

An IEEE 802.15.4 protocol implementation
(in nesC/TinyOS): Reference Guide v1.0

André CUNHA
Mário ALVES

www.hurray.isep.ipp.pt

Technical Report

TR-061106

Version: 1.0

Date: Nov 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

2

An IEEE 802.15.4 protocol implementation (in nesC/TinyOS):
Reference Guide v1.0
André CUNHA, Mário ALVES
IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {arec,mjf}@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

This technical report is to provide a reference guide to the implementation of the IEEE
802.15.4 protocol in nesC/TinyOS for the MICAz motes. The implementation is
provided as a tool that can be used to implement, test and evaluate the current
functionalities defined in the protocol standard as well as to enable the development of
functionalities not yet implemented and new add-ons to the protocol.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

3

CONTENTS

1. General Notes... 8

1.1. Context ... 8
1.2. Functionalities currently supported .. 8
1.3. Functionalities that are not implemented yet.. 8
1.4. Programming environment... 9
1.5. Organization of the implementation / File structure diagram........................... 9

2. Physical Layer Implementation.............................. 12
2.1. Reference Model... 12
2.2. Components Phy and PhyM ... 14
2.3. Component Phy .. 14

2.3.1. Provided Interfaces ... 14
2.3.2. Component Graph .. 15

2.4. Component: PhyM.. 15
2.4.1. Required Interfaces... 15
2.4.2. Provided Interfaces ... 15
2.4.3. Variables... 16
2.4.4. Functions Implemented ..16
2.4.5. Auxiliary Files (Under contrib.hurray.tos.lib.phy):................................ 18

3. MAC Layer Implementation 21
3.1. Reference Model... 21
3.2. Components Mac and MacM ... 23
3.3. Component Mac ... 23

3.3.1. Provided Interfaces ... 23
3.3.2. Component Graph .. 24

3.4. Component: MacM... 25
3.4.1. Required Interfaces... 25
3.4.2. Provided Interfaces ... 26
3.4.3. Variables... 26
3.4.4. Functions description.. 31

3.5. Implementation of the protocol functionalities.. 35
3.5.1. Buffers .. 35
3.5.2. Data Reception ... 41
3.5.3. TimerAsync and Synchronization .. 42
3.5.4. MAC Timer Events .. 51
3.5.5. Frame Construction .. 58
3.5.6. Beacon Management ..61
3.5.7. Scanning through channels... 68
3.5.8. Association and Disassociation .. 69
3.5.9. CSMA/CA .. 73
3.5.10. GTS Management... 79
3.5.11. Pending data / Indirect Transmissions.. 83

3.6. Auxiliary Files (Under contrib.hurray.tos.lib.mac): 85

4. Example Applications ... 96
4.1. AssociationExample application .. 96
4.2. GTSManagementExample application... 98

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

4

4.3. DataSendExample application..101
4.4. SimpleRoutingExample application... 103

5. References .. 106

Figures

Figure 1 - Protocol Stack Architecture. .. 11
Figure 2 - TinyOS Implementation Diagram ... 12
Figure 3 - Physical Layer reference model... 12
Figure 4 - Phy - Component Graph .. 15
Figure 5 - MAC Layer Reference Model ... 21
Figure 6 - MacM component graph.. 25
Figure 7 - Buffer management example. .. 35
Figure 8 - Data transmission sequence chart - originator... 37
Figure 9 - Data transmission sequence chart - recipient... 38
Figure 10 - GTS buffer management - PAN coordinator... 40
Figure 11 - Data reception flow chart... 42
Figure 12 - TimerAsyncC component graph.. 43
Figure 13 - Timer events in superframe structure. ... 44
Figure 14- Timer.fire flow chat of the TimerAsync component. 50
Figure 15 - before_bi_fired event flow char... 52
Figure 16 - bi_fired event flow chart.. 53
Figure 17 - sd_fired event flow chart. .. 54
Figure 18 - before_time_slot_fired event flow chart.. 55
Figure 19 - time_slot_fired event flow chart. ... 56
Figure 20 - T_ackwait.fired event flow chart. .. 58
Figure 21 - General MAC frame format... 59
Figure 22 - Format of the frame control field... 59
Figure 23 - Beacon frame format ... 62
Figure 24 - Superframe Specification Format .. 62
Figure 25 - GTS fields format. ... 62
Figure 26- GTS specification field format. .. 63
Figure 27 - GTS directions field format. .. 63
Figure 28 - GTS descriptor field format... 63
Figure 29 - Pending addresses field format. ... 63
Figure 30 - Pending address specification field format.. 64
Figure 31 - Beacon creation flow chart. ... 65
Figure 32 - Beacon generation sequence chart. .. 66
Figure 33 - Beacon transmission example.. 66
Figure 34 - Association request frame format. ... 69
Figure 35 - Capability information field format... 69
Figure 36 - Device association message sequence chart. ... 70
Figure 37 - Coordinator association message sequence chart. 71
Figure 38 - Association mechanism example... 72
Figure 39 - Disassociation mechanism example. ... 72
Figure 40 - CSMA/CS algorithm. .. 74

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

5

Figure 41 - perform_csma_ca() function flow chart. ... 76
Figure 42 - backoff_fired event flow chart... 77
Figure 43 – start_csma_ca_slotted() function flow chart. ..77
Figure 44 - perform_csma_ca_slotted() function flow chart.. 78
Figure 45 - GTS allocation request flow chart. .. 80
Figure 46 – GTS allocation mechanism example... 80
Figure 47 - CFP defragmentation on GTS deallocations. .. 81
Figure 48 - GTS deallocation request flow chart. .. 82
Figure 49 – GTS deallocation mechanism example... 83
Figure 50 - Pending address list construction diagram... 84
Figure 51 – Data request example. ... 85
Figure 52 - AssociationExample component graph. .. 97
Figure 53 - AssociationExample sniffer output.. 98
Figure 54 - GTSManagementExample component graph.. 99
Figure 55 - GTSManagementExample sniffer output. ... 101
Figure 56 - DataSendExample component graph... 102
Figure 57 - DataSendExample sniffer output ... 103
Figure 58 -SimpleRoutingExample component graph. .. 104
Figure 59 - SimpleRoutingExample sniffer output. ... 105

Tables

Table 1 - Summary of the primitives supported by each PD-SAP interface.................. 13
Table 2 - Summary of the primitives supported by each PLME-SAP interface. 14
Table 3 - Physical layer constants. ... 19
Table 4 - Physical PAN Information Base attributes... 19
Table 5 - PHY general enumeration descriptions... 20
Table 6 - PHY GET/SET reference PIB enumerations. ... 20
Table 7 - Summary of the primitives supported by each MCPS-SAP interface. 22
Table 8 - Summary of the primitives supported by each MLME-SAP interface. 23
Table 9 - MICAz clock ticks granularity comparison..45
Table 10 - MICAz time slot durations - Effective values...45
Table 11 - MICAz time slot durations - Theoretical values. .. 46
Table 12 - MICAz beacon interval durations - Effective values.................................... 46
Table 13 - MICAz beacon interval durations - Theoretical values. 46
Table 14 - Address fields - possible sizes and combinations. .. 60
Table 15 - Address fields - size reference. ... 60
Table 16 - PAN Descriptor attributes description. ... 68
Table 17 - Protocol MAC layer constants description. ..86
Table 18 - MAC layer auxiliary constants description... 87
Table 19 - Structure definitions on the mac_const.h file.. 88
Table 20 - General MAC enumeration description. ...89
Table 21 - Disassociation status enumeration decription. ..89
Table 22 - Command type enumerations description... 90
Table 23 - Association response status enumerations description. 90
Table 24 - MAC GET/SET reference PIB enumerations description. 91
Table 25 - GTS direction enumeration descriptions... 91
Table 26 - frame_format.h structures descriptions... 92
Table 27 - frame_format.h constants descriptions.. 93

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

6

Code Examples

Code Example 1 - Indirect transmissiton structure definition.. 39
Code Example 2 - gts_slot_element structure definition..40
Code Example 3 - Mac frame control construction function. .. 59
Code Example 4 - MPDU structure definition in the frame_format.h. 60
Code Example 5 - frame_format.h structure definition example. 61
Code Example 6 - Data frame construction example. .. 61
Code Example 7 - MLME_BEACON_NOTIFY indication event 67
Code Example 8- GTSinfoEntryType structure definition... 79
Code Example 9- GTSinfoEntryType_null structure definition. 82

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

7

Acronyms and abbreviations

ACL access control list
AES advanced encryption
standard
BE backoff exponent
BER bit error rate
BI beacon interval
BO beacon order
BPSK binary phase-shift keying
BSN beacon sequence number
CAP contention access period
CBC-MAC cipher block chaining
message authentication code
CCA clear channel assessment
CFP contention-free period
CID cluster identifier
CLH cluster head
CRC cyclic redundancy check
CSMA-CA carrier sense multiple access
with collision avoidance
CTR counter mode
CW contention window (length)
DSN data sequence number
DSSS direct sequence spread
spectrum
ED energy detection
FCS frame check sequence
FFD full-function device
FH frequency hopping
FHSS frequency hopping spread
spectrum
GTS guaranteed time slot
IFS interframe space or spacing
LAN local area network
LIFS long interframe spacing
LLC logical link control
LQ link quality
LQI link quality indication
LPDU LLC protocol data unit
LR-WPAN low-rate wireless personal
area network
LSB least significant bit
MAC medium access control
MCPS MAC common part sublayer
MCPS-SAP MAC common part
sublayer-service access point
MFR MAC footer

MHR MAC header
MLME MAC sublayer management
entity
MLME-SAP MAC sublayer management
entity-service access point
MSB most significant bit
MSC message sequence chart
MPDU MAC protocol data unit
MSDU MAC service data unit
NB number of backoff (periods)
OSI open systems interconnection
PAN personal area network
PD-SAP PHY data service access
point
PDU protocol data unit
PER packet error rate
PHR PHY header
PHY physical layer
PIB PAN information base
PLME physical layer management
entity
PLME-SAP physical layer management
entity-service access point
PPDU PHY protocol data unit
PSDU PHY service data unit
RF radio frequency
RFD reduced-function device
RSSI received signal strength
indication
RX receive or receiver
SAP service access point
SD superframe duration
SPDU SSCS protocol data units
SDU service data unit
SFD start-of-frame delimiter
SHR synchronization header
SIFS short interframe spacing
SO superframe order
SRD short-range device
SSCS service specific convergence
sublayer
TRX transceiver
TX transmit or transmitter
WLAN wireless local area network
WPAN wireless personal area
network

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

8

1. General Notes

1.1. Context

 The purpose of this technical report is to provide a reference guide to the
implementation of the IEEE 802.15.4 protocol [1] in nesC/TinyOS[2,3] for the
MICAz[4] motes.
 During this description some parts of the protocol standard are explained and
referenced, nevertheless it is important to have a previous knowledge on the
functionalities of the IEEE 802.15.4 protocol.
 This implementation is provided as a tool that can be used to implement, test and
evaluate the current functionalities defined in the protocol standard as well as to enable
the development of functionalities not yet implemented and new add-ons to the
protocol.

This technical report is structured based on the different IEEE 802.15.4
mechanisms implemented.
 The component graphs shown in this document are automatically generated by
the nesdoc application (associated with the nesC programming environement in
TinyOS).
 In Reference [5] there is a technical overview of the IEEE 802.15.4 protocol.

1.2. Functionalities currently supported

The current version of the implementation (v1.0) supports the following IEEE
802.15.4 functionalities:

• CSMA/CA algorithm – slotted version;
• GTS Mechanism;
• Indirect transmission mechanism;
• Direct / Indirect / GTS Data Transmission;
• Beacon Management;
• Frame construction – Short Addressing Fields only and extended addressing

fields in the association request;
• Association/Disassociation Mechanism;
• MAC PIB Management;
• Frame Reception Conditions;

1.3. Functionalities that are not implemented yet

The following functionalities are not implemented or tested in the current version of the
implementation (v1.0):

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

9

• Unslotted version CSMA/CA – Implemented but not fully tested;
• Extended Address Fields of the Frames;
• IntraPAN Address Fields of the Frames;
• Channel Scan;
• Orphan Devices;
• Frame Reception Conditions (Verify Conditions);
• Security – Out of the scope of this implementation;

Besides these missing functionalities, many improvements can be made to optimize

this implementation especially in terms of memory usage. For example, one option to
save memory could be removing the components wiring modules and replace them with
only one that wires them all. Another option is to optimize the buffers because they are
the most memory consuming entities.

1.4. Programming environment

 This implementation was developed for TinyOS version 1.1.15 under the
Cygwin for Windows XP environment.
 The application used to write code was the Programmers Notepad 2 that
provides code highlighting.
 The hardware used was the Crossbow MICAz motes. These “IEEE 802.15.4-
compliant” motes operate in the 2.4 GHz ISM band and have a 16 Mhz Atmel
ATMega128L microcontroller [6] (with 128 kB of program Flash) and a Chipcon
CC2420 802.15.4 radio transceiver [7] (allowing a 250 kbps data rate).
 The MIB510 programming board was used to program the motes. This
programmer can upload the applications to motes through the COM port and allow a
debug mechanism by sending data through the COM port and reading it in a COM port
software listener, like the ListenRaw (found in the TinyOS distribution) or the Windows
HiperTerminal. This debug mechanism raises a problem concerning the hardware
operation because the relaying of data through the COM port blocks all the other mote
operations, while this data is being send. This can cause synchronization problems. We
also use the MIB600 programmer to program the motes through the IP network.
 In order to overcome the COM debug problems we use an IEEE 802.15.4 packet
sniffer provided by Chipcon the CC2420 Packet Sniffer for IEEE 802.15.4 v1.0. This
application works in conjunction with a CC2400EB board with a CC2420 radio
transceiver. This sniffer shows the packets transmitted and provide a good debug
mechanism by transmitting debug data in the packets payloads.
 A JTAG adapter can also be used for debug purposes but that was not used
during the development of this implementation.

1.5. Organization of the implementation / File structure
diagram

 The implementation uses files already provided in TinyOS and its located in the
contrib/hurray folder. The directory structure is similar to the TinyOS root folder. The
next list shows all the files created for this implementation and their respective location.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

10

contrib/hurray/tos/interfaces – Generic Interfaces

• TimerAsync.nc – Interface for the TimerAsyncM component

contrib/hurray/tos/interfaces/ieee802154.mac – Connection interfaces between the
MAC and the upper layer.

• MCPS_DATA.nc – MAC Common Part Sublayer Data-Service Access Point;
• MCPS_PURGE.nc - MAC Common Part Sublayer Purge Service Access Point;
• MLME_ASSOCIATE.nc – MAC Layer Management Entity Associate Service

Access Point;
• MLME_BEACON_NOTIFY.nc - MAC Layer Management Entity Beacon

Notify Service Access Point;
• MLME_COMM_STATUS.nc - MAC Layer Management Entity

Communication Status Service Access Point;
• MLME_DISASSOCIATE.nc – MAC Layer Management Entity Disassociate

Service Access Point;
• MLME_GET.nc - MAC Layer Management Entity Get Service Access Point;
• MLME_GTS.nc - MAC Layer Management Entity Guaranteed Time Slot

Service Access Point;
• MLME_POLL.nc - MAC Layer Management Entity Poll Service Access Point;
• MLME_RESET.nc - MAC Layer Management Entity Reset Service Access

Point;
• MLME_SCAN.nc - MAC Layer Management Entity Scan Service Access Point;
• MLME_SET.nc - MAC Layer Management Entity Set Service Access Point;
• MLME_START.nc - MAC Layer Management Entity Start Service Access

Point;
• MLME_SYNC.nc - MAC Layer Management Entity Synchronize Service

Access Point;
• MLME_SYNC_LOSS.nc - MAC Layer Management Entity Synchronization

Loss Service Access Point.

contrib/hurray/tos/interfaces/ieee802154.phy - Connection interfaces between the
MAC and PHY layers.

