

Repeater-Based Hybrid Wired/Wireless
PROFIBUS Network Simulator

Paulo Baltarejo Sousa

Luís Lino Ferreira

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-060402

Version: 5

Date: 15-04-2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-060402 Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator

Paulo Baltarejo SOUSA, Luís Lino FERREIRA

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {pbsousa,llf }@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

This technical report describes the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator that

implements a simulation model of the repeater-based approach. This approach defines the mechanism to extend the

PROFIBUS protocol to supprot wireless communication, in which the interconnection of the wired and wireless

segments is done by a intermediate system operating at Physical Layer, as repeater.

Document history:

Revision Description Date By

1 15-04-2006 LLF

2 15-12-2005 LLF

3 18-06-2006 LLF

4 23-11-2006 LLF

5 26-06-2007 LLF

Index

INDEX... I

LIST OF FIGURES ..II

LIST OF TABLES .. III

1. INTRODUCTION..1

2. RELEVANT DETAILS ON PROFIBUS ...1

2.1. General Features..1
2.2. Data Link Layer (DLL) ...2

2.2.1. Message Cycle..2
2.2.2. Token Passing ..2
2.2.3. Token Cycle ...2
2.2.4. (Re)Initializing the Logical Ring..3
2.2.5. Ring Maintenance ..3
2.2.6. Error Handling..4
2.2.7. DLL Frame Formats...4
2.2.8. Data Link Layer Services ...5
2.2.9. Timing Parameters ...5

2.3. Application Layer (AL): PROFIBUS-DP ...6

3. RELEVANT DETAILS ON THE REPEATER-BASED HYBRID WIRED/WIRELESS

PROFIBUS ARCHITECTURE ..6

3.1.1. Repeater Operation...7
3.1.2. Wired/Wireless Domains Interconnection..7
3.1.3. Traffic Adaptation ..8
3.1.4. The Mobility Procedure..10

4. SIMULATION SOFTWARE..11

4.1. OMNeT++ (Objective Modular Network Testbed in C++) ..11
4.1.1. Messages, Gates and Links ..11
4.1.2. Modelling Delays, Bit Error Rate and Data Rate ...12
4.1.3. An OMNeT++ Example Model ...12
4.1.4. Event-Based Simulation ...13

5. REPEATER-BASED HYBRID WIRED/WIRELESS PROFIBUS ARCHITECTURE

SIMULATION MODEL..15

5.1. Basic Architecture ...15
5.1.1. HW2PNet ...17
5.1.2. Controller ...19
5.1.3. Domain...21
5.1.4. Master...22
5.1.5. Slave...26
5.1.6. Parameters _location_vector and _is_mobile_station27
5.1.7. Repeater Architecture...28

5.2. PROFIBUS DLL Basic Implementation ...29
5.2.1. Token Recovery Procedure ..31
5.2.2. Token Reception Procedure ...32

 II

5.2.3. Message Dispatching Procedure...33
5.2.4. Pass Token Procedure ..34
5.2.5. GAP Update Procedure ..36
5.2.6. Send Frame Procedure..37

5.3. Repeater-Based Simulation Model Implementation..42
5.3.1. Interconnection...42
5.3.2. Mobility Procedure...43
5.3.3. Send Beacon Procedure..43
5.3.4. Stations Mobility ..44

REFERENCES...44

List of Figures

Figure 1– PROFIBUS DLL frame formats ..4
Figure 2 – Idle Time parameter – TID1..5
Figure 3 – Repeater-based hybrid wired/wireless PROFIBUS network example....................................7
Figure 4 – Timing behaviour of a repeater...8
Figure 5 – Increasing queuing delay by a repeater...9
Figure 6 – Using additional idle time for media adaptation ...10
Figure 7 – Slot Time (TSL) ..10
Figure 8 – Mobility procedure ...11
Figure 9 – Simple and compound modules ..11
Figure 10 – Module’s gates and connections ...12
Figure 11 – Message transmission ...12
Figure 12 – PROFIBUS transactions events ..13
Figure 13 – handleMessage(cMessage *msg) function, C++ code (MasterStation).......14
Figure 14 – handleMessage(cMessage *msg) function, C++ code (SlaveStation)15
Figure 15 – Modules, connections and associated gates ..16
Figure 16 – Modules and connections of the RHW2PNetSim...17
Figure 17 – Network definition..17
Figure 18 – HW2PNet module NED definition ...18
Figure 19 – Configuration file related with HW2PNet module instance (excerpt)18
Figure 20 – Screenshot of the output window of the RHW2PNetSim ...19
Figure 21 – Controller module NED definition ..20
Figure 22– Configuration file related to the Controller module instance (excerpt)20
Figure 23 – Domain module NED definition ...21
Figure 24 – Configuration file related to Domain module instance (excerpt)22
Figure 25 – OMNeT++ Master module composition...23
Figure 26 – Master module NED definition ...23
Figure 27– Configuration file related to Master module instance (excerpt)24
Figure 28 – Master_PHY module NED definition ...24
Figure 29 – OMNeT++ Master_DLL module NED definition ...25
Figure 30 – Msg_Stream NED definition...25
Figure 31– Deadline missing examples..26
Figure 32– Msg_Stream configuration parameters of a Master ..26
Figure 33 – OMNeT++ Slave module...27
Figure 34– Slave_DLL module NED definition ...27
Figure 35– Configuration file related to the Master module instance of the RHW2PNetSim (excerpt)

..28

 III

Figure 36– Repeater’s module instances and their connections ...28
Figure 37– ComFunc module NED definition ..28
Figure 38– Configuration file related to one ComFunc module instance (excerpt)29
Figure 39– Connection_Point module connections..29
Figure 40– Connection_Point module NED definition...29
Figure 41 – Configuration file related to the Connection_Point module instance (excerpt).........29
Figure 42– Master state machine diagram ..31
Figure 43– handleSelfMessage(msg) function, pseudo-code algorithm32
Figure 44– tokenRecovery() function, pseudo-code algorithm...32
Figure 45 – Token Reception procedure ..33
Figure 46 – Message dispatching procedure ..34
Figure 47 – Pass Token Procedure ...35
Figure 48 – Send FDL_Request_Status procedure ..36
Figure 49 – Receive FDL_Request_Status procedure..37
Figure 50 – Send Frame Procedure ..38
Figure 51 – SDN transaction schema between master and slave ...38
Figure 52 – Send SDN Procedure ..39
Figure 53 – Receive SDN Procedure ...39
Figure 54 – SRD transaction schema between Master and Slave ..40
Figure 55 – Send SRD Procedure...41
Figure 56 – Receive SDR Procedure..41
Figure 57 – Wired/wireless interconnection example ..42
Figure 58 – Simplified timing behaviour of the module instances that model a repeater42
Figure 59 – Send Beacon Procedure ..44

 List of Tables

Table 1 – Summary of the output data information...20

Repeater-Based Hybrid Wired/Wireless PROFIBUS

Network Simulator

1.Introduction

It is well accepts that the wireless communications are a surplus value for any system. Since they

provide significant cuts in cabling and maintenance costs, ease in installation of equipment in

hazardous areas and important add-ons in terms of flexibility and ability to evolve.

However, several constraints for the use of wireless communication at the cell level and, more

acutely at the field still exist. Insufficient performance, low level of dependability, and the non

existence of appropriate wireless Medium Access Control (MAC) protocols to ensure real-time

behaviour are examples. Contrarily to the high performance, high dependability and real time

behaviour of the (wired) fieldbuses.

Therefore, even if the addition of wireless capabilities to fieldbuses may introduce some

important features to automation systems, an important concern to the system designer is that these

wireless extensions do not disrupt the above mentioned characteristics of fieldbuses network.

The PROFIBUS (acronym for PROcess FIeld BUS) is one of the most popular fieldbuses with

many installations in operation worldwide. However, wireless communications and wireless mobility

stations are not previously considered. The Repeater-Based Hybrid Wired/Wireless PROFIBUS

networks [1] covers these limitations. This approach (in this document the Repeater-Based Hybrid

Wired/Wireless PROFIBUS Network is also referred as approach) extends the PROFIBUS protocol to

support interoperability between wired and wireless domains.

This technical report describes the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network

Simulator (RHW2PNetSim). RHW2PNetSim implements the main functionalities of the PROFIBUS

protocol and all functionalities related to Repeater-Based Wired/Wireless PROFIBUS Networks.

The structure of this document is as follows. Section 2 presents the general aspects of the

PROFIBUS protocol focusing on the Data Link Layer. Section 3, describes the basic of the proposed

repaeter-based approach. Section 4 describes of the OMNeT++ Framework. Then Section 5 describes

the architecture and the implementation of the RHW2PNetSim.

2.Relevant Details on PROFIBUS

2.1. General Features

PROFIBUS was standardised in 1996 as an European standard [2]. It is based on the International

Standards Organisation (ISO) Open System Interconnection (OSI) reference model, however collapsed

to just three layers: Physical Layer (PhL), Data Link Layer (DLL) and Application Layer (AL). There

is also a transversal management functionality called Fieldbus Management (FMA1/2), which is

responsible for the management of the layers 1 and 2, the PhL and the DLL, respectively.

The PROFIBUS PhL can use the RS-485 standard over twisted pair or coaxial cable for the

transfer of data, with bit rates up to 12 Mbit/s. For special applications, it is also possible to use other

types of physical media, like optical fibre, power cable or RS-485-IS (for intrinsically safe

applications).

The PROFIBUS DLL uses a token passing procedure to grant bus access to masters, and a

master-slave procedure used by masters to communicate with slaves (or other masters). Slaves do not

have communication initiative. They are only capable of transmitting a response (or an

acknowledgement) upon master request. The token is passed between masters in ascending Medium

 2

Access Control (MAC) address order, thus the masters organise network access in a logical ring

fashion.

The PROFIBUS standard considers two different types of Application Layer profiles:

PROFIBUS-FMS (Fieldbus Message Specification), which is being abandoned due to design

complexity and cost, and PROFIBUS-DP (Decentralised Peripherals), which is being increasingly

adopted for industrial automation and process control applications. PROFIBUS-DP is particularly

suited for the cyclic exchange of data between master (Programmable Controllers, PC, etc.) and slave

devices (valves, I/O devices, drives, etc.). In this dissertation DP is assumed to be used in master and

slave devices.

2.2. Data Link Layer (DLL)

2.2.1. Message Cycle

In PROFIBUS, only master stations may initiate transactions, whereas slave stations do not transmit on

their own initiative, but only upon (master) requests. The station that sends an Action Frame (the first

frame transmitted in each transaction) is the initiator of the transaction, while the addressed one is the

responder. A transaction (or message cycle) consists on the request or a send/request frame from the

initiator (always a master station) and the associated acknowledgement or response frame from the

responder (either a master station or a slave station, but typically a slave station).

All stations monitor all the requests but will only acknowledge or respond if, and only if, they are

the addressees in the initiator’s request. Moreover, the acknowledgement or response frame must

arrive before the expiration of the Slot Time (TSL), which is a master DLL parameter otherwise the

initiator repeats the request a number of times defined by the max_retry_limit, another master’s

DLL parameter.

2.2.2. Token Passing

The token is passed between masters in ascending address order. The only exception is that in order to

close the logical ring, the master with the highest address must pass the token to the master with the

lowest one. Each master knows the address of the previous station (PS – Previous Station address),

the address of the following station (NS – Next Station address) and, obviously, its own address (TS

– This Station address).

If a master station receives a token addressed to itself from a station (Source address (SA) of

the token frame, a frame format description is presented latter) registered in the List of Active

Stations (LAS) as its predecessor (PS = SA) then this master becomes the token owner, and may

start processing message cycles. On the other hand, if a master receives a token frame from a station

which is not its PS, it assumes that an error has occurred, and it will not accept the token frame.

However, if it receives a subsequent token from the same station, it accepts the token and assumes that

the logical ring has changed. In this case, it updates the original PS value by the new one in its LAS

table.

If after transmitting the token frame and within the Slot Time, the master detects bus activity, it

assumes that its successor owns the token. Therefore, it ceases monitoring the activity on the bus. In

case the master does not recognise any bus activity within the TSL, it repeats the token frame and waits

another TSL. If it recognises bus activity within the second TSL, it stops working as an active master,

assuming a correct token transmission. Otherwise, it repeats the token transmission to its NS for the

last time. If after the second retry there is no bus activity, the token transmitter tries to pass the token to

the next successor. It continues repeating this procedure until it finds a successor from its List of

Active Stations (LAS).

2.2.3. Token Cycle

After receiving the token, a master station is allowed to execute message cycles during Token

Holding Time (TTH) that is computed as follows:

 3

RRTRTH TTT −= (1)

TTH is equal to the difference, if positive, between the Target Rotation Time (TTR) and the Real

Rotation Time (TRR) of the token. TTR is a parameter common to all masters in the network, which

must be set to the expected time for the token cycle. TRR is the time measured between two consecutive

token receptions – the token cycle.

PROFIBUS defines two main categories of messages: high-priority and low-priority, each using

a different transmission queue that is handled differently by the DLL. At the arrival of the token, the

TTH timer is loaded with the value corresponding to the difference between TTR and TRR. If the token is

delayed, then TTH is set to zero and the master is only allowed to perform, at most, one high-priority

message transaction. Otherwise, the master is allowed to perform high-priority message transactions

until the value of the TTH timer becomes negative. Low-priority messages are only transmitted when

the high-priority queue is empty and TTH is still positive. Note that once a message cycle is started it is

always completed, including any retries, even if in meanwhile TTH expires.

2.2.4. (Re)Initializing the Logical Ring

The logical ring of PROFIBUS is supported by two tables: the Gap List (GAPL) and the LAS. It may

also optionally maintain a Live List (LL) table.

The GAPL consists on the address range from address TS until NS. This includes all possible

addresses, except the address range between Highest Station Address (HSA), which cannot be a

master’s address, and 127, which does not belong to the Gap.

Initialization is primarily a special case of updating the LAS and the GAPL. If after power on of

a master station in the LISTEN_TOKEN state a time-out is encountered, i.e., no bus activity within

Time-Out Time (TTO), it shall claim the token in the CLAIM_TOKEN state and it starts initializing

the logical ring.

