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Abstract This paper presents a biased random-key genetic algorithm for the resource 

constrained project scheduling problem. The chromosome representation of the prob- 

lem is based on random keys. Active schedules are constructed using a priority-rule 

heuristic in which the priorities of the activities are defined by the genetic algorithm. 

A forward-backward improvement procedure is applied to all solutions. The chromo- 

somes supplied by the genetic algorithm are adjusted to reflect the solutions obtained 

by the improvement procedure. The heuristic is tested on a set of standard problems 

taken from the literature and compared with other approaches. The computational 

results validate the effectiveness of the proposed algorithm. 
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1 Introduction 

 
The resource constrained project scheduling problem (RCPSP) can be stated as fol- 
lows. A project consists of n + 2 activities where each activity has to be processed 
to complete the project. Let J = {0, 1,...,  n,n + 1} denote the set of activities to be 
scheduled and K = {1,...,k} denote the set of resources. Activities 0 and n + 1 are 
dummies, have no duration, and represent the initial and final activities of the project. 

The activities are interrelated by two kinds of constraints: 

1. Precedence constraints force each activity j ∈ J to be scheduled after all its pre- 
decessor activities (i.e. all activities in set Pj ) are completed; 

2. Activities require resources with limited capacities. 

While being processed, activity j ∈ J requires rj,k units of resource type k ∈ K 
during every time instant of its non-preemptable duration dj . Resource type k ∈ K 
has a limited capacity Rk at any point in time. Parameters dj , rj,k , and Rk are assumed 
to be integer, non-negative, and deterministic. For the project start and end activities, 
we impose the boundary conditions d0  = dn+1  = 0 and r0,k  = rn+1,k  = 0, for    all k ∈ 
K . The RCPSP consists in finding a schedule of the activities, taking into account the 
resource and precedence constraints, that minimizes the makespan Cmax , i.e., the 
finish time of the last activity processed. 

Let Fj represent the finish time of activity j . A schedule can be represented by a 

vector of finish times (F1,..., Fm,..., Fn+1). Figure 1 shows an example of a project 



 

comprising n = 9 activities which have to be scheduled, subject to one renewable 
resource type with a capacity of two units. Two solutions for this example are shown 

in Fig. 2, an infeasible solution that violates the resource constraint with a makespan 

of 24 and an optimal feasible solution with a makespan of 36. 

Several exact methods to solve the RCPSP are proposed in the literature. Currently, 

the most competitive exact algorithms seem to be the ones of Demeulemeester   and 

 
 

 

 
Fig. 1 Project network example. Activities are represented as boxes and precedences by directed arcs. 

Parameters dj and rj are given for each activity j 



 

 

 

 

 
 

 

 

Fig. 2 Two solutions for the project network example of Fig. 1. On top, an infeasible schedule that ignores 

the resource constraint and results in a makespan of 24. On the bottom, a feasible schedule with an optimal 

makespan of 36 

 

 

Herroelen (1997), Brucker et al. (1998), Klein and Scholl (1998a, 1998b), Mingozzi 

et al. (1998), and Sprecher (2000). Stork and Uetz (2005) present several complexity 

results related to generation and counting of all circuits of an independence system 

and study their relevance in the solution of RCPSP. 

Blazewicz et al. (1983) showed that the RCPSP, as a generalization of the classical 

job shop scheduling problem, is NP-hard, therefore justifying the use of heuristics to 

solve large problem instances. 

Several authors propose procedures for computing lower bounds on the makespan 

of the RCPSP. Demassey et al. (2005) propose a cooperation method between con- 

straint programming and integer programming. Brucker and Knust (2003) present a 

destructive lower bound for the multi-mode resource-constrained project scheduling 

problem with minimal and maximal time-lags. Brucker and Knust (2000)   develop 

a destructive lower bound for the RCPSP, where the lower bound calculations are 

based on two methods for proving infeasibility of a given threshold value for the 

makespan. The first approach of Brucker and Knust uses constraint propagation tech- 

niques, while the second is based on a linear programming formulation. 