• PD_DATA.nc – Phy Data-Service Access Point;
• PLME_CCA.nc - Physical Layer Management Entity - Clear Channel

Assessment -Service Access Point;
• PLME_ED.nc - Physical Layer Management Entity – Energy Detection -

Service Access Point;
• PLME_GET.nc - Physical Layer Management Entity Get-Service Access Point;
• PLME_SET.nc - Physical Layer Management Entity Set -Service Access Point;
• PLME_SET_TRX_STATE.nc - Physical Layer Management Entity Set

Transceiver State-Service Access.

contrib/hurray/tos/lib/mac – MAC layer implementation files

• Mac.nc – Configuration of the MacM implementation module;
• MacM.nc – MAC layer implementation;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

11

• mac_const.h – MAC layer constants;
• mac_enumerations.h – MAC layer enumerations.

contrib/hurray/tos/lib/phy – Physical layer implementation files

• Phy.nc – Configuration of the PhyM implementation module;
• PhyM.nc – Physical layer implementation;
• phy_const.h – Physical layer constants;
• phy_enumerations.h – Physical layer enumerations.

contrib/hurray/tos/system – Generic system modules

• TimerAsyncC.nc – Configuration of the TimerAsyncM implementation module;
• TimerAsyncM.nc – Asynchronous timer implementation;
• mac_func.h – Generic functions used mainly by the MAC layer implementation;
• frame_format.h – Frame format definition.

Figure 1 - Protocol Stack Architecture.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

12

Figure 2 - TinyOS Implementation Diagram

2. Physical Layer Implementation

 The IEEE 802.15.4 physical layer is responsible for the implementation of the
following functionalities:

• Activation and deactivation of the radio transceiver;
• Energy Detection(ED) within the current channel;
• Link quality indicator (LQI) for received packets;
• Clear Channel Assessment (CCA) for Carrier Sense Multiple Access – Collision

Avoidance (CSMA-CA);
• Channel frequency selection;
• Data transmission and reception;

2.1. Reference Model

Figure 3 - Physical Layer reference model.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

13

The RF-SAP comprehends the interface with the physical radio via the RF
firmware of the CC2420 and hardware, already provided in the TinyOS implementation.
 The files included are the following:

Interfaces under the contrib.hurray.tos.lib.CC2420Radio directory:

• HPLCC2420
• HPLCC2420FIFO
• HPLCC2420RAM

Components under contrib.hurray.tos.platform.MICAz directory:

• HPLCC2420C
• HPLCC2420FIFOM
• HPLCC2420M
• HPLPowerManagementM
• HPLTimer2
• HPLTimer2C

The PD-SAP comprehends the interface to exchange data packets between MAC

and PHY. The interface file is under contrib.hurray.tos.interfaces.ieee802154.phy
directory:

• PD_DATA – data transfer between the Phy layer and the MAC layer.

The next table summarizes the primitives supported by PD-SAP interface [1 pag 32]

Interface Name Request Indication Response Confirm

PD_DATA X X X

Table 1 - Summary of the primitives supported by each PD-SAP interface.

The Physical Layer Management Entity –SAP (PLME-SAP) comprehends the

interfaces between the MAC and the PHY used for exchanging management
information. The interface files are under contrib.hurray.tos.interfaces.ieee802154.phy
directory:

• PLME_CCA – clear channel assessment
• PLME_ED - energy detection
• PLME_GET - retrieve PHY PIB parameters
• PLME_SET– set PHY PIB parameters
• PLME_TRX-ENABLE – enable/disable transceiver

The next table summarizes the primitives supported by each PLME-SAP interface
[1 pag 34]

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

14

Interface Name Request Indication Response Confirm

PLME_CCA X X
PLME_ED X X
PLME_GET X X
PLME_SET X X
PLME_TRX-ENABLE X X

Table 2 - Summary of the primitives supported by each PLME-SAP interface.

The PHY PAN Information Base (PHY PIB) is maintained in the physical layer and

is a database of its managed objects. The PLME-SAP interfaces are used by the MAC
layer to manage this information. The PIB stores the following information:

• Current Channels;
• Channels Suported;
• Transmit power;
• CCA Mode.

2.2. Components Phy and PhyM

The physical layer is implemented in two files. There file are located under
contrib.hurray.tos.lib.phy:

Phy.nc – Component wiring the interfaces to the implementation on the component
PhyM

PhyM.nc – Component that implements the physical layer functions and wired then to
the hardware components.

2.3. Component Phy

2.3.1. Provided Interfaces

The provided interfaces of the Phy component are the following:

• PD_DATA [1 pag. 32] – PHY data service – The PD-SAP supports the transport
of MPDUs between peer MAC sublayer entities.

• PLME_ED [1 pag. 36] – Implements the reading of energy measurements in the
previous selected channel.

• PLME_CCA [1 pag. 35] – Implements the reading of the CCA in the previous
selected channel.

• PLME_GET [1 pag. 37] – Implements the reading of information concerning the
PHY PIB.

• PLME_SET [1 pag. 40] – Implements the functionalities for changing
information concerning the PHY PIB.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

15

• PLME_SET_TRX_STATE [1 pag. 39] – Implements the functionalities for
changing the internal operating state of the transceiver.

2.3.2. Component Graph

Figure 4 - Phy - Component Graph

2.4. Component: PhyM

2.4.1. Required Interfaces

The required interfaces of the PhyM component are the following:

• HPLCC2420 – Implements the functionalities for managing the memory records
of the CC2420 transceiver.

• HPLCC2420FIFO – Implements the functionalities for managing the FIFO
memory records, used for sending or receiving data.

• HPLCC2420RAM – Implements the functionalities for managing the RAM
memory records.

2.4.2. Provided Interfaces

The provided interfaces of the PhyM component are the following:

• PD_DATA
• PLME_ED
• PLME_CCA

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

16

• PLME_GET
• PLME_SET
• PLME_SET_TRX_STATE

2.4.3. Variables

The component global variables are described in the following list:

• norace uint16_t gCurrentParameters[14] - Used to store the transceiver global
parameters.

• phyPIB phy_PIB – Used to store the physical layer PAN Information Base. The
phyPIB structure is defined in the phyConst.h file

• uint8_t currentRxTxState = PHY_TRX_OFF – Gives information about the

current transceiver state.
• norace MPDU rxmpdu – Temporary variable that stores receiving data.
• MPDU *rxmpdu_ptr - Pointer for the rxmpdu variable

2.4.4. Functions Implemented

 Common Functions:

command result_t StdControl.init (void)

This function is called on the initialization of the component. In this function the
hardware components are initialized and the transceiver global parameters are assigned
(variable gCurrentParameters). The Phy PIB is assigned with the init values. The
constants defined to access the memory positions of the transceiver, provided in
TinyOS, are located in the CC2420const.h file under
contrib.hurray.tos.lib.CC2420Radio directory.

command result_t StdControl.start (void)

This function is called on the start of the component. The transceiver module are
started with the initial values and all is parameters are set.

command result_t StdControl.stop (void)

This function is called on the stop of the component. Stops all the transceiver
activity and disables all FIFO interrupts.

 Interface implementations (command implementations):

• PD_DATA [1 pag. 32]
async command result_t PD_DATA.request (uint8_t psduLength, uint8_t *psdu)

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

17

 This command is used when the MAC layer need to send data. The data, pointed
by the second argument, is transferred to the output buffer of the transceiver and a
transmit command is issued to the hardware components.
 This command is issue asynchronously because of the time constrains for issuing
a frame. The Phy layer must send the data almost immediately after the request to send.

• PLME_ED [1 pag. 36]
command result_t PLME_ED.request (void)
 This command is used when the MAC layer need to read the RSSI registry of the
transceiver. The Phy layer just issues a command to the hardware modules to read the
RSSI memory position.

• PLME_CCA [1 pag. 35]
command result_t PLME_CCA.request (void)
 This command is used when the MAC layer need to check is the channel is
clear. The function TOSH_READ_CC_CCA_PIN() is called in order to do that. If the
return of the function is 1 then the channel is busy otherwise the channel is idle. This
macro functions, provided in TinyOS, are defined in the avrhardware.h under the
contrib..hurray.tos.platform.avrmote directory.

• PLME_GET [1 pag. 37]
command result_t PLME_GET.request (uint8_t PIBAttribute)
 This command is used when the MAC layer need to read the values of the PHY
PIB.

• PLME_SET [1 pag. 40]
command result_t PLME_SET.request (uint8_t PIBAttribute, uint8_t
PIBAttributeValue)
 This command is used when the MAC layer need to change the values of the
PHY PIB.

• PLME_SET_TRX_STATE [1 pag. 39]
command result_t PLME_SET_TRX_STATE.request (uint8_t state)
 This command is used when the MAC layer need to change the current state of
the transceiver.

 Hardware Event Functions:

async event result_t HPLCC2420.FIFOPIntr (void)
 Asynchronous hardware interrupt indicating the reception of data. When this
event is triggered the data in the input FIFO is pointed by the rxmpdu_ptr variable
pointer.

async event result_t HPLCC2420RAM.readDone (uint16_t addr, uint8_t length, uint8_t
*buffer)
 Asynchronous hardware interrupt indicating the completion of a read command.
Meanwhile we have no use for this hardware event.

async event result_t HPLCC2420RAM.writeDone (uint16_t addr, uint8_t length, uint8_t
*buffer)

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

18

 Asynchronous hardware interrupt indicating the completion of a write command.
Meanwhile we have no use for this hardware event.

async event result_t HPLCC2420FIFO.RXFIFODone (uint8_t length, uint8_t *data)
 Asynchronous hardware interrupt indicating the completion of a read command
in the input buffer of the transceiver (received data). Meanwhile we have no use for this
hardware event.

async event result_t HPLCC2420FIFO.TXFIFODone (uint8_t length, uint8_t *data)
 Asynchronous hardware interrupt indicating the completion of a write command
in the output buffer of the transceiver (data for transmission). Meanwhile we have no
use for this hardware event.

 Other Functions:

bool SetRegs(void) Function used to configure the CC2420 registers with current values
- Readback 1st register written to make sure electrical connection OK

uint8_t GetRFPower(void) Function used to get the RF power value from the
gCurrentParameters variable.

result_t SetRFPower(uint8_t power) Function used to set the RF power value of the
CC2420 transceiver. The power argument indicates the power level. Admissible values
varies between 31, full power (0dbm gain) and 3, minimum power (-25dbm gain).

result_t VREFOn (void) Turns on the 1.8V references on the CC2420.

result_t VREFOff (void) Turns off the 1.8V references on the CC2420.

result_t TunePreset (uint8_t chnl) Function used to select the current radio channel.
Valid channel values are 11 through 26.

result_t TuneManual (uint16_t DesiredFreq) Function used to tune the radio to a given
frequency.

result_t setShortAddress(uint16_t addr) Function used to assign the short address of the
mote. In the init function the short address of the mote is assigned with the
TOS_LOCAL_ADDRESS. This constant is assigned during compilation time.

2.4.5. Auxiliary Files (Under contrib.hurray.tos.lib.phy):

phy_const.h

 This file contains the protocol constants definition related with the Phy layer.
These constants are defined in next table. [1 pag. 44]

Constant Description Value
aMaxPHYPacketSize The maximum PSDU size (in octets) 127

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

19

the PHY shall be able to receive
aTurnaroundTime RX-to-TX or TX-to-RX maximum

turnaround time
12 symbol periods

Table 3 - Physical layer constants.

 There is also the definition of the initial values for the PHY PIB along with the
structure of the PHY PIB. The PIB attributes are defined in the next table. [1 pag 45]
Note that the transmit power is hardware constrained and it has to be within the values
accepted, in this case, by the SetRFPower function.

Attribute Type Range Description

phyCurrentChannel Integer 0–26 The RF channel to use for all following
transmissions and receptions.

phyChannelsSupported Bitmap The 5 most significant bits (MSBs)
(b27,... , b31) of phyChannelsSupported
shall be reserved and set to 0, and the 27
LSBs (b0,b1, ... b26) shall indicate the
status (1=available, 0=unavailable) for
each ofthe 27 valid channels (bk shall
indicate the status of channel k as in
6.1.2).

phyTransmitPower Bitmap 0x00-0xbf The 2 MSBs represent the tolerance on
the transmit power:
00 = ± 1 dB
01 = ± 3 dB
10 = ± 6 dB
The 6 LSBs represent a signed integer in
twos-complement format, corresponding
to the nominal transmit power of the
device in decibels relative to 1 mW. The
lowest value of phyTransmitPower shall
be interpreted as less than or equal to –32
dBm.

phyCCAMode Integer 1–3 The CCA mode.

Table 4 - Physical PAN Information Base attributes.

phy_enumerations.h

 This file contains the enumeration values used in the PHY layer. There are two
enumeration tables: one represents the general PHY enumeration description [1 pag.42]
and the other represents the values used in the PLME_SET and PLME_GET functions
for referring to the PHY PIB attributes.

The following tables describe the enumerations.

Enumeration Value Description
PHY_BUSY 0x00 The CCA attempt has detected a busy channel.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

20

PHY_BUSY_RX 0x01 The transceiver is asked to change its state while
receiving.

PHY_BUSY_TX 0x02 The transceiver is asked to change its state while
transmitting.

PHY_FORCE_TRX_OFF 0x03 The transceiver is to be switched off.
PHY_IDLE 0x04 The CCA attempt has detected an idle channel.
PHY_INVALID_PARAMETER 0x05 A SET/GET request was issued with a parameter

in the primitive that is out of the valid range.
PHY_RX_ON 0x06 The transceiver is in or is to be configured into

the receiver enabled state.
PHY_SUCCESS 0x07 A SET/GET, an ED operation, or a transceiver

state change was successful
PHY_TRX_OFF 0x08 The transceiver is in or is to be configured into

the transceiver disabled state.
PHY_TX_ON 0x09 The transceiver is in or is to be configured into

the transmitter enabled state
PHY_UNSUPPORTED_ATTRI
BUTE

 0x0a A SET/GET request was issued with the identifier
of an attribute that is not supported.

Table 5 - PHY general enumeration descriptions.

Enumeration Value Description
PHYCURRENTCHANNEL 0x00 The GET/SET reference of the PIB

phyCurrentChannel.
PHYCHANNELSSUPPORTED 0x01 The GET/SET reference of the PIB

phyChannelsSupported.
PHYTRANSMITPOWER 0x02 The GET/SET reference of the PIB

phyTransmitPower.
PHYCCAMODE 0x03 The GET/SET reference of the PIB

phyCCAMode.