The master station with the lowest station address starts initialization by transmitting two token

frames addressed to itself (Destination Address (DA) = SA = TS) it informs any other master

stations (entering a NS into the LAS) that it is now the only station in the logical token ring. Then it

transmits an FDL_Request_Status frame to each station in an incrementing address sequence, in

order to register other stations. The first master station to answer with Ready_to_Enter_Logical_

Ring is registered as NS in the LAS and thus closes the Gap range of the token holder. Then the token

holder passes the token to its NS.

When a master station is in the LISTEN_TOKEN state, it shall monitor the bus activity in order

to identify those master stations which are already in the logical token ring. For that purpose token

frames are analyzed and the station addresses contained in them are used to generate the LAS.

After listening to two complete identical token rotations, the master must remain in the LISTEN_

TOKEN state until it is addressed by an FDL_Request_Status transmitted by its predecessor (PS). If

it succeed, it must respond with Ready_to_Enter_Logical_Ring and waits for the token frame

addressed to it in the ACTIVE_IDLE state.

When a master station is in the LISTEN_TOKEN state all frames are neither acknowledged nor

answered.

2.2.5. Ring Maintenance

The ring maintenance mechanism is distributed by all master stations. As mentioned, each PROFIBUS

master maintains two tables: the GAPL and the LAS.

Each master station when holds the token frame checks its Gap addresses every time its Gap

Update Timer (TGUD) expires. If a station acknowledges positively to the GAP request (an

FDL_Request_Status frame), with the state Not_Ready_to_Enter_Logical_Ring or Slave_

Station, it is accordingly marked in the GAPL and the next address is checked. If a station answers

with the state Ready_to_Enter_Logical_Ring, the token holder changes its GAPL and passes the

token to the new NS. This (master) station, which has newly been admitted to the logical ring, has

already built up its LAS when it was in the LISTEN_TOKEN state, so it is able to determine its GAPL

 4

and its NS. This mechanism allows masters to track changes in the logical ring due to the addition

(joining) and removal (leaving) of stations. This is accomplished by examining (at most) one Gap

address per token visit, using an FDL_Request_Status frame after the execution of all high-priority

transactions, and if the value of TTH, is still positive.

2.2.6. Error Handling

Additionally, in order to enhance the communication system’s reliability, PROFIBUS handles some

operational or error states, concerning logical ring management. In [3] and [4] is presented which fault-

tolerant mechanisms are activated and their effects on the network behaviour. The most important error

situations within the context of this document are the token lost, “heardback removal” and error

skipping:

– Token lost. This abnormal situation is clearly recovered by means of a continuous monitoring

activity performed by each master in the logical ring. If a period of inactivity longer than the

TTO is detected, then the token is claimed by the master with the lowest address in the logical

ring, and the logical ring is re-initialised.

– Heardback removal. Whenever a master is sending a token frame it must hear from the

medium all transmitted bits in order to detect a defective transceiver. If the token frame sender

detects differences between the transmitted and the received token frame in two consecutive

transmissions then it must remove itself from the logical ring.

– Error skipping. A master station must remove itself from the logical ring when a token frame is

transmitted, in which its address is “skipped” (i.e., the address of TS lies within the address

range spanned by the sender and the receiver of the token frame).

2.2.7. DLL Frame Formats

PROFIBUS DLL defines three types of request/response frames, which are the Fixed Length with

no Data Field, the Fixed Length with Data Field and the Variable Data Field Length, as

illustrated in Figure 1 a), c) and d), respectively.

Each of these three types includes the following fields: Destination Address (DA), Source

Address (SA) and Frame Control (FC). The FC field is an octet where the frame type is specified

and the function code (for more details the reader is referred to Section 4.7.3 of [2]). These frames also

include the Start Delimiter (SDx), Frame Check Sequence (FCS) and the End Delimiter (ED).

Variable data field length frames additionally contain two Data Length fields (LE and LEr) and

they can optionally include the Destination Address Extension (DAE) and Source Address

Extension (SAE), in the Data field. These extension fields can be used to identify the AL service

which originated the frame, as well as the destination service.

PROFIBUS also defines the Short aCknowledgement frame (SC) and the Token frame,

illustrated in Figure 1 b) and e), respectively. The first consists of a single byte frame, and it is used as

positive acknowledgement to a request.

SD1 DA SA FC FCS ED

SD3 DA SA FC FCS ED Data (8 Bytes)

SD2 DA SA FC FCS ED Data (max 246 Bytes) LEr LE SD2

SD4 DA SA

SC

a) Fixed length frame w/ no data field b) Short acknowledgement frame

d) Variable data field length frame

e) Token frame

c) Fixed length frame w/ data field

Figure 1– PROFIBUS DLL frame formats

 5

2.2.8. Data Link Layer Services

PROFIBUS defines 4 types of data transfer services: Send Data with Acknowledge (SDA); Send

Data with No acknowledge (SDN); Send and Request Data (SRD) and Cyclic Send and

Request Data (CSRD).

The SDA service allows a user to transmit data to another station and receive a Short

Acknowledge confirming its reception by the responder station. The SDN service permits to transfer

data to a single station, to a group of stations (multicast) or to all stations (broadcast). The SRD service

allows the transmission of a message to another station and the retrieval of a response. This service can

be used, for example, to send the output settings for an I/O device and retrieve the state of the device’s

input ports. The CSRD builds upon the SRD service adding the capability of transferring data

periodically, according to the user requirements. The CSRD service is usually not implemented in

current commercial hardware platforms.

2.2.9. Timing Parameters

The PROFIBUS standard defines several timing parameters, some of which are relevant in the context

of this document, such as the Idle Time (TID), the Slot Time (TSL) and Time-Out Time (TTO)

parameters, which are briefly explained next.

There are two Idle Time (TID) parameters - TID1 and TID2. TID1 is a period of inactivity, inserted

by a master station, after an acknowledgment, response or token frame. This parameter must be set as

follows:

{ }SDISDRSMSYNID TTTTT ,min,max1 += (2)

where, TSYN (Synchronisation Time) is the minimum time interval for an idle bus state before a

station may accept the beginning of an action or token frame. TSM (Safety Margin Time) is the time

that elapses after the end of the TSYN which is required by the receiver circuitry to be ready to start

receiving a frame. minTSDR is the minimum Station Delay of a Responder Time. TSDI is the

Station Delay of the Initiator Time, after which the initiator is ready to start receiving a

frame from the responder. Figure 2 depicts an example where the Transmission Delay Time (TTD)

due to the network propagation delay is also illustrated.

TID2 is the idle time inserted by a master station after transmitting an unacknowledged request

frame. TID2 must be set as follows:

{ }SDRSMSYNID TTTT max,max2 += (3)

where, maxTSDR is the maximum Station Delay of a Responder Time.

The Slot Time (TSL) is used by a master station to detect if a transaction with a slave (or with its

successor, in the token passing) has failed. A timer is loaded with TSL at the end of the transmission of

a request frame. Upon its expiration, the master station may execute another retry for the same request,

if the number of retries executed is smaller than the max_retry_limit parameter, or it may inform the

upper layers of a transmission failure. A timer is also loaded with TSL after transmitting the token

frame. If it expires before a master has detected any activity in the bus then it signals the MAC layer in

order to take the appropriate actions according to the token passing procedure.

TID1

Resp

Ack/Resp/token frame

t

 Req/Token Frame

Initiator

Responder

TTD

 Idle Time

TTD

Resp Req

Req

Figure 2 – Idle Time parameter – TID1

 6

The Slot Time parameter (TSL) must be set to the maximum between two values – TSL1 and TSL2.

TSL1 can be calculated as follows:

SMSDRTDSL TbitTTT +++×= 11max21
 (4)

where bit is the time duration of a bit. TSL2 can be calculated as follows:

SMIDTDSL TbitTTT +++×= 11max2 12
 (5)

Note that all masters in the network must hold the same TSL value, due to the token passing

mechanism.

The Time-Out Time (TTO) controls the token passage, in PROFIBUS, a token lost is detected

when a master does not detect any network activity for a time period defined by its TTO, which is set to

as follows:

SLSLTO TnTT **2*6 +=

(6)

where n is the master address. In Eq. 6, the first term makes sure that there is sufficient difference to

the maximum possible TID between two frames (recall Eq. 4 and Eq. 5). The second term ensures that

the master stations start their token claiming procedure in different moments after an error has

occurred.

2.3. Application Layer (AL): PROFIBUS-DP

The PROFIBUS-DP (DP for short) protocol [5] is specially suited for the exchange of data between

controllers (typically masters) and field devices like I/O, drives or valves (typically slaves). DP

provides the functionalities to configure field devices and to perform cyclic exchange of data between

the controller and the field devices.

The main functionalities of PROFIBUS-DP are related to the reading and writing of variables

from/to slave devices. The retrieval of data is made cyclically by the DP protocol, according to the

timing parameters configured by the user.

3. Relevant Details on the Repeater-Based Hybrid Wired/Wireless

PROFIBUS Architecture

A hybrid wired/wireless fieldbus network is composed of wired and wireless stations. A wired domain

is a set of stations physically connected through a wired bus. A wireless domain is composed by a set

of wireless stations that intercommunicate either directly or indirectly via wireless (e.g., radio)

channels. Wireless communications may be achieved by two ways: in a direct way or via Base Station

(BS). If wireless stations are able to intercommunicate directly, the wireless domain is called an ad-hoc

domain. Otherwise, if messages are relayed by a BS the wireless domain is usually called a structured

domain. In this dissertation we always assume that we are using the structured approach since this is

the only one that permits the mobility of wireless stations.

A BS operates as a wireless repeater using two radio channels, one to receive frames from the

wireless stations (the uplink channel), and another to transmit frames to wireless stations (the downlink

channel). The interconnection between wireless and wired domains is done through a special device

designed as Intermediate Systems (IS). This device has to be provided with two communication

interfaces: one to connect to the wired domain (wired communication interface) and another to connect

to the wireless domain (wireless communication interface).

In the Repeater-Based Hybrid Wired/Wireless PROFIBUS approach [1], the ISs operate

essentially as repeaters, that is, they receive frames from one communication interface and retransmit

those frames using the other communication interface.

 7

Figure 3 depicts a wired/wireless fieldbus network scenario. The ISs (operating as repeaters) may

include the BS functionalities in their wireless communication interfaces. This network scenario

comprises four domains, two wired domains (D
2
 and D

4
) and two structured wireless domains (D

1
 and

D
3
). Three repeaters (R1, R2 and R3) interconnect the domains. The wireless communications are

relayed by two BSs (BS1 and BS2), included in the repeaters. The network also comprises three wired

masters (M1, M2 and MM), two wireless mobile masters (M3 and M4), five wired slaves (S1, S2, S3,

S4 and S5) and one wireless mobile slave (S6).

In order to guarantee the operation and interoperability of the hybrid wired/wireless fieldbus

network there can be no more than one possible path between any two domains (tree-like topology),

i.e., no closed loops can exist. The mobility procedure only makes sense when there are more than one

wireless domain and when these domains are structured. The mobility procedure will be detailed later.

 S1 M1 S2 S3

R2

 M2 S4 S5

BS2

 M3

 S6

 M4

D
2

D
1

D
3

D
4

R3

R1

Uplink Downlink

BS1

Wired communication
interface

Base Station

Wireles communication
interface

Radio coverage area
of BS1

 MM

Figure 3 – Repeater-based hybrid wired/wireless PROFIBUS network example

3.1.1. Repeater Operation

As mentioned, in this approach the interconnection between domains is done by ISs operating as

repeaters. Traditionally operating just as a signal regenerator, a repeater can also interconnect two

networks with different PhL protocols (e.g., different bit rates).

A repeater is classified according to its relaying behaviour: store-and-forward, when a PhL frame

must be completely received from one port before being transmitted to the other port; cut-through,

when a repeater starts relaying a PhL frame which has not been completely received yet.

A repeater does not perform any address filtering. This result in a broadcast network, i.e., every

station listens to every frame transmitted by any other station in the network. The use of repeaters

implies a single MAC address space and that only one logical ring exists in the network. For that the

network operation is based on the Single Logical Ring (SLR).

3.1.2. Wired/Wireless Domains Interconnection

A repeater may need to implement more than a bit-by-bit repeating functionality. This is the case when

it interconnects communication media with different PhL frame formats. In order to encompass the

functionalities referred, each repeater has an associated internal relaying delay time (trd). It is

 8

assumed that the repeaters always introduce a minimum inactivity period – minimum idle time

(TIDm) – between any consecutive PhL frames.

When a repeater receives a PhL frame from one port it must start the transmission in an instant,

the start relaying instant (t
i→j

sr), that guarantees that the retransmission is done without time gaps.

t
i→j

sr is defined as the earliest time instant for start relaying a specific PhL frame from domain D
i
 to

domain D
j
, counted since the beginning of the reception of the PhL frame in domain D

i
. The t

i→j
sr

instant for a specific repeater depends on its operation mode – either store-and-forward or cut-through.

For a cut-through repeater, the following is assumed:

– When relaying a frame from D
i
 to D

j
, it cannot start being relayed while the first char of the

DLL frame of D
i
 is not completely received by the repeater;

– The PhL frame cannot start being relayed while the length of the DLL frame is not known (by

the repeater);

– When relaying a frame from D
i
 to D

j
, the instant for start relaying the PhL frame must take into

account that the repeater cannot run out of bits to relay from D
i
 to D

j
, i.e., the transmission of a

PhL frame in D
j
 must be continuous, without time gaps.

Taking these assumptions into account, which are illustrated in Figure 4, the start relaying

instant for a cut-through operation mode repeater is defined as:

{ }ng
ji

lk
i

dr
i

sr
ji tttt →→

= ,,max (1)

where:

– t
i
dr, the data ready instant, is the instant at which a predefined amount of DLL data has been

received from D
i
 (ready to be relayed), counted since the beginning of the PhL frame in D

i
. For

the cut-through behaviour, it is considered that it is the instant at which the first DLL character

is completely received;

– t
i
lk, the length known instant, is the instant at which the length of the DLL frame in D

i
 is

known, counted since the beginning of the PhL frame in D
i
;

– t
i→j

ng, the no gaps instant, is the earliest instant to start relaying the PhL frame from D
i
 to D

j
 in

a way that guarantees that the transmission in D
j
 is continuous.

Consider the example depicted in Figure 2.4. The first time instant is the data ready (t
i
dr),

followed by the time instant when the length of the frame is known (t
i
lk). The last instant (thus the

maximum of the three) is the time instant that guarantees a continuous retransmission of the PhL frame

(t
i→j

ng). This situation usually happens when the duration of the PhL frame in D
j
 is smaller than in D

i
.