Most of the heuristic methods used for solving resource-constrained project 

scheduling problems either belong to the class of priority rule based methods or 

to the class of metaheuristic based approaches (Kolisch and Hartmann 1999). The 

first class of methods starts with none of the jobs scheduled. Subsequently, a sin- 

gle schedule is constructed by selecting a subset of jobs in each step and assign- 

ing starting times to these jobs until all jobs have been considered. This process 

is controlled by the scheduling scheme as well as priority rules with the latter be- 

ing used for ranking the jobs. Several approaches in this class have been proposed 



 

in the literature, e.g. Alvarez-Valdez and Tamarit (1989), Boctor (1990), Cooper 

(1976, 1977), Davis and Patterson (1975), Lawrence (1985), Kolisch (1996a, 1996b), 

Kolisch and Hartmann (1999), and Tormos and Lova (2001, 2003). The second class 

of methods improves upon an initial solution. This is done by successively exe- 

cuting operations which transform one or several solutions into others. Several ap- 

proaches of this class have been proposed in the literature, e.g. genetic algorithms 

(Leon and Ramamoorthy 1995; Lee and Kim 1996; Hartmann 1998; Kohlmorgen 

et al. 1999; Hartmann 2002; Kochetov and Stolyar 2003; Valls et al. 2003, 2005, 

and Mendes et al. 2009), simulated annealing (Slowinski et al. 1994; Boctor 1996; 

Bouleimen and Lecocq 2003), tabu search (Pinson et al. 1994; Baar et al. 1998; 

Thomas and Salhi 1998; Nonobe and Ibaraki 2002), and Gagnon et al. 2004), lo- 

cal search-based approaches (Fleszar and Hindi 2004 and Palpant et al. 2004), and 

population-based approaches (Debels et al. 2006 and Valls et al. 2003). 

Surveys are presented by Hartmann and Kolisch (2000), Kolisch and Padman 

(2001), and Demeulemeester and Herroelen (2002). Kolisch and Hartmann (2006) 

and Brucker and Knust (2006) describe models and algorithms for complex schedul- 

ing problems and discuss the RCPSP. 

In this paper, we present a new biased random-key genetic algorithm for find- 

ing optimal or near optimal solutions for the resource constrained project scheduling 

problem. The remainder of the paper is organized as follows. Section 2 presents the 

new approach based on a biased random-key genetic algorithm (Gonçalves and Re- 

sende 2009), a schedule generation procedure, and an improvement procedure. Sec- 

tion 3 reports experimental results. Concluding remarks are made in Sect. 4. 

 

 
2 The new approach 

 
2.1 Overview of the new approach 

 
The new approach proposed in this paper combines a biased random-key based ge- 

netic algorithm, a schedule generation scheme, an improvement procedure, and a 

chromosome adjustment procedure. 

The role of the genetic algorithm is to evolve the encoded solutions, or chromo- 

somes, which represent the priorities of the activities. For each chromosome, the fol- 

lowing four phases are applied: 

1. Decoding of priorities. In this phase the chromosome supplied by the genetic al- 

gorithm is transformed into the priorities of the activities. 

2. Schedule generation. This phase makes use of the priorities defined in the first 

phase and constructs an active schedule using a serial schedule generation scheme 

(serial SGS) described in Sect. 2.3. 

3. Schedule improvement. This phase tries to improve the solution obtained in the 

previous phase using an improvement procedure called forward-backward im- 

provement. 

4. Chromosome adjustment. This phase adjusts the chromosome genes given by the 

genetic algorithm to reflect the solution obtained after the schedule improvement. 



 

 

 

 

Fig. 3  Architecture of the new approach 

 

After a schedule is obtained, the corresponding measure of quality (makespan) is fed 

back to the genetic algorithm. Figure 3 illustrates the sequence of steps applied to 

each chromosome generated by the genetic algorithm. Each of these phases will be 

described in detail in the following sections. 

 
2.2 Biased random-key genetic algorithm 

 
This section presents the chromosome representation, the decoding procedure, and 

the evolutionary process of the genetic algorithm. 

A chromosome represents a solution to the problem. In a direct representation, a 

chromosome represents a solution of the original problem, and is called a genotype, 

while in an indirect representation it does not and special procedures are needed to 

derive a solution from it. Such a solution is called a phenotype. 