Table 6 - PHY GET/SET reference PIB enumerations.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

21

3. MAC Layer Implementation

The IEEE 802.15.4 MAC layer is responsible for the implementation of the
following functionalities:

• Generating network beacons if the device is a coordinator;
• Synchronizing to the beacons;
• Supporting PAN association and disassociation;
• Supporting device security;
• Employing the CSMA-CA mechanism for channel access;
• Handling and maintaining the GTS mechanism;
• Providing a reliable link between two peer MAC entities.

3.1. Reference Model

Figure 5 - MAC Layer Reference Model

 The MAC layer provides to the upper layer two SAP. The MAC Common Part
Sublayer (MCPS-SAP) and the MAC Layer Management Entity (MLME-SAP).
 The PD-SAP and the PLME-SAP are used to connect the MAC Layer with the
functionalities provided by the PHY Layer.

The MCPS-SAP comprehends the MSDU data transfer between the MAC layer and
the upper layer. The files included in the interfaces for the MCPS-SAP are the following
and are located under contrib.hurray.tos.interfaces.ieee802154.mac directory:

• MCPS_DATA - exchange data packets between MAC and PHY;
• MCPS_PURGE - purge an MSDU from the transaction queue.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

22

The next table summarizes the primitives supported by each MCPS-SAP interface
[1 pag 56]

Interface Name Request Indication Response Confirm
MCPS_DATA X X X
MCPS_PURGE X X

Table 7 - Summary of the primitives supported by each MCPS-SAP interface.

The MLME-SAP comprehends the exchange of management commands between

the MAC layer and the upper layer. The files included in the interfaces for the MLME-
SAP are the following and are located under
contrib.hurray.tos.interfaces.ieee802154.mac directory:

• MLME_ASSOCIATE - network association
• MLME_DISASSOCIATE – network association
• MLME_BEACON-NOTIFY – beacon notification
• MLME_GET - retrieve MAC PIB parameters
• MLME_GTS - GTS management
• MLME_ORPHAN - orphan device management (NOT IMPLEMENTED)
• MLME_RESET – request for MLME to perform reset
• MLME_RX-ENABLE - enabling/disabling of radio system
• MLME_SCAN - scan radio channels (NOT IMPLEMENTED)
• MLME_COMM_STATUS – communication status
• MLME_SET– retrieves MAC PIB parameters
• MLME_START – beacon generation management
• MLME_SYNC – synchronization request
• MLME_SYNC-LOSS - device synchronization
• MLME-POLL - beaconless synchronization

The next table summarizes the primitives supported by each MLME-SAP interface
[1 pag. 64].

Interface Name Request Indication Response Confirm
MLME_ASSOCIATE X X X X
MLME_DISASSOCIATE X X X
MLME_BEACON-NOTIFY X
MLME_GET X X
MLME_GTS X X X
MLME_ORPHAN X X
MLME_RESET X X
MLME_RX- X X
MLME_SCAN X X
MLME_COMM_STATUS X
MLME_SET X X
MLME_START X X
MLME_SYNC X
MLME_SYNC-LOSS X

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

23

MLME-POLL X X

Table 8 - Summary of the primitives supported by each MLME-SAP interface.

 The MAC PAN Information Base (MAC PIB) is maintained in the MAC layer

and is a database of its managed objects. The MLME-SAP interfaces are used by the
MAC upper layer to manage this information. The PIB stores the following information:

• Acknowledgment Wait Duration;
• Association Permit;
• Automatic Data Request;
• Battery Life Extension Option;
• Battery Life Extension Periods;
• Beacon Payload;
• Beacon Payload Length;
• Beacon Order;
• Beacon Transmit Time;
• Beacon Sequence Number;
• Coordinator Extended Address;
• Coordinator Short Address;
• Data Sequence Number;
• GTS Permit Option;
• Maximum CSMA Backoffs Attempts;
• Minimul Backoff Exponent;
• PAN identifier;
• Promiscuous Mode Option;
• Receive mode when the transceiver is idle option;
• Short Address;
• Superframe Order;
• Transaction Persistence Time;.

3.2. Components Mac and MacM

 The MAC layer is implemented in two files. There file are located under
contrib.hurray.tos.lib.mac:

Mac.nc – Component wiring the interfaces to the implementation on the component
MacM

MacM.nc – Component that implements the MAC layer functions that will be provided
to the upper layer.

3.3. Component Mac

3.3.1. Provided Interfaces

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

24

The provided interfaces of the Mac component are the following:

• MLME_START [1 pag. 100] – Used for the coordinator to start sending beacons
or use a new superframe configuration.

• MLME_ASSOCIATE [1 pag. 64] – Used to create an association request
directed to the coordinator.

• MLME_DISASSOCIATE [1 pag. 71] – Used to create a disassociation requent
directed to the coordinator.

• MLME_SYNC [1 pag. 104] – Used to enable the MAC layer to start
synchronizing the coordinator by always keep track of the beacon.

• MLME_SYNC_LOSS [1 pag. 105] – Used by the MAC layer to inform the
upper layer about the loss of synchronization with a coordinator.

• MLME_SCAN [1 pag. 92] - Implements the channel scan mechanist in order to
inform the upper layer about the energy detection on each channel.

• MLME_RESET [1 pag. 88] – Used to request a reset operation in the MAC
layer.

• MLME_BEACON_NOTIFY [1 pag. 75] – Used by the MAC layer to inform the
upper layer about the PAN descriptor and pending addresses contained in the
beacon received.

• MLME_COMM_STATUS [1 pag. 96] – Used by the MAC layer to inform the
upper layer about the communication status.

• MLME_SET [1 pag. 98] - Used to write in the attributes of the MAC PAN
Information Base.

• MLME_GET [1 pag. 78] – Used to read the attributes of the MAC PAN
Information Base.

• MLME_GTS [1 pag.79] – Used to create a GTS allocation request directed to
the coordinator. This interface also informs the MAC upper layer about the
status of the allocation.

• MCPS_DATA [1 pag. 56] – Implement the data exchange between the MAC
layer and the next upper layer.

• MCPS_PURGE [1 pag. 61] – Used to purge a data frame from the transaction
queue.

3.3.2. Component Graph

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

25

Figure 6 - MacM component graph.

3.4. Component: MacM

3.4.1. Required Interfaces

The required interfaces of the MacM component are the following:

• PD_DATA - PHY data service. Implemented in the PhyM.nc.
• PLME_CCA – Clear Channel Assessment. Implemented in the PhyM.nc.
• PLME_SET – Set PHY PIB attributes. Implemented in the PhyM.nc.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

26

• PLME_SET_TRX_STATE – Set the transceiver state. Implemented in the
PhyM.nc.

• PLME_GET – Get PHY PIB attributes values. Implemented in the PhyM.nc.
• PLME_ED – Perform Energy Detection. Implemented in the PhyM.nc.
• Random - Interface to a simple pseudorandom number generator. Currently this

interface is implemented by the RandomLFSR, which uses a linear feedback
shift register to generate the sequence and mote address to initialize the register.
Already developed in TinyOS.

• Leds – Mote Leds interface.
• Timer - T_scan_duration timer. TinyOS generic timer component (TimerC).
• Timer - T_ResponseWaitTime timer. TinyOS generic timer component

(TimerC).
• Timer - T_ackwait timer. TinyOS generic timer component (TimerC).
• TimerAsync – Asynchronous timer component. Refer to section TimerAsync

and Synchronization.

3.4.2. Provided Interfaces

The provided interfaces of the MacM component are the following:

• MLME_START
• MLME_ASSOCIATE
• MLME_DISASSOCIATE
• MLME_SYNC
• MLME_SYNC_LOSS
• MLME_SCAN
• MLME_RESET
• MLME_BEACON_NOTIFY
• MLME_COMM_STATUS
• MLME_SET
• MLME_GET
• MLME_GTS
• MCPS_DATA
• MCPS_PURGE

3.4.3. Variables

 The component global variables are described in the following list.

General variables:

• uint32_t aExtendedAddress0 – Extended address of the device (first 4 bytes);
• uint32_t aExtendedAddress1 - Extended address of the device (last 4 bytes);
• macPIB mac_PIB – Mac PAN Information Base, this variable is a structure of the

MAC PIB [1 pag. 135];
• bool PANCoordinator – 1 if the device is a pan coordinator;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

27

• bool Beacon_enabled_PAN – 1 if the device is sending beacons;
• bool SetDefaultPIB – Upon receiving a reset command the device checks whether(1)

or not(0) to reset the PIB
• bool SecurityEnable – The device uses security;
• bool pending_reset – A reset command has been received and the device must reset;
• uint8_t current_channel – The current channel where the device is operating;
• uint8_t original_channel – The default channel of the device;
• uint8_t trx_status – Transceiver status;
• bool beacon_enabled – The device is sending beacons;

Association variables

• uint8_t associating – 1 if the association procedure is being executed;
• uint8_t association_cmd_seq_num – Association request command message sequence

number;
• uint8_t a_LogicalChannel – Logical channel where the device is associated;
• uint8_t a_CoordAddrMode – Type of address (short/long) of the coordinator where

the device is associated;
• uint16_t a_CoordPANId – PANId of the coordinator where the device is associated;
• uint32_t a_CoordAddress[2] – Address of the coordinator where the device is

associated. The address can be an extended or short address depending on the
a_CoordAddrMode parameter;

• uint8_t a_CapabilityInformation – Capability information of the device;
• bool a_securityenable – 1 if security is enable;

Synchronization variables

• bool TrackBeacon – The device will track the beacon. It will enable its receiver just

before the espected time of each beacon;
• bool beacon_processed – 1 if the beacon is already processed. This variable is set to 0

when the device receives a beacon and to 1 after the process_beacon() function
execution;

• uint8_t beacon_loss_reason – The reason the beacon was lost;
• bool findabeacon – 1 if the device is trying to lacate one beacon
• uint8_t missed_beacons - number of beacons lost before sending a Beacon-Lost

indication when the value is equal to aMaxLostBeacons
• uint8_t on_sync – 1 if the device is synchronized with the PAN coordinator;

GTS variables

• uint8_t gts_request – 1 if the GTS request procedure is being executed;
• uint8_t gts_request_seq_num – GTS request command message sequence number;
• bool gts_confirm – The GTS request was confirmed in the beacon;
• uint8_t GTS_specification – GTS specification of the device included in the GTS

request
• bool GTSCapability – The device is a coordinator and has GTS allocation capability;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

28

• uint8_t final_CAP_slot –CAP final time slot;
• GTSinfoEntryType GTS_db[7] – Allocated GTS descriptors database (coordinator

only);
• uint8_t GTS_descriptor_count – Number of allocated GTS descriptors (coordinator

only);
• uint8_t GTS_startslot – Number of the first GTS time slot allocated;
• uint8_t GTS_id – GTS unique id used in the GTS descriptor database;
• GTSinfoEntryType_null GTS_null_db[7] -Deallocated GTS descriptors database

(coordinator only);
• uint8_t GTS_null_descriptor_count - Number of deallocated GTS descriptors

(coordinator only);
• uint8_t s_GTSss – Device transmit GTS start slot;
• uint8_t s_GTS_length – Number of time slots for the transmit GTS allocation;
• uint8_t r_GTSss - Device receive GTS start slot;
• uint8_t r_GTS_length - Number of time slots for the receive GTS allocation;
• uint8_t on_s_GTS - used to state that the device is on its transmit slot;
• uint8_t on_r_GTS - used to state that the device is on its receive slot;
• uint8_t next_on_s_GTS - used to determine if the next time slot is used for

transmission;
• uint8_t next_on_r_GTS - used to determine if the next time slot is used for reception;
• uint8_t allow_gts - 1 if the coordinator allows GTS allocations;
• gts_slot_element gts_slot_list[7] – List of pointers to the coordinator GTS buffer;
• uint8_t available_gts_index[GTS_SEND_BUFFER_SIZE] – List of available indexes

in the coordinator GTS buffer;
• uint8_t available_gts_index_count – Number of messages in the coordinator GTS

buffer;
• uint8_t coordinator_gts_send_pending_data – After a GTS send procedure

(start_coordinator_gts_send()) the coordinator still has data to be send;
• uint8_t coordinator_gts_send_time_slot – Number of the current time slot allocated

for the coordinator transmission;
• norace MPDU gts_send_buffer[GTS_SEND_BUFFER_SIZE] - GTS buffer used to

store the GTS messages both for the coordinator and non-coordinator devices;
• uint8_t gts_send_buffer_count – Number of messages in the device GTS buffer

message (non-coordinator only);
• uint8_t gts_send_buffer_msg_in – Pointer index of the next available slot in the GTS

buffer.
• uint8_t gts_send_buffer_msg_out - Pointer index of the next available message ready

to be send;
• uint8_t gts_send_pending_data - 1 if there is data send in the allocated GTS time slot;

Channel Scan variables

• bool scanning_channels – 1 if the channel scan procedure is being executed;
• uint32_t channels_to_scan – List of the channels to scan;
• uint8_t current_scanning – Current channel being scanned;
• uint8_t scan_count – Number of channels scaned;
• uint8_t scanned_values[16] – List of the LQI of the channels already scanned

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

29

• uint8_t scan_type – Scan type definition;
• uint8_t scan_duration – Duration of scan on each channel;

Timer variables

• uint32_t response_wait_time – Duration of the maximum time for a response to a

request;
• uint32_t BI – Beacon interval parameter;
• uint32_t SD – Superframe duration parameter;
• uint32_t time_slot - backoff boundary timer duration;
• uint32_t backoff - backoff timer duration;
• uint8_t number_backoff – total number of backoffs in the active period;
• uint8_t number_time_slot – current time slot;
• bool csma_slotted – 1 if the slotted version of CSMA/CA is applied during the CAP;

CSMA/CA variables

• uint8_t delay_backoff_period – random number of backoff that the CSMA/CA

algorithm must wait during the step 2 (Refer to the CSMA/CA section);
• bool csma_delay – Used in the TimerAsync.backoff_fired() timer event to activate the

delay (Refer to the CSMA/CA section);
• bool csma_locate_backoff_boundary – Used in the TimerAsync.backoff_fired() timer

event to locate the backoff bondary in the application of the slotted version of the
CSMA/CA (Refer to the CSMA/CA section);

• bool csma_cca_backoff_boundary - Used in the TimerAsync.backoff_fired() timer
event to locate the backoff bondary in the application of the slotted version of the
CSMA/CA (Refer to the CSMA/CA section);

• bool performing_csma_ca – 1 if the device is performing the application of the
CSMA/CA;

• uint8_t BE – Backoff exponent used in the CSMA/CA;
• uint8_t CW - Contention window used in the CSMA/CA (number of backoffs to clear

the channel in the slotted version);
• uint8_t NB – Number of backoff used in the CSMA/CA;

Indirect Transmission buffers

• indirect_transmission_element indirect_trans_queue[INDIRECT_BUFFER_SIZE] –

Indirect transmission buffer used to store the messages that are going to be transmitted
upon the request of the destination device;

• uint8_t indirect_trans_count – Total number of messages in the indirect transmission
buffer;

Receive buffers

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

30

• norace MPDU buffer_msg[RECEIVE_BUFFER_SIZE] – Receive buffer used to store
the messages received;