R

Dj

Di

tidr tilk ti? j
ng

ti? j
sr tird

t=0

Figure 4 – Timing behaviour of a repeater

3.1.3. Traffic Adaptation

Network interconnection often brings up the problem of network congestion. Generally, if for any time

interval, the total sum of demands on a resource is more than its available capacity, the resource is said

to be congested for that interval. In the case of computer networks, resources include buffer space and

processing capacity in the ISs and for example, if during a short interval, the buffer space of an IS is

smaller than the one required for the arriving traffic, frame loss may occur (dropped frames) and the IS

is said to be congested.

It is also true that the congestion problems depend dramatically on the type of IS used in the

interconnection. Particularly if the ISs act as repeater, traffic congestion may occur as a result of the

 9

heterogeneous characteristics of the interconnected physical media. The heterogeneity in bit rates and

in PhL frame formats in a broadcast network imposes the consideration of some kind of traffic

adaptation scheme.

The timing diagram depicted in Figure 5 illustrates a sequence of transactions where one repeater

interconnects the two domains and it is assumed that the PhL frame duration in D
j
 is twice the PhL

frame duration in D
i
 and that t

i→j
sr is constant (for the sake of simplicity). Note that since the idle time

is defined as the duration of a predefined number of (idle) bits separating consecutive frames in the

network, its duration is assumed to be different for the two domains.

Figure 2.5 illustrates an increasing queuing delay (q1 < q2 < q3), caused by the different physical

media, that will impact on the system turnaround time (tst) for certain transactions. The tst for a

message transaction is the time elapsed since an initiator ends transmitting a request frame until it

starts receiving the correspondent response frame. For example, in the case of the request that

corresponds to transaction 3, which is addressed to a responder in domain D
j
, the system turnaround

time for this transaction (tst3) will be affected by the cumulative queuing delay (q3) in the repeater.

Transaction 1 Transaction 2 Transaction 3

q3 q2

R

Dj

Di

Resp1 Req1

Resp1

Req1

Response Frame Reqx Request Frame

tst1

Respx

 Req2

 Req3

Resp2

q1=0

 Req3

tst3

Resp2 Req2

tst2

Idle Time Repeater Delay

Figure 5 – Increasing queuing delay by a repeater

Traffic congestion in a repeater can be avoided through the insertion of additional inactivity

(idle) intervals before issuing a message transactions [6]. Obviously, the insertion of this additional

idle time reduces the number of transactions per time unit when the responder is not in the same

domain as the initiator. The PROFIBUS MAC mechanism allows only one station (master or slave) to

transmit at a given moment in time.

Every master in PROFIBUS has two different Idle Time parameters – TID1 and TID2. As

mentioned in Section 2.2.9, a master always waits TID1 after receiving a response/acknowledgement or

a token frame, before transmitting another frame. It must also wait TID2 after transmitting an

unacknowledged request frame, and before transmitting another frame (request or token). For a

traditional wired network all masters may set their TID1 and TID2 parameters to the minimum default

value, which is usually adequate to cope with bit synchronisation requirements.

In this approach, the traffic adaptation is based on the computation of the additional idle time that

must be inserted by each master, in order to properly encompass the interconnection of heterogeneous

physical media. The timing diagram depicted in Figure 6 illustrates a sequence of transactions where

queuing delay is zero for all transactions, on the first repeater. This is due to the additional extra idle

time.

 10

Transaction 1 Transaction 2 Transaction 3

q3=0 q2=0

R

Dj

Di

Resp1 Req1

Resp1

Req1

Response Frame Reqx Request Frame

tst1

Respx

 Req2

 Req3

Resp2

q1=0

 Req3

tst3

Resp2 Req2

tst2

Idle Time Repeater Delay

Additional Idle Time
delay

Figure 6 – Using additional idle time for media adaptation

Another consequence of using ISs that act as repeaters is related to the master PROFIBUS DLL

parameter, the Slot Time (TSL). Within the context of this approach, TSL assumes a particular

importance. On one hand, TSL must be set large enough to cope with the extra latencies introduced by

the repeaters. On the other hand, TSL must be set as small as possible such as the system responsiveness

to failures does not decrease dramatically, that is, a master must detect a message/token loss or a

station failure within a reasonably small time. The timing diagram depicted in Figure 7 illustrates a

transaction sequence that is relayed by two repeaters. One interconnects domains D
i
 and D

j
 and another

interconnects domains D
j
 and D

k
. It is assumed that the PhL frame duration in D

i
 and D

k
 is half the PhL

frame duration in D
j
 and that t

x→y
sr is constant (for the sake of simplicity).

R

Dj

Di

Req1

Resp1

Req1

Response Frame Reqx Request Frame

TSL

Respx

Resp2

Station Delay Responder Repeater Delay

R

Dk Req1

 Resp1

Figure 7 – Slot Time (TSL)

The setting of these parameters must be performed according to the procedures described in [1].

3.1.4. The Mobility Procedure

The mobility procedure [7] provides a seamless handoff for all kinds of wireless mobile stations

(master/slave).

Due to the broadcast nature of the network, the mobility procedure just encompasses a

mechanism for radio channel assessment and switching. The basics of this procedure are outlined next.

The Mobility Master (MM) (i.e., the master that has the responsibility of triggering the

mobility procedure) sends periodically a special (unacknowledged) frame – the Beacon Trigger

(BT). This BT frame is broadcast to the entire network and causes each BS to start transmitting a pre-

defined number of Beacon frames in its downlink radio channel. Wireless mobile stations receive these

Beacon frames, assess the signal quality of all (downlink) radio channels and switch to the radio

channel set with best quality. Figure 8 shows the simplified operation of the mobility mechanism

considering the network scenario depicted in Figure 3, in which master MM is operating as Mobility

Master.

 11

BS2

Repeater Delay

BS1

BT

BT

CH2 CH2 CH2 CH2

BT

CH2 CH2

CH1 CH1 CH1 CH1 CH1 CH1

R1

R2

MM

BT Beacon Trigger CHx Beacon Frame

CH1

CH2

T

T Token frame

TID2

tbgap

Figure 8 – Mobility procedure

In [1] the author shows how to calculate the number of beacons to be transmitted in each domain

which guarantees that every wireless station is capable of evaluating the signal quality of each radio

channel set. The setting of this parameter is different between each repeater and it must be set prior to

runtime as well as the mobility period (i.e., the time interval between the queuing of each BT by the

MM).

4.Simulation Software

4.1. OMNeT++ (Objective Modular Network Testbed in C++)

OMNeT++ [8] is an object oriented modular discrete event simulator, which provides a reusable

component framework, where the system components can be independently built, characterized and

assembled into larger components and models. The basic system components are built using the C++

programming language and then assembled into larger components and models using a high level

language, named NED (an OMNeT++ specific scripting language).

An OMNeT++ model consists of hierarchically nested modules which communicate between

them using messages. OMNeT++ models are often referred to as networks. The top level module is the

system module. The system module contains sub-modules, which can also contain sub-modules

themselves. The depth of module nesting is not limited, consequently providing a useful way to reflect

the logical structure of the system in the model structure (Figure 9).

 System module

Compound module

Simple module Simple module Simple module

Figure 9 – Simple and compound modules

Modules that contain sub-modules are termed compound modules, in opposite to simple modules

which are at the lowest level of the module hierarchy. The simple modules of a model contain the

algorithms coded using C++ programming language. The full flexibility and power of the C++

programming language can be used, in conjunction with the OMNeT++ simulation class library.

Further, OMNeT++ has a consistent object-oriented design. Thus, Object-Oriented Programming

concepts (like inheritance and polymorphism) can be used to extend the basic functionality of the

simulator.

4.1.1. Messages, Gates and Links

Modules communicate by exchanging messages which represent frames or packets in a computer

network. These messages can contain arbitrarily complex data structures. Simple modules send

 12

messages through gates or directly based on their unique identifier. Messages can arrive from another

module or from the same module (self-messages are used to implement timers).

Gates are the input and output interfaces of modules. Messages are sent out through output gates

and arrive through input gates. Each connection (also called a link) is created within a single level of

the module hierarchy and is composed by two gates. Within a compound module, one can connect the

corresponding gates of two sub-modules, or a gate of one sub-module and a gate of the compound

module (Figure 10).

 Compound module

Simple module Simple module

Gate Connection

Figure 10 – Module’s gates and connections

Due to the hierarchical structure of the model, messages typically travel through a series of

connections, but these messages are sent and received by simple modules. Such series of connections,

which go from simple module to simple module, are called routes. Compound modules act as

“cardboard boxes” in the model, transparently relaying messages between their inside and their outside

world, i.e., they are used to aggregate other modules relaying messages from inside to the outside and

vice-versa without any processing.

4.1.2. Modelling Delays, Bit Error Rate and Data Rate

Connections can be assigned three parameters which facilitate the modelling of communication

networks: propagation delay (sec), bit error rate (errors/bit) and data rate (bits/sec). Each of these

parameters is optional. One can specify link parameters individually for each connection, or define link

types (also called channel types) once and use them throughout the whole model.

The propagation delay is the amount of time the arrival of a message is delayed when it travels

through a communication channel. The bit error rate has influence on the transmission of messages

through the channel. The bit error rate is the probability that a bit is incorrectly transmitted. The data

rate is specified in bits/second, and it is used for transmission delay calculation. The sending time of a

message normally corresponds to the transmission of its first bit, and the arrival time of the message

corresponds to the reception of the last bit (Figure 11).

 A B

tA tB Message transmission

Message arrival

Transmission delay

Propagation delay

Figure 11 – Message transmission

In OMNeT++, the length of a message does not depend of its data structure composition, but on

the length attribute. This attribute is used to compute the transmission delay when the message travels

through a connection with an assigned data rate.

4.1.3. An OMNeT++ Example Model

An OMNeT++ model consists of the following parts:

 13

– NED language topology description(s) which describes the module structure and respective

parameters, gates, etc. These are files with .ned suffix. NED files can be written with any text

editor or using the GNED graphical editor.

– Simple modules are C++ sources files, with .h/.cc/.cpp suffix.

The simulation system provides the following components:

– Simulation kernel, which contains the code that manages the simulation and the simulation

class library. It is written in C++, compiled and put together to form a library.

– User interfaces. OMNeT++ user interfaces are used with simulation execution, to facilitate

debugging, demonstration, or batch execution of simulations. There are several user interfaces,

written in C++.

– Simulation programs are built from the above components. First, the NED files are compiled

into C++ source code, using the NEDC compiler which is part of OMNeT++. Then all C++

sources are compiled and linked with the simulation kernel and a user interface to form a

simulation executable.

The simulation executable is a standalone program, which can be run in any machine. When the

program is started, it reads from a configuration file (usually omnetpp.ini) settings that control how the

simulation is run and values for model parameters. The configuration file can also specify several

simulation runs; in the simplest case, they will be executed by the simulation program one after

another or executed on a parallel environment.

4.1.4. Event-Based Simulation

As mentioned, an OMNeT++ model consists of hierarchically nested modules which communicate

between them using messages. Each message can be exchanged directly between simple modules or

via a series of gates and connections. The local simulation time advances when a module receives

messages from another module or from itself. Self-messages are used by a module to schedule events

at a later time.

In the initialization step, OMNeT++ builds the network: it creates the necessary simple and

compound modules and connects them according to the NED definitions. OMNeT++ calls the

initialize()functions of all simple modules, which is usually used to initialize the data members.

The handleMessage()function is called during event processing. This means that the behaviour of

each module is coded in this function. The finish() function is called when the simulation terminates

successfully, it is usually used to write statistics at the end of a simulation run.

In order to clarify these concepts, Figure 12 presents a typical PROFIBUS network transaction,

which consists on the request frame from the initiator (master M1) and the associated response frame

by the responder (slave S1). The initiator has to wait an Idle Time (TID) before sending a request

frame and the responder has to wait Station Delay Responder Time (TSDR) before sending a

response frame.

M1

DA=M1

Response Frame Request Frame

Station Delay Responder Idle Time

S1

DA=S1

e1 e2 e3 e4 e5

t1 t2 t3 t4 t5

Frame Reception

Token Reception

Figure 12 – PROFIBUS transactions events

Assuming that master M1 (initiator) has just received the token (event e0 at the instant t0), then it

will schedule a self message for instant t1, which marks the beginning of a request frame transmission

and the end of the TID (event e1).

 14

Event e2, at instant t2 represents the reception of the request frame’s last bit by slave S1. This

instant is calculated as function of the request frame’s length and the data rate of the connection. As

soon as the slave S1 receives the request frame’s last bit it schedules a self message to simulate the end

of the TSDR and begin of the response frame transmission (event e3 at the instant t3). Event e4

corresponds to the reception of the response frame’s last bit by master M1.

In order to model the system described above two simple modules can be used, one to model the

master station (hereafter called MasterStation module) and another to model the slave station

(hereafter called SlaveStation module).

Figure 13 shows part of the handleMessage(cMessage *msg) function (or method) of the

MasterStation module. This function is automatically invoked at reception of every message.

Therefore, the arriving of the token frame to the MasterStation module instance called M1 is

handled by this function. This message is a PROFIBUS message where the DA and SA are equal to TS

and PS (line 20), respectively. M1 computes the TTH (line 22) and in order to wait TID before sending a

frame it schedules a self message to arrive at instant TID counted from the current instant (the current

simulation time is given by simTime() function) (line 24). When M1 receives a self message (line 6)

that marks the end of the inactivity time (TID), it removes a message from its message output queue

(line 10) and starts transmitting the request frame addressed to the SlaveStation module instance

called S1(line 11).

1. void MasterStation::handleMessage(cMessage *msg)

2. {

3. cMSG_Profibus *msg_profibus=NULL;

4. cMSG_Self *msg_self=NULL;

5. // handle the message according to the simple module algorithm

6. if (msg->isSelfMessage()) { //usually used as timer

7. msg_self=(cMSG_Self s *) msg;

8. switch(msg_self->getAction()){

9. case SEND_MESSAGE:

10. dequeueMessage(&msg_profibus);

11. send(msg_profibus, "out");

12. }

13. ...

14. }

15. }

16. else{

17. msg_profibus=(cMSG_Profibus *) msg;

18. switch(msg_profibus->getType()){

19. case TOKEN_FRAME: //if it is a token frame

20. if(msg_profibus->getDA()==TS &&msg_profibus->getSA()==PS){

21. ...

