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Abstract In this paper a complex-order van der Pol oscillator   is   considered.   The   complex  derivative 

Dα±jβ , with α, β ∈ R+ is a generalization of the con- 
cept of integer derivative, where α = 1, β = 0. By applying the concept of complex derivative, we    ob- 

tain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the 

complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic 

solutions of the two oscilla- tors are also analyzed. 
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1 Introduction 
 

The van der Pol (VDP) oscillator is an ordinary differ- ential 

equation that has arisen as a model of electrical circuits 

containing vacuum tubes [45] (re-edited [8]). It produces 

self-sustaining oscillations in which en- ergy is fed into 

small oscillations while it is removed from large 

oscillations. This is the first relaxation os- cillator 

appearing in the literature [44, 46]. It is given by the 

following second order differential equation: 

 

  

Parameter μ controls the way the voltage flows 
through the system. For μ = 0 this is just a simple 
linear oscillator. For large values of μ, that is for μ 
» 1, the system exhibits a relaxation oscillation. This 
means that the oscillator has two distinct phases: 

a slow recovery phase and a fast release phase (vac- 

uum tubes quickly release or relax their voltage after 

slowly building up tension). 

This equation has been used in the design of var- ious 

systems, from biology, with the modeling of the 

heartbeat [17, 22, 30], the generation of action poten- 

tials [20, 21], up to acoustic systems [2] and electrical 

circuits [3, 12]. The VDP oscillator has also been used in 

the context of chaos theory [9, 12, 14–16]. 

Fractional calculus (FC) has been an important re- 

search issue in the last few decades. FC is a generaliza- 

tion of the ordinary integer  

 

 

 

 

differentiation and integra- tion to an arbitrary, real or 

complex, order [28, 34, 43]. Applications of FC  

have been  emerging  in differ- ent and important areas 

of physics and engineering [5, 10, 26, 27, 31, 32, 35, 39, 

41, 42]. Fractional order behavior has been found in 

areas such as fluid me- 
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chanics [29], mechanical systems [13], electrochem- istry 

[33], and biology [1, 11], namely in the modeling of the 

central pattern generators for animal locomotor rhythms 

[36, 37]. 

There are several definitions of fractional deriva- tives 
of order α ∈ R, three of the most important being the 
Riemann–Liouville, the Grünwald–Letnikov, and 

the Caputo ones, given by 

the expression (3) represents the Euler (or first back- ward 

difference) approximation in the s → z dis- cretization  

scheme,  the  Tustin  approximation being 

another possibility. The most often adopted general- 

ization of the generalized derivative operator consists 
in α ∈ R. The case of having a fractional derivative of 
complex order α ± jβ ∈ C leads to complex out- put valued 
results and imposes some restrictions   be- 

fore a practical application. To overcome this problem, 
 

 
 recently [6, 18, 19] the association of two complex- order 

derivatives was proposed. In fact, there are sev- 

  
 

eral arrangements that produce real valued results. For 

example, with the real part of two complex conjugate 
α±jβ 

    

derivatives D we get 

 
  

 

where r() is the Euler gamma function, [] means the   

integer part of x, and h represents the step time incre-  
1

 

ment. It is also possible to generalize the results based on 

transforms, yielding 
   
   

  

 

 

where s and L represent the Laplace variable and op- 

erator, respectively. 

The definitions demonstrate that fractional deriva- 

tives capture the history of the variable, or, in other 

words, ones that have memory, contrary to integer 

derivatives, which are local operators. The Grünwald– 

Letnikov formulation inspires the numerical calcula- tion 

of the fractional derivative based on the approxi- mation 

of the time increment h through the sampling period T 

and the series truncation at the r th term. This method is 

often denoted as Power Series Expansion (PSE) yielding 

the equation in the z domain: 

Other combinations and the adoption of a Padé fraction, 

instead of the series for the approximation, are also 

possible. Nevertheless, in the sequel the case of 

expression (7) is explored. 

We must remark that a scheme of discretized frac- 

tional derivative is adopted commonly accepted in en- 

gineering, but not yet fully investigated from a math- 

ematical view point. Let us recall the basic definitions of 

Riemann–Liouville (R-L) and Caputo (C) deriva- tives, in (2) 

and (4), based on integral expressions, and of Grünwald–

Letnikov (G-L), in (3), based on a series expression suitable 

for discretization. The C derivative is a regularization of the 

R-L derivative and their G-L derivative is the series 

representation of the R-L deriv- ative. In (5) the Laplace 

transform of the R-L  deriva- 

 
 
  

 
 

 

 

 

 
 