In the present context, the direct use of schedules as chromosomes is too compli- 

cated to represent and manipulate. In particular, it is difficult to develop correspond- 

ing crossover and mutation operations. Instead, solutions are represented indirectly 

by parameters that are later used by a schedule-generation scheme to obtain a solu- 

tion. 

The genetic algorithm described in this paper uses a random-key alphabet com- 

prised of real-valued random numbers between 0 and 1. The evolutionary    strategy 



 

used is similar to the one proposed by Bean (1994), the main difference occurring 

in how individuals are selected for crossover. The important feature of random keys 

is that all offspring formed by crossover are feasible solutions. This is accomplished 

by moving much of the feasibility issue into the objective function evaluation. If 

any random-key vector can be interpreted as a feasible solution, then any resulting 

crossover vector is also feasible. Through the dynamics of the genetic algorithm, the 

system learns the relationship between random-key vectors and solutions with good 

objective function values. 

Each solution chromosome is made of n genes, where n is the number of activities: 

chromosome = (gene1,..., genen). 

prio   r ities 

_
 

The priorities of the activities are given directly by the genetic algorithm, i.e. 

PRIORITYj = genej , for all j = 1,...,  n. 

These priorities are used by the decoding algorithm presented in Sect. 2.3. 

Given a current population, we perform the following three steps to obtain the next 

generation: 

1. Reproduction. Some of the best individuals are copied from the current generation 

into the next (see TOP in Fig. 5). This strategy is called elitist (Goldberg 1989) 

and its main advantage is that the best solution is monotonically improving from 

one generation to the next. 

2. Crossover. Parametrized uniform crossover (Spears and Dejong 1991) is used as 

opposed to the traditional one-point or two-point crossover. After two parents are 

chosen, the first chosen randomly from the TOP (unlike Bean 1994 we always 

choose one parent from TOP (Gonçalves and Resende 2009)) and the second cho- 

sen randomly from the entire old population (including chromosomes copied to 

the next generation in the elitist selection). For each gene, a real random number 
in the interval [0, 1] is generated. If the random number obtained is smaller than 
a threshold value, called crossover probability (CProb), then the allele of the first 

parent is inherited by the offspring solution. Otherwise, the inherited allele is that 

of the second parent. An example of a crossover outcome is given in Fig. 4. 

3. Mutation. In biased random-key genetic algorithms, mutation is used in a broader 

sense than usual. The operator we define acts like a mutation operator and its 

purpose is to prevent premature convergence of the population to local minima. 

Instead of performing gene-by-gene mutation at each generation with very small 

probability, we introduce a few new individuals into the next generation (repre- 

sented by BOT in Fig. 5). These new individuals (called mutants) are randomly 

generated from the same distribution as the original population. Therefore, no 

genetic material of the current population is brought in. This process prevents 

premature convergence of the population and leads to a simple statement of con- 

vergence, i.e. if a sufficiently large number of generations are carried out, then the 

entire solution space will be sampled. 

The initial population is randomly generated. Figure 5 depicts the transitional 

process between two consecutive generations. 



 

 

 

 

Fig. 4  Example of parametrized uniform crossover with crossover probability equal to 0.7 

 

Fig. 5 Transitional process 

between consecutive generations 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

2.3 Schedule generation procedure 
 
The procedure used to construct active schedules is based on a scheduling generation 
scheme that consists of g = 1 , . . .,n stages, in each of which one activity is selected 
and scheduled at the earliest precedence and resource feasible completion time. There 

are two disjoint activity sets associated with each stage. The schedule set Sg , which 

includes all the activities that been already scheduled and the eligible set Dg, which 

comprises the activities not scheduled for which all predecessor activities have al- 
ready been scheduled. Let A(t ) represent the set of activities that are active a time t 

and let RDk (t ) be the remaining capacity of resource type k at time t , given by 

 
 

 

 

The algorithmic description of the scheduling generation scheme used to build 

parametrized active schedules is shown in the pseudo-code in Fig. 6. The initializa- 

tion assigns a completion time of 0 to the dummy source (activity 0) and places it 



 

 

 

 

 

 

 

in the partial schedule. At the start of every step g, the eligible set Dg , the set of 

finish times for each scheduled activity f'g , and the remaining capacities RDk (t ) are 

computed. Step 4 selects from eligible set Dg the activity that has the highest prior- 

ity (recall that the priorities of the activities are supplied by the genetic algorithm). 