22. computeTHT();

23. msg_self->setAction(SEND_MESSAGE);

24. scheduleAt(simTime()+TID, msg_self);

25. }

26. break;

27. case RESPONSE_FRAME: //if it is a response frame

28. if(msg_profibus->getDA()==TS && ...){

29. scheduleAt(simTime()+TID, msg_self);

30. }

31. break;

32. ...

33.

34. }

35. }

36. }

Figure 13 – handleMessage(cMessage *msg) function, C++ code (MasterStation)

Figure 14 presents handleMessage(cMessage *msg) function of the SlaveStation module. In

same way this function is automatically invoked as soon as a SlaveStation module instance receives

a message. At reception of the message, slave S1 checks if the received frame is addressed to it (line

20). It schedules the sending of the response (line 23) if it is. Otherwise, no action is taken.

 15

1. void SlaveStation::handleMessage(cMessage *msg)

2. {

3. cMSG_Profibus *msg_profibus=NULL;

4. cMSG_Self *msg_self=NULL;

5. // handle the message according to the simple module algorithm

6. if (msg->isSelfMessage()) { //usually used as timer

7. msg_self=(cMSG_Self s *) msg;

8. switch(msg_profibus->getAction()){

9. case REPLY_MESSAGE:

10. buildResponseMessage(&msg_profibus);

11. send(msg_profibus, "out");

12. }

13. ...

14. }

15. }

16. else{

17. msg_profibus=(cMSG_Profibus *) msg;

18. switch(msg_self->getType()){

19. case REQUEST_FRAME: //if it is a request frame

20. if(msg_profibus->getDA()==TS && ...){

21.

22. msg_self->setAction(REPLY_MESSAGE);

23. scheduleAt(simTime()+TSDR, msg_self);

24. }

25.

26. }

27. break;

28.

29.

30. }

31. }

32. }

Figure 14 – handleMessage(cMessage *msg) function, C++ code (SlaveStation)

5.Repeater-Based Hybrid Wired/Wireless PROFIBUS Architecture

Simulation Model

5.1. Basic Architecture

The HW2PNet module represents the entire network, that is, the system module in the context of the

OMNeT++ framework. The Controller is the module that coordinates the simulation and performs

several tasks, such as, parameterization, configuration of the other module instances and it is also

responsible for the setup of the simulation run. The Domain module models a network domain and

interconnects all components in a single network domain. The Master and Slave modules model a

master or slave standard PROFIBUS network device.

On the left side, Figure 15 shows how the main modules are interconnected. There are 2 kinds of

the connections: ctrl_con and domain_con connections. The ctrl_con connections are used to

establish the connections between the Controller module instance and all module instances in the

overall system. This kind of connection has no delay and is used for simulation control and

configuration purposes. The domain_con connections are used to establish the connections among all

domain components (between Master and Slave module instances and the Domain module instance).

On the right side Figure 15 there is a connection example between a Master and a Domain

module instances. The Master instance is called M1 and Domain instance D1. Each of these

connections is composed of four gates, two for each connected module instance. One gate is for input

and it is connected to the output gate of the other module instance and vice-versa.

The messages are sent to D1 from M1 through a gate called domain_gateOut. Consequently D1

receives messages from M1 through a gate called station_gateInM1. D1 sends messages to M1

through a gate called station_gateOutM1.

Some station parameters, like TSDR or TID are modelled either by Probability Distribution

Function (PDF) or by a constant value. The PDFs implemented require at most four parameters. One of

them defines which PDF is used and the other three are the arguments of the PDF. The name of all

these parameters uses the _pdf prefix. For example, the parameters associated to TSDR are the

 16

following: _pdf_tsdr_type, _pdf_tsdr_par1, _pdf_tsdr_par2 and _pdf_tsdr_par3. The

_pdf_tsdr_type indicates which PDF will be used to generate the value of the TSDR and the other

parameters are the arguments of the PDF. The PDFs supported by both simulators are described in

detail in [9]. Additionally the same parameters can also be used to make a configuration using constant

values.

HW2PNet

Master

Controller Domain

Slave

ctrl_con

domain_con

domain_con

ctrl_con

ctrl_con

Master (M1)

Domain (D1)

domain_con connection

domain_gateIn domain_gateOut

station_gateInM1 station_gateOutM1

Output gate Input gate

Figure 15 – Modules, connections and associated gates

One of the most important steps of a simulation study is to analyze output data generated by the

simulator [10]. The RHW2PNetSim enables gathering information about the response time of

transactions, information about state machine transitions of each module, information about the PDFs

in use and information about the Bit Error Model (BEM) in use. The name of the parameters related to

these functions use the _output prefix.

Master, Slave and Domain modules are all identified by a parameter called _name. The value of

this parameter must be unique in the overall network, since it identifies a module instance.

To simplify the parameterization of the module instances, all common parameters to the network

are associated with the Controller module and all common parameters to the domain are associated

to the Domain module. These parameters are used by the Controller module instance to do the

station parameterization. This characteristic makes the simulation configuration less complex and less

error prone.

In order to model a repeater, two simple modules were developed the Connection_Point and

ComFunc modules, Figure 16 illustrates these modules.

The Connection_Point is a simple module that establishes the connection with the Domain

module. A repeater must include at least two of these module instances. The ComFunc is also a simple

module that links Connection_Point module instances of the same repeater.

In addition to the ctrl_con and domain_con connections, there is another kind of connection:

the repeater_con. This kind of connection is used to connect a repeater to a Domain module instance.

For that purpose the Domain module is provided with a set of input and output gates, whose names use

the repeater_gate prefix.

 17

Connection_Point

Controller Domain

Master

ctrl_con

domain_con

repeater_con

ctrl_con Domain

Slave

domain_con

ctrl_con ctrl_con

ComFunc

Connection_Point

repeater_con

com_func_con com_func_con

ctrl_con

Repeater

HW2PNet

Figure 16 – Modules and connections of the RHW2PNetSim

In the next sections, further details are provided concerning model architecture and

implementation.

5.1.1. HW2PNet

In OMNeT++ to actually get a simulation that can be run, it is necessary to write a network definition.

A network definition declares a simulation model as an instance of the system module, in this case of

the HW2PNet module. A network definition is declared with keyword network, followed by the network

instance’s name and ends with the keyword endnetwork. Figure 17 presents the network definition in

which the system module instance is called theRHW2PNet. No simulation parameters are assigned in

the network definition, since they are assigned by the configuration file named omnetpp.ini.

network
 theRHW2PNet: HW2PNet
Endnetwork

Figure 17 – Network definition

HW2PNet module is a compound module that contains all other module instances. An OMNeT++

network has at least one instance of each module. The number of module instances is specified in the

HW2PNet module instance.

Figure 18 presents the OMNet++ NED definition of the HW2PNet module. This kind of

compound module definition must be contained between the keywords module and endmodule. It is

composed by the module parameters and by its sub-modules. Additionally, in the declaration of the

compound modules elements, like gates and connections can be specified.

Parameters are mainly used to define the module behaviours. These parameters can be strings or

numeric values as well as random values from different PDFs. Within a compound module, parameters

can define the number of sub-modules as well as the number of gates. In this case, the gates and

connections are assigned dynamically at run time.

 18

module HW2PNet
 parameters:
 _num_domains: numeric,
 _num_masters: numeric,
 _num_slaves: numeric,

_num_repeaters: numeric,

 Submodules:
 master: Master[_num_masters];
 slave: Slave[_num_slaves];
 domain: Domain[_num_domains];
 repeater: ComFunc[__num_repeaters];
 cp: Connection_Point[_num_repeaters *2]
 controller: Controller;
endmodule

Figure 18 – HW2PNet module NED definition

Figure 19 depicts parts of the configuration file with the settings related to the HW2PNet module

instance, which is the simulation network. This repeater-based network is composed by only four

domains (_num_domains parameter), five masters (_num_masters parameter) and six slaves

(_num_slaves parameter) and three repeaters (_num_repeaters parameter).

theRHW2PNet._num_domains=4
theRHW2PNet._num_masters=5
theRHW2PNet._num_slaves=6
theRHW2PNet._num_repeaters=3

Figure 19 – Configuration file related with HW2PNet module instance (excerpt)

Figure 20 depicts a graphical representation of the network presented in Figure 2.3. In this figure

it is clear that the Controller instance (labeled controller) is able to communicate with all module

instances, for parameterization and control purposes. Master and Slave module instances are

connected to their correspondent Domain module instances, symbolized by a rectangle or a cloud for

the case of wired or wireless domains, respectively. Each repeater is composed by two Connection_

Point module instances (labeled cp[x], where x is a number between 0 and 5) and one ComFunc

module instance (labeled repeater[x], where x can be 0, 1 or 2). Note that, the Connection_Point

module instance, which is symbolized by a large ball, also models the BS functions.

 19

Figure 20 – Screenshot of the output window of the RHW2PNetSim

5.1.2. Controller

The Controller is a simple module that coordinates the simulation and performs several managing

tasks, acting as the simulation supervisor. Parameters that are specific of one module instance or

common to all module instances in the network are assigned to the Controller module instance. On

simulation setup, the Controller module instance makes the parameter setting of the all other module

instances. Additionally, due to memory limitations, the Controller module instance is responsible

for periodically sending commands to other module instances, commanding them to dump the

information gathered to data files. Finally, whenever a Master or Slave module instance changes

between domains, this module updates the network configuration and the corresponding connections.

Note that, OMNeT++ does not provide any native mechanism for mobility.

A simple module is declared with keywords simple, followed by the modules’ name, and

endsimple. The parameters and the gates can be specified in the declaration of a simple module.

Figure 21 presents the NED definition of the Controller simple module. Parameter _domain is

a string which defines the configuration of the domain. It is written using predefined structure based in

tags. The Controller module instance extracts information from these strings to perform the network

configuration.

 20

simple Controller
 parameters:
 _output_gant_diagram: numeric,
 _output_resp_time: numeric,
 _output_states: numeric,
 _output_pdf: numeric,
 _output_bem: numeric,
 _output_period: numeric,
 _output_path: string,
 _tmob: numeric,
 _mm: string,
 _domain: string,
 _inter_domain: String;
endsimple

Figure 21 – Controller module NED definition

The parameters with the _output prefix are related to the output data files. If one of these

parameters has a value of one it means that the information referred to, by the parameter, must be

gathered by the module instances (Table 1). A detailed description of the output data files is presented

in [11].

Table 1 – Summary of the output data information

Parameter Information

_output_gant_diagram Information necessary to build event Gant Diagrams.

_output_resp_time Information about the response time of each transaction.

_output_states Information about module instances’ state machine and their

transitions.

_output_pdf Information about the probability distribution functions used.

_output_bem Information about the bit error model used.

_output_period Period for dumping the gathered information on to data files.

_output_path The path of the directory output files

Figure 22 presents the parameter values related to the Controller module instance, assuming

the network depicted in Figure 3. This file also includes information about MM (Master module

instance named M5) and about the periodicity (_tmob).

theRHW2PNet.controller._mm="M5"
theRHW2PNet.controller._tmob=200ms
…
theRHW2PNet.controller._domain="\
<d><n>D1</n><m></m><s>S6</s><cp>CP8</cp><bs>CP8</bs><pos>400:300</pos></d>\
<d><n>D2</n><m>M1:M5</m><s>S1:S2:S3</s><cp>CP6:CP5</cp><bs></bs><pos>200:150</pos></d>\
<d><n>D3</n><m>M3:M4</m><s></s><cp>CP9:CP10</cp><bs>CP9</bs><pos>50:300</pos></d>\
<d><n>D4</n><m>M2</m><s>S4:S5</s><cp>CP7</cp><bs></bs><pos>250:450</pos></d>"

theRHW2PNet.controller._inter_domain="\
<l><n>R1</n><cp>CP5:CP8</cp><pos>400:150</pos></l>\
<l><n>R2</n><cp>CP9:CP6</cp><pos>50:150</pos></l>\
<l><n>R3</n><cp>CP10:CP7</cp><pos>120:400</pos></l>"

Figure 22– Configuration file related to the Controller module instance (excerpt)

The meaning of most of the tags used on the _domain string has been described in Chapter 5.

The meaning of the tags used in _domain parameter are the following: <d> and </d> specify a

domain; the tags <n> and </n> enclose the name of the Domain module instance; <m> and </m>

enclose the name of the masters belonging to the domain, which are separated by a colon; <s> and

</s> tags are similar to the previous case but associated with slaves; <cp> and </cp> tags enclose the

names of the Connection_Point module instances that are connected to the Domain module instance,

the names must be separated by colon; <bs> and </bs> tags enclose the name of the

Connection_Point module instance, which operates as a BS of a wireless domain. In the particular

case of Figure 22, the second domain D2, is described by:

(“<d><n>D2</n><m>M1:M5</m><s>S1:S2:S3</s><cp>CP6:CP5</cp><bs></bs><pos>200:1

50</pos></d>”), it is composed by two Master module instance (M1 and M5), and three Slave

module instances (S1, S2 and S3) and this Domain module instance is connected to two Connection_

 21

Point module instances (CP6 and CP5). The Domain module instance is depicted in the screen at

position (200,150).

The parameter _inter_domain is a string that is similar to the _domain string. This string

defines the repeater configuration, and the meaning of the tags is the following: <r> and </r> define a

repeater; <n> and </n> enclose the name of the ComFunc module instance; between tags <cp> and

</cp> and separated by a colon appear the names of the Connection_Point module instances; <pos>

and </pos> are used to define the location of the repeater. The first repeater presented in Figure 6.4

(“<r><n>R1</n> <cp>CP5:CP8</cp><pos>400:150 </pos></r>”) is referred to as R1, it is

composed by two Connection_Point module instances (CP5 and CP8) and is positioned at (400,150).

Note that, this repeater interconnects domains D1 and D2.

The Controller module instance stores into internal variables, the structure of the network. By

manipulating this information it changes the network configuration when wireless mobile stations

(Master and Slave module instances) move between domains.

This information enables the Controller to set the LAS of all Master module instances as well

as PS, NS and GAPL parameters. It also assigns the token frame to the master defined as DMM, thus,

avoiding the need to perform the standard PROFIBUS network initialization procedure.

