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ABSTRACT

 
 

In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algo rithm takes advantage 

of present day computational  resources and processes directly the characteristic equation, avoiding the limitations revealed by standard 

methods. The results demonstrate the good performance for different types  of expressions. 
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1. Introduction 

 
Fractional calculus (FC) generalizes integrodifferential operation to a non-integer order. During the last decades FC 

verified a strong development which is demonstrated by the large volume of research published. The mathematical 

formulation of the FC theory can be addressed in Refs. [1–5] and applications, such as viscoelasticity, biology, signal 

processing, diffusion, modeling and control, can be found in [6–10]. In spite of its popularity, FC requires some efforts 

towards the development and adoption of standard tools often adopted in system analysis and control. In  fact,  the  

modeling of fractional systems and the calculation of fractional derivatives leads to non-rational functions, often 

approximated through series or rational fractions [11–14]. This paper addresses the development of an algorithm for 

obtaining the Root Locus (RL) of fractional order expressions of any type, easy to implement using today’s computa-      

tional resources. 

In this line of thought the manuscript is organized as follows. Section 2 introduces the algorithm for the calculation of the 

root locus of fractional order expressions and presents several examples. Section 3 outlines the main conclusions. 

 
2. Root locus of fractional systems 

 
The RL is a classical tool for the stability analysis of integer order linear systems [15–19], but its application in the frac- 

tional counterpart poses some difficulties. Therefore, researchers have mainly preferred to adopt frequency based methods, 

but we can mention several studies addressing the RL in the scope of fractional systems [20–23]. More recently the RL was 

considered for the stability analysis of fractional systems by tacking advantage of commensurable expressions that occur 

when truncating real valued integrodifferential orders up to a finite precision [24]. This strategy allows the use of built in 

routines available in several engineering packages, with a good level of integration of commands and editor, but, on the other 

 

 



 

 

hand, limits the precision and the type of symbolic expressions. For example, several fractional systems are modeled by tran- 

scendental expressions and the adoption of polynomials of non-integer order is not the most appropriate way to construct 

the corresponding RL. 

Bearing these ideas in mind, it was decided to implement a numerical tool for construction the RL without the previous 

limitations. The algorithm consists in searching the complex plane s for possible solutions of the closed-loop characteristic 

equation. In general, in the s-plane it is adopted a two stage calculation scheme, with a large spaced grid of points for a pre- 

liminary evaluation of candidate solutions and, for each solution, a more precise calculation by inserting a local small spaced 

grid of points. Due to the importance of solutions in the real and imaginary axis it was decided to search directly those cases. 

Moreover, after analyzing the RL of several experiments it was verified to be the best option to consider directly a small- 

spaced grid and a two stage grid for root evaluation in the real and the imaginary axis, respectively. Therefore, the structure 

of the algorithm is designed as   follows: 

 

1. Definition of the system characteristic equation. 

2. Definition of parameters: 

2.1. The limits of the search in the complex plane. 

2.2. The number of points with the large spaced grid for testing possible solutions. 

2.3. The accuracy threshold for entering the high precision root evaluation. 

2.4. The number of points in the small spaced grid for calculating more precise solutions. 

3. Calculation of solutions in the imaginary axis with two phases. 

3.1. Test solutions with large grid. 

3.2. If feasible solution found, then larger precision evaluation by searching within a local small 

spaced grid. 

4. Calculation of solutions in the real axis, directly with small spaced grid. 

5. Calculation of solutions in the complex plane with two phases. 

5.1. Test solutions with large spaced grid. 

5.2. If feasible solution found, then larger precision evaluation by searching within a local small 

spaced grid. 

 

For the implementation of the algorithm were tested both compiler and interpreted computational packages. It was ver- 

ified that interpreted codes were much slower and, therefore, in the sequel the experiments are based on code implemented 

with the Lazarus compiler [25]. However, given that many users use nowadays Matlab [26] in Appendix A is listed the main 

code and the definition of one fractional system adopted in the following examples. 

For the purpose of testing the algorithm are considered several fractional characteristic equations Q(s) proposed in the 

literature, namely: 

 

 

 

 

 

where s represents the Laplace transform variable. 

Fig. 1 depicts the corresponding root locus for k P 0 obtained through the proposed computation scheme. The results are 

consistent with those reported based on the adaptation of the standard RL, when available, or with stability conditions based 

on other methods, for those cases where the RL was not obtained. It was also confirmed that the quality, precision and speed 

can be easily tuned through the parameters defining the grid points and the precision threshold. From the operational point 

of view we find that we loose the automatisms provided by common engineering packages, since we have to insert the code 

for each characteristic equation but, on the other hand, we gain computational speed and freedom of analyzing a larger set of 

fractional-order expressions. 

In conclusion the proposed algorithm provides a simple platform for the stability analysis and control design of closed 

loop linear fractional systems. 

 
3. Conclusions 

 
The advances in FC demonstrate its superiority for an accurate system modeling and point towards important develop- 

ments in applications, namely in control design. During the last years some algorithms for adapting classical RL packages 

were proposed. Nevertheless, the case of complex expressions was not yet tackled. In this paper a new algorithm for the cal- 

culation of the RL of fractional expressions was introduced. The results demonstrate the good performance for different types 

of systems. 
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Fig. 1. Root locus for k P 0 of the fractional-order characteristic equations: (a) Q(s) = s2 3s1.5 2s + 2s0.5 + 12 + k(s0.5 1), (b) Q(s) = 0.7943s2.5708 + 5.2385s0.8372 + 

1.5560 + k,   (c)    Q(s) = 14994s1.131 + 6009.5s0.97 + 1.69 + k,   (d)    Q ðsÞ ¼ 1 þ ke
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Appendix A. Matlab code 