• int current_msg_in - Pointer index of the next available slot in the receive buffer;
• int current_msg_out - Pointer index of the next available message ready to be

processed;
• int buffer_count – Number of messages in the receive buffer;

Send buffers

• norace MPDUBuffer send_buffer[SEND_BUFFER_SIZE] - Send buffer used to store

the messages ready to be transmitted;
• uint8_t send_buffer_count - Number of messages in the send buffer;
• uint8_t send_buffer_msg_in - Pointer index of the next available slot in the send

buffer;
• uint8_t send_buffer_msg_out - Pointer index of the next available message ready to

be send;
• uint8_t send_ack_check – An acknowledge is requested in the transmitted frame;
• uint8_t retransmit_count – Number of retransmission of the transmitted frame;
• uint8_t ack_sequence_number_check – Current transmission sequence number;
• uint8_t send_retransmission – 1 if the current message being send can be

retransmitted if the transmission fails;
• uint8_t send_indirect_transmission – 1 if the current message being send is an indirect

transmission;

Reception and Transmission variables

• uint8_t pending_request_data – 1 if the device can only send one request data

command.
• uint8_t ackwait_period – Duration of the time frame to receive an acknowledgment of

a transmitted frame;
• uint8_t link_quality – LQI of the current received message frame;
• norace ACK mac_ack – Acknowledgment frame memory allocation;
• ACK *mac_ack_ptr – Pointer for the acknowledgment frame memory position;
• uint8_t I_AM_IN_CAP – 1 if the device in in the CAP;
• uint8_t I_AM_IN_CFP – 1 if the device is in the CFP;
• uint8_t I_AM_IN_IP – 1 if the device is in the inactive period;

Beacon management variables

• norace MPDU mac_beacon_txmpdu - Beacon frame memory allocation;
• MPDU *mac_beacon_txmpdu_ptr – Pointer for the beacon frame memory position;
• uint8_t *send_beacon_frame_ptr – Beacon pointer;
• uint8_t send_beacon_length – Beacon length;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

31

3.4.4. Functions description

General functions

• void init_MacCon() – Function used to initialize the internal MAC constants;
• void init_MacPIB() - Function used to initialise the MAC PAN Information Base

constants;
• uint8_t min(uint8_t val1, uint8_t val2) – Returns the minimum value between val1

and val2 arguments;
• task void set_trx() – Task function used to change the transceiver state. This function

is called from an asynchronous event making its execution synchronous.
• task void signal_loss() – Task function used to signal the synchronous primitive

MLME_SYNC_LOSS.indication indicating a synchronization loss. This function is
called from an asynchronous event making its execution synchronous.

• task void pd_data_confirm() – Task function called when the MAC layer receives the
PD_DATA.confirm primitive.

• void create_data_request_cmd() - Function used to create a data request command
frame. The created frame is inserted in the send buffer and will be ready to send;

• void create_beacon_request_cmd() – Function used to create a beacon request
command frame. The created frame is inserted in the send buffer and will be ready to
send;

• void create_gts_request_cmd(uint8_t gts_characteristics) – Function used to create a
GTS request command frame. The created frame is inserted in the send buffer and will
be ready to send;

• void create_data_frame(uint8_t SrcAddrMode, uint16_t SrcPANId, uint32_t
SrcAddr[], uint8_t DstAddrMode, uint16_t DestPANId, uint32_t DstAddr[], uint8_t
msduLength, uint8_t msdu[],uint8_t msduHandle, uint8_t TxOptions,uint8_t
on_gts_slot,uint8_t pan) – Function used to create a data frame. This function is
called from the MCPS_DATA.request primitive that was previously requested by the
MAC upper layer. The created frame is inserted in the send buffer and will be ready to
send;

• void build_ack(uint8_t sequence,uint8_t frame_pending) – Function used to create an
acknowledgment frame. The frame is created in the mac_ack variable and its send
directly without any CSMA/CA.

• void list_mac_pib() – Function used to list the MAC PIB attributes through the
UART. Debug propose only.

Association functions

• void create_association_request_cmd(uint8_t CoordAddrMode,uint16_t

CoordPANId,uint32_t CoordAddress[])) – Function used to create an association
request command frame. The created frame is inserted in the send buffer and will be
ready to send. This function is used only by the devices that want to associate;

• result_t create_association_response_cmd(uint32_t DeviceAddress[],uint16_t
shortaddress, uint8_t status)) – Function used to create an association response
command frame. The created frame is inserted in the send buffer and will be ready to

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

32

send. This function is used only by the PAN coordinator in the response of an
association request;

• void create_disassociation_notification_cmd(uint32_t DeviceAddress[],uint8_t
disassociation_reason)) – Function used to create a dissociation notification
command frame. The created frame is inserted in the send buffer and will be ready to
send. This function is used only by the devices that are associated;

• void process_dissassociation_notification(MPDU *pdu) – Function used to process
the disassociation request. This function will signal the MAC upper layer with the
MLME_DISASSOCIATE.indication primitive;

GTS functions

• void process_gts_request(MPDU *pdu) – Function used to process a GTS request.

This function will signal the MAC upper layer with the MLME_GTS.indication
primitive;

• void init_available_gts_index() – Function used to initialize the available indexes of
the GTS send buffer. The available indexes will depend on the
GTS_SEND_BUFFER_SIZE variable. This function is only used by the PAN
coordinator.

• task void start_coordinator_gts_send() -Function used to send the GTS messages of
the coordinator GTS send mechanism. This function is called when the coordinator
has a transmit GTS time slot allocated. The send procedure of this function will only
send if there are messages to send. This function is only used by the PAN coordinator;

• result_t remove_gts_entry(uint16_t DevAddressType) – Function used to deallocate a
GTS time slot. The remaining allocated time slots will be rearranged. This function is
only used by the PAN coordinator;

• result_t add_gts_entry(uint8_t gts_length,bool direction,uint16_t DevAddressType) –
Function used to allocate a GTS time slot. This function is only used by the PAN
coordinator;

• result_t add_gts_null_entry(uint8_t gts_length,bool direction,uint16_t
DevAddressType) - Function used to add deallocated GTS descriptor to the GTS null
database. This function is called when the PAN coordinator deallocates a device
adding in its beacon a null descriptor with the device address and an allocated length
of zero. This function is only used by the PAN coordinator;

• task void increment_gts_null() – Function used to increment the GTS expiration time
(measured in superframes) of the GTS deallocated devices. This function is only used
by the PAN coordinator;

• task void start_gts_send() - Function used to send GTS messages. This function is
called when a non-coordinator device has a transmit time slot allocated. The send
procedure of this function will only send if there are messages to send. This function
is only used by non-coordinator devices;

• uint32_t calculate_gts_expiration() – Function used to calculate the expiration time of
the allocated GTSs. Each allocated GTS will expire if there are no transmissions
during a calculated superframe count. This function is only used by the PAN
coordinator;

• task void check_gts_expiration() – Function used to verify if the allocated GTS time
slots are expired or not. If a GTS expires it will be placed in the GTS null descriptors.
This function is only used by the PAN coordinator;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

33

• void init_gts_slot_list() – Used to initialize the gts_slot_element buffer array of the
GTS allocated time slots. This function is only used by the PAN coordinator;

• void init_GTS_null_db() - Used to initialize the GTS_null_db buffer array of the GTS
deallocated time slots. This function is only used by the PAN coordinator;

• void list_gts_null() - Function used to list the GTS null descriptors (GTS_null_db)
through the UART. Debug propose only.

• void list_gts() - Function used to list the GTS allocated descriptors (GTS_db) through
the UART. Debug propose only.

• void init_GTS_db() – Function used to initialize the GTS allocated descriptors
(GTS_db). This function is only used by the PAN coordinator;

• void list_my_gts() - Function used to list the device allocated GTS time slots through
the UART. Debug propose only.

CSMA/CA functions

• void init_csma_ca(bool slotted) – Function used to initialize the CSMA/CA

mechanism variables;
• void perform_csma_ca() – Function used to start the CSMA/CA mechanism;
• task void perform_csma_ca_unslotted() - Function used to execute the final steps of

the application of the unslotted version of CSMA/CA mechanism;
• task void perform_csma_ca_slotted() - Function used to execute the final steps of the

application of the slotted version of CSMA/CA mechanism;
• task void start_csma_ca_slotted()- Function used to execute the first step (STEP 2) of

the application of the slotted version of CSMA/CA mechanism;

Indirect Transmission functions

• void init_indirect_trans_buffer() - Function used to initialize the indirect transmission

buffer. This function is only used by the PAN coordinator;
• void send_ind_trans_addr(uint32_t DeviceAddress[]) - Function used to search and

send an existing indirect transmission message. This function is only used by the PAN
coordinator;

• result_t remove_indirect_trans(uint8_t handler) - Function used to remove an existing
indirect transmission message. This function is only used by the PAN coordinator;

• void increment_indirect_trans() - Function used to increment the transaction
persistent time on each message. If the transaction time expires the messages are
discarded. This function is only used by the PAN coordinator;

• void list_indirect_trans_buffer() – Function used to list all the handles in the indirect
transmission buffer. Debug purposes only;

Receive functions

• task void message_out() – Task function used to increment the current_msg_out

pointer of the receive messages buffer when a message is processed;
• task void message_in()– Task function used to increment the current_msg_in pointer

of the receive messages buffer when a message is received;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

34

• task void data_indication() – Task function called when the MAC layer receives from
the PHY the asynchronous PD_DATA.indication primitive. This function will
synchronously process the type of message receives and will call the appropriate
function to process it;

• void indication_beacon(MPDU *pdu, int8_t ppduLinkQuality) – Function called from
the data_indication() function and is used to pre-process a beacon frame received;

• void indication_cmd(MPDU *pdu, int8_t ppduLinkQuality) – Function called from
the data_indication() function and is used to process a command frame received;

• void indication_ack(MPDU *pdu, int8_t ppduLinkQuality) – Function called from the
data_indication() function and is used to process an acknowledge frame received;

• void indication_data(MPDU *pdu, int8_t ppduLinkQuality) – Function called from
the data_indication() function and is used to process a data frame received. This
function will signal the MAC upper layer with MCPS_DATA.indication primitive.

Reception and Transmission functions

• task void send_frame_csma() - Function used to start the send mechanism of the

messages that are in the send buffer during the CAP period of the superframe and
using the CSMA/CA algorithm;

• uint8_t check_csma_ca_send_conditions(uint8_t frame_length,uint16_t
frame_control) – Function used to compute the conditions necessary to send a
message in the CAP period. This function will calculate is a message can be send by
adding the frame length and the correspondent ifs symbols or also adding the
acknowledgment length and the respective turnaround time if the message requires an
acknowledgment. The function will return true if there is enough time to send the
message otherwise it will return false;

• uint8_t check_gts_send_conditions(uint8_t frame_length) – Function used to compute
the conditions necessary to send a message in an allocated transmit GTS time slot.
This function will calculate is a message can be send by adding the frame length and
the correspondent ifs symbols or also adding the acknowledgment length and the
respective turnaround time if the message requires an acknowledgment. The function
will return true if there is enough time to send the message otherwise it will return
false;

• uint8_t calculate_ifs(uint8_t pk_length) – Function used to calculate the ifs symbols.
The ifs will depend on the frame length;

Beacon management functions

• task void create_beacon() - Function to create the beacon. This function is only used

by the PAN coordinator;
• void process_beacon(MPDU *packet) - Function to process the beacon information.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

35

3.5. Implementation of the protocol functionalities

3.5.1. Buffers

The IEEE 802.15.4 protocol has no reference concerning the implementation of

the buffer mechanisms. The buffers implementation has an important role in the good
performance of the protocol. On one hand, the protocol must avoid excessive memory
copy operations because it can cause synchronization problems and is very time
consuming. On the other hand, the buffers have to be small and very well managed
because of the devices memory constrains. The MICAz motes only have approximately
4 Kbytes of RAM memory available and the maximum packet length is about 127 bytes
if we increase the buffer size the free memory of the mote will decrease rapidly.

This implementation uses 4 buffers:

• buffer_msg – Used to store the received messages;
• send_buffer – Used to store the messages that are ready to be send;
• indirect_trans_queue – Used by the coordinator to store the messages that are

send using the indirect transmission procedure. The messages stored need to be
requested by the destination device in order to be send. The coordinator sends
one of these messages by transferring it to the send_buffer queue.

• gts_send_buffer – Used to store the messages that are ready to be sent in one
GTS during the CFP.

Sending and Receiving

The buffers used for receiving and sending are FIFO (First In First Out) buffers. The

implementation consists on an array with a constant length, the buffer size, and two
pointers. The first pointer (in) point to the next available slot to store a new message,
and the second (out) points to the oldest message in the queue. There is also one
variable that contains the current message count in the buffer, if its equal to the buffer
size it means that the buffer is full.

The next figure explains the implementation of these buffers.

Figure 7 - Buffer management example.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

36

 There are two ways for sending a message, using the CSMA/CA algorithm or
sending the message without any channel assessment. The second way is only used to
send beacons and acknowledgments frames. The CSMA/CA is used to send command
and data frames. If the sent frame requires an acknowledgment the sender must wait for
it before sending a new message. The wait or the retransmission mechanism consists on
a timer that is activated after a transmission that requires an acknowledgment. This
procedure is described in detail in [1 pag 157]. The event T_ackwait.fired() is used to
activate the retransmission of the last sent and not acknowledge frame. If the frame is
acknowledged in the available time frame the T_ackwait() event is stopped, otherwise
the event will fire until the frame is acknowledge or until is reaches the maximum
allowed retransmissions (the number of retransmissions is defined in the
aMaxFrameRetries constant).
 The time frame available for the acknowledgement is defined in the
macAckWaitDuration variable of the MAC PIB. This value is very important because
we must take into account the processing time of the device, otherwise the device could
be pre-processing the message after sending the acknowledgment and the source of the
message may try to retransmit it again.

 The next charts illustrate the MAC-PHY interaction when sending messages,
either from the originator and the receiver. [1 pag 185-186].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

37

Figure 8 - Data transmission sequence chart - originator.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

38

Figure 9 - Data transmission sequence chart - recipient.

 Indirect Transmissions

The buffer used for the indirect transmissions is defined as a structure. When the
coordinator needs to send an indirect transmission it needs to search in the buffer the
correct message to send. This procedure goes through all the positions of the message
array comparing the destinations addresses until it finds the correct message or, ignores
the indirect transmission request if there are no messages for the requested address.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

39

 The structure defined is the following:
typedef struct
{
 uint8_t handler;
 uint16_t transaction_persistent_time;
 uint8_t frame[127];
}indirect_transmission_element;

Code Example 1 - Indirect transmissiton structure definition.

 Each indirect transmission element has a unique handler to identify each
position. The transaction_persistent_time variable is used to count, in number of
superframes, the time that the message is stored in the buffer. If this number reaches the
macTransactionPersistenceTime defined in the MAC PIB the message is discarded. For
a more detailed explanation of this procedure refer to [1 pag 155].

 The functions used for maintaining the indirect transmission buffer are the
following:

• void init_indirect_trans_buffer() – This function is used to initialize the indirect
transmission buffer, all the positions of the buffer are reset to the initialization
values.