5.1.3. Domain

In spite of the OMNeT++ capacities, only one-to-one connections are supported. One-to-many and

many-to-one connections can only be achieved using special purpose simple modules. Therefore, it

was necessary to develop a simple module – the Domain module which is able to connect all stations in

a domain and simulate a broadcast network. The connections are created and assigned dynamically

enabling the support of mobility. In our model we assume that the propagation delay is ignorable. The

transmission delay is simulated by the Domain module as a function of the Baud_rate parameter and

the message length.

The parameters that are common to all modules connected to a domain are assigned to the

Domain module and the Controller module instance performs the domain configuration and other

module instance parameterization using this information.

Figure 23 presents the Domain simple module NED definition. The parameter _medium defines if

the Domain module instance maps into wired (different to zero) or wireless (equal to zero) domain.

Due to the use of different media in the network, the format of the wired and wireless frames is

different. As an example, each DLL character can be coded using 8 or 11 bit, for wireless and wired

frames, respectively. The wireless frames can also include additional preamble and header fields. The

parameters bitsPerChar, frameHeadLen and frameTailLen are the number of bits per character, the

number on the bits of the frame head and the number of the bit on the frame tail, respectively.

simple Domain
 parameters:
 Baud_rate: numeric,
 bitsPerChar: numeric,
 frameHeadLen: numeric,
 frameTailLen: numeric,
 G: numeric,
 HSA: numeric,
 TTR: numeric,
 TSL: numeric,
 max_retry_limit: numeric,
 _bem_type: numeric,
 _bem_par1: numeric,
 _bem_par2: numeric,
 _bem_par3: numeric,
 _bem_par4: numeric,
 _beacon_len: numeric,

 n_beacon: numeric,
 beacon_gap: numeric,

 _name: string;
 gates:
 in: ctrl_gateIn;
 out: ctrl_gateOut;
endsimple

Figure 23 – Domain module NED definition

 22

The parameter G is the Gap Update factor. The HSA parameter defines the Highest Station

Address in the domain. The TTR parameter is the Target Rotation Time (TTR) of the token and TSL

is the Slot Time (TSL). The number of retries is defined by the max_retry_limit parameter. The

parameters with _bem prefix are used to define the channel Bit Error Model (BEM) in use. In [12] we

describe the BEM supported by these simulators.

Figure 24 presents part of the configuration file related to one instance of the Domain module.

This Domain module instance is called D1 and maps a wireless domain operating at 2 MBits/s

(Baud_rate parameter). Each frame has a head of 32 bits, no frame tail and each character is coded

using 8 bits. The G is set to one, therefore the GAP Update mechanism is always active. The HSA can

be set differently for each domain according to the highest address of the stations that can belong to its

domain. The TTR and TSL parameters are set in bit times and represent the TTR and TSL PROFIBUS

parameters, respectively.

Transmission errors are modelled using the Independent Channel Model [4] (_bem_type

parameter equal to 1) with a bit error probability of 10
-5

 (0.00001) (_bem_par1 parameter).

During the mobility procedure a BS will transmit 14 Beacon frames with an interval of 25 µs

between them and the length of each Beacon frame is equal to 10 bytes (Figure 6.6).

theRHW2PNet.domain[0]._name="D1"
theRHW2PNet.domain[0]._medium=0
theRHW2PNet.domain[0].Baud_rate=2000000
theRHW2PNet.domain[0].frameHeadLen=32
theRHW2PNet.domain[0].frameTailLen=0
theRHW2PNet.domain[0].bitsPerChar=8
theRHW2PNet.domain[0].G=1
theRHW2PNet.domain[0].HSA=5
theRHW2PNet.domain[0].TTR=300
theRHW2PNet.domain[0].TSL=115
theRHW2PNet.domain[0].max_retry_limit=1
theRHW2PNet.domain[0]._bem_type=1
theRHW2PNet.domain[0]._bem_par1=0.00001
theRHW2PNet.domain[0].beacon_len=10
theRHW2PNet.domain[0].n_beacon=14
theRHW2PNet.domain[0].beacon_gap=25us

Figure 24 – Configuration file related to Domain module instance (excerpt)

5.1.4. Master

A Master module is a compound module that maps a master station. It is composed by three modules:

Master_PHY, Master_DLL and Msg_Stream. In each Master module instance there is one instance of

Master_PHY and Master_DLL modules. The number of the Msg_Stream module instances can be from

1 up to 64. A Master module is connected to the Domain module through gates domain_gateIn and

domain_gateOut. Master_PHY and Master_DLL model the PhL and DLL of the PROFIBUS protocol,

respectively. The Msg_Stream module models the operation of the Application Layer (AL), therefore it

can be configured to periodically request services from the DLL. These modules are hierarchically

organized as illustrated in Figure 25.

As mentioned, compound modules are modules composed of one or more sub-modules. Any

module type (simple or compound module) can be used as a sub-module. Further, sub-modules may

use parameters of the compound module.

The compound module definition specifies how the gates of the compound module and its

immediate sub-modules are connected. Connections that span multiple levels of the hierarchy are not

allowed. This restriction enforces compound modules to be self-contained. These concepts are

presented in the Master module NED definition depicted in Figure 26. In this definition some

parameters are omitted since its definition is very long.

The address of the Master module instance is set using the TS parameter. The number of

message streams is defined by the _num_streams parameter. This parameter is used to define the

number of Msg_Stream module instances and also to specify the number of gates between the

Master_DLL module and Msg_Stream module instances. The parameters with _pdf_tid1 prefix are

related to TID1 PROFIBUS DLL parameter.

 23

Figure 27 shows part of the configuration file related to a Master module instance. The

parameter _pdf_tid1_type is set to three meaning that the TID1 duration evolves according to a

Triangular PDF. A Triangular PDF requires three parameters. In this case, the value of TID1 will be

between 11 bit times (_pdf_tid1_par1 parameter) and 100 bit times (_pdf_tid1_par3 parameter)

and the mode is 70 bit times (_pdf_tid1_par2 parameter).

Master
Msg_Stream[N] Msg_Stream[0]

Master_DLL

lower_gateOut

Master_PHY

upper_gateIn

upper_gateOut

ctrl_gateOut ctrl_gateIn lower_gateIn lower_gateOut

lower_gateIn

upper_gateOut[0] upper_gateIn[0]

lower_gateIn lower_gateOut

upper_gateOut[N]

lower_gateIn

lower_gateOut

ctrl_gateOut ctrl_gateIn domain_gateIn domain_gateOut

upper_gateIn[N]

Figure 25 – OMNeT++ Master module composition

module Master
 parameters:
 TS: numeric,
 _num_streams: numeric,
 _name: string,
 _pdf_tid1_type: numeric,
 _pdf_tid1_par1: numeric,
 _pdf_tid1_par2: numeric,
 _pdf_tid1_par3: numeric,
 …
 gates:
 in: domain_gateIn,ctrl_gateIn,;
 out: domain_gateOut,ctrl_gateOu;
 submodules:
 phy_layer: Master_PHY;
 dll_layer: Master_DLL;
 parameters:
 TS=TS,
 _num_streams=_num_streams,
 _pdf_tid1_type=_pdf_tid1_type,
 ..
 gatesize:
 upper_gateOut[_num_streams],
 upper_gateIn[_num_streams];

 stream: Msg_Stream[_num_streams];
 connections nocheck:

 phy_layer.upper_gateOut --> dll_layer.lower_gateIn;
 phy_layer.upper_gateIn <-- dll_layer.lower_gateOut;
 phy_layer.lower_gateIn <-- domain_gateIn;
 phy_layer.lower_gateOut -->domain_gateOut;
 phy_layer.ctrl_gateIn <-- ctrl_gateIn ;
 phy_layer.ctrl_gateOut --> ctrl_gateOut;
 for i=0.._num_streams-1 do
 dll_layer.upper_gateOut[i] --> stream[i].lower_gateIn;
 dll_layer.upper_gateIn[i] <-- stream[i].lower_gateOut;
 endfor;

endmodule
Figure 26 – Master module NED definition

 24

theRHW2PNet.master[2].TS=3
theRHW2PNet.master[2]._name="M3"
theRHW2PNet.master[2]._pdf_tid1_type=3
theRHW2PNet.master[2]._pdf_tid1_par1=11
theRHW2PNet.master[2]._pdf_tid1_par2=70
theRHW2PNet.master[2]._pdf_tid1_par3=100

Figure 27– Configuration file related to Master module instance (excerpt)

The following sections describe the implementation of each module that composes a Master

module instance and their interactions.

 Master_PHY

The Master_PHY module models the PhL of the PROFIBUS protocol. It represents the network

interface of the Master module, it receives messages from a Domain or from a Controller module

instance and passes the messages to the Master_DLL module and vice-versa. For that reason, this

module is connected to the Master compound module through four gates (see Figure 5.10):

domain_gateIn, domain_gateOut, ctrl_gateIn and ctrl_gateOut, the first two are related to

domain_con connections and the last two are related ctrl_con connections. Figure 28shows the

Master_PHY NED definition.

simple Master_PHY
 gates:
 in: lower_gateIn, ctrl_gateIn, upper_gateIn;
 out: lower_gateOut, ctrl_gateOut, upper_gateOut;
endsimple

Figure 28 – Master_PHY module NED definition

 Master_DLL

The Master_DLL module is a simple module that it is directly connected to the Master_PHY and the

Msg_Stream modules. It is connected to the Master_PHY module instance through lower_gateIn and

lower_ gateOut gates and it is connected to N Msg_Stream module instances through 64 gates

upper_gateIn[x]and upper_gateOut[x], where x is a number between 1 and 64.

Figure 5.14 presents part of the Master_DLL NED definition. Its NED definition is very simple

since most of its parameters are dynamically configured by the Controller module instance.

 Msg_Stream

The Msg_Stream module models the typical behaviour of the AL. It can be configured to periodically

request services from the Master_DLL module instance through the lower_gateOut gate. Each

Msg_Stream module instance must be configured with the parameters necessary to build PROFIBUS

messages. Figure 5.15 shows the Msg_Stream NED definition. The parameters DA and SA refer to

Destination Address and Source Address, respectively. The local access address to the AL is

defined in the SAE - Source Address Extension - and the remote access address to the AL is

defined in the DAE - Destination Address Extension.

The parameter DATA_UNIT maps the content of a frame data field. For simplification reasons this

parameter is a numeric data field. Serv_class parameter defines the priority (high or low) for the data

transfer and the service parameter defines if a message maps into a Send Data with No

Acknowledge (SDN) or a Send and Request Data with Reply (SRD) PROFIBUS service. If the

service parameter value is set to 1, it means that it models a SDN service. In the case of being 3, it is

a SRD service. The PROFIBUS SDA service can be modelled by using a SRD with a one byte

response frame.

 25

simple Master_DLL
 parameters:
 TS: numeric,
 _pdf_tid1_type: numeric,
 _pdf_tid1_par1: numeric,
 …
 _pdf_tid2_type: numeric,
 _pdf_tid2_par1: numeric,
 …
 _pdf_tsdr_type: numeric,
 _pdf_tsdr_par1: numeric,
 …
 gates:
 in: upper_gateIn[],lower_gateIn,;
 out: upper_gateOut[],lower_gateOut,;
endsimple

Figure 29 – OMNeT++ Master_DLL module NED definition

The message generation can be active or inactive. If the value of the _active parameter is 0,

then no messages are generated, otherwise messages are periodically generated.

simple Msg_Stream
 parameters:
 DA: numeric,
 DAE: numeric,
 SA: numeric,
 SAE: numeric,
 DATA_UNIT: numeric,
 Serv_class: numeric,
 service: numeric,
 _active: numeric,
 _deadline: numeric,
 _output_color_red: numeric,
 _output_color_green: numeric,
 _output_color_blue: numeric,
 _pdf_length_type:
 …
 _pdf_period_type: numeric,
 …
 _pdf_offset_type: numeric,
 …
 gates:
 in: lower_gateIn;
 out: lower_gateOut;
endsimple

Figure 30 – Msg_Stream NED definition

Typically, a transaction (or message cycle) consists of the request or a send/request frame from

the initiator and the associated response frame from the responder, especially for SRD. The response

time of each transaction is computed from the time in which the request frame is queued on the DLL

output message queue until it receives the response frame.

However, the response time of a transaction can be theoretically unlimited in error prone

environments. In order to deal with transmission medium characteristics, real time systems must be

provided with mechanisms to detect and handle these error situations [13]. In a communication system

these mechanisms are implemented at all levels of the communication stack.

At the AL level the Msg_Stream module is provided with a parameter (the _deadline

parameter) which is used to detect if a transaction is not concluded before the expiration of the

deadline.

In our simulation model we consider that a transaction misses its deadline in two situations. First,

when the response time of a transaction is higher than its deadline even when a valid response is

obtained from the IDT BMini, this is illustrated on the left side of Figure 31. The second case is the

most common case in which a deadline is considered missed when the response frame is not received

within its deadline. This case is illustrated on the right side of Figure 31.

As mentioned, these simulators produce information enabling the display of the Gant diagrams

concerning message transactions. To distinguish between the different message streams it is possible to

assign a colour to each message stream using the parameters with _output_color_red, _output

_color_green and _output_color_blue.

The length in bits, the period and offset of the first activation of the message streams can be

assigned either using random or constant values.

