vertical force is zero and the 

 

 

 
Fig. 6. Simulator SIRB. 



 

 

 

 

Fig. 7. Bird gliding straight – angle of attack versus time for different weights. 
 

 

 

 

Fig. 8. Bird gliding straight – velocity versus time for different weights. 
 

 

 

 

Fig. 9. Bird gliding straight – angle of attack versus time for different wing areas. 
 

bird moves horizontally until it as not enough horizontal velocity. When the horizontal velocity decreases there is no more 

balance between the vertical forces and the bird goes down again. 

Similarly to what we have done previously, we study the effect of varying the weight of the bird (Figs. 12 and 13). Since we 

are not changing the angle of attack, if we increase the weight the velocity will increase and the bird will reach its target 



 

 

 

 

Fig. 10. Bird gliding straight – velocity versus time for different wing areas. 
 

 

 

 

Fig. 11.  Bird gliding down – sequence of images in the xz plane. 
 
 

 

 

Fig. 12.  Bird gliding down – velocities versus time for different weights. 

 

faster (approximately 2.5 s faster for each increment Dm ¼ 0:1 kg of weight). Repeating the flight experiment while increas- 
ing the wing area, the bird takes a longer time, traveling a longer distance to reach the 5.0 m, as one should expect (Fig. 14). 

Both velocities, particularly the horizontal one, have smaller oscillations, but where we can truly see the difference is in the 

vertical movement (Fig. 15) of the   bird. 

Increasing the wing area, the movement will be more close to a linear one flying for a long time without flapping the 

wings. 

 
7.2. Analyzing the flapping flight 

 
The analysis of the flapping flight is not as simple as for the case of the gliding flight. We have implemented three PID 

controllers in order to control the flapping velocity of the wings, based on the error of the horizontal and vertical velocities 

relative to a constant reference. Using the PID parameters tuned by trial and error and ignoring the y-axis velocity controller 

for now we obtained good results with the gains shown in Table 2. 



 

 
Fig. 13.  Bird gliding down – vertical distance versus time for 

different weights. 
 

 

 

 
Fig. 14.  Bird gliding down – velocities versus time for different 

wing areas. 
 
 

 

 
Fig. 15.  Bird gliding down – vertical distance versus time for 

different wing areas. 
 
 

We must note that our first priority is to fly in a straight line. The horizontal velocity may have some changes, if needed, in 



 

order to keep the bird flying in a straight line. The PID controllers will be used in the following experiments concerning the 

analysis of the flapping flight. 



 

 

Table 2 

Controller’s parameters obtained by trial. 

 

 

For easing the comparison with the previous experiments, we will have a reference of vx  ¼ 4 m/s in the horizontal veloc- 
ity and vz  ¼ 0 m/s in the vertical velocity (to fly straight). Following a similar line of thought of the gliding flight we change 
the weight and the wing area. Figs. 16 and 17 show how the velocities and vertical distance react while changing the bird 

weight. 

With the PID controllers the bird flies in a quasi-steady state having a good response. Unfortunately, with m ¼ 0:6 kg the 
bird is not able to keep the same altitude with the velocity of vx  = 4.0 m/s and, therefore, he needs to gain more horizontal 
velocity. 

We  can  clearly  see  in  Fig.  17  that  the  bird  will  loose  altitude,  something  like  10-3  meters  in  6.0 s,  for  a  weight  of 

m ¼ 0:5 kg. In order to keep the same altitude the bird could be corrected after some time by continuously changing the an- 

gle of attack. 

The next experiment shows what happens if the bird has larger wings. In Fig. 18 we can see that the bird does not need to 
travel with a velocity of vx  ¼ 4:0 m/s to fly in a straight line. The bird reduces the wing beat velocity, requiring less energy, to 
keep the same altitude. In Figs. 19 and 20 we can see the bird trajectory. 

 

 

 

 

Fig. 16. Bird flapping straight – velocities versus time for different weights. 
 
 

 

 

Fig. 17. Bird flapping straight – vertical distance versus time for different weights. 
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Fig. 18. Bird flapping straight – velocities versus time for different wing areas. 
 

 

 

 

Fig. 19. Bird flapping straight – vertical distance versus time for different wing areas. 
 

 

 

 

Fig. 20.  Bird flapping straight – sequence of images in the xz plane. 
 

We verify that, for a wing area larger than S ¼ 1:1 x 103 m2  the bird does not loose altitude even flying with a velocity 

lower than the reference. This means that larger birds are able to travel for greater distances with a quasi-steady state flight 

requiring less energy than little  birds. 

 
8. Controller performances 

 
The previous analysis adopted classical PID controllers tuned by trial. In this section, we develop several experiments for 

comparing the performances of the FO (fractional order) PID algorithms [15]. FO controllers are algorithms whose dynamic 

behavior is described thorough differential equations of non integer order. Contrary to the classical PID, where we have three 
gains to adjust, the FO PID, also known as PIk Dlð0 < k 6 1; 0 < l 6 1Þ, has five tuning parameters, including the derivative 
and the integral orders to improve de design flexibility. The mathematical definition of a derivative of fractional order a 



 

 

has been the subject of several different approaches. The Laplace Grünwald–Letnikov definition are perhaps the best suited for  

designing  control algorithms. 

 

 

  

where C is the gamma function and h is the time increment. The implementation of the PIk Dl  is given by: 

 

 

 

We adopt a 4th-order discrete-time Padé approximation (ai ; bi ; ci ; di  2 R; k ¼ 

4): 

 

  

 

 

 

where KP  is the gain. 

To tune the controllers’ parameters we used a medium scale Gradient Descent method with 200 maximum iterations. 