• void send_ind_trans_addr(uint32_t DeviceAddress[]) - This function is used to
search and send an existing indirect transmission message. If the message does
not exist the request is ignored, if it exists, the message is inserted in the
send_buffer and will be removed from the indirect buffer. Then, the message is
treated like a “normal” message to be sent by the device.

• result_t remove_indirect_trans(uint8_t handler) - This function is used to
remove an existing indirect transmission message.

• void increment_indirect_trans() – This function is used to increment the
transaction persistent time on each message, if the transaction time expires the
messages are discarded. This function is called at the end of every superframe on
the sd_fired event.

• void list_indirect_trans_buffer() - This function list all the handlers in the
indirect transmission buffer and is used for debug purposes only

The different transmission scenarios are described in [1 pag. 158].

GTS Buffer

 The GTS buffer is used in two different ways. If the device is not a coordinator

the buffer is FIFO and its used like the send and receive buffer with two pointers
indicating the in and out of the messages and the total number of messages in the buffer.
The messages are sent in the appropriate GTS allocated transmit time slot. If the device
is a coordinator the buffer is maintained by an auxiliary structure with index pointers

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

40

pointing to the appropriate message in the buffer. Also the auxiliary structure
gts_slot_list is indexed with the available timeslots that can be used for GTS
transmission. This mechanism is used to avoid performing sequential and time
consuming searches in the buffer to find the desired packet. Along with the
gts_send_buffer buffer there is also one auxiliary array declared as
available_gts_index[GTS_SEND_BUFFER_SIZE] storing the available indexes in the
GTS buffer. The GTS_SEND_BUFFER_SIZE constant variable defines the GTS
maximum size. If the coordinator wants to send data in the GTS, it must check if there
are available indexes to store the message. When the message is send, its
gts_send_buffer position becomes available by inserting in the available_gts_index list
the gts_send buffer index.

Figure 10 - GTS buffer management - PAN coordinator.

 The gts_slot_list is defines as an array of gts_slot_element. The gts_slot_element

is defined in the mac_const.h file and has the following structure:

typedef struct gts_slot_element
{
 uint8_t element_count;
 uint8_t element_in;
 uint8_t element_out;
 uint8_t gts_send_frame_index[GTS_SEND_BUFFER_SIZE];

}gts_slot_element;

Code Example 2 - gts_slot_element structure definition.

 Each element in the gts_slot_list array represents one GTS time slot, up to the
maximum of seven, defined in the protocol as the maximum number of GTS time slots
available for GTS allocation. The gts_slot_element defines a FIFO buffer used to store
indexes that reference positions in the gts_send_buffer, and it is maintained as the send
and receive buffers.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

41

3.5.2. Data Reception

 The SFD pin going high means that the transceiver is starting to receive a frame.
If the frame check sequence is ok (hardware condition, implemented by the CC2420
transceiver and all the IEEE 802.15.4 compliant transceivers) the PHY layer will be
signalled by the FIFO interrupt (async event result_t HPLCC2420.FIFOPIntr()). Upon
the reception of this event, the PHY will signal the MAC layer with the
PD_DATA.indication primitive, which will copy the received frame to the buffer_msg
buffer. The functions tasks message_out and message_in are used for the buffer
management queue operations. These functions must be tasks because of the
asynchronous processing of the PD_DATA.indication event. After the message is
copied to the buffer, the MAC will call the data_indication function to pre-process the
frame headers, selecting the frame type received, in order to call the appropriate
function to fully process the frame. The data_indication function also do a pre-
evaluation, stating if the message can be acepted of not. For example, if the MAC is in
the middle of the CSMA/CA algorithm or performing a channel scan the frame will be
discarded.
 Depending on the frame type the data_indication function will select one of the
following functions:

• indication_data – if the frame type is a TYPE_DATA;
• indication_ack – if the frame type is a TYPE_ACK;
• indication_cmd – if the frame type is a TYPE_CMD;
• indication_beacon – if the frame type is a TYPE_BEACON.

 According to the IEEE 802.15.4 the MAC will only accept frame if the satisfy
the following requirements [1 pag 155]:

• The frame type subfield of the frame control field shall not contain an illegal
frame type;

• If the frame type indicates that the frame is a beacon frame, the source PAN
identifier shall match macPANId unless macPANId is equal to 0xffff, in which
case the beacon frame shall be accepted regardless of the source PAN identifier;

• If a destination PAN identifier is included in the frame, it shall match macPANId
or shall be the broadcast PAN identifier (0xffff);

• If a short destination address is included in the frame, it shall match either
macShortAddress or the broadcast address (0xffff). Otherwise, if an extended
destination address is included in the frame, it shall match aExtendedAddress;

• If only source addressing fields are included in a data or MAC command frame,
the frame shall be accepted only if the device is a PAN coordinator and the
source PAN identifier matches macPANId.

 Some of these conditions are verified after the data_indication function selects
the proper function.
 The next figure illustrates the data reception operations.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

42

Figure 11 - Data reception flow chart.

3.5.3. TimerAsync and Synchronization

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

43

An important aspect of this protocol is the synchronization. A first difficulty in
the implementation of the beacon-enabled mode was related to the TinyOS management
of hardware timer provided by the MICAz motes, which does not allow having the
exact values in millisecond of the beacon interval, superframe, time slots and backoffs
durations as specified by the IEEE 802.15.4 standard. To accomplish a precise
synchronization a timer component was developed, with an asynchronous behaviour
regarding the code execution, based on the hardware clock

Considering that there are two different types of timers in this implementation.
The synchronous timers are used in the implementation for events that doesn’t need
precision and the asynchronous timers that are more precise due to their asynchronous
behaviour.

The synchronous timer use the TinyOS provided timer component, the TimerC
and the asynchronous use our custom timer, based on the TimerJiffy timer component,
the TimerAsyncC. This timer is uses the TinyOS Clock component, located in the
contrib.hurray.tos.system directory. This component uses the hardware clock
component HPLTimer2C located in the contrib.hurray.tos.platform.MICAz directory.
 The TimerAsyncC component is located under the contrib.hurray.tos.system
directory and the TimerAsync interface is located under the
contrib.hurray.tos.interfaces directory.

 TimerAsyncC Component

This component is used to wire the TimerAsync interface with the

TimerAsyncM of the timer implementation.
The next figure represents the component graph.

Figure 12 - TimerAsyncC component graph.

TimerAsyncM Component

Implementation notes:

 The TimerAsync component is one timer that is used to trigger 7 asynchronous
timer events. The events signalled are used mainly for maintaining protocol
synchronization related to the slotted version.
 All the events are signalled inside the Timer.fire() event that is generated by the
usage of the hardware clock timers in the HPLTimer2C component. The protocol
events have the following purpose:

signal TimerAsync.bi_fired() – Timer used to signal the end of the beacon interval.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

44

signal TimerAsync.before_bi_fired() – Timer used to signal a time defined constant
(BEFORE_BI_INTERVAL) before the beacon interval fired. This is used to turn the
transceiver on before the beacon interval fires so that if the device is a pan
coordinator the transceiver will be ready to transmit the beacon and if the device is a
normal node the transceiver will be ready to receive the beacon.

signal TimerAsync.sd_fired() – Timer used to signal the end of the superframe
duration. This is used for the device to enter the sleep period (if applied) It’s also
used to disable the time slot and backoffs events because during the sleep period
there is no activity (if applied).

signal TimerAsync.time_slot_fired() - Timer used to signal each time slot. This is
used for the GTS mechanism.

signal TimerAsync.before_time_slot_fired() – Timer used to signal a time defined
constant (BEFORE_BB_INTERVAL) before the time slot fired. This is used to
switch the transceiver state before each time slot so that the transceiver is ready to
transmit/receive when the time slot starts.

signal TimerAsync.backoff_fired() – Timer used to signal each backoff. This is used
for the CSMA/CA algorithm.

signal TimerAsync.sfd_fired() – Timer used to signal the start-of-frame delimiter
upon the arrival of data. This is used to know exactly when the transceiver starts
receiving data and is prior to the FIFO interrupt that is triggered only when the full
length of the frame is received.

 The next figure represents the timer events in the superframe structure.

Figure 13 - Timer events in superframe structure.

 This timer component is based on the hardware clock timer configuration
defined in two constants:

• SCALE – This constant defines the scale division of the ATMEL
microprocessor.

• INTERVAL – This constant defines the number of clock ticks per clock

firing.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

45

The clock tick granularity of the MICAz mote that best fit our requirements is equal

to 69.54 microseconds, which approximately corresponds to four symbols
(configuration with SCALE equal to 4 and INTERVAL equal to 1). In fact, the four
symbols duration have a theoretical value of 64 microseconds which leads to a
cumulative effect on the discrepancy with theoretically values of beacon interval,
superframe durations and time slot durations in millisecond for high superframe and
beacon orders. For instance, the theoretical time of a superframe duration with SO=3 is
equal to 122.88 ms, while it is equal to 133.36 ms using the MICAz motes and the
TinyOS time management of the clock granularity.

MICAZ

 Effective Teorical
Backoff Symbols 20 20

Symbol Duration (us) 17,362 16
Backoff Duration (us) 347,24 320

Granularity (us) 69,54 64
Backoff Clock Ticks 5 5

Table 9 - MICAz clock ticks granularity comparison.

MICAz Time Slot Durations (Effective Values)

SO Symbols Backoff Periods Timeslot Duration (us) Clock Ticks
0 60 3 1041,72 15
1 120 6 2083,44 30
2 240 12 4166,88 60
3 480 24 8333,76 120
4 960 48 16667,52 240
5 1920 96 33335,04 479
6 3840 192 66670,08 959
7 7680 384 133340,16 1917
8 15360 768 266680,32 3835
9 30720 1536 533360,64 7670

10 61440 3072 1066721,28 15340
11 122880 6144 2133442,56 30679
12 245760 12288 4266885,12 61359
13 491520 24576 8533770,24 122717
14 983040 49152 17067540,48 245435

Table 10 - MICAz time slot durations - Effective values.

MICAz Time Slot Durations (Theoretical Values)

SO Symbols Backoff Periods Timeslot Duration (us) Clock Ticks
0 60 3 960 15
1 120 6 1920 30
2 240 12 3840 60
3 480 24 7680 120
4 960 48 15360 240
5 1920 96 30720 480
6 3840 192 61440 960

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

46

7 7680 384 122880 1920
8 15360 768 245760 3840
9 30720 1536 491520 7680

10 61440 3072 983040 15360
11 122880 6144 1966080 30720
12 245760 12288 3932160 61440
13 491520 24576 7864320 122880
14 983040 49152 15728640 245760

Table 11 - MICAz time slot durations - Theoretical values.

MICAz Beacon Interval Durations (Effective Values)

BO Symbols Backoff Periods Duration (us) Clock Ticks
0 960 48 16667,52 240
1 1920 96 33335,04 479
2 3840 192 66670,08 959
3 7680 384 133340,16 1917
4 15360 768 266680,32 3835
5 30720 1536 533360,64 7670
6 61440 3072 1066721,28 15340
7 122880 6144 2133442,56 30679
8 245760 12288 4266885,12 61359
9 491520 24576 8533770,24 122717

10 983040 49152 17067540,48 245435
11 1966080 98304 34135080,96 490870
12 3932160 196608 68270161,92 981739
13 7864320 393216 136540323,8 1963479
14 15728640 786432 273080647,7 3926958

Table 12 - MICAz beacon interval durations - Effective values.

MICAz Beacon Interval Durations (Theoretical Values)

BO Symbols Backoff Periods Duration (us) Clock Ticks
0 960 48 15360 240
1 1920 96 30720 480
2 3840 192 61440 960
3 7680 384 122880 1920
4 15360 768 245760 3840
5 30720 1536 491520 7680
6 61440 3072 983040 15360
7 122880 6144 1966080 30720
8 245760 12288 3932160 61440
9 491520 24576 7864320 122880

10 983040 49152 15728640 245760
11 1966080 98304 31457280 491520
12 3932160 196608 62914560 983040
13 7864320 393216 125829120 1966080
14 15728640 786432 251658240 3932160

Table 13 - MICAz beacon interval durations - Theoretical values.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

47

Required Interfaces

The required interfaces of the TimerAsyncM component are the following:

• Clock Timer
• Leds

Provided Interfaces

The provided interfaces of the TimerAsyncM component are the following:

• TimerAsync

Variables

• uint32_t ticks_counter – current number of clock ticks on each beacon interval.
• uint32_t bi_ticks – number of clock ticks needed to reach the beacon interval

boundary.
• uint32_t bi_backoff_periods – number of backoffs in one beacon interval.
• uint32_t before_bi_ticks – number of clock ticks needed to reach the boundary

defined by the bi_ticks – BEFORE_BI_INTERVAL (constant).
• uint32_t sd_ticks – number of clock ticks needed to reach the superframe

duration interval boundary.
• uint32_t time_slot_backoff_periods – number of backoffs in one time slot.
• uint32_t time_slot_ticks –total number of clock ticks needed to reach the beacon

interval boundary.
• uint32_t before_time_slot_ticks - number of clock ticks needed to reach the

boundary defined by the bi_ticks – BEFORE_BB_INTERVAL (constant).
• uint32_t time_slot_tick_next_fire – number of clock ticks needed to reach the

next time slot boundary.
• uint32_t backoff_symbols – number of symbols in one backoff.
• uint32_t backoff_ticks – number of clock ticks in one backoff.
• uint32_t backoff_ticks_counter – current number of clock ticks on each backoff.
• uint8_t current_time_slot – current time slot number.
• uint32_t current_number_backoff_on_time_slot – current backoff number on

each time slot.
• uint32_t current_number_backoff – current number of backoff on each beacon

interval.
• bool backoffs – enable/disable backoff events .
• uint8_t previous_sfd – temporary variable that stores the SFD pin reading .
• uint8_t current_sfd – temporary variable that stores the SFD pin reading.
• uint32_t process_frame_tick_counter – current number of clock ticks needed to

fully receive a data frame.
• uint32_t total_tick_counter – current number of clock ticks.