 
 

tives differs from that of the C derivative, as shown by 

Gorenflo and Mainardi [23, 24], subsequently pointed out 

in the well-known treatises on Fractional Calcu- lus by 

Podlubny [38] and Kilbas-Srivastava and Tru- jillo [25]. So, 

in practice the classical R-L  derivative 

where X(z) = Z{x(t)} and z and Z  represent the  z- 
transform variable and operator, respectively. In fact, 

of real order is generalized to complex orders. In case of 

adopting the Caputo derivative (in view of standard 



 

 

initial conditions), there should be adopted a differ- ent 

Laplace transform (see Gorenflo et al. [23, 24]), and also a 

modified G-L series representation, because the C 

derivative is a regularization of the R-L deriv- ative in the 

time origin. For real order less than one 
the G-L representation of the C derivative has    been 

given by 

 

 
 
 
 

adopted in the paper by Gorenflo et al. [24]. As a con- 

sequence, the Z representation in (6) in the complex 

domain should be modified accordingly for the Caputo 

derivative. While tackling these matters is not straight- 

forward, we must note that the simulations carried out in 

the sequel correspond to steady state responses and that 

the initial conditions have a minor impact in the resulting 

charts. 

Having these ideas in mind, this paper is organized as 

follows. In Sect. 2, we introduce the two    approx- 

   
 

where α and β are fractional numbers. 

To the best of the knowledge of the authors, little 

attention has been given to CVDP oscillators. In this 

paper, we consider the following two complex-order 

state-space models of the VDP oscillator: 

 

imations of the complex-order van der Pol   oscillator 
(CVDP) and we present results from numerical simu- 

 
   

 

lations. In Sect. 3 we outline the main conclusions of this 

study. 

 

 

2 Complex-order van der Pol system 
 

Fractional VDP systems have been studied by   many 

 

authors [4, 7, 9, 14–16, 40]. Their work differs in the 

approaches considered to express the fractional deriv- 

ative. Chen et al. [9] considered a forced van der Pol 

equation with fractional damping of the form: 

 

where μ is an endogenous damping parameter, a de- 

notes the amplitude of a periodic forcing, and ω is the 

forcing frequency. 

Barbosa et al. [7] considered the following modi- fied 

version of the van der Pol equation: 

 

  

with 0 < λ <  1. 

Tavazoei et al. [40] determined the parametric range 

for which the fractional VDP system  studied by Barbosa et 

al. [7] can perform as an undamped os- cillator. They also 

showed that, contrary to the integer 



 

 

where Dα±jβ, α, β ∈ R+, is a generalization of the 

concept of the integer derivative that corresponds   to 

α = 1 and β = 0. 

We adopt the PSE method for the approximation of 

the complex-order derivative in the discrete time nu- 

merical integration. Several experiments demonstrated 

that a slight adaption to the standard approach based on 

a simple truncation of the series is required. In fact, since 

our objective is to generate limit cycles, the trun- cation 

corresponds to a diminishing of the gain [42] and, 

consequently, leads to difficulties in the promo- tion of 

periodic orbits. Therefore, in order to overcome this 

limitation, we decided to include a gain adjust- ment 

factor corresponding to the sum of the missing truncated 

series coefficients. 

The discretization of the CVDP oscillators (11) and (12) 

leads to, respectively: 

 

order VDP, trajectories in a fractional VDP  oscillator 

do not converge to a unique cycle. 

 
 

Ge et al. [14] studied the autonomous and non- 

autonomous fractional van der Pol oscillator. The non- 

  

autonomous system in state-space oscillator model  is 



 

 

 t 

Table 1  Periodic solutions of the CVDP systems (13)–(14) for β = 0.8, μ = 0.5 and α ∈ {0.4, 0.8} 

 

 
 

  

 

  

 

 

 

 

 
 

 
larger the value of μ, the more nonlinear the oscilla- tion 

becomes. We verify also that we can control the period of 

the oscillation by varying α. 

We   now  simulate  the  ordinary  differential  sys- 
 
 tems given by expressions (13)–(14) for β = 0.8, α ∈ 

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},  μ = {0.5, 
where t = 0.0005 is the time increment, ψ(β, t) = 

cos[b log( 1 )] and function H (xi ), i = 1, 2, results from 
the Taylor series expansion truncation. 

In Table 1 we depict periodic solutions of sys- tems 

(13)–(14) for α = 0.4,β = 0.8 and μ = 0.5. One 

can observe the appearance of the relaxation oscilla- tion 

phenomena as α increases (first row of the table). Note 

that in the case of system (14) this phenomenon is 

already present for α = 0.4 and is emphasized  for α = 0.8 

(second row of the table). 