Afterwards, the finish time of activity j is calculated by first computing the  earliest 

precedence feasible finish time EFj and then calculating the earliest precedence and 

resource feasible finish time Fj within the interval [EFj , LFj ], where LFj denotes 

the latest finish time as calculated by backward recursion (cf. Elmaghraby 1977) from 

an upper bound of finish time T of the project. Note that when checking for the avail- 

ability of capacity we only need to check for the time periods in f'g because between 

activity finish times the capacity availability remains unchanged. The makespan of 

the solution is given by the maximum of all predecessor activities of activity n + 1, 

i.e. Fn+1 = max{Fl  | l ∈ Pn+1}. The time complexity of the serial SGS presented in 

Fig. 6 is O(n2 · K). 
The genetic algorithm evolves the priorities used in the selection step of the pro- 

cedure (step 4), 
 

j ∗ ← argmin{PRIORITYj | j ∈ Dg }, 

i.e., the parameters PRIORITYj (priority of activity j used at each g) are supplied by 

the genetic algorithm. 

Figure 7 presents an example of the application of the serial SGS to the problem 

given in Fig. 1. The numbers in bold for the row labeled Dg indicate the selected 

activity. 



 

 

g 1 2 3 4 5 6 7 8 9 

Dg 1, 3, 5,8  3, 5, 8,2  3, 8, 2 3, 8 3 4 ,6  6 ,7  7 9 

Act. Selected 1 5 2 8 3 4 6 7 9 
 

 

 

Fig. 7   Example of serial SGS 

 

 

2.4 Forward-backward improvement 

 
After a solution is obtained by the SGS proposed in Sect. 2.3, our heuristic attempts 

to reduce the makespan of the project through the use of a procedure called forward– 

backward improvement (FBI). 

The FBI procedure employs an SGS to iteratively schedule the project by alternat- 

ing between forward and backward scheduling. This multi-pass heuristic scheduling 

procedure was proposed by Li and Willis (1992). The forward and backward passes 

are based on the concepts of forward and backward free slack of the activities. The 

forward (backward) free slack of an activity in a feasible schedule is the amount 

of time that the activity can be shifted right (left) allowing the remaining activities 

to start on their scheduled dates. Pseudo-code for backward scheduling is shown in 

Fig. 6. 

As mentioned in Sect. 2.3, the initial application of procedure CONSTRUCT AC- 
TIVE SCHEDULE uses the priority values supplied by the genetic algorithm. To 
execute the forward pass, procedure CONSTRUCT ACTIVE SCHEDULE is applied 

to the reverse precedence network in which the former end activity n + 1 becomes 

the new start activity and the priority values of each activity are made equal to the 
makespan minus the completion time of the previous schedule. A final backward pass 

is then executed by applying procedure CONSTRUCT ACTIVE SCHEDULE to the 

original precedence network with the priority values of each activity made equal to 

the makespan minus the completion time of the previous (forward pass) schedule. 

Figure 8 depicts the application of FBI to an initial solution. In Fig. 8(b) all the 

activities are moved forward (to the right) reducing the makespan from 36 to 32 time 

units. In Fig. 8(c) all the activities are moved backward (to the left) reducing the 

makespan from 32 to 30 time units. 

 
2.5 Chromosome adjustment 

 
The solutions produced by FBI are usually not in agreement with the priorities ini- 

tially supplied by the GA chromosome. Since the GA has no knowledge of the 

changes in priorities that occur in the final solution, the heuristic adjusts the chromo- 

some to reflect these changes. To make the chromosome supplied by the GA agree 

with the solution, the heuristic adjusts the order of the genes according to the starting 



 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 

 

               
 

 

 
     

 
     

 

                            
  

         

 

Fig. 8  Example of forward backward improvement 

 

 

times. Figure 9 shows an example of the adjustment process. This chromosome ad- 

justment improves not only the quality of the solutions but also decreases the number 

of iterations necessary to obtain the best values. 

