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A B S T R A C T  
 

 

We propose a graphical method to visualize possible time-varying correlations between fif- teen stock market values. The method is useful for 

observing stable or emerging clusters of stock markets with similar behaviour. The graphs, originated from applying multidimen- sional scaling 

techniques (MDS), may also guide the construction of multivariate econo- metric models. 
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1. Introduction 

 
Economical indexes measure the performance of segments of the stock market and are normally used to benchmark the 

performance of stock portfolios. This paper proposes a descriptive method which analyses possible correlations/similarities in 

international stock markets. Its results are expected to guide the design of statistical models aiming to test hypotheses of interest. 

Ultimately, the method can even lead to the postulation of new hypotheses. The study of the correlation of inter- national 

stock markets may have different motivations. Economic motivations to identify the main factors which affect the behaviour of 

stock markets across different exchanges and countries. Statistical motivations to visualize correlations in order to suggest some 

potentially plausible parameter relations and restrictions.The understanding of such correlations would be helpful to the design 

good portfolios  [16,18]. 

Bearing these ideas in mind the outline of our paper is as follows. In Section 2 we give the fundamentals of the multidi- 

mensional scaling (MDS) technique, which is the core of our method, and we discuss the details that are relevant for our 

specific application. In Section 3 we apply our method for daily data on fifteen stock markets, including major American, 

Asian/Pacific, and European stock markets. In Section 4 we conclude the paper with some final remarks and potential topics for 

further research. 

 

2. Multidimensional scaling 

 
Generally speaking MDS techniques develop spatial representations of psychological stimuli or other complex objects 

about which people make judgements (e.g., preference, relatedness), that is they represent each object as a point in a m-

dimensional space. What distinguishes MDS from other similar techniques (e.g., factor analysis, cluster analysis) is that in MDS 

there are no preconceptions about which factors might drive each dimension. Therefore, the only data needed is a measure 

for the similarity between each possible pair of objects under study. The result is the transformation of the data into similarity 

measures which can be represented by Euclidean distances in a space of unknown dimensions [4]. The greater 
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the similarity of two objects, the closer they are in the m-dimensional space. After having the distances between all the ob- 

jects, the MDS techniques analyse how well they can be fitted by spaces of different dimensions. The analysis is normally 

made by gradually increasing the number of dimensions until the quality of fit (measured for example by the correlation 

between the data and the distance) is little improved with the addition of a new dimension. In practice a good result is nor- mally 

reached well before the number of dimensions theoretically needed to a perfectly fit is reached [8,14,19,24]. 

In the MDS method a small distance between two points corresponds to a high correlation between two stock markets and 

a large distance corresponds to low or even negative correlation [17]. A correlation of one should lead to zero distance between 

the points representing perfectly correlated stock markets. MDS tries to estimate the distances for all pairs of stock markets to 

match the correlations as close as possible. MDS may thus be seen as an exploratory technique without any dis- tributional 

assumptions on the data. The distances between the points in the MDS maps are generally not difficult to inter- pret and thus 

may be used to formulate more specific models or hypotheses. Also, the distance between two points should be interpreted as 

being the distance conditional on all the other distances. One possibility to obtain such an approximate solu- tion is given by 

minimizing the stress function. The obtained representation of points is not unique in the sense that any rotation or 

translation of the points retains the distances [5]. To formalize MDS, we need some notation. Let n be the number 

of different objects and let the dissimilarity for objects i and j be given by dij. The coordinates are gathered in an n x p matrix 
X, where p is the dimensionality of the solution to be specified in advance by the user. Thus, row ir from X gives the coor- 

dinates for object i on dimension r. Let dij be the Euclidean distance between rows i and j of X defined as 
 

  