 26

PROFIBUS
request

Initiator Responder

Token

D
i

Token

Service.req

Service.con
(No_Data)

Service.req

Service.con
(No_Data)

Service.req

Service_upd.req

DLL

AL(DP)

DLL

PROFIBUS
response

AL(DP)

Service.con
(Data)

Transmission error

PROFIBUS
request (retry)

Transmission error

PROFIBUS
request

Service_upd.req

Service_upd.req

Deadline

Start transaction

PROFIBUS
request

Initiator Responder

Token

D
i

Token

Service.req

Service.con
(No_Data)

Service.req

Service.con
(No_Data)

Service.req

Service_upd.req

DLL

AL(DP)

DLL

AL(DP)

Transmission error

PROFIBUS
request (retry)

Transmission error

Service_upd.req

Service_upd.req

Deadline

Finish transaction

Response time

PROFIBUS
request

Transmission error

PROFIBUS
request (retry)

Transmission error

Token

Start

transaction

Start new

transaction

PROFIBUS
request

Figure 31– Deadline missing examples

Figure 32 depicts an example of an Msg_Stream module instance configuration. This message

stream involves a Master module instance with address 3 (SA) and Slave module instance with

address 46 (DA). The SAE and DAE have the same value, which is equal to 7.

theRHW2PNet.master[2].stream[1].DA=46
theRHW2PNet.master[2].stream[1].SA=3
theRHW2PNet.master[2].stream[1].DAE=7
theRHW2PNet.master[2].stream[1].SAE=7
theRHW2PNet.master[2].stream[1].DATA_UNIT=0
theRHW2PNet.master[2].stream[1].Serv_class=1
theRHW2PNet.master[2].stream[1].service=3
theRHW2PNet.master[2].stream[1]._active=1
theRHW2PNet.master[2].stream[1]._deadline=100ms
theRHW2PNet.master[2].stream[1]._pdf_length_type=0
theRHW2PNet.master[2].stream[1]._pdf_length_par1=15
theRHW2PNet.master[2].stream[1]._pdf_period_type=0
theRHW2PNet.master[2].stream[1]._pdf_period_par1=0.005
theRHW2PNet.master[2].stream[1]._pdf_offset_type=0
theRHW2PNet.master[2].stream[1]._pdf_offset_par1=0.0
theRHW2PNet.master[2].stream[1]._output_color_red=100
theRHW2PNet.master[2].stream[1]._output_color_green=255
theRHW2PNet.master[2].stream[1]._output_color_blue=0

Figure 32– Msg_Stream configuration parameters of a Master

As the Serv_class parameter is equal to 1 this is a high priority message stream using the SRD

service (since the service parameter is equal to 3).

The period of this message stream is constant (since the _pdf_period_type parameter is equal

to zero) at 0.005 s (_pdf_period_par1 parameter). The length of the message is also constant (since

the _pdf_length_type parameter is equal to zero) at 15 bytes (_pdf_length_par1 parameter). The

first message does not have any initial offset. The colour of this message stream on the Gant diagram is

(100, 255, 0) in RGB notation.

5.1.5. Slave

A Slave is a compound module which maps into a standard PROFIBUS slave station. It is structured

similarly to the Master module. The Slave_PHY module is equal to the Master_PHY module. The

Msg_Stream module is the same module used by the Master module and is used for the same purpose,

although in the case of a Slave module it generates periodical response messages. The Slave_DLL

module is a simple module, which maps the PROFIBUS DLL of a slave.

In each Slave module instance there is one instance of Slave_PHY and Slave_DLL modules.

The number of the Msg_Stream module instances can be from 1 up to 64. As shown in Figure 33the

Slave module structure is very similar to the Master module structure presented in Figure 25.

Since the Master_PHY and Msg_Stream modules were already described in Section 5.1.4, in this

sub-section only the Slave_DLL module will be described.

 27

Slave
Msg_Stream[N] Msg_Stream[0]

Slave_DLL

lower_gateOut

Slave_PHY

upper_gateIn

upper_gateOut

ctrl_gateOut ctrl_gateIn lower_gateIn lower_gateOut

lower_gateIn

upper_gateOut[0] upper_gateIn[0]

lower_gateIn lower_gateOut

upper_gateOut[N]

lower_gateIn

lower_gateOut

ctrl_gateOut ctrl_gateIn domain_gateIn domain_gateOut

upper_gateIn[N]

Figure 33 – OMNeT++ Slave module

Figure 34 presents the Slave_DLL NED definition. The address of This Station is set on its TS

parameter. The TSDR parameter is assigned according to the mode, defined in Section 5.2 for these

types of parameters (which can receive values from PDF functions).

simple Slave_DLL
 parameters:
 TS: numeric,
 _pdf_tsdr_type: numeric,
 _pdf_tsdr_par1: numeric,
 …
 gates:
 in: upper_gateIn[],lower_gateIn;
 out: upper_gateOut[],lower_gateOut;
endsimple

Figure 34– Slave_DLL module NED definition

5.1.6. Parameters _location_vector and _is_mobile_station

Besides the parameters referred in previously, Master and Slave modules have two more parameters.

One called _location_vector and the other called _is_mobile_station, these parameters are

highlighted in Figure 35. The _location_vector is a string which defines the location of each

Master and Slave module instance during time. In order to limit the size of the configuration files

used, the _location_vector parameter is written in a compact format. Each location is represented

by a tuple (n_mob,Dx), where n_mob represents the number of mobility procedures during which the

Master or Slave module instance will stay on domain Dx.

The _is_mobile_station parameter is used to define if a Master or a Slave module instance

models a mobile station (assigned with one) or not (assigned with zero).

Figure 35 depicts part of the configuration file related to a Master module instance, which

models a wireless mobile station called M3. This station stays in domain D1 for five mobility

procedures, and then it changes to domain D3 where it will stay for another 10 mobility procedures.

This sequence of events repeats itself until the end of the simulation.

 28

theRHW2PNet.master[2]._name="M3"
theRHW2PNet.master[2]._is_mobile_station=1
theRHW2PNet.master[2]._vector_location="5,D1:10,D3:"

Figure 35– Configuration file related to the Master module instance of the RHW2PNetSim

(excerpt)

In order to set the _location_vector parameter according to the radio channel quality and the

mobility of wireless mobile station the Mobility Simulator (MSim) has been developed. This simulator

models the radio wave propagation according to the Log-normal Shadowing model [14] and the

mobility of wireless mobile stations. A detailed description of this simulator is found in [15].

5.1.7. Repeater Architecture

There is no module called repeater, the repeater is in fact an abstraction, since its operation is

supported by three module instances, one instance of the ComFunc module and two of

Connection_Point module (Figure 36).
The ComFunc module instance establishes connections between the Connection_Point

module instances that belong to the repeater through the com_func_con connections. The

Connection_Point module instances establish the connections to the Domain module instances by

the repeater_con connections.

Connection_Point

Domain
(Wired)

repeater_con

Domain
(Wireless)

ComFunc

Connection_Point

repeater_con

com_func_con com_func_con

Repeater

Figure 36– Repeater’s module instances and their connections

 ComFunc

ComFunc is a simple OMNeT++ module. The NED definition of the ComFunc module is given in

Figure 37. The main function of this module is to model the internal relaying delay – trd .

Frames relayed by the repeater are delayed by this module. The delay value is assigned to the

parameters with the prefix _pdf_delay.

simple ComFunc
 parameters:
 _pdf_delay_type: numeric,
 _pdf_delay_par1: numeric,
 _pdf_delay_par2: numeric,
 _pdf_delay_par3: numeric,
 _name: string;
 gates:
 in: ctrl_gateIn;
 out: ctrl_gateOut;
endsimple

Figure 37– ComFunc module NED definition

Figure 38 presents part of a configuration file related to a ComFunc module instance. This

instance is called R1 and the delay introduced is equal to 30 µs. The parameter _pdf_delay_type

defines if the delay is constant (0) or random according to a PDF, see [™®] for details.

 29

theRHW2PNet.repeater[0]._name="R1"
theRHW2PNet.repeater[0]._pdf_delay_type=0
theRHW2PNet.repeater [0]._pdf_delay_par1=0.00003

Figure 38– Configuration file related to one ComFunc module instance (excerpt)

 Connection_Point

Connection_Point is a simple OMNeT++ module. This module establishes the connections between

the Domain module instances and assures that a frame is transmitted without time gaps. Additionally,

the BS functions are also modelled in this module like for instance, sending Beacon frames during the

mobility procedure. Figure 39 shows the Connection_Point connections.
Figure 40 presents the NED configuration of the Connection_Point module. The inactivity

time between two consecutive frames (TIDm described in Section 2.3.4) can be assigned in a stochastic

way. For this reason, the timing delay can be assigned by four parameters. The parameters related to

the TIDm have the _pdf_tidm prefix.

Repeater Repeater

Connection_Point

Domain
(Wired)

repeater_con

Domain
(Wireless)

ComFunc

Connection_Point

repeater_con

com_func_con com_func_con

Base Station Connection_Point

Domain
(Wired)

ComFunc

Connection_Point

com_func_con com_func_con

repeater_con repeater_con

Figure 39– Connection_Point module connections

simple Connection_Point
 parameters:
 _pdf_tidm_type: numeric,
 _pdf_tidm_par1: numeric,
 _pdf_tidm_par2: numeric,
 _pdf_tidm_par3: numeric,
 _name: string;
 gates:
 in: com_func_gateIn,domain_gateIn;
 out: com_func_gateOut,domain_gateOut;
endsimple

Figure 40– Connection_Point module NED definition

Figure 41 presents part of a configuration file related to a Connection_Point module instance.

This instance is called CP8. Since the parameter _pdf_tidm_type is set to zero, then the inactivity

period between the two consecutive frames is constant and equal to 100 bit times.

theRHW2PNet.cp[3]._name="CP8"
theRHW2PNet.cp[3]._pdf_tidm_type=0
theRHW2PNet.cp[3]._pdf_tidm_par1=100

Figure 41 – Configuration file related to the Connection_Point module instance (excerpt)

In order to set the _location_vector parameter according to the radio channel quality and the

mobility of wireless mobile station the Mobility Simulator (MSim)[15] has been developed. This

simulator models the radio wave propagation according to the Log-normal Shadowing model [14] and

the mobility of wireless mobile stations.

5.2. PROFIBUS DLL Basic Implementation

In this Section an overview of the PROFIBUS DLL basic implementation. In a standard PROFIBUS a

slave state machine is composed by two states: OFFLINE and PASSIVE_IDLE. In our implementation

of both simulators, the slave state machine only uses one state, the PASSIVE_IDLE state.

 30

A slave does not have initiative, it only responds to requests addressed to it. The Slave_DLL

behaviour depends on the kind of the received frame. In the implementation of both simulators, a slave

is only able to receive SDN, SRD and FDL_Request_Status request frames.

The operation mode of a standard master PROFIBUS DLL is supported by a state machine

composed by 10 states [5]. For simplification reasons, in both implementations only 8 states are

considered.

According to the PROFIBUS protocol, after turning on the power of a master station it will go

into the LISTEN_TOKEN state in order to generate the List of Active Stations (LAS) and GAP

List (GAPL). However, all Master module instances start in the ACTIVE_IDLE state with all

configurations and parameterization performed by the Controller module instance, at the simulation

setup. In order to start the network simulation operation, the Controller module instance sends a

token frame to the Domain Mobility Manager (DMM) of each domain. Then the state machine of

the Master module instances evolves to the USE_TOKEN state.

Figure 42 presents the Master state machine diagram related to the implementation of the

PROFIBUS DLL in both simulators.

In this state machine diagram an oval shape represents a state and an arrow a transition. For

better identification, within of the oval shape the state identification is written and each transition is

identified by a number.

In the description of the Master state machine diagram it is assumed that the Time-Out Time

(TTO) and the Slot Time (TSL) related timers are automatically started and stopped in the following

situations. The PROFIBUS protocol, defines that when a master frame’s last bit is transmitted or when

a master frame’s last bit is received a timer is loaded with the TTO value and is started (hereafter

referred to as TTO timer). The TTO timer is stopped after receiving the first bit of the following frame.

The value of this timer is set according to the Eq. 2. Whenever a request frame’s last bit is transmitted

by an initiator that requires either a response or an acknowledgement a timer is loaded with TSL

parameter value and is started (hereafter referred to as TSL timer).

When a Master is in the ACTIVE_IDLE state, 3 transitions (1, 19 and 13) are possible.

Transition 1 is triggered either by the reception of a valid token frame from its Previous Station

(PS) (see Section 5.2.2 for more details), or when TTO expires.

Transition 19 occurs when a Master receives either a valid frame (without bit errors) not

addressed to it or if the frame is valid and addressed to it but is not a token frame, for example an

FDL_Request_Status frame (more details are given in Section 5.2.5). If the received frame is an

invalid frame (containing bit errors) the Master continues in the same state.

A Master in the ACTIVE_IDLE state continually analyses all received frames. If a token frame

is received when This Station (TS) is “skipped“ (i.e., the address of TS lies within the address range

spanned from the sender address to the receiver address in the token frame), then it removes itself from

the logical ring and evolves to the LISTEN_TOKEN state (transition 13).

When the Master is in the USE_TOKEN state, i.e., when it holds the token frame, it behaves

according to the message dispatching procedure (a detailed description of this procedure is presented in

Section 5.2.3). A Master in the USE_TOKEN state can perform one of 4 transitions (2, 3, 5 and 7).

The Master stays on the same state (transition 2) if it transmits a frame that does not need to receive a

response frame (e.g., when using the SDN service, see Section 5.2.6 for more details). It changes to the

AWAIT_DATA_RESPONSE state (transition 3) if it sends a message that requires a response frame

(e.g., when using the SRD service, see Section 5.2.6) and returns to the USE_TOKEN state when it

receives a response frame or the Slot Time (TSL) expires (transition 4).

Transition 5 occurs, when the Master transmits an FDL_Request_Status frame and evolves to

the AWAIT_STATUS_RESPONSE state. The Master returns to the USE_TOKEN state (transition 6)

when it receives either a response frame or the TSL expires (in Section 5.2.5the Gap update procedure is

described in detail).

From the USE_TOKEN state it changes to the PASS_TOKEN state (transition 7) when its Token

Holding Time (THT) expires. The THT is computed at token frame reception according to Eq. 1.

The transitions 8, 9, 10 and 11 are handled by the pass token procedure (a detailed description of

this procedure is presented in Section 5.2.4).

 31

From the PASS_TOKEN state it evolves to the CHECK_TOKEN_PASS state (transition 8) after

transmitting a token frame to its Next Station (NS). In the CHECK_TOKEN_PASS state 2

transitions (9 and 12) can occur. If it detects a valid frame in its domain then it changes to the

ACTIVE_IDLE state (transition 12). Otherwise, if after expiring TSL no activity is detected it returns to

the PASS_TOKEN state (transition 9) and stays into these two states (PASS_TOKEN and

CHECK_TOKEN_PASS) until passing the token to another station in its LAS or to itself (transition

11).

AWAIT_DATA_RESPONSE 1

2
3 4

5 6

AWAIT_STATUS_RESPONSE 7
8

9

10 11

LISTEN_TOKEN

12

15

13 14

16

17
18

19

ACTIVE_IDLE

USE_TOKEN

PASS_TOKEN

CLAIM_TOKEN

CHECK_TOKEN_PASS

Figure 42– Master state machine diagram

In order to detect a defective transceiver when a Master is transmitting a token frame, in the

TOKEN_PASS state, it also receives the token frame. If it detects a difference between the transmitted

and received frame it waits, in the CHECK_TOKEN_PASS state, TSL for activity from its NS. If no

activity is detected after expiring TSL, it again transmits the token frame, if it again detects a difference

between the transmitted and received frames its state machine evolves to the LISTEN_TOKEN state

(transition 10). This process is designated as “heardback removal” in [4].