 

 

3 Experimental results 

 

In this section, we report results obtained on a set of experiments conducted to eval- 

uate the performance of the genetic algorithm proposed in this paper. We call this 

algorithm GA-FBI. The algorithm was implemented using Microsoft Visual Basic 

6.0 and the tests were carried out on a computer with a Intel Core 2 CPU running at 

2.4 GHZ on the Windows XP operating system. 

 

3.1 Benchmark instances and algorithms 

 

To illustrate the effectiveness of GA-FBI we consider a total of 1560 instances 

from three classes of standard RCPSP test  problems:  J30  (480  instances, each 

with 30 activities), J60 (480 instances, each with 60 activities), and J120 (600 

instances, each with 120 activities). All problem instances require four resource 



 

 

 
 

 
 

 

 
   

 

 
 

 

 

 

 

 

 
     

 

 
 

           
 

 

 

 

 

 

 

 

 

 

 

 
  

 

        

 

 
 

  

 

 

 

 
 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 
           

 

 

 

 

 

 

 

 

 
        

 

       

 

Fig. 9  Example of the chromosome adjustment process 

 

 
 

types. Instance details are described by Kolisch et al. (1995) and can be obtained 

at http://129.187.106.231/psplib/datasm.html. 

The proposed algorithm is compared with the following algorithms: 

1. Local search-oriented approaches: Fleszar and Hindi (2004); Palpant et al. (2004). 

2. Population-based approaches: Debels et al. (2006); Valls et al. (2004). 

3. Problem and heuristic space method: Leon and Ramamoorthy (1995). 

4. Priority-rule based sampling methods: Tormos and  Lova  (2003)—sampling 

LFT, FBI; Schirmer and Riesenberg (1998); Kolisch and Drexl (1996); Kolisch 

(1996b)—single pass LFT (serial); Kolisch (1996b)—single pass LFT (parallel); 

Kolisch (1996a, 1996b)—single pass WCS; Kolisch (1995)—random (serial); 

Kolisch (1995)—random (parallel). 

5. Genetic algorithms: Mendes et al. (2009)—BRKGA; Valls et al. (2005)—GA- 

FBI; Debels and Vanhoucke (2005)—GA-DBH; Valls et al. (2003)—GA-hybrid, 

FBI; Kochetov and Stolyar (2003)—GA, tabu search, path-relinking;  Hart- 

mann (2002)—GA self adapting; Hartmann (1998)—GA activity list; Hartmann 

(1998)—GA random key; Hartmann (1998)—GA priority rule. 

6. Simulated annealing: Bouleimen and Lecocq (2003). 

7. Tabu search: Nonobe and Ibaraki (2002); Baar et al. (1998). 

8. Other type heuristics: Möhring et al. (2003)—Lagrangian relaxation. 

http://129.187.106.231/psplib/datasm.html


 

3.2 GA configuration 

 
In our past experience with biased random-key genetic algorithms (see e.g. Gonçalves 

and Almeida 2002; Gonçalves et al. 2005; Gonçalves and Resende 2004; Buriol et al. 

2005, and Gonçalves 2007), we obtained good results with values of TOP, BOT, and 

crossover probability (CProb) in the following ranges: 

 
 

Parameter Interval 
 

 

TOP 0.10–0.20 

BOT 0.15–0.30 

CProb 0.70–0.80 
 

 

 

To fine tune these parameters, we conducted a small pilot experiment with com- 
binations of the following values TOP ∈ {0.10, 0.15, 0.20}, BOT ∈ {0.15, 0.20, 0.25, 
0.30}, and CProb ∈ {0.70, 0.75, 0.80}. We obtain good results by using a 
population size proportional to the number of activities. We therefore experimented 
with popu- 

lation sizes having 1, 2, 5, 10, and 15 times the number of activities in the project. 