Function description

async command result_t TimerAsync.start (void)

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

48

 Command used to start the component.

command result_t TimerAsync.init (void)
 Command used in the initialization of the component.

async command result_t TimerAsync.stop (void)
 Command used to stop the component.

async command result_t TimerAsync.reset (void)
 Command used to reset the global timer variable. This function zeroes the
tick_counter variable.

async command result_t TimerAsync.reset_process_frame_tick_counter (void)
 Command used to reset the process frame timer variable. This function zeroes
the process_frame_tick_counter variable.

async command uint8_t TimerAsync.reset_start (uint32_t start_ticks)
 Command used to reset the global timer variable. This function initializes the
tick_counter variable with the values of the start_ticks argument.

async command result_t TimerAsync.set_bi_sd (uint32_t bi_symbols, uint32_t
sd_symbols)
 Command used to set the duration, in symbols, of the beacon interval and
superframe.

async command result_t TimerAsync.set_backoff_symbols (uint8_t
Backoff_Duration_Symbols)
 Command used to set the duration, in symbols, of the backoff interval.

async command result_t TimerAsync.set_enable_backoffs (bool enable)
 Command used to enable/disable the backoff events interrupts.

async command uint32_t TimerAsync.get_current_ticks (void)
 Command used to read the current_ticks variable.

async command uint32_t TimerAsync.get_sd_ticks (void)
 Command used to read the sd_ticks variable.

async command uint32_t TimerAsync.get_bi_ticks (void)

Command used to read the bi_ticks variable.

async command uint32_t TimerAsync.get_backoff_ticks (void)
Command used to read the backofft_ticks variable.

async command uint32_t TimerAsync.get_time_slot_ticks (void)
 Command used to read the time_slot_ticks variable.

async command uint32_t TimerAsync.get_current_number_backoff (void)

Command used to read the curren_number_backoff variable.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

49

async command uint32_t TimerAsync.get_time_slot_backoff_periods (void)
Command used to read the time_slot_backoff_periods variable.

async command uint32_t TimerAsync.get_current_time_slot (void)
 Command used to read the current_time_slot variable.

async command uint32_t TimerAsync.get_current_number_backoff_on_time_slot (void)
 Command used to read the current_number_backoff_on_time_slot variable.

async command uint32_t TimerAsync.get_total_tick_counter (void)
 Command used to read the total_tick_counter variable.

async command uint32_t TimerAsync.get_process_frame_tick_counter (void)
 Command used to read the process_frame_tick_counter variable.

async event result_t Timer.fire (void)

 The Timer.fire event is triggered by the Clock component if the interrupts
notification is enabled. The TimerAsync module maintains several variables in order to
create as many timers as needed based on one event fired. The next diagram represents
the computation flow chart for every timer fired event.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

50

Figure 14- Timer.fire flow chat of the TimerAsync component.

TimerAsync Interface

 This component exposes the function implemented in the TimerAsyncM and is
used to wire the MacM to the TimerAsyncC.
 The commands provided by this interface are the following:

• result_t start(void)
• result_t stop(void)
• result_t init(void)

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

51

• uint32_t get_current_ticks(void)
• uint32_t get_sd_ticks(void)
• uint32_t get_bi_ticks(void)
• result_t reset(void)
• uint8_t reset_start(uint32_t start_ticks)
• uint32_t get_time_slot_ticks(void)
• result_t set_backoff_symbols(uint8_t symbols)
• uint32_t get_backoff_ticks(void)
• result_t set_enable_backoffs(bool enable_backoffs)
• uint32_t get_current_number_backoff(void)
• uint32_t get_time_slot_backoff_periods(void)
• uint32_t get_current_time_slot(void)
• uint32_t get_current_number_backoff_on_time_slot(void)
• result_t set_bi_sd(uint32_t bi_symbols, uint32_t sd_symbols)
• result_t reset_process_frame_tick_counter(void)
• uint32_t get_process_frame_tick_counter(void)
• uint32_t get_total_tick_counter(void)

3.5.4. MAC Timer Events

Asynchronous Timers

TimerAsync.before_bi_fired()

 The implementation of this timer is used to turn the transceiver on
receive/transmit mode before the bi_fired event. The time before is defined in the
TimerAsyncM component in the variable BEFORE_BI_INTERVAL. Because of the time
needed to switch the state of the transceiver before sending or receiving data this event
tries to minimize that effect. If the device is a coordinator the transceiver is switch to the
transmit state so that the beacon frame, that is already constructed, is sent when the
bi_fired event is triggered. If the device is not a coordinator the transceiver is switched
to the receive mode, therefore, when the bi_fired event is triggered the device will be
ready to receive the beacon. The exception in this case is when the beacon order (BO) is
equal to the superframe order (SO) and there is no change in the transceiver state.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

52

Figure 15 - before_bi_fired event flow char.

TimerAsync.bi_fired()

 This event indicates the beginning of a new superframe. If the device is a PAN
coordinator it must transmit a beacon, otherwise the device will receive the beacon and
process it. The devices that are trying to synchronize with the PAN will have the
findabeacon variable enabled. If the device cannot find a beacon after the
aMaxBeaconLost, the MAC layer issues the MLME_SYNC_LOSS.indication primitive
with the status of MAC_BEACON_LOST. The same procedure occurs if the device is
associated with the PAN and tracking the beacons. If the beacon is received, it must be
processed before the verifications of these conditions. The synchronization procedures
are described in [1 pag 151].
 After the synchronization processing, the device calls the send_frame_csma()
function to start sending the frames that could be stored in the send_buffer that could
not be sent in the last superframe.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

53

Figure 16 - bi_fired event flow chart.

TimerAsync.sd_fired()

 This timer event indicates the end of the active period of the superframe
duration. In this event if the device is not on promiscuous mode and the BO is different
than the SO, the transceiver is switched to idle mode. If the device is a coordinator the
following maintenance procedures are triggered:

• increment_gts_null() – if there are deallocation GTS descriptors the coordinator
need to check their transaction persistence time deciding if the keep showing in
the beacon or not;

• check_gts_expiration() – if there are allocated GTS time slots that weren’t used
the coordinator must calculate and evaluate their expiration time. If one
allocation expires the corresponding GTS descriptor if moved to the deallocated
GTS descriptors. This procedure is described in [1 pag 162];

• create_beacon() – the device created the beacon that will be stored until the
bi_fired event is triggered.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

54

Figure 17 - sd_fired event flow chart.

TimerAsync.before_time_slot_fired()

 The implementation of this timer is used to turn the transceiver on
receive/transmit mode before the time_slot_fired event. This event is used when the
device, being a coordinator or not, has a GTS time slot allocated and when the time slot
starts the transceiver is already ready for transmission or reception, depending on the
allocated time slot. The time before is defined in the TimerAsyncM component in the
variable BEFORE_BB_INTERVAL This event is needed because of the time necessary
to switch the state of the transceiver before sending or receiving data.
 The variables next_on_s_GTS and next_on_r_GTS determine that the next slot
will be available for transmission and for reception respectively.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

55

Figure 18 - before_time_slot_fired event flow chart.

TimerAsync.time_slot_fired()

 This event is triggered on every time slot and is mainly used to perform the GTS
management. On every execution of the timer, the number_time_slot variable is
maintained with the current time slot information. When the time slot number reaches a
GTS slot, the device will try to send data if there are packets to transmit. After the
activation of the send mechanism the device will evaluate if the next slot is also a GTS
slot. In this event there are two distinct operation modes: the coordinator operation and
the non-coordinator operation. The GTS management on these two modes is different, if
the device is a coordinator it must be ready to transmit or receive on every GTS slot to
and from the appropriate device. If the device is not a coordinator it only needs to check
the time slot number, previously allocated on the coordinator and confirmed in the
beacon GTS descriptors, and take the appropriate action, transmit data if it has an
allocation for transmission or receive data.
 The s_GTSss and r_GTSss variables indicate the timeslot number of the device
allocated send/receive GTS slot. The number_backoff variable keeps count of the
number of backoffs in the time slot.
 For a more detailed explanation about the GTS management refer to the GTS
Management section.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

56

Figure 19 - time_slot_fired event flow chart.

TimerAsync.sfd_fired()

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

57

 This event indicates that the transceiver is starting to receive data. Currently
there is no processing in this event.

TimerAsync.backoff_fired()

 This event is triggered on every backoff during the active period of the
superframe. The code processing is related to the implementation of the CSMA/CA
algorithm. This event maintains the number_backoff variable counting the number of
backoffs in the time slot and a number of states that are defined in the functions
concerning the CSMA/CA implementation algorithm.
 For a more detailed explanation about the CSMA/CA implementation refer to
the CSMA/CA section.

Synchronous Timers

T_ResponseWaitTime.fired()

 This timer event is activated each time the device needs to execute a procedure
involving a request command or a response within a defined time frame. This event will
trigger if no response is received, executing the appropriate actions depending on the
procedure being executed. For example, if the device tries to associate, the coordinator
must respond to the request inside the response wait time frame.
 The constant variable aResponseWaitTime defines the time frame in symbols for
a device to receive a response for its request.
 In the current status of the implementation, the response wait time event is only
used when the device wishes to associate with the PAN coordinator. If the device does
not receive an association response command, the MAC layer will signal the upper
layer by issuing the MLME_ASSOCIATE.confirm primitive with the status of
NO_DATA.

T_ackwait.fired()

 This event is triggered when a device sends a transmission requesting an
acknowledgment from the destination. The variable mac_PIB.macAckWaitDuration in
the MAC PIB defines the maximum wait time in symbols to receive an
acknowledgment, before initiate a retransmission or report a transmission failure.
 The main purpose of this event is to control the data retransmission and inform
the upper layer about a possible data transmission failure.
 The variables used to control the retransmission procedures are the following:

• send_ack_check – variable stating that the current transmission requires an
acknowledgment;

• retransmit_count – number of retransmissions of the current frame transmission;
• send_indirect_transmission – variable stating that the current transmission is an

indirect transmission and doesn’t require a retransmission if the first
transmission fails;

• ack_sequence_number_check – current transmission frame sequence number.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

58

 The function send_frame_csma() is used to send the next frame in the send
buffer. When the frame is being send the variables send_ack_check,
send_indirect_transmission and ack_sequence_number_check are initialized.

Figure 20 - T_ackwait.fired event flow chart.

3.5.5. Frame Construction

The frame formats are composed of a MHR, a MAC payload and a MFR. The

fields of the MHR appear in a fixed order; however, the addressing fields may not be
included in all frames. The general MAC frame shall be formatted as illustrated in next
figure. [1 pag. 112].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

59

Figure 21 - General MAC frame format.

 The structure definitions and structure size constants used to construct all the
frames are defined in the frame_format.h file under the contrib.tos.system. In the
mac_func.h file there are auxiliary functions used for constructing/retrieving fields that
require bit operations.

 The frame control field is 16 bits length and contains information defining the
frame type, addressing fields and other control flags. This field in constructed using the
following set function located in the mac_func.h file.

uint16_t set_frame_control(uint8_t frame_type,
 uint8_t security,
 uint8_t frame_pending,
 uint8_t ack_request,
 uint8_t intra_pan,
 uint8_t dest_addr_mode,
 uint8_t source_addr_mode)
{
 uint8_t fc_b1=0;
 uint8_t fc_b2=0;
 fc_b1 = ((intra_pan << 6) | (ack_request << 5) | (frame_pending << 4) |
 (security << 3) | (frame_type << 0));
 fc_b2 = ((source_addr_mode << 6) | (dest_addr_mode << 2));
 return ((fc_b2 << 8) | (fc_b1 << 0));

}

Code Example 3 - Mac frame control construction function.

Figure 22 - Format of the frame control field.

Because of the variety of combination that can be used in constructing a frame
we adopted the strategy of using a generic frame format structure for all frames that we
defined as MPDU. The MPDU structure is the following:

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

60

typedef struct MPDU
{

uint8_t length;
uint16_t frame_control;
uint8_t seq_num;
uint8_t data[121];

}MPDU;

Code Example 4 - MPDU structure definition in the frame_format.h.

 The strategy used for the construction of the frame lies on pointing the
corresponding structure to the position zero of the 8 bit data array in the MPDU
structure and so on, so that the frame is built according to the needs. The constants
defined in this file are used for associating the correspondent structure to its byte length.
 The main problem constructing frames is the number of possible combinations
of the Addressing Fields. The definition of these fields is very time consuming due to
the different possibilities, especially in the reception of the frame where the device must
be prepared to process all the different addressing scenarios. The next graph illustrates
the possible combinations with the indication of the address field length in bytes.

INTRA PAN No INTRA PAN

Source Address Field Size (Bytes)

No Short Long No Short Long

No - 2 8 - 4 10
Short 4 6 12 4 8 14 Intra/No intraPAN Destination

Long 8 12 18 10 14 20

Table 14 - Address fields - possible sizes and combinations.

 Size (Bytes)

Addressing Short 4
Addressing Long 10

Intra PAN Source Short 2
Intra PAN Source Long 8

Table 15 - Address fields - size reference.

For example (nesC code), if we want to build a data frame with a short
destination address and a long source address we have to create first an MPDU variable
and its correspondent MPDU type pointer. Then, we also have to create a structure
pointer for the short destination and another for the long source addressing fields.

The next code example shows the relevant structure definitions in the
frame_format.h relevant for this example.

#define DEST_SHORT_LEN 4
#define SOURCE_LONG_LEN 10

typedef struct dest_short
{
 uint16_t destination_PAN_identifier;
 uint16_t destination_address;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

61

}dest_short;

typedef struct source_long
{
 uint16_t source_PAN_identifier;
 uint32_t source_address0;
 uint32_t source_address1;
}source_long;

Code Example 5 - frame_format.h structure definition example.

 MPDU frame_pkt;
 MPDU * frame_pkt_ptr;
 dest_long *dest_long_ptr;
 source_short *source_short_ptr;

 frame_pkt_ptr = (MPDU *) &frame_pkt;

 dest_short_ptr = (dest_short *) &frame_pkt->data[0];

 source_long_ptr = (source_long *) &frame_pkt->data[DEST_SHORT_LEN];

 frame_pkt->length = data_len + msduLength + MPDU_HEADER_LEN;
 frame_pkt->frame_control = set_frame_control(TYPE_DATA,0,0,get_txoptions_ack(TxOptions)
 ,0, SHORT_ADDRESS, LONG_ADDRESS);
 frame_pkt->seq_num =/*Data Sequence Number*/;

 dest_short_ptr->destination_PAN_identifier= /*Destination PAN Address*/;
 dest_short_ptr->destination_address=/*Destination Address*/;

 source_long_ptr->source_PAN_identifier=/*Source PAN Address*/;
 source_long_ptr->source_address0=/*Source Address*/;
 source_long_ptr->source_address1=/*Source Address*/;

Code Example 6 - Data frame construction example.

 In the MacM.nc file all the functions that start with create_<something> are used
in the construction of frames.

 The data frame format is illustrated in [1 pag.120], the command frame format in
[1 pag.122] and the beacon frame in [1 pag.116].

3.5.6. Beacon Management

Creating Beacon (Coordinators Only)

 The function create_beacon() is used by the PAN coordinator to construct the
beacon frame that will be ready to send in the next bi_fired event, indicating the
beginning of a new superframe. The beacon contains information about the PAN, such
as beacon intervals, beacon orders and other information included in the superframe
specification; information about the allocated/deallocated GTS time slots on the CFP in

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

62

the GTS fields; information about the devices that have pending data in the coordinator
in the pending address fields and other data in the beacon payload.

 The next figure represents the structure of a beacon [1 pag. 116]

Figure 23 - Beacon frame format

 The beacon frame is divided into two parts: the MHR that contains the frame
control field containing the general frame information, the beacon sequence number and
the addressing fields; and the specific beacon MAC payload that contains the
superframe specification field, the GTS fields, pending address fields and optional
beacon payload data.
 The superframe specification field, as seen in the next figure, can be constructed
using the function set_superframe_specification implemented in the mac_func.h file and
the values can be retrieved with the respective get functions implemented in the same
file.

Figure 24 - Superframe Specification Format

 The header of the GTS fields is composed by three fields: the GTS specification
with the information of the number of GTS descriptors in the GTS list and the GTS
permit; the GTS directions field with the information about the directions of the
allocations, if there are GTS descriptor on the list; and the GTS list of descriptors.

Figure 25 - GTS fields format.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

63

Figure 26- GTS specification field format.