 
 

that is, the length of the shortest line connecting points i and j on dimension r. The objective of MDS is to find a matrix X such that 
dij matches dij as 
closely as possible. 
This objective can 
be formulated in a 

variety of ways but here we use the raw-Stress r2, 
 

    

  
i

proposed by Kruskal [13], who was the first one to propose a formal measure for doing MDS, where wij is a user defined 

weight that must be nonnegative. This measure is also referred to as the least-squares MDS model. Note that due to the sym- 

metry of the dissimilarities and the distances, the summation only involves the pairs i, j where i > j. For example, many  MDS 

programs implicitly choose wij = 0 for dissimilarities that are missing. The minimization of r2 is a complex problem. There- 

fore, MDS programs use iterative numerical algorithms to find a matrix X for which r2 is a minimum. In addition to the raw Stress 

measure there exist other measures for doing Stress. One of them is normalized raw Stress, which is simply raw Stress 

divided by the sum of squared dissimilarities. The advantage of this measure over raw Stress is that its value is independent of the 

scale and the number of dissimilarities. The second measure is Kruskal’s Stress-1 which is equal to the square root of raw Stress 

divided by the sum of squared distances. A third measure is Kruskal’s Stress-2, which is similar to Stress-1 except that the 

denominator is based on the variance of the distances instead of the sum of squares. Another measure that seems reasonably 

popular is called S-Stress and it measures the sum of squared errors between squared distances and squared dissimilarities. 

In order to assess the quality of the MDS solution we can study the differences between the MDS solution and the data. 

One convenient way to do this is by inspecting the so-called Shepard diagram [21]. A Shepard diagram shows both the trans- 

formation and the error. Let pij denotes the proximity between objects i and j. Then, a Shepard diagram plots simultaneously 

the pairs (pij, dij) and (pij, dij). By connecting the (pij, dij) points a line is obtained representing the relationship between the 

proximities and the disparities. The vertical distances between the (pij, dij) points and (pij, dij) are equal to dij - dij, that is, they 
give the errors of representation for each pair of objects. Hence, the Shepard diagram can be used to inspect both the resid- uals 

of the MDS solution and the   transformation. 

 
3. Analysis of stocks markets 

 
In this section we study numerically the fifteen selected stock markets, including six American markets, six European 

markets and three Asian/Pacific markets. 

Our data consist of the h daily close values of s = 15 stock markets from January 2, 2000, up to December 31, 2009, to be 

denoted as xi(t), 1 6 t 6 h, i = 1, . . .  , s. The stock markets are listed in Table 1. 
The data are obtained from data provided by Yahoo Finance web site [12], and they measure indexes in local   currencies. 

Fig. 1 depicts the time evolution, of daily, closing price of the fifteen stock markets versus year with the well-know noisy and 

’’chaotic-like’’ characteristics. 

Assuming that financial index prices are random variables one of the most important analyses’ parameter of the financial 

indexes it is the volatility [3]. Volatility measures variability or dispersion about a central tendency. Normally is defined as the 

deviation from their mean. The historical volatility is the volatility of a series of index prices where we look back over the historical 

price. The historical volatility estimate, for each index i, is given by 



 

 

Table 1 

Fifteen stock markets and value of volatility   values. 
 

i Stock  market index Abbreviation Country Volatility (WP) 

1 All Ordinaries AORD Australia 0.5118 

2 EURONEXT BEL-20 BFX Belgium 0.6827 

3 Cotation  Assiste  en Continu CAC France 0.7922 

4 Deutscher  Aktien Index DAX German 0.8412 

5 Dow  Jones Industrial DJI USA 0.6599 

6 Footsie FTSE UK 0.6729 

7 Iberia Index IBEX Spain 0.7511 

8 Bolsa  Mexicana  de Valores MXX Mexico 0.7737 

9 NASDAQ NDX USA 1.1129 

10 New  York  Stock Exchange NYA USA 0.6883 

11 Standard & Poor’s SP500 USA 0.7024 

12 Shanghai  Stock Exchange SSEC China 0.8415 

13 Swiss  Market Index SSMI Swiss 0.6590 

14 Straits  Times Index STI Singapore 0.6761 

15 Toronto  Stock Exchange TSX Canada 0.6553 
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Fig. 1. Time series for the fifteen indexes from January 2000, up to December 2009. 

 
 
  

 

where u(t) = ln(x(t)) - ln(x(t - 1)), 1 < t 6 h and u-  is the arithmetic average of the uj. 

The parameter W gives the estimated volatility per interval of observation. To enable have the volatilities for different period 

lengths, usually scale this estimate with a factor h, according the period length, which is the number of intervals 

in the period  length. 

 

 

 

Since our interval data observation is daily and our period is one decade we use h = 2510. The 

parameter volatility values are shown in the Table   1. 