The pilot experiment resulted in the following configuration, which was held con- 

stant for all experiments and all problem instances: 

 
 

 

Population Size 10 × number of activities in the problem 
 

 

CProb 0.7 

TOP The chromosomes of the 10% best fit solutions from the previous 

population are copied to the next generation. 

BOT The number of mutant chromosomes randomly generated and added to the 

next generation is 20% of the population size. 

Fitness Makespan (to minimize) 

Stopping Criterion Maximum number of generations 
 

 
 

The experimental results demonstrate that this configuration provides high-quality 

solutions and that it is robust. 

 
3.3 Results 

 
In our results we compare the solutions obtained by the algorithms as a function of the 

number of schedules generated. In the case of the GA-FBI the number of schedules 

generated is given by 

3 × [PopSize + (nGen − 1) × PopSize × (1 − TOP)] 

where nGen is the number of generations, PopSize is the population size, and TOP 

is the proportion of the previous population copied to the next generation. Notice 

that we multiply by three to account for one schedule produced by the GA and  two 



 

Table 1  Average percent deviations from optimal makespan—ProGen set J 30 
 

 

Reference Maximum number of schedules/Average CPU time(s) 

Generations / (Number of schedules of GA-FBI) 

 1000/0.36 5000/1.8 50,000/18 100,000/36 500,000/180 

1/(900) 6/(4950) 61/(49,500) 123/(99,720) 617/(499,860) 

This paper 0.32 0.02 0.01 0.01 0.01 

Kochetov and Stolyar (2003) 0.10 0.04 0.00 – – 

Mendes et al. (2009) 0.06 0.02 0.01 0.01 0.01 

Debels et al. (2006) 0.27 0.11 0.01 0.01 0.01 

Debels and Vanhoucke (2005) 0.15 0.04 0.02 – – 

Valls et al. (2003) 0.27 0.06 0.02 – – 

Valls et al. (2005) 0.34 0.20 0.02 – – 

Tormos and Lova (2003) 0.25 0.13 0.05 – – 

Nonobe and Ibaraki (2002) 0.46 0.16 0.05 – – 

Hartmann (2002) 0.38 0.22 0.08 – – 

Hartmann (1998) 0.54 0.25 0.08 – – 

Bouleimen and Lecocq (2003) 0.38 0.23 – – – 

Schirmer and Riesenberg (1998) 0.65 0.44 – – – 

Baar et al. (1998) 0.86 0.44 – – – 

Kolisch and Drexl (1996) 0.74 0.53 – – – 

Kolisch (1996b) 0.83 0.53 0.27 – – 

Hartmann (1998) 1.03 0.56 0.23 – – 

Kolisch (1995) 1.44 1.00 0.51 – – 

Hartmann (1998) 1.38 1.12 0.88 – – 

Kolisch (1996a, 1996b) 1.40 1.28 – – – 

Kolisch (1996b) 1.40 1.29 1.13 – – 

Kolisch (1995) 1.77 1.48 1.22 – – 

Leon and Ramamoorthy (1995) 2.08 1.59 – – – 

 
Table 2  Average percent deviations from optimal makespan—ProGen set J 30 

 
 

Reference Avg. % deviation CPU time CPU freq. 
 

 

Avg. Max. 
 

Palpant et al. (2004) 0.00 10.26 s 123.0 s 2.3 GHz 

Fleszar and Hindi (2004) 0.01 0.64 s 5.9 s 1.0 GHz 

Valls et al. (2003) 0.06 1.61 s 6.2 s 400 MHz 

Valls et al. (2004) 0.10 1.16 s 5.5 s 400 MHz 

 

 
schedules produced by the FBI procedure. A single run of GA-FBI is performed per 

problem instance. 