Figure 27 - GTS directions field format.

 The GTS descriptors contain information about the short address of the devices
allocation GTS, the start slot in the CFP and the number of slots allocated.
 Besides the allocated GTS slots, the GTS descriptors list include the deallocated
GTS with the GTS descriptors containing information about the device address and with
zero values in the start slot and length.

Figure 28 - GTS descriptor field format.

 The pending addresses field contains information of the data stored in the
coordinator. This data must be requested by the receiver device in order to be sent. To
construct the pending address list the indirect_trans_queue buffer is read and the
correspondent address is created for each valid entry.

Figure 29 - Pending addresses field format.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

64

Figure 30 - Pending address specification field format.

 The next flow chart represents the steps for building a beacon frame in the
create_frame function. The procedure for building the pending addresses list is
described in the Pending Data / Indirect Transmission section.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

65

Figure 31 - Beacon creation flow chart.

 After the creation of the beacon the frame is stored in the variable
mac_beacon_txmpdu and will be ready to send.
 The creation of the beacon only takes place if the device is a PAN coordinator
and after the next higher layer, above the MAC, issues the MLME-START.request
primitive. The beacon generation procedure is described in [1 pag.100].
 The next figure illustrates the sequence of messages between layers when the
PAN coordinator starts the beacon generation [1 pag 180].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

66

Figure 32 - Beacon generation sequence chart.

 The next figure shows a sample transmission sequence of beacons.

Figure 33 - Beacon transmission example.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

67

Processing beacon (Devices)

 In the beginning of each superframe interval, the devices receive a beacon frame
in order to synchronize and to update the PAN information. After the processing of the
beacon, the upper layer is signalled with the information retrieved from the beacon
processing.
 The processing of the beacon information is made in the process_beacon(MPDU
*packet) function. This processing is divided into the following steps:

1. Processing of the superframe specification field in order to read the values of

the beacon order, the superframe order and the final cap slot;
2. Compute the superframe duration, the beacon interval, the time slot and the

backoff period in symbols;
3. Process the GTS characteristics and, if there are GTS descriptors in the GTS

list, compute each one in order to verify and search the correspondent device
address. If the address is present the device evaluates the descriptor
information and updates its own GTS information, either for an allocation,
deallocation or a confirmation of the current allocation request. This update
is very important because the time slot(s) assigned to the device may change
due to a reorder of the GTS descriptors on the PAN coordinator;

4. Process the pending addresses information;
5. Build the PAN descriptor information to inform the upper layer;
6. Synchronize the device asynchronous timer with the PAN coordinator. In

order to have a correct synchronization the device must take into account the
transmission time, transmission delay, the packet reception time and the
packet processing time. On each timer.fire() event in the TimerAsync
component a counter is set to zero when the transceiver starts receiving data
or the SFD pin goes high. When the device wants to synchronize it reads the
SFD counter (process_frame_tick_counter variable in the timer.fire()
function) to compute the processing time of the frame. The synchronization
also takes into account the possible variables so that the internal time of the
TimerAsync component can be set with the appropriate start value.

7. Signal the upper layer using the MLME_BEACON_NOTIFY.indication
primitive with the PAN descriptor information.

 The MLME_BEACON_NOTIFY.indication primitive has the following semantic
[1 pag 75]:

event result_t indication(uint8_t BSN,
 PANDescriptor pan_descriptor,
 uint8_t PenAddrSpec,
 uint8_t AddrList,
 uint8_t sduLength,
 uint8_t sdu[]);

Code Example 7 - MLME_BEACON_NOTIFY indication event .

 The BSN is the beacon sequence number, the pan_descriptor is a structure with
the description of the PAN, the PenAddrSpec contains the pending addresses
specification field and the AddrList the address list, the sduLength is the number of

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

68

bytes in the MAC payload and the sdu is the MAC payload that will be transferred to
the upper layer.
 The PANDescriptor structure is defined in the mac_func.h file under the
contrib.hurray.tos.lib.mac directory.
 The next table describes the PANDescriptor attributes [1 pag 76]:

Attribute Type Range Description
CoordAddrMode Integer 0 x 02–0 x 03 The coordinator addressing mode corresponding to

the received beacon frame. This value can take one
of the following values:
2 = 16 bit short address.
3 = 64 bit extended address.

CoordPANId Integer 0 x 0000–0 x ffff The PAN identifier of the coordinator as specified
in the received beacon frame.

CoordAddress Device
address

As specified by
the
CoordAddrMode
parameter

The address of the coordinator as specified in the
received beacon frame.

LogicalChannel Integer Selected from
the available
logical channels
supported by the
PHY

The current logical channel occupied by the
network.

SuperframeSpec The superframe specification as specified in the
received beacon frame.

GTSPermit Boolean TRUE or
FALSE

TRUE if the beacon is from a PAN coordinator
that is accepting GTS requests

LinkQuality Integer 0 x 00–0 x ff The LQ at which the network beacon was
received. Lower values represent lower LQI

TimeStamp Integer 0 x 000000–0 x
ffffff

The time at which the beacon frame was received,
in symbols. This value is equal to the timestamp
taken when the beacon frame was received

SecurityUse Boolean TRUE or
FALSE

An indication of whether the received beacon
frame is using security

ACLEntry Integer 0 x 00–0 x 08 The macSecurityMode parameter value from the
ACL entry associated with the sender of the data
frame

SecurityFailure Boolean TRUE or
FALSE

TRUE if there was an error in the security
processing of the frame or FALSE otherwise

Table 16 - PAN Descriptor attributes description.

3.5.7. Scanning through channels

This version of the implementation (v1.0) does not implement the channel scan
mechanism. The scanning procedure is described in [1 pag. 145].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

69

3.5.8. Association and Disassociation

 The association and disassociation procedures are described in [1 pag 149].
 The association procedure occurs when the device wants to associate with a
PAN coordinator. To proceed with the association the device must scan all the channels
for radio transmissions, so that it can select the most suitable PAN. The association is
necessary if the device wants to transmit data in the PAN. As a result of the association
mechanism, the device is assigned with a short address allowing it to transmit in the
PAN and, depending on the network topology, transmit to other PANs and devices.

 The association request frame command is constructed in the
create_association_request_cmd function that is called after the upper layer issue the
MLME_ASSOCIATE.request primitive.
 Besides the standard MAC frame fields, the frame has an addressing field, a
command frame identifier field and the capability information of the device. The frame
is illustrated in the next figure [1 pag 124]:

Figure 34 - Association request frame format.

 The capability information field, as seen in the next figure, can be constructed
using the function set_capability_information implemented in the mac_func.h file.

Figure 35 - Capability information field format.

 Upon the reception of the association request command frame, the coordinator
will process the command in the indication_cmd function that will signal the upper
layer using the MLME_ASSOCIATE.indication primitive. The upper layer will process
the request and will issue the MAC layer with the MLME_ASSOCIATE.request
primitive stating the result of the request. If the request is successful the coordination
will call the create_association_response_cmd function in order to construct the
association response command. The command is stored in the indirect transmission
buffer (indirect_trans_queue) and will be transmitted after a data request from the
associating device.
 Besides the update of the MAC PIB, the MAC layer of the device stores the
association parameters in the following variables.

• uint8_t a_LogicalChannel – Logical channel of the PAN;
• uint8_t a_CoordAddrMode – Coordination address mode;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

70

• uint16_t a_CoordPANId – Coordinator PAN id;
• uint32_t a_CoordAddress[2] – Coordinator address, depending on the address

mode;
• uint8_t a_CapabilityInformation – Capability information of the device when the

association request was sent.
• bool a_securityenable – Security enable stating if the device is using security or

not.

 The next charts illustrate the MAC-PHY interaction when association occurs,
either from the device that is trying to associate and the coordinator that is associating.
[1 pag 182-183].

Figure 36 - Device association message sequence chart.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

71

Figure 37 - Coordinator association message sequence chart.

 The next figure shows a sample transmission sequence of a successful
association request followed by a data transmission.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

72

Figure 38 - Association mechanism example.

 The disassociation request command frame can be generated either by the
device, trying to leave the PAN, or by the coordinator, wishing that the device leaves
the PAN. After the disassociation procedure the device will lose its short address and
will not be able to communicate in the PAN and the coordinator will update the list of
associated devices, but it call still store the device information for a future re-
association.
 The disassociation command frame if constructed in the
create_disassociation_notification_cmd function.

 The next figure shows a sample transmission sequence of a disassociation
request.

Figure 39 - Disassociation mechanism example.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

73

3.5.9. CSMA/CA

 The CSMA/CA algorithm is used when the device wants to transmit frames
within the CAP. The transmission of beacon frames, acknowledgement frames and data
frames in the CFP will not use the CSMA/CA algorithm instead they will be send
directly without any channel assessment. The CSMA/CA mechanism is described in [1
pag. 144].
 The application of the algorithm is illustrated in the following flow chart.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

74

Figure 40 - CSMA/CS algorithm.

 The implementation of the CSMA/CA involves several functions and global
variables used in conjunction with the TimerAsync.backoff_fired() timer events.
 The function send_frame_csma is called to start the application of the
CSMA/CA mechanism and if the channel is clear and there is data to be send it will

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

75

send the frame. If there is no data in the send_buffer, the send procedure will abort. The
function send_frame_csma is called in the following cases:

• When a frame is created and it is already in the send buffer ready to be
send;

• When the last frame was successfully transmitted and there is still data in
the buffer ready to be send;

• In the beginning of the CAP when the TimerAsync.bi_fired() timer event
fires;

• In the retransmission of a frame requiring an acknowledgment;
• After a failed transmission and there is still data in the buffer ready to be

send.
 When the function is called, it will check if the device is in the CFP and if there
is data ready to be sent. If the conditions check true, the function will set the Boolean
variable performing_csma_ca to true, meaning that the application of algorithm is in
progress, and will call the perform_csma_ca() function to proceed with the application
of the algorithm. Although the receiver of the device is enabled during the channel
assessment portion of this algorithm, the device shall discard any frames received
during this time. At this point the algorithm is in step 1 (Last figure).
 The function perform_csma_ca() will choose the application of the slotted or the
unslotted version.
 In the unslotted version the function will call the function init_csma_ca() to
initialize the variables NB (number of backoffs) and BE (backoff exponent). The
function will also initialize the variable delay_backoff_period with a random value and
will set the csma_delay Boolean variable to start the delay mechanism, implemented in
the TimerAsync.backoff_fired() timer event.
 In the slotted version, the function calls the init_csma_ca() to initialize the
variables needed for the application of the algorithm, namely the contention window
(CW), the number of backoffs (NB) and other auxiliary variables. The backoff exponent
(BE) is set depending on the battery life parameter. The boolean variable
csma_locate_backoff_boundary is set to true triggering the location on the backoff
boundary implemented in the TimerAsync.backoff_fired() timer event.
 At this point the algorithm is in step 2 (Last figure).
 The next steps of the algorithm will be triggered in the
TimerAsync.backoff_fired() timer event depending on the state of the auxiliary variables
of the implementation.
 The next figure shows the flow chart for the perform_csma_ca() function.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

76

Figure 41 - perform_csma_ca() function flow chart.

 The TimerAsync.backoff_fired() timer event will be triggered on every backoff
of the CAP and will call the functions start_csma_ca_slotted() /
perform_csma_ca_slotted() or perform_csma_ca_unslotted() for the application of the
slotted or unslotted version respectively.
 The auxiliary variables used in the implementation of the timer event are the
following:

• csma_delay – Used in the step 2 of the algorithm to trigger the count down of
the delay backoff periods;

• csma_cca_backoff_boundary– Used in the step 3 of the algorithm after the delay
period is over to perform the channel assessment;

• delay_backoff_period – Number of backoff interval of the delay period;
• csma_locate_backoff_boundary – Used to locate the backoff boundary of the

first channel assessment in the slotted version of the algorithm.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

77

Figure 42 - backoff_fired event flow chart.

 The slotted version of the algorithm implements two functions; the
start_csma_ca_slotted() and the perform_csma_ca_slotted(). The first function is called
once when the csma_locate_backoff_boundary is set to 1 and it is to set the
delay_backoff_period variable with a random value before entering the step 2 of the
algorithm.

Figure 43 – start_csma_ca_slotted() function flow chart.

 The function perform_csma_ca_slotted() implements the final steps of the
algorithm. This function updates the global variables of the algorithm and sets the timer

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

78

auxiliary variables, so that it can be called several times to accomplish the application of
the CSMA/CA. The function TOSH_READ_CC_CCA_PIN(), available in TinyOS, is
used to perform the clear channel assessment and evaluate if the channel is clear (1) or
not (0). The next figure illustrate the operation of the perform_csma_ca_slotted()
function.

Figure 44 - perform_csma_ca_slotted() function flow chart.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

79

3.5.10. GTS Management

 The GTS Management procedures are described in [1 pag 159].
 The GTS is a dedicated time slot allocated in the CAP by the PAN coordinator.
There are two types of allocations, for reception and for transmission. Each allocation
can only be used for reception or transmission. The PAN coordinator receives and
processes the GTS allocation requests up to the maximum of seven time slots allocated.
Each device associated to the PAN can only allocate one receive slot and one transmit
slot. The allocated receive slot is used for the reception of transmissions by the PAN
coordinator and the allocated transmit slot is used to transmit to the coordinator. The
management of the GTS is made in the coordinator and transmitted to the devices in the
GTS fields of the beacon. The deallocation of a GTS time slot can be requested by the
device or by the coordinator. The coordinator can deallocate a device by simply remove
it from the GTS list, without any reason or based in the inactivity of the time slot. Every
time a device is deallocated, the coordinator updates the GTS descriptor list with the
information of the device GTS descriptor with the slot length of zero.
 All the transmissions in an allocated GTS use short addressing fields. The device
allocates a GTS time slot by issuing the MLME_GTS.request, to the MAC layer, with its
GTS characteristics descriptions that include the following information:

• The GTS time slot length;
• The direction of the allocation;
• Type of request (allocation/deallocation).

 The function set_gts_characteristics implemented in the mac_func.h file is used
to construct the 8 bit GTS characteristics fields. The mac_func.h also implements the
respective get functions used to retrieve the respective information from the field.

GTS Allocation

 Upon the reception of the GTS allocation request, the PAN coordinator will
update it GTS descriptors database, implemented in the GTS_db array.
 The GTS_db contains all the device GTS descriptors that have GTS allocations.
Each element of the array is defined in the GTSinfoEntryType containing information
about the incremental id of the GTS allocation, stating slot in the CFP, number of slots
allocated, direction of the allocation, the address of the allocated device and the
expiration counter.

typedef struct
{
 uint8_t gts_id;
 uint8_t starting_slot;
 uint8_t length;
 uint8_t direction;
 uint16_t DevAddressType;
 uint8_t expiration;

}GTSinfoEntryType;

Code Example 8- GTSinfoEntryType structure definition.

 The next charts illustrate the MAC-PHY interaction when GTS allocation
request occurs. [1 pag 84].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

80

Figure 45 - GTS allocation request flow chart.

 The next figure shows a sample transmission sequence of a GTS allocation
request.

Figure 46 – GTS allocation mechanism example.

 As seen in the above figure, the device successfully requests a GTS allocation.
The GTS descriptors field of the next beacon confirm its allocation information.