In the sequel, this section is organized in two subsections, the first adopts an analysis based on the correlation of the time 

evolution and the second adopts a metrics based on histogram    distances. 

 
3.1. MDS analysis based on time correlation 

 
In this subsection, we apply the MDS method described in Section 2 to the time correlation of the selected stock  markets. 
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For the fifteen markets, we consider the time correlations between the daily close values. We first compute the correla- 

tions among the fifteen stock markets obtained a s x s matrix and then apply MDS. In this representation, points represent the 

stock markets. 

In order to reveal possible relationships between the market stocks index the MDS technique is used. In this perspective 

several MDS criteria are tested. The Sammon criterion revealed good results and is adopted in this work [1,9,15]. For this 

purpose we calculate s x s matrix M based on a correlation coefficient cij, that provides a measurement of the similarity be- tween 

two indexes and is defined in Eq. (4). In matrix M each cell represents the time correlation between a pair of indexes: 
 

 
 
 
 

 

i, j = 1, . . .  , s. Fig. 2 shows the 3D locus of each index positioning in the perspective of expression (4). Fig. 4 depicts the stress and 

the Shepard plots for the MDS. The stress plot, as function of the dimension of the representation space, revealing that a three 

dimensional space describe a with reasonable accuracy the ‘‘map’’ of the fifteen signal indexes. Moreover, the  Shepard plot 

shows that a good distribution of points around the 45 degree line is obtained. 

For comparison it was decided to confront MDS with an alternative visualization method. For that purpose are adopted 

dendograms using the same information matrices of the MDS case. The dendogram of Fig. 3 shows the hierarchical clustering of 

the fifteen indexes with matrix M based on the time correlation. To generate the dendograms we selected the MultiDend- ograms 

hierarchical clustering package, configured for the ‘‘Unweighed Average’’ clustering method [2,11]. Several other methods 

(Single Linkage, Complete Linkage, Weighted Average, Unweighed Centroid, Weighted Centroid, Join Between- Within) were 

tested leading to dendograms qualitatively of the same type. 

We observe that the two visualisation techniques give similar conclusions. For pros the MDS we have a more intuitive 

mapping and for cons we have the requirement of a 3-dimensional chart. 

There are empirical conclusions one can draw from the graphs in Fig. 2. The indexes seem to be organized according to their 

characteristics on the three dimensional MDS suggesting that we may group the fifteen indexes into three clusters: 
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Fig. 2.  Two (top)  and three  (bottom)  dimensional MDS  graphs for the  fifteen indexes  using time  correlation. 
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Fig. 3.  Dendogram for  the  fifteen indexes using  time correlation. 

 

 
i. Cluster A, on the left: AORD, BFX, CAC, DJI, FTSE, IBEX, NYA, SP500, SSMI, STI and TSX; 

ii. Cluster B, on the right: DAX, NDX and SSEC; 

iii. Cluster C, on the top: MXX. 

 
Let explore each: 

The cluster A groups the majority of the indexes and may be considered to represent the norm. The indexes grouped on 

Cluster B are the ones with the highest volatilities (i.e. greater than 0.80). The emergence of Cluster B may suggest that inves- tors 

have a different behaviour in volatile markets. In fact the standard financial theory shows that there is a negative rela- tion 

between volatility and expected return [6,10]. Therefore, some investors worry and have an extra level of concern as they 

watch the value of their portfolios move more violently and it may originate irrational responses or at least decisions which are 

not aligned with the normal   practices. 
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Fig. 4.  Stress (left)  and Shepard (right) plots  of 3D  MDS  representation  of the fifteen  indexes vs number  of dimension using time   correlation. 
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3.2. MDS analysis based on histogram 

 
For  each  of  the  fifteen  indexes  we  draw  the  corresponding  histogram  of  relative  frequency  and  we  calculate  statistical 

descriptive  parameters  like  the  arithmetic  mean  (li),  the  standard  deviation  (ri)  and  the  Pearson’s  Kurtosis  coefficient  ci. The 
values of  the statistical descriptive  parameters  are  listed in Table  2. 

For all the fifteen indexes we calculate the ‘‘histogram’s distances’’ [7,20,22,23], da and db using the equations: 

 

 

 
 

   

 

where i, j = 1, . . .  , s. 