Table 1 (for algorithms in which papers report the number of schedules gener- 

ated) and Table 2 (for algorithms in which papers do not report the number of sched- 



 

Table 3   Average percent deviations from critical path lower bound—ProGen set J 60 
 

 

Reference Maximum number of schedules/Average CPU time(s) 

Generations / (Number of schedules of GA-FBI) 

 1000/0.11 5000/0.53 50,000/5.25 100,000/10.5 500,000/52.5 

1/(800) 3/(5040) 30/(48,780) 61/(99,000) 308/(499,140) 

This paper – 11.56 10.57 10.51 10.49 

Mendes et al. (2009) 11.72 11.04 10.67 10.67 10.67 

Debels and Vanhoucke (2005) 11.45 10.95 10.68 – – 

Debels et al. (2006) 11.73 11.10 10.71 – 10.53 

Valls et al. (2003) 11.56 11.10 10.73 – – 

Kochetov and Stolyar (2003) 11.71 11.17 10.74 – – 

Valls et al. (2005) 12.21 11.27 10.74 – – 

Hartmann (2002) 12.21 11.70 11.21 - - 

Hartmann (1998) 12.68 11.89 11.23 – – 

Tormos and Lova (2003) 11.88 11.62 11.36 – – 

Bouleimen and Lecocq (2003) 12.75 11.90 – – – 

Nonobe and Ibaraki (2002) 12.97 12.18 11.58 – – 

Schirmer and Riesenberg (1998) 12.94 12.58 – – – 

Kolisch and Drexl (1996) 13.51 13.06 – – – 

Baar et al. (1998) 13.80 13.48 – – – 

Hartmann (1998) 14.68 13.32 12.25 – – 

Hartmann (1998) 13.30 12.74 12.26 – – 

Kolisch (1996b) 13.59 13.23 12.85 – – 

Kolisch (1996b) 13.96 13.53 12.97 – – 

Kolisch (1995) 14.89 14.30 13.66 – – 

Kolisch (1996a, 1996b) 13.66 13.21 – – – 

Kolisch (1995) 15.94 15.17 14.22 - – 

Leon and Ramamoorthy (1995) 14.33 13.49 – – – 

 
 

Table 4   Average percent deviations from critical path lower bound—ProGen set J 60 
 

Reference Avg. % deviation CPU time  CPU freq. 

  Avg. Max.  

Palpant et al. (2004) 10.81 38.8 s 223.0s  2.3 GHz 

Valls et al. (2004) 10.89 3.7s  22.6 s 400 MHz 

Valls et al. (2003) 11.45 2.8s  14.6 s 400 MHz 

Möhring et al. (2003) 15.60 6.9 s 57 s 200 MHz 

 

 

ules generated) summarize the average percentage deviation DOPT from the optimal 

makespan for instance set J30. The best value obtained by GA-FBI was DOPT = 0.01. 

GA-FBI obtains the optimal solution for 478 of the 480 instances (99.58% of the in- 



 

Table 5   Average percent deviations from critical path lower bound—ProGen set J 120 
 

 

Reference Maximum number of schedules/Average CPU time(s) 

Generations / (Number of schedules of GA-FBI) 

 1000/0.6 5000/1.8 50,000/18 100,000/36 500,000/180 

1/(3600) 3/(6840) 15/(48960) 30/(97560) 154/(490320) 

This paper – 35.94 32.76 31.63 30.08 

Debels and Vanhoucke (2005) 34.19 32.34 30.82 – – 

Valls et al. (2003) 34.07 32.54 31.24 – – 

Mendes et al. (2009) 35.87 33.03 31.44 31.32 31.20 

Debels et al. (2006) 35.22 33.10 31.57 – 30.48 

Valls et al. (2005) 35.39 33.24 31.58 – – 

Kochetov and Stolyar (2003) 34.74 33.36 32.06 – – 

Hartmann (2002) 37.19 35.39 33.21 – – 

Tormos and Lova (2003) 35.01 34.41 33.71 – – 

Hartmann (1998) 39.37 36.74 34.03 – – 

Bouleimen and Lecocq (2003) 42.81 37.68 – – – 

Nonobe and Ibaraki (2002) 40.86 37.88 35.85 – – 

Hartmann (1998) 39.93 38.49 36.51 – – 

Schirmer and Riesenberg (1998) 39.85 38.70 – – – 

Kolisch (1996b) 39.60 38.75 37.74 – – 

Kolisch (1996a, 1996b) 39.65 38.77 – – – 

Kolisch and Drexl (1996) 41.37 40.45 – – – 

Leon and Ramamoorthy (1995) 42.91 40.69 – – – 

Hartmann (1998) 45.82 42.25 38.83 – – 

Kolisch (1996b) 42.84 41.84 40.63 – – 

Kolisch (1995) 44.46 43.05 41.44 – – 

Kolisch (1995) 49.25 47.61 45.60 – – 

 
Table 6   Average percent deviations from critical path lower bound—ProGen set J 120 

 

Reference Avg. % deviation CPU time  CPU freq. 