Whenever a Master evolves to the LISTEN_TOKEN state the LAS is cleared and it starts

listening on the medium for at least two successive identical token cycles. During this time it is not

allowed to send or respond to data frames or to accept the token, but it builds the LAS. After that, its

state machine evolves to the ACTIVE_IDLE state (transition 14).

The Master state machine evolves to the CLAIM_TOKEN state from the LISTEN_TOKEN

state when the TTO timer expires (transition 16). In this case there is the need to recover the token

(Section 5.2.1 presents more details about this procedure). In this procedure it transmits two token

frames addressed to itself and if no difference between transmitted and received frames occur its state

machine evolves to the USE_TOKEN state (transition 18). Otherwise, the state machine evolves to the

LISTEN_TOKEN state (transition 17) as a consequence of “heardback removal”.

5.2.1. Token Recovery Procedure

In the PROFIBUS protocol, a token lost is detected when a master does not detect any network activity

for a time defined by its Time-Out Time (TTO) parameter (which is set by Eq. 2).

A timer is loaded with TTO parameter value and is started in two situations. First, when the frame

transmitter transmits the frame’s last bit. Second, when a master receives frame’s last bit. The timer is

stopped when the first bit of the following frame is received.

When TTO timer expires and the Master module instance is in the ACTIVE_IDLE state it starts

performing message cycles according to the message dispatching procedure (described in Section

5.2.3). But if it is in the LISTEN_TOKEN state, then it evolves to the CLAIM_TOKEN state and the

token recovery procedure starts. This procedure has two objectives. First, recovering the token frame

and, second to reinitialize the logical ring.

Note that, when a Master evolves to LISTEN_TOKEN state all List of Active Stations

(LAS) entries are deleted (Figure 43).

 32

1. handleSelfMessage(msg)

2. {

3. switch (getAction(msg)) {

4. case TTO_TIMEOUT:

5. switch (state) {

6. case ACTIVE_IDLE:

7. messageDispacthing();

8. end;

9. case LISTEN_TOKEN:

10. state=CLAIM_TOKEN;

11. tokenRecovery();

12.

13. end;

14. }

15. end;

16. ...

17. }

18. }

Figure 43– handleSelfMessage(msg) function, pseudo-code algorithm

In order to recover the token and reinitialize the logical ring the Master, which is in the

CLAIM_TOKEN state, transmits two token frames addressed to itself (Figure 44). The pass token

procedure will be described in Section 5.2.4. In this way the token frame is recovered. After that, every

Master will be joining to the logical ring using the GAP update procedure (described in Section 5.2.3).

Note that, when a Master transmits a token addressed to itself, all Masters that are not in the

LISTEN_TOKEN state evolves to that state, since they are “skipped” of the logical ring.

1. tokenRecovery()

2. {

3. passToken(TS);

4. passToken(TS);

5. state=USE_TOKEN;

6. messageDispacthing();

7. }

Figure 44– tokenRecovery() function, pseudo-code algorithm

5.2.2. Token Reception Procedure

The token frame is passed between masters in ascending Medium Access Control (MAC) address

order. The only exception is that to close the logical ring the master with the Highest Station

Address (HSA) must pass the token frame to the master with the lowest one. Each master knows the

address of its Previous Station (PS), the address of the Next Station (NS) and its own address

(This Station (TS)).

When a master receives a token frame addressed to itself from a master registered in the LAS as

its PS then this master is said to be the token owner. On the other hand, if a master receives a token

frame from a master, which is not its PS, it shall assume an error and will not accept the token frame.

However, if it receives a second subsequent token frame from the same master, it shall accept the

token frame and assumes that the logical ring has changed. In this case, it updates the original PS value

by the new one and updates the LAS and the Live List (LL).

Figure 45 illustrates the token reception procedure. A token frame is discarded when it is an

erroneous frame or if it is not addressed to the Master. If the token frame is addressed to the Master

and it does not contain bit errors, then the Master behaviour depends on the token frame transmitter

(i.e., if the token frame Source Address (SA) is registered as its PS).

If the token frame transmitter is registered as its PS, it evolves to the USE_TOKEN state,

calculates the Token Holding Time (THT) according to the Eq. 1, sets to false GAP_Turn variable and

then the token reception procedure ends. Otherwise, the received token frame is discarded when a

Master token frame sender is not its PS. However, if it receives a second token frame from the same

Master, then it updates the original PS value with the new one and updates its LAS.

In the same way it evolves to the USE_TOKEN state, calculates the new TTH sets to false the

GAP_Turn variable and then the token reception procedure ends. According to the PROFIBUS DLL

only one GAP Update procedure can be performed per token visit, the GAP_Turn variable is used to

 33

avoid that more than one GAP Update procedure is performed when a Master is holding the token

frame.

The execution of the token reception procedure forces the execution of the message dispatching

procedure described in the Section 5.2.3.

Token Reception Procedure

Receive a token frame

Has bit errors
?

Discard the token
frame

Is this the 2
nd

token from

the same SA
?

PS=SA
Update LAS

state=USE_TOKEN
TTH=TTR-TRR

GAP_Turn=false

No

No

No

Yes

No

Yes Yes

Yes

DA=TS
?

SA=PS
?

End

Figure 45 – Token Reception procedure

5.2.3. Message Dispatching Procedure

Figure 46 presents the message dispatching procedure when a Master holds the token frame. This

procedure is repeatedly performed until the Master expires TTH and the pass token procedure is

executed.

At token frame reception, the period during which the Master is allowed to perform messages

cycles (TTH) is computed according to the Eq. 1.

 34

Message Dispatching Procedure

one_high_msg=true

One high
priority message

processed
?

Pass Token
Procedure

No

Is the high
priority message

queue empty
?

TGUD<0 and
GAP_Turn=false

?

Is the low
priority message

queue empty
?

TTH<0
?

GAP Update
Procedure

End

Yes

Yes

Yes

Yes Yes No

No

No

No

Send Frame
Procedure

Figure 46 – Message dispatching procedure

Independently of the TTH value a Master is allowed to transmit at least one high priority

message. After, high priority message will be processed while TTH > 0. When there are no more high

priority messages to dispatch then low priority messages and GAP update related messages can be

transmitted.

The GAP update procedure is triggered when the Gap Update Timer (TGUD) expires and the TTH

> 0. If TTH < 0, the GAP update procedure is postponed for the next token holding period. However,

only one GAP update procedure is performed per token visit.

It should be pointed out that once a high or low priority message cycle or GAP update procedure

is started, it is always completed (it is not pre-empted), including any retry (or retries), even if TTH < 0.

When TTH < 0 or when the output message queues are empties, the Master passes the token frame to

another station.

In this section, a high level message dispatching mechanism was described. The pass token, send

frame and GAP Update procedures are detailed in the following sections.

5.2.4. Pass Token Procedure

The PROFIBUS protocol defines that token frames are passed between masters in ascending MAC

address order. The only exception is that to close the logical ring the master with the HSA must pass

the token to the master with the lowest one. Each master knows the address of the PS, the address of

the NS and its address (TS) as well.

When TTH expires or when no more messages are available on the queues (low and high priority),

a master passes the token frame. If, after transmitting the token frame and after the expiration of Slot

Time (TSL) timer the token transmitter detects bus activity, it assumes that its NS owns the token and is

performing message cycles. Otherwise, if the token transmitter does not recognize any bus activity

within the TSL, it re-sends the token frame and waits another TSL. It assumes that its NS owns the token

frame thereafter, if it recognizes bus activity within the second TSL.

If, after the second retry, there is no bus activity, the token transmitter tries to pass the token to

the next master on its LAS. It continues repeating this procedure until it has found a successor from its

 35

LAS. If it does not succeed, the token transmitter assumes that it is the only one left in the logical ring

and transmits the token frame to itself.

In order to detect a defective transceiver when a master is transmitting a token frame it reads

back from medium all transmitted bits. If it detects a difference between the transmitted and received

bits it waits TSL for any activity from NS. If no activity is detected after expiring TSL, it transmits again

the token frame, if an error occurs, then it removes itself from the logical ring.

Figure 47 depicts the token pass procedure. The first step is to evolve the Master from the

USE_TOKEN state to the PASS_TOKEN state and sets the retry_counter variable to zero. After

that, it builds the token frame addressed to its successor (NS) and transmits the token frame. If the

token frame received is equal to the token frame transmitted then it evolves to the

CHECK_TOKEN_PASS state. If after transmitting the token frame and before the expiration of the

TSL, the Master receives a frame, it assumes that its NS owns the token and that it is executing

message cycles, and evolves to the ACTIVE_IDLE state. If the Master does not receive a frame

within the TSL, it returns to the PASS_TOKEN state and it repeats the transmission of the token frame

(its state machine evolves again to the CHECK_TOKEN_PASS state) for the last time

(retry_counter = 2) and waits another TSL. If it receives a frame within the second TSL, it assumes a

correct token frame transmission. Otherwise, it continues repeating this procedure until it has found a

successor from its LAS (getNS()). If it does not succeed, it transmits the token frame to itself.

At the first time that the received token frame is different from the transmitted frame it transmits

again the token frame. At the second time it evolves to the LISTEN_TOKEN state.

Pass Token Procedure

state=PASS_TOKEN
retry_counter=0

error_frame_counter=0

error_frame_counter=2

?

retry_counter=2

?

state=PASS_TOKEN
retry_counter++

Get new NS from LAS

Build token frame (to NS)
Transmit the token frame

TSL expired
?

Token frame
transmitted is equal

to the received
?

error_frame_counter++

state=LISTEN_TOKEN

state=CHECK_PASS_TOKEN

Receive a frame

?
End

No

No

Yes Yes

state=ACTIVE_IDLE

Yes No

Yes

No

Yes

No

Figure 47 – Pass Token Procedure

 36

5.2.5. GAP Update Procedure

Each master in the logical ring is responsible for the addition and removal of masters that have

addresses between TS and NS. This range of addresses in the logical ring is referred as GAP, whereas

the list containing the status of all stations in the GAP is called GAP List (GAPL).

Each master in the logical ring examines its GAP periodically in the interval given by the TGUD

timer. Its expiration indicates the moment for GAP maintenance. GAP addresses are examined in

ascending order, except the GAP addresses which surpasses the HSA, i.e., the HSA and address 0 are

not used by a master station. In this case the procedure is continued at address 1 after checking the

HSA. If a station acknowledges positively with the state Not_Ready_to_Enter_Logical_Ring or

Slave_Station, it is accordingly marked in the GAPL and the next address is checked. If a station

answers with the state Ready_to_Enter_Logical_Ring, the token frame holder changes its GAPL

and LAS accordingly, as well as its NS and passes the token frame to the new NS.

This is accomplished by examining at most one address per token cycle by means of sending an

FDL_Request_Status once TGUD has expired. After a complete GAP check, which may last several

token rotations, the timer TGUD is loaded with the value resulting from the multiplication of the TTR by

the GAP Update Factor (G). G represents the number of tokens rounds between GAP maintenance.

Upon receiving the token, a GAP maintenance cycle starts immediately after all queued high priority

message cycles have been processed and if there is still TTH available. Otherwise, the GAP

maintenance is postponed to the next token reception. Note that FDL_Request_Status messages have

higher priority than low-priority messages used in PROFIBUS, but lower than high priority messages.

 Send FDL_Request_Status Procedure

Figure 48 presents the send FDL_Request_Status procedure. The first step is to evolve the Master

state machine from the USE_TOKEN to the AWAIT_STATUS_RESPONSE state. After that, it builds

the FDL_Request_Status frame addressed to the selected station and transmits it. Thereafter, it waits

for a valid (without bit errors) response frame from the addressed station within the TSL. If either TSL

expires or the received response frame is an invalid, the Master evolves to the USE_TOKEN state and

then the procedure ends.

Send FDL_Request_Status Procedure

state=AWAIT_STATUS_RESPONSE
Addr=Get_Next_Addr_from_GAPL()

Build FDL_Request_Status frame
Send FDL_Request_Status frame

Master
station ready

?

Discard the frame

state=USE_TOKEN

NS=Addr
Update LAS

Receive a
response

?

End

Update GAPL

TSL expired
?

Has bit errors
?

Is a slave station

?
Yes

Yes
Yes

Yes

No

No No

Yes

No

Figure 48 – Send FDL_Request_Status procedure

 37

If a valid response frame was received from the addressed station the message is parsed. If the

responder is a master and its state is Ready_to_Enter_Logical_Ring the Master changes the NS and

updates the LAS and GAPL. Otherwise, it updates only the GAPL. In any cases, the Master evolves to

the USE_TOKEN state.

 Receive FDL_Request_Status Procedure

Figure 49 presents the procedure when a station receives an FDL_Request_Status frame. The frame

is discarded if it contains bit errors or if is not addressed to it. Otherwise, a response frame containing

the state of the responder is transmitted. In spite of, PROFIBUS DLL defines three states in our

simulator only two were implemented: Slave_Station, if it is a slave station, and Ready_to_Enter_

Logical_Ring, for the master stations.

Receive FDL_Request_Status Procedure

Discard the frame

Build response frame
Send response frame

End

DA=TS
?

Has bit errors
?

Receive a
FDL_Request_Status

frame

No Yes

Yes No

Figure 49 – Receive FDL_Request_Status procedure

5.2.6. Send Frame Procedure

The PROFIBUS DLL protocol defines four data transfer services. The Send Data with

Acknowledge (SDA) service, which allows an initiator to send a message and immediately receive the

confirmation. The Send Data with No Acknowledge (SDN) is an unacknowledged service. The

Send and Request Data with Reply (SRD) is based on a reciprocal connection between an

initiator and a responder and requires either an acknowledgement or a response. The Send and

Request Data with Reply (CSRD) is a cyclic service (based on the acyclic SRD). In this simulator

only the SDN and SRD services were implemented. The SDA service was implemented based on SDR

service, just by adequate the setting of the request and response frame sizes.