Figs. 5 and 8 show the 2D locus of each index positioning in the perspective of the expressions (5) and (6), respectively 

demonstrating differences between the corresponding MDS  plots. 

Figs. 7 and 10 depict the stress as function of the dimension of the representation space based on da  and db  distances, 

revealing that a two dimensional space describe with reasonable accuracy the ‘‘map’’ of the fifteen signal indexes unlike that seen 

in the MDS based on time correlation. Moreover, the resulting Shepard plot shows that a good distribution of points around 

the 45 degree line is obtained for the two    distances. 

The dendograms of Figs. 6 and 9 show the hierarchical clustering of the fifteen indexes, using the ‘‘Unweighed Average’’ 

clustering method with histogram’s distance da  and db  based matrices,    respectively. 

 
Table 2 

Statistical descriptive parameters. 
 

i li ri ci 

1 4082.52 1074.17 -0.51 

2 2956.11 788.96 -0.67 

3 4475.70 1071.94 -1.04 

4 5324.72 1440.27 -1.00 

5 10472.98 1454.40 -0.11 

6 5248.86 871.57 -1.24 

7 10042.82 2583.65 -0.72 

8 15372.58 9168.40 -1.27 

9 1753.80 701.35 4.05 

10 7034.10 1404.76 -0.58 

11 1187.55 198.44 -0.85 

12 2079.76 1031.71 2.96 

13 6689.10 1337.82 -0.95 

14 2179.07 615.19 -0.22 

15 9789.64 2360.58 -0.95 
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Fig. 5. Two dimensional MDS graphs for the fifteen indexes using histogram’s distance da. 
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Fig. 6. Dendogram for the fifteen indexes using histogram’s distance da. 

 
 

 
6 x 10 

 

5 

 

4 

 

3 

 

2 

 

1 

 
 

0 
1 1.5 2 2.5 3 3.5 4 4.5 5 

0 
0 1 2 3 4 5 

   Number of dimensions     Original Dissimilarities   

Fig. 7.  Stress (left) and Shepard  (right) plots  of 2D  MDS representation  for  all  indexes vs number  of dimension, using histogram’s  distance   da. 

 
 
 
 

0.5 

 
 

 
0 

 
 

 
−0.5 

 
 

 
−1 

−2 −1.5 −1 −0.5 0 0.5 1 

 
Fig. 8. Two dimensional MDS graphs for the fifteen indexes using histogram’s distance db. 
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Fig. 9. Dendogram for the fifteen indexes using histogram’s distance db. 
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Fig. 10.  Stress (left)  and Shepard (right)  plots of 2D  MDS  representation  for  all indexes vs number of dimension,  using histogram’s distance   db. 

 
We observe again that the base information is identical, but that MDS is more intuitive. Furthermore, in these two cases, 2-

dimensional chart are  sufficient. 

Curiously in the chart corresponding to the MDS based on correlation (Fig. 2) we can see an V shape with the NDX index at the 

vertex, and the BFX and AORD at the corners. The MXX and the SSEC indexes are out of the angle form. However, in the chart 

corresponding to the MDS based on the histogram distances (Figs. 5 and 8) such shape cannot be found. Instead da leads to a 

long ‘‘S’’ curve having the DJI and the SSEC indexes as extremes emerges can be observed in Fig. 5. On the other hand, db 

produces the map of Fig. 8 where the SSEC, NDX and MXX are far apart from the rest of the points similarly to what occurs in the 

map of Fig.  2. 

It is interesting to note that in all cases the MXX index behaves differently from the other (i.e., is not part of the shapes and 

regularities formed). Perhaps this may explained by the fact that Mexico was less affected by the dot.com crisis in the 

beginning of the period under study, since then it was strongly emerging from its own Mexican Peso Crisis. 

 
 
 

4. Conclusion 

 
In this paper, we proposed simple graphical tools to visualize time-varying correlations between stock market behaviour. We 

illustrated our MDS-based method daily close values of fifteen stock markets. There are several issues relevant for further research. 

A first issue concerns applying our method to alternative data sets, with perhaps different sampling frequencies  or returns and 

absolute returns, to see how informative the method can be in other cases. A second issue concerns taking the 
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graphical evidence seriously and incorporating it in an econometric time series model to see if it can improve empirical spec- 

ification strategies. 
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