  Avg. Max.  

Valls et al. (2004) 31.58 59.4 s 264.0 s 400 MHz 

Palpant et al. (2004) 32.41 207.9 s 501.0 s 2.3 GHz 

Valls et al. (2003) 34.53 17.0 s 43.9 s 400 MHz 

Möhring et al. (2003) 36.00 72.9 s 654 s 200 MHz 

 

 
stances). GA-FBI ranks first for 5,000 schedules and ranks second for 50,000 sched- 

ules or more. 

Table 3 (for algorithms in which papers report the number of schedules generated) 

and Table 4 (for algorithms in which papers do not report the number of schedules 

generated) summarize the average percentage deviation from the well-known critical 



 

 
   

 

  

 

 

      

 

   

 

 

        

 

Fig. 10 Box-plots comparing average percent deviation from optimal or lower bound for GA-FBI and 

GA-PAR 

 

 
path-based lower bound (DLB) for instance set J60 (Stinson et al. 1978). GA-FBI 
obtained DLB = 10.49. GA-FBI ranks seventh for 5,000 schedules and ranks first for 
50,000 schedules or more. 

Table 5 (for algorithms in which papers report the number of schedules generated) 

and Table 6 (for algorithms in which papers do not report the number of    schedules 



 

 

   

 

 

        

 

Fig. 10  (Continued) 

 

 

generated) summarize the average percentage deviation from the well-known critical 

path-based lower bound (DLB) for instance set J120 (Stinson et al. 1978).   GA-FBI 

obtained DLB = 30.08. GA-FBI ranks ninth for 5,000 schedules, seventh for 50,000 
schedules and first for 500,000 schedules. 

Figure 10 presents a box-plot comparison between GA-FBI and GA-PAR, the bi- 

ased random-key genetic algorithm of Mendes et al. (2009). The encoding of a solu- 

tion in GA-PAR consists of two parts, both of which are used by a novel SGS parame- 

trized active scheduler to construct schedules. On the other hand, in GA-FBI, chromo- 

some has only one part, directly used by a serial SGS to construct active schedules, 

followed by an improvement phase (FBI) and a chromosome adjustment phase. This 

chromosome adjustment cannot be done in GA-PAR because of the encoding and 

the adopted scheduler. As can be seen in Fig. 10 for the J120 class of instances, as 

the number of allowed schedules increases, heuristic GA-FBI becomes better than 

GA-PAR. 

From the above results it is clear that no algorithm dominates GA-FBI. The ap- 

proach of Debels et al. (2006) is the one that seems to have similar performance. 

Given that GA-FBI uses an evolutionary strategy that depends on the number of gen- 

erations, it is not surprising that, for problems with a large number of activities, it 

does not perform so well when only a small number of schedules generated is al- 

lowed. With our heuristic, we improved1 the best known solution for 11 instances in 

test problem repository PSPLIB http://129.187.106.231/psplib/files/j120hrs.sm. 

 
 

 

1As of March 8, 2009. 

http://129.187.106.231/psplib/files/j120hrs.sm


 

4  Concluding remarks 

 
This paper presents a biased random-key genetic algorithm for the resource con- 

strained project scheduling problem. The chromosome representation of the problem 

is based on random keys. The schedules are constructed using a priority rule in which 

the priorities are defined by the genetic algorithm. Schedules are constructed  using 

a procedure that generates active schedules. The approach is tested on a set of 1560 

standard instances taken from the literature and compared with results of 25 other al- 

gorithms taken from the literature. In extensive computational testing, our algorithm 

compared well with the other algorithms and produced new best known solutions for 

a number of benchmark test instances. Overall, the experiments validate the effec- 

tiveness of the proposed algorithm. 
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