In Figs. 1–2, we show the phase portraits of solu- 

tions (x1(t ), x2(t )) of systems (13)–(14) for β = 0.8, μ ∈ 

{0.5, 2} and different values of α. As expected, the 

1.0, 1.5, 2}, and we measure the amplitude and the period 

of the solutions. Values of α ∈ [0.0, 0.2[ were also 

considered in the simulations. For system (13) we 

found stable periodic solutions nevertheless for sys- tem 

(14) simulation results led to unstable solutions, so we 

have decided to omit these values. 

Here  are  adopted  the  initial  conditions  x1(1) = 

0.0,  x1(2)  = 0.005,  x1(3)  = 0.010,  x1(4)  = 0.015, 

x1(5)  = 0.02,  x2(1)  = 1.0,  x2(2)  = 1.005,  x2(3) = 

1.010, x2(4) = 1.015, x2(5) = 1.02. 

Each simulation is executed until a stable periodic 

solution is found. The amplitude and the period of the 

solutions versus α are depicted in Figs. 3–4. We   find 



 

 

 

 

 

 

 

 

Fig. 1 Phase-space solutions (x1(t ), x2(t )) of the CVDP system (13) for α ∈ {0.4, 0.6, 0.8}, β = 0.8 and μ = 0.5 (left) and μ = 
2.0 (right) 

 

 

 

 
  

 

Fig. 2 Phase-space solutions (x1(t ), x2(t )) of the CVDP system (14) for α ∈ {0.4, 0.6, 0.8}, β = 0.8 and μ = 0.5 (left) and μ = 
2.0 (right) 

 

 

 

 

Fig. 3 Amplitude of the periodic solutions x1(t ) produced by the CVDP oscillators (13) (dashed) and (14) (line) for β = 
0.8, α ∈ {0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8, 0.9, 1.0} and μ = 0.5 (left) and μ = 2.0 (right) 

 

 

 

 



 

 

Fig. 4  Period  of  the  solutions  x1(t )  produced  by  the  CVDP  oscillators  (13)  (dashed)  and  (14)  (line)  for  β  = 
0.8, α ∈ {0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8, 0.9, 1.0} and μ = 0.5 (left) and μ = 2.0 (right) 



 

 

 

 

 

 

Fig. 5  Amplitude of the Fourier transform |F {x1(t )}| vs. ω for the CVDP oscillators (13) (left) and (14) (right) with β = 
0.8, α ∈ {0.3, 0.5, 0.7, 1.0} and μ = 0.5 

 

 

 

 

 

Fig. 6  Amplitude of the Fourier transform |F {x1(t )}| vs. ω for the CVDP oscillators (13) (left) and (14) (right) with β = 
0.8, α ∈ {0.3, 0.5, 0.7, 1.0} and μ = 2.0 

 

 

that the period increases as α goes from 0.2 to 1.0, in 

both systems (13)–(14). On the other hand, the am- 

plitude is almost constant. To be precise, the ampli- tude 

shows a very tiny increase in system (13) and a very tiny 

decrease in system (14), as α increases to one. 
We now compute the Fourier transforms |F {x1(t )}| of 

the periodic solutions of systems (13) and (14), for β = 0.8 
and α = {0.3, 0.5, 0.7, 1.0}. Figures 5–6 de- pict the 
amplitude of the Fourier transforms vs. the 

frequency ω. The charts demonstrate that the main part of 

the signal energy is concentrated in the funda- mental 

frequency ω0. The remaining energy, located in the higher 

harmonics increases with μ. Further- more, it is also 

observed that the fundamental fre- quency of the 

oscillations ω0 varies with α and μ. For the range of 

values tested, the numerical fitting leads to exponential 

and rational fraction approxima- tions, for systems (13) 

and (14), respectively, given by 

  

and 

 

 

 

 

 
We verify that in the first case the frequency of os- 

cillation is independent of μ, while in the second case it is 

related both with α and μ. 

 

 

3 Conclusions 
 

In this paper two complex-order approximations to the 

well-known van der Pol oscillator were proposed. The 

amplitude and the period of solutions produced by 

these two approximations were then measured. The 

imaginary part was fixed while the real component was 

varied, for two distinct values of parameter μ. It was 

observed that the waveform period increases as α varies 

between 0.2 and one. On the other hand, the am- 



 

 

plitude values are almost constant as α varies. More- 

over, it seems there is a tiny increase in the amplitude of 

solutions for system (13) and a tiny decrease for system 

(14) as α approaches one. 

The Fourier transform |F {x1(t )}| for systems (13) 
and (14) was also calculated. It was verified that the main 

part of the signal energy is concentrated in the 

fundamental frequency ω0. The remaining energy, lo- 

cated in the higher harmonics, increases with μ. It is also 

observed that the fundamental frequency of the 

oscillations ω0 varies with α and μ. For the range of values 

tested, the numerical fitting leads to exponential and 

rational fraction approximations for systems (13) and (14), 

respectively. 
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