 
A.1. The main program 

 
% This program plots the root locus of a fractional order system 

% 

% The the width of the plot is defined by the variables: xmin, xmax, ymax 

% The number of large cells for the numerical evaluation is variable: n 

% The number of small cells within each large cell: ns 

% 

% The system is defined in syst.m 

% 
% 2011 J. Tenreiro Machado 

close all 

clear all 

xmin=-10; % left limit 

xmax=10; % right limit 

ymax=20; % upper and lower limits 

n=300; % large grid 

ns=20; % small grid 

ns1=ns+1; 

ns2=ns+ns1; 

dx=(xmax-xmin)/n; 

dy=0.5*ymax/n; 

dx2=dx/2; 

dxs=dx/ns; 

dy2=dy/2; 

dys=dy/ns; 

asarg_lim1=0.01; 

asarg_lim2=asarg_lim1*0.1; 

ip=1; 

x=xmin; 

while x<=xmax 

y=dy; 

while y<=ymax 

[mod_k,arg_k] = syst (x,y); 

asarg_k=abs (arg_k); 

if asarg_k<asarg_lim1 

asarg_min=asarg_k; 

arg_k_min=arg_k; 

asarg_k_min=asarg_k; 

% small grid 

xsmin=x; 

ysmin=y; 

for i1=1:ns2 

for j1=1:ns2 

k1(i1,j1)=0; 

end;  

end; 

i1min=ns1; 

j1min=ns1; 

k1(i1min,j1min)=1; 

flagk=0; 

while (xsmin<=x-dx2)j(xsmin>=x+dx2)j(ysmin<=y-dy2)j(ysmin>=y+dy2)j(flagk==0) 

for i1=1:3 
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xs (i1)=xsmin+(i1-2)*dxs; 

end; 

for j1=1:3 
ys (j1)=ysmin+(j1-2)*dys; 

end; 

for i1=1:3 

for j1=1:3 

flagk=0; 

i10=i1min+i1-2; 

j10=j1min+j1-2; 

if (i10<=ns2)& (j10<=ns2)& (i10>0)& (j10>0) 

if k1(i10,j10)==0 
[mod_k,arg_k] =syst (xs (i1),ys (j1)); 

i1min=i10; 

j1min=j10; 

k1(i10,j10)=1; 

flagk=1; 

asarg_k=abs (arg_k); 

if asarg_k<asarg_min 

asarg_min=asarg_k; 

arg_k_min=arg_k; 

k_min=mod_k; 

xsmin=xs (i1); 

ysmin=ys (j1); 

end; 

end; 

end; 

end; 

end; 

end; 

% small grid 

if abs (arg_k_min)<asarg_lim2 

ip=ip+1; 
px (ip)=xsmin; 

py (ip)=ysmin; 

ip=ip+1; 

px (ip)=xsmin; 

py (ip)=-ysmin; 

end; 

end; 

y=y+dy; 

end; 

x=x+dx; 

end; 

% Real axis 

y=0.0; 

x=xmin;   

while x<=xmax 

[mod_k,arg_k] = syst (x,y); 

asarg_k=abs (arg_k); 

if asarg_k<asarg_lim2 

asarg_min=asarg_k; 

arg_k_min=arg_k; 

asarg_k_min=asarg_k; 



 
 

xsmin=x; 

ysmin=0; 

ip=ip+1; 
px (ip)=xsmin; 

py (ip)=ysmin; 

end; 

x=x+dx; 

end; 

if ip>1 

Fig. 1 

i=1; 

while i<=ip 
scatter (px (i),py (i),3,[1 0 0],’filled’); 

i=i+1; 

hold on 

end; 

xlabel (’Ren{sn}’) 

ylabel (’Imn{sn}’) 

grid on 
hold off 

end 

 
 

One fractional system  definition: 

function [mod_k,arg_k] = syst (x,y) 

%  System 1 
% numerator definition 

a (1)=-1; af (1)=0; 

a (2)=1; af (2)=0.5; 

imax=2; 

% denominator definition 

b (1)=12; bf (1)=0; 

b (2)=2; bf (2)=0.5; 

b (3)=-2; bf (3)=1; 

b (4)=-3; bf (4)=1.5; 

b (5)=1; bf (5)=2; 

jmax=5; 

% total 

logz=0.5*log (x*x+y*y); 

argz=atan2(y,x); 

% numerator calculation 

re (1)=0; 

im (1)=0; 
for i=1:imax 

if af (i)==0 

r=1; 

t=0; 

end; 
if af (i)==1 

r=exp (logz); 

t=argz; 

end; 

if (af (i)rv=0)& (af (i)rv=1) 

r=exp (af (i)*logz); 

t=af (i)*argz; 

end; 



 

 

ar=a (i)*r; 

re (1)=re (1)+ar*cos (t); 
im (1)=im (1)+ar*sin (t); 

end; 

m1=re (1)*re (1)+im (1)*im (1); 

% denominator calculation 

re (2)=0; 

im (2)=0; 
for j=1:jmax 

if bf (j)==0 

r=1; 

t=0; 

end; 
if bf (j)==1 

r=exp (logz); 

t=argz; 

end; 

if (bf (j)rv=0)& (bf (j)rv=1) 

r=exp (bf (j)*logz); 

t=bf (j)*argz; 
end; 

br=b (j)*r; 

re (2)=re (2)+br*cos (t); 
im (2)=im (2)+br*sin (t); 

end; 

m2=re (2)*re (2)+im (2)*im (2); 
 

%output 

mod_k=sqrt (m2/m1); 

arg_k=atan2(re (1)*im (2)-im (1)*re (2),re (1)*re (2)+im (1)*im (2))+pi; 

na=round (arg_k/6.283185307); 

arg_k=arg_k-6.283185307*na; 
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