The Msg_Stream module emulates the behaviour of an AL protocol. Periodically it produces

messages which are passed to the Master_DLL module and forwarded to DLL module, which stores the

message in its output message queues as a function of the message priority.

When a Master has the right to access the medium, i.e., when it holds the token frame, it pops

messages from its output message queues and it checks which service will be used. If it is a SDN, then

after transmitting the message, it can schedule a new action according to the message dispatching

procedure. Otherwise, it has to wait for the response or the TSL expiration (Figure 50).

 38

Send Frame Procedure

Send SRD Procedure

End

Is a SDN
? No Yes

Pop a message

Send SDN Procedure

Figure 50 – Send Frame Procedure

 Send SDN Procedure

A SDN is an unacknowledged service, therefore when an initiator sends a SDN frame, it will not

receive a response or acknowledge from the responder.

Figure 51 illustrates a SDN transaction between a Master and a Slave. In a Master, the

Msg_Stream emulates the behaviour of an AL protocol, periodically producing messages which are

passed to the Master_DLL. The Master_DLL stores the message in its output message queues (high or

low) according to the message priority. In a Slave, a Msg_Stream has a similar behaviour, but in this

case, the Slave_DLL only refreshes the content of the variables modelled by the Msg_Stream module.

When a Master holds the token frame it processes messages cycles according to message

dispatching procedure described in Section 5.2.3. If a Master has messages in its output queues it pops

a message, builds a frame, passes to the Master_PHY and then sends to the Domain module to which it

is connected. The Domain broadcasts the frame to every Master and Slave connected to it.

The Slave_PHY receives the frame from Domain and passes to the Slave_DLL. The Slave_DLL

matches the frame information (Destination Address (DA), SA Destination Address

Extension (DAE) and Source Address Extension (SAE)) with its configured message streams. If

it succeeds then it registers the information about this transaction for output analyses and discards the

frame. Otherwise, the Slave_DLL discards the frame.

Slave

Domain

Frame/Message

Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream

Slave_DLL

Master

Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream

Master_DLL

Master_PHY

DA
SA
DAE
SAE
DATA
…

 Slave_PHY

Message
output queues

Message streams
configuration

Figure 51 – SDN transaction schema between master and slave

Figure 52 presents the send SDN procedure. The Master pops a message from message output

queues, builds a frame and then transmits it. Thereafter, Master waits TID2 before performing another

 39

action according to the message dispatching procedure. Note that, it stays on the same state

(USE_TOKEN).

Send SDN Procedure

End

Build frame
Send frame

Figure 52 – Send SDN Procedure

 Receive SDN Procedure

Figure 53 presents the receive SDN procedure. At frame reception the Slave_DLL starts by checking if

it is a valid frame or not. The frame is discarded if it is an invalid frame. Otherwise, it checks if it is

addressed to it or not (DA=TS). If not, the frame is discarded. If it is, the information about this

transaction is stored for output analysis and the frame is discarded.

 Send SRD Procedure

The SRD is based on a reciprocal connection between an initiator and a responder and requires either

an acknowledgement or a response from the responder. Using this service, the initiator is able to send

data in the request frame and receive data, from the addressed station, in the response frame.

Figure 54 illustrates the transaction schema between a Master and a Slave. When a Master

holds the token frame its Master_DLL pops a message from one of its message output queues, builds a

frame and passes it to the Master_PHY which sends to the Domain to which it is connected. The

Domain broadcasts the frame to every Master and Slave connected to it.

Receive SDN Procedure

Discard the frame

Finish transaction
Store transaction information

End

DA=TS
?

Has bit errors
?

Receive a SDN frame

No

Yes

Yes
Match frame

?

Yes

No

No

Figure 53 – Receive SDN Procedure

The Slave_DLL receives the frame from Slave_PHY and tries to determine if there is a match

between the frame and a message stream configuration. If it finds a match, then it builds a response

 40

frame and passes it to the Slave_PHY that sends it to the initiator through the Domain, otherwise the

frame is discarded. The Domain broadcasts the frame to all Master and Slave module instances

connected to it. The Master_PHY passes the response frame to the Master_DLL. If it is the addressed to

the Master, it stores the information about this transaction and then discards the frame. If is not

addressed to it, then the frame is discarded.

Slave

Domain

Frame/Message

Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream

Master

Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream Msg_Stream

Master_DLL

Master_PHY Slave_PHY

Message
output queues

Message streams
configuration

Slave_DLL DA
SA
DAE
SAE
DATA
…

Figure 54 – SRD transaction schema between Master and Slave

Figure 55 presents the send SDR procedure. The first step is to evolve the Master state machine

from the USE_TOKEN to the AWAIT_DATA_RESPONSE state and set the retry_ counter

variable to zero.

After that, the Master pops a message from its message output queue, builds a frame and

transmits it. After, it waits for the reception of a response frame. If an invalid response frame is

received (with bit errors) then it is discarded and the retry_counter variable is increased. The

retry_counter variable is also increased if no frame is received within the TSL. When the

retry_counter variable reaches the max_retry_limit (a Master parameter) limit then the Master

state machine returns to the USE_TOKEN state.

 Receive SRD Procedure

Figure 56 presents the receive SRD procedure. The frame is discarded either if it is an invalid frame

(with bit errors) or if it is not addressed to it (a master or a slave). Otherwise, if it is a valid frame

addressed to the station, then it tries to find a match with one pre-configured message stream. If a

match is found, then it builds a response frame using the value of the internal variable. After waiting

TSDR, it transmits the response frame.

 41

Send SRD Procedure

Send frame

state=USE_TOKEN

Receive a
response

?

Discard frame

TSL expired
?

Has bit errors
?

state=AWAIT_DATA_RESPONSE
retry_counter=0

Build frame

End

retry_counter
=

max_retry_limit
?

Finish transaction
Store transaction information

retry_counter++

Yes

Yes

Yes

Yes

No

No No

No

Figure 55 – Send SRD Procedure

Receive SRD Procedure

Discard the frame

Build response frame
Wait TSDR
Send response frame

End

DA=TS
?

Has bit errors
?

Receive a SRD frame

No

Yes

Yes
Match frame

?

Yes

No

No

Figure 56 – Receive SDR Procedure

 42

5.3. Repeater-Based Simulation Model Implementation

This simulator encompasses the functions concerning the PROFIBUS (described in Section 5.2),

related to the domains interconnection and to the mobility procedure.

As previously mentioned, the repeater model is made up of two simple modules, ComFunc and

Connection_Point. In our simulator implementation IS and BS functions are supported by the

modules that model a repeater. It is assumed that the operation mode of the repeater is cut-through.

5.3.1. Interconnection

To interconnect different domains it is necessary to convert the received frame to the format of the

destination domain and transmit the frame with a precise timing which guarantees minimal delays. For

that purpose, there is the need to know the length of the DLL frame, the Baud_rate parameter value of

the interconnected domains and how each frame is coded.

Figure 57 and Figure 58 illustrate a transaction between a Master module instance named M2

and a Slave module instance named S6, according to the network configuration presented in Figure 3,

where M2 belongs to domain D4 and S6 belongs to domain D3.

In order to simulate bit by bit reception, Connection_Point module instance named CP7 delays

the frame just enough time for it to know its length. Note that, the number of bits necessary to know

the frame length depends on the PhL frame format and the PROFIBUS DLL frame type. For instance,

wireless PhL frames include a head, tail fields and each DLL character is coded using 8 bits. Wired

PhL frames do not include any head or tail fields, but each DLL character is coded using 11 bits.

Concerning the frame length, PROFIBUS DLL has two kinds of frames: fixed and variable length

frame. In order to know the length, in the first case, the first DLL character (SD field) is enough, but in

the second case there is the need to receive the second DLL character, the LE field.

Connection_Point
(CP7)

Domain
(D4)

Domain
(D3)

ComFunc
(R3)

Connection_Point
(CP10)

Master
(M2)

Slave
(S6)

Repeater

Frame

Figure 57 – Wired/wireless interconnection example

CP7

CP10

D4

R3

 D3

CP7 knows the

frame’s length

CP7 receives the

frame’s first bit

R3 receives the

frame’s first bit

CP10 receives the

frame’s first bit

D3 receives the

frame’s first bit

TIDm

R3 delays the
frame during TIDm

CP10 starts the frame
transmission after delaying the
frame to guarantee the
transmission without time gaps

Figure 58 – Simplified timing behaviour of the module instances that model a repeater

After delaying the frame, CP7 passes the frame to the ComFunc module instance named R3. The

frame is delayed by R3 during the time defined by a PDF configured by its parameters using the

_pdf_delay prefix, after that, it passes the frame to the Connection_Point module instance named

CP10. CP10 computes the frame last bit reception instant and the frame last bit transmission instant in

 43

order to determine the first bit transmission frame instant in its domain. In this calculation the CP10

has to respect the idle time (defined by parameters that use _pdf_tidm prefix) between two

consecutive transmissions.

The frame is transmitted to the Domain module instance named D3 by CP10 through repeater_

con connection. D3 delays the frame according to the frame length and then the frame is transmitted

through domain_con connections arriving at S6.

All these delays had been implemented according to the principles presented in [1] which

guarantees that there is no need to queue a frame in the first repeater which relays a frame.

Nevertheless, in the following repeaters the queuing of frames might occur. For that reason, each

Connection_Point module instance is provided with a queue.

5.3.2. Mobility Procedure

The mobility procedure is triggered in a periodical fashion. The periodicity is defined by the _tmob

parameter. In this implementation we assume that the MM is a dedicated master, i.e., it only controls

the mobility procedure. For that reason, a mobility-related timer is loaded, with a value defined by the

_tmob parameter, which is started when it starts operating.

After the mobility-related timer expires and when it holds the token frame, it broadcasts a

Beacon Trigger (BT) frame. The BT is an unacknowledged frame, therefore after sending the BT

frame it waits TID2 to schedule the next action according to the message dispatching procedure

presented in Section 5.2.3. Usually, it passes the token frame to its Next Station (NS). After sending

the BT the mobility-related timer is reloaded.

Connection_Point module instances that are operating as BSs receive a BT frame and after

relaying the received BT frame they start sending a pre-defined number (defined by n_beacon

parameter) of Beacon frames (see Section 5.3.3 for more details). The BS waits for TIDm before

transmitting a Beacon frame.

Wireless mobile stations receive these Beacon frames and changes to domain according to the

_location_vector parameter, which defines the domain location for each wireless mobile station

(more details in Section 5.3.4).

5.3.3. Send Beacon Procedure

Figure 59 presents the send Beacon procedure. The first step is to set the n_beacon_counter variable

equal to n_beacon, a BS parameter. After that, while n_beacon_counter variable is higher than zero,

the BS waits TIDm, builds a Beacon frame and then transmits the Beacon frame.

 44

Send Beacon Procedure

Build beacon frame
Wait TIDm

Send beacon frame

End

n_beacon_counter > 0

?

n_beacon_counter=n_beacon

n_beacon_counter--

Yes

No

Figure 59 – Send Beacon Procedure

5.3.4. Stations Mobility

In order to model the mobility of a station between domains, in the Repeater-Based Hybrid

Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim), the Connection_Point, which is

operating as a BS, at reception of the Beacon Trigger frame from the Mobility Master (MM),

sends to the Controller (through ctrl_con connection) a message indicating that Beacon frames

will be transmitted. After ending the transmission of the Beacon frames, according to the procedure

described in Section 5.3.3, they sends to the Controller a new message indicating that they finish the

Beacon frames transmission.

The Master and Slave module instances which model wireless mobile stations, at reception of

the Beacon frames, send to Controller (through ctrl_con connection) a message indicating which

domain they want to change, according to their _location_vector parameter. The Controller

manages this information in order to disconnect the Master or the Slave from Domain to which they

are connected, and connect to the destination Domain. However, a Master or a Slave can only change

to a domain where the Beacon frames were transmitted.

References

[1] M. Alves, "Real-Time Communications over Hybrid Wired/Wireless PROFIBUS-Based

Networks", PhD. Porto: University of Porto, 2003.

[2] CENELEC, "General Purpose Field Communication System", vol. P-NET,

PROFIBUS,WorldFIP: European Norm., 1996.

[3] J. Carvalho, A. Carvalho, and P. Portugal, "Assessment of PROFIBUS Networks Using a

Fault Injection Framework". In proceedings of, 2005.

[4] A. Willig and A. Wolisz, "Ring Stability of the PROFIBUS Token-Passing Protocol Over

Error-Prone Links", IEEE Transactions on Industrial Electronics, vol. 48, pp. 1025-1033,

2001.

[5] IEC, "IEC61158 - Fieldbus Standard for use in Industrial Systems": European Norm., 2000.

[6] M. Alves, et al., "Real-Time Communications over Hybrid Wired/Wireless PROFIBUS-based

Networks". In proceedings of 14th Euromicro Conference on Real-Time Systems, Vienna,

Austria, pp. 142-150, 2002.

[7] M. Alves, et al., "General System Architecture of the RFieldbus ": Deliverable D1.3.

RFieldbus project IST-1999-11316, 1999.

 45

[8] A. Varga, "OMNeT++ Discrete Event Simulation System," v2.3 ed, 2004. Available online at

http:// www.omnetpp.org.

[9] P. Sousa and L. Ferreira, "Probability Distribution Functions " Polytechnic Institute of Porto,

Porto, Technical-Report HURRAY-TR-070603, June 2007.

[10] A. M. Law and W. D. Kelton, "Simulation Modeling and Analysis", 3rd ed. New York:

McGraw-Hill, 2000.

[11] P. Sousa and L. Ferreira, "Tools for Simulation Output Analysis " Polytechnic Institute of

Porto, Porto, Technical-Report HURRAY-TR-070604, June 2007.

[12] P. Sousa and L. Ferreira, "Bit Error Models," Polytechnic Institute of Porto, Porto, Technical-

Report HURRAY-TR-070602, June 2007.

[13] A. Burns and A. Wellings, "Real-Time Systems and Programming Languages Ada 95, Real-

Time Java and Real-Time POSIX ", Third Edition ed: Addison Wesley Longmain 2001

[14] T. S. Rappaport, "Wireless Communications. Principles and Practice": Prentice Hall, 1996.

[15] P. Sousa and L. Ferreira, "Mobility Simulator," Polytechnic Institute of Porto, Porto,

Technical-Report Hurray-tr-060403, April 2006.

	HURRAY_TR_060402
	HURRAY_TR_060402_b