To find a local minimum of a function of the position error using gradient descent, one takes steps proportional to the 

negative of the gradient (or the approximate gradient) of the function at the current point. Gradient descent is based on 

the obser- vation that if the real-valued function F(x) is defined and differentiable in a neighborhood of a point a, then F(x) 

decreases fastest if one goes from a in the direction of the negative gradient of F at a. The first attempt to control our 

system will be changing the wing speed velocity, angle of attack and tail rotations accordingly with the cartesian position 

error. In order to 

study the system dynamics, during the contact we apply, separately, rectangular pulses, at the references. The trajectory 
used to optimize the controllers is then a straight line flight with a velocity of vx  ¼ 3 m/s during the first 20 s. The bird will 
then need to instantaneously achieve a velocity of vx  ¼ 5 m=s. Finally, 20 s later, he will instantaneously reduce is velocity to 
vx  ¼ 3 m=s again. We will repeat the same experiment going up and down with a vertical velocity jvz j ¼ 0:05 m=s. In this 
kind of optimization it is unnecessary the use of a controller in the y-axis since there will be no movement in this axis; there- 

fore we will ignore it for now. Let us first compare the PD and PDl  controllers. Under the last conditions we obtained the PD 

and PDl  controller parameters from Tables 3 and 4. 
To analyze more clearly the dynamical response to the step perturbation we subtract the dynamic response without per- 

turbation. Figs. 21–26 depict the system response under the action of the PD and PDl  algorithms. 
Table 5 compares the time response characteristics of the integer and the fractional PD controllers, namely the percent 

overshoot PO, the rise time tr , the peak time tp  and the settling time ts . 
We can clearly see the advantages of the FO algorithm that leads to a lower overshoot and a smaller settling time. 
Similarly to the analysis made for the PD and PDl  controllers we will now compare the PID and PIk Dl  controllers (Tables 6 

and 7). 
Developing an identical analysis, we show in Figs. 27–32, Table 8 the system time response. 

 
9. Conclusion 

 
The functionalities presented in this work are implemented on the simulator. In the other hand, we obtained some results 

that are satisfactory proving the development of the kinematical and dynamic model can show us the behavior of the bird. The 

design methodology and the implementation can be deemed successful in this project. By obtaining a balance between physical 

modeling and the objective of animation, a strong advance in the system sophistication has been achieved. Despite all simpli- 

fications, the model is still quite complex, and further research needs to be conducted to explore additional abstractions. It is 

 
 

Table 3 
PD and PDl  controller parameters for x-axis. 

 

 

KpX KdX lX 

PD 

PDl 

5 

8 

7 

3 

– 

0.9 



 
 

Table 4 
PD and PDl  controller parameters for z-axis. 

 

KpZ KdZ lZ 

PD 

PDl 

2 

15 

10 

5 

– 

0.9 



 

 

Fig. 21.  Time response of the system under the action of the PD controller flying in a 
straight line. 

 
 
 
 

 

 

Fig. 22.  Time response of the system under the action of the PDl  controller flying in a 
straight line. 

 
 
 

 

 

 



 

Fig. 23.  Time response of the system under the action of the PD controller flying 
up. 



 

 

 

 

Fig. 24.  Time response of the system under the action of the PDl  controller flying up. 
 
 
 

 

 

Fig. 25.  Time response of the system under the action of the PD controller flying  down. 
 
 
 
 

 

 

Fig. 26.  Time response of the system under the action of the PDl  controller flying down. 



 

 

Table 5 
Time response parameters of the system under the action of the PD and PDl  controllers. 

 
 PO (%) tr tp ts 

 

Straight PD 27.52 21.08 21.64 28.6
2  PDl 16.01 21.04 21.60 25.7
0 Up PD 31.88 21.12 21.70 28.9
4  PDl 19.19 21.16 23.52 28.5
2 Down PD 21.43 21.00 21.52 28.0
0  PDl 19.67 21.12 21.74 25.9
0  

Table 6 
PID and PIk Dl  controller parameters for x-axis. 

 
 

KpX KiX KdX lX kX 
PID 5 0.1 7 – – 
PIk Dl 13 0.1 3 0.9 1 

 

Table 7 
PID and PIk Dl  controller parameters for z-axis. 

 
 

KpZ KiZ KdZ lZ kZ 
PID 100 80 12 – – 
PIk Dl 30 10 6 0.9 0.4 

 

 

 

Fig. 27.  Time response of the system under the action of the PID controller flying in a straight 
line. 

 

 

 



 

Fig. 28.  Time response of the system under the action of the PIk Dl  controller flying in a straight 
line. 



 

 

 

 

Fig. 29.  Time response of the system under the action of the PID controller flying up. 
 
 

 

 

 

Fig. 30.  Time response of the system under the action of the PIk Dl  controller flying up. 
 
 

 

 

 

Fig. 31.  Time response of the system under the action of the PID controller flying  down. 



 

 

 

 

Fig. 32.  Time response of the system under the action of the PIk Dl  controller flying down. 
 
 

Table 8 
Time response parameters of the system under the action of the PID and PIk Dl  controllers. 

 
 PO (%) tr tp ts 

 

Straight PID 23.29 21.58 22.58 31.0
2  PIk Dl 19.04 21.28 24.26 29.0
0 Up PID 31.12 22.26 24.74 39 

 PIk Dl 17.54 21.26 24.74 29.4
4 Down PID 28.01 21.66 22.68 39.3
8  PIk Dl 21.94 21.24 23.98 26.9
2  

possible to simulate all kind of closed loop actions like gliding, flapping wings, taking off, landing, following trajectories and 

others in a closed loop. 
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