GTS Deallocation

 The GTS deallocation procedure in described in [1 pag 162].
 Upon the reception of the deallocation request the PAN coordinator will update
the GTS descriptor list removing the previous allocated slot and rearranging the

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

81

remaining allocation starting slots. The arrangement of the time slots is made in the
result_t remove_gts_entry(uint16_t DevAddressType) function located in the MAC
layer. The arrangement of the CFP consists in shifting right the allocated GTS
descriptors witch have a starting slot less that the recent deallocated GTS descriptor and
consequently the final_CAP_slot variable is updated. The next figure illustrates an
example of this procedure [1 pag. 163].

Figure 47 - CFP defragmentation on GTS deallocations.

 In the above figure, the 1st point represent the three allocated GTS. The 2nd point
shows the deallocation of the GTS 2 that start on the 10th time slot and with duration of
4 time slots. The final point show the GTS 3 shifted right 4 time slots. The final CAP
slot that was 8 with on the 1st point now is 12 on the 3rd.

 The PAN coordinator will monitor the GTS activity and if there are no
transmissions during a defined number of time slots the GTS allocation expires.
The expiration occurs if there is no data frame is received and no acknowledgement by
the device or the coordinator respectively, on every 2*n superframes. The n is defined
as:

• n = 2 (8-macBeaconOrder) , if 0 ≤ macBeaconOrder ≤ 8
• n = 1 , if 9 ≤ macBeaconOrder ≤ 14

 The deallocated GTS descriptor will move to the GTS deallocated descriptors
database, defined as GTS_db_null and will appear in the beacon with the starting slot

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

82

equal to zero. Each element of the GTS_db_null array is defined as a
GTSinfoEntryType_null variable that has the following attributes. A GTS identification
number, a starting slot equal to zero, the duration of time slots, the deallocated device
address and the persistence time counter with the number of superframes after witch the
PAN coordinator will remove the descriptor from the beacon. The persistence of the
descriptos is defined in the aGTSDesPersistenceTime constant variable.

typedef struct
{
 uint8_t gts_id;
 uint8_t starting_slot;
 uint8_t length;
 uint16_t DevAddressType;
 uint8_t persistencetime;

}GTSinfoEntryType_null;

Code Example 9- GTSinfoEntryType_null structure definition.

 The next charts illustrate the MAC-PHY interaction when GTS deallocation
request occurs. [1 pag 84].

Figure 48 - GTS deallocation request flow chart.

The next figure shows a sample transmission sequence of a GTS deallocation request.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

83

Figure 49 – GTS deallocation mechanism example.

 As seen in the above figure, the device successfully request a GTS deallocation.
The next beacon will not contain the deallocated GTS descriptor and the device stops its
transmissions. Note that the GTS descriptors in the beacon were rearranged and the
device 0x0002 that was transmitting in the 14th slot now is transmitting in the 15th.

3.5.11. Pending data / Indirect Transmissions

 The pending data mechanism is used by the PAN coordinator to inform, the
devices associated, that they have data pending. The pending data information is
described, in the beacon, on the pending data fields. A device will know that it has
pending data by examining the beacon payload. The device can request the pending data
by sending a data request command frame. Upon receiving the request, the coordinator
will search the indirect transmissions buffer for the destination address and send the
frame if it finds it. The coordinator ignores the request if it does not find the correct
address.
 The data extraction mechanism is described in [1 pag. 155].
 The indirect transmissions are stored in the indirect_trans_queue buffer, on the
coordinator, and each message stays in the buffer for a defined amount of superframes.
 When the coordinator is constructing the beacon, if there are pending addresses
to be send, it will construct a list containing there addresses. The following diagram
illustrates the construction of the pending addresses list if the indirect_trans_count
variable, containing the number of pending addresses, is greater than zero. The variables
short_addr_pending and long_addr_pending contains the number of frames with short
and long destination addressing fields respectively. The add processes in the next

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

84

diagram, indicate that the address is copied to the beacon payload and it length is
updated. In the final procedure the pending addresses specification field must be
updated with the short and long counters. In the address list, the short addresses must
appear first and that is why the buffer is searched twice, the first time is to count and
construct the short address list and the second is for the long addresses.

Figure 50 - Pending address list construction diagram.

 The next figure shows a sample transmission sequence of data request.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

85

Figure 51 – Data request example.

3.6. Auxiliary Files (Under contrib.hurray.tos.lib.mac):

mac_const.h

 This file contains data structures definition used in the MAC and protocol
constants definition related with the MAC layer along with auxiliary constants.
 The MAC protocol constants defined are the described in the next table. [1 pag.
134]. Note that some of these constants assignments make use of PHY constants
defined in the phy_const.h file under the contrib.hurray.tos.lib.phy directory.

Constant Value Description
aBaseSlotDuration 60 The number of symbols forming a superframe

slot when the superframe order is equal to 0
aBaseSuperframeDurat
ion

aBaseSlotDuration *
aNumSuperframeSlot

s

The number of symbols forming a superframe
when the superframe order is equal to 0

aMaxBE 5 The maximum value of the backoff exponent in
the CSMA-CA algorithm.

aMaxBeaconOverhead 75 The maximum number of octets added by the
MAC sublayer to the payload of its beacon
frame

aMaxBeaconPayloadLe
ngth

aMaxPHYPacketSize
-

aMaxBeaconOverhea
d

The maximum size, in octets, of a beacon
payload

aGTSDescPersistenceT
ime

4 The number of superframes in which a GTS
descriptor exists in the beacon frame of a PAN
coordinator.

aMaxFrameOverhead 25 The maximum number of octets added by the
MAC sublayer to its payload without security.

aMaxFrameResponseTi
me

1220 The maximum number of CAP symbols in a
beaconenabled PAN, or symbols in a
nonbeacon-enabled PAN, to wait for a frame
intended as a response to a
data request frame.

aMaxFrameRetries 3 The maximum number of retries allowed after a
transmission failure.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

86

aMaxLostBeacons 4 The number of consecutive lost beacons that
will cause the MAC sublayer of a receiving
device to declare a loss of synchronization.

aMaxMACFrameSize aMaxPHYPacketSize
-

aMaxFrameOverhead

The maximum number of octets that can be
transmitted in the MAC frame payload field.

aMaxSIFSFrameSize 18 The maximum size of an MPDU, in octets, that
can be followed by a short interframe spacing
(SIFS)

aMinCAPLength 440 The minimum number of symbols forming the
CAP. This ensures that MAC commands can
still be transferred to devices when GTSs are
being used. An exception to this minimum shall
be allowed for the accommodation of the
temporary increase in the beacon frame length
needed to perform GTS maintenance

aMinLIFSPeriod 40 The minimum number of symbols forming a
long interframe spacing (LIFS) period.

aMinSIFSPeriod 12 The minimum number of symbols forming a
SIFS period.

aNumSuperframeSlots 16 The number of slots contained in any
superframe.

aResponseWaitTime 32 *
aBaseSuperframeDur

ation

The maximum number of symbols a device
shall wait for a response command to be
available following a request command.

aUnitBackoffPeriod 20 The number of symbols forming the basic time
period used by the CSMA-CA algorithm.

Table 17 - Protocol MAC layer constants description.

The next table describes auxiliary constants used in the MAC layer.

Constant Value Description
TYPE_BEACON 0 Beacon type definition.
TYPE_DATA 1 Data type definition.
TYPE_ACK 2 Acknowledg type definition.
TYPE_CMD 3 Command type definition.
SHORT_ADDRESS 2 Short address mode definition.
LONG_ADDRESS 3 Long address mode definition.
RESERVED_ADDRESS 1 Reserved address mode definition.
NUMBER_TIME_SLOTS 16 Number of time slots in the superframe.
ACK_LENGTH 5 Length of the acknowledge frame.
MAX_GTS_BUFFER 7 GTS buffer maximum size.
INDIRECT_BUFFER_SIZE 2 Indirect transmission maximum buffer size.
RECEIVE_BUFFER_SIZE 5 Receive buffer maximum size.
SEND_BUFFER_SIZE 4 Send buffer maximum size
GTS_SEND_BUFFER_SIZE 3 GTS buffer maximum size.
BACKOFF_PERIOD_MS 0.34724 Duration of a backoff period in milliseconds.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

87

BACKOFF_PERIOD_US 347.24 Duration of a backoff period in microseconds.

Table 18 - MAC layer auxiliary constants description.

 The next table describes the structures defined in this file.

Structure Name Attributes Description
macPIB uint8_t macAckWaitDuration;

bool macAssociationPermit;
bool macAutoRequest;
bool macBattLifeExt;
uint8_t macBattLifeExtPeriods;
uint8_t macBeaconPayload
[aMaxBeaconPayloadLength];
uint8_t macBeaconPayloadLenght;
uint8_t macBeaconOrder;
uint32_t macBeaconTxTime;
uint8_t macBSN;
uint32_t macCoordExtendedAddress0;
uint32_t macCoordExtendedAddress1;
uint32_t macCoordShortAddress;
uint8_t macDSN;
bool macGTSPermit;
uint8_t macMaxCSMABackoffs;
uint8_t macMinBE;
uint16_t macPANId;
bool macPromiscuousMode;
bool macRxOnWhenIdle;
uint32_t macShortAddress;
uint8_t macSuperframeOrder;
uint32_t macTransactionPersistenceTime;

MAC PAN Information
Base. [1 pag. 135]

ACLDescriptor uint32_t ACLExtendedAddress[2];
uint16_t ACLShortAddress;
uint16_t ACLPANId;
uint8_t ACLSecurityMaterialLength;
uint8_t ACLSecurityMaterial;
uint8_t ACLSecuritySuite;

ACL entry descriptor [1 pag.
138].
Not Used.

macPIBsec ACLDescriptor macACLEntryDescriptorSet;
uint8_t macACLEntryDescriptorSetSize;
bool macDefaultSecurity;
uint8_t macDefaultSecurityMaterialLength;
uint8_t macDefaultSecurityMaterial;
uint8_t macDefaultSecuritySuite;
uint8_t macSecurityMode;

MAC PAN information Base
security Attributes [1 pag.
138]. Not Used.

PANDescriptor uint8_t CoordAddrMode;
uint16_t CoordPANId;
uint32_t CoordAddress0;
uint32_t CoordAddress1;
uint8_t LogicalChannel;
uint16_t SuperframeSpec;

Description of the PAN, used
to store its characteristic [1
pag. 76].

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

88

bool GTSPermit;
uint8_t LinkQuality;
uint32_t TimeStamp;
bool SecurityUse;
uint8_t ACLEntry;
bool SecurityFailure;

GTSinfoEntryTyp
e

uint8_t gts_id;
uint8_t starting_slot;
uint8_t length;
uint8_t direction;
uint16_t DevAddressType;
uint8_t expiration;

Allocated GTS element type
of each position of the GTS
database maintained by
coordinator.

GTSinfoEntryTyp
e_null

uint8_t gts_id;
uint8_t starting_slot;
uint8_t length;
uint16_t DevAddressType;
uint8_t persistencetime;

Dealocated GTS element
type of each position of the
GTS database maintained by
coordinator.

indirect_transmiss
ion_element

uint8_t handler;
uint16_t transaction_persistent_time;
uint8_t frame[127];

Indirect transmission element
of each position in the
indirect transmission buffer
(indirect_trans_queue).

gts_slot_element uint8_t element_count;
uint8_t element_in;
uint8_t element_out;
uint8_t
gts_send_frame_index[GTS_SEND_BUFFE
R_SIZE];

GTS element of each
position in the gts buffer.
Used by the PAN
coordinator only.

Table 19 - Structure definitions on the mac_const.h file.

mac_enumerations.h

This file contains the enumeration values used in the MAC layer. The following
tables describe the enumerations and their usage.

General MAC enumeration description table [1 pag 110].

Enumeration Value Description

MAC_SUCCESS 0x00 The requested operation was completed successfully. For a
transmission request, this value indicates a successful
transmission.

MAC_BEACON_LOSS 0xE0 The beacon was lost following a synchronization request.
MAC_CHANNEL_ACC
ESS_FAILURE

0xE1 A transmission could not take place due to activity on the
channel, i.e., the CSMA-CA mechanism has failed

MAC_DENIED 0xE2 The GTS request has been denied by the PAN coordinator
MAC_DISABLE_TRX_
FAILURE

0xE3 The attempt to disable the transceiver has failed

MAC_FAILED_SECUR
ITY_CHECK

0xE4 The received frame induces a failed security check according
to the security suite.

MAC_FRAME_TOO_L 0xE5 The frame resulting from secure processing has a length that

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

89

ONG is greater than aMACMaxFrameSize
MAC_INVALID_GTS 0xE6 The requested GTS transmission failed because the specified

GTS either did not have a transmit GTS direction or was not
defined

MAC_INVALID_HAND
LE

0xE7 A request to purge an MSDU from the transaction queue was
made using an MSDU handle that was not found in the
transaction table.

MAC_INVALID_PARA
METER

0xE8 A parameter in the primitive is out of the valid range

MAC_NO_ACK 0xE9 No acknowledgment was received after aMaxFrameRetries.
MAC_NO_BEACON 0xEA A scan operation failed to find any network beacons
MAC_NO_DATA 0xEB No response data were available following a request.
MAC_NO_SHORT_AD
DRESS

0xEC The operation failed because a short address was not
allocated.

MAC_OUT_OF_CAP 0xED A receiver enable request was unsuccessful because it could
not be completed within the CAP.

MAC_PAN_ID_CONFL
ICT

0xEE A PAN identifier conflict has been detected and
communicated to the PAN coordinator.

MAC_REALIGNMENT 0xEF A coordinator realignment command has been received
MAC_TRANSACTION_
EXPIRED

0xF0 The transaction has expired and its information discarded.

MAC_TRANSACTION_
OVERFLOW

0xF1 There is no capacity to store the transaction.

MAC_TX_ACTIVE 0xF2 The transceiver was in the transmitter enabled state when the
receiver was requested to be enabled

MAC_UNAVAILABLE
_KEY

0xF3 The appropriate key is not available in the ACL.

MAC_UNSUPPORTED
_ATTRIBUTE

0xF4 A SET/GET request was issued with the identifier of a PIB
attribute that is not supported.

Table 20 - General MAC enumeration description.

 Disassociation enumeration reasons description table [1 pag 127].

Enumeration Value Description
MAC_PAN_COORD_LEAVE 0x01 The disassociation reason was that the coordinator

wishes the device to leave the PAN.
MAC_PAN_DEVICE_LEAVE 0x02 The disassociation reason was that the device wishes to

leave the PAN.

Table 21 - Disassociation status enumeration decription.

 Command type enumeration description table [1 pag 123].

Enumeration Value Description
CMD_ASSOCIATION_REQUEST 0x01 Association request command type.
CMD_ASSOCIATION_RESPONSE 0x02 Association response command type.
CMD_DISASSOCIATION_NOTIFICATION 0x03 Disassociation notification command

type.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

90

CMD_DATA_REQUEST 0x04 Data request command type.
CMD_PANID_CONFLICT 0x05 PANID conflict notification command

type.
CMD_ORPHAN_NOTIFICATION 0x06 Lost synchronization notification

command type.
CMD_BEACON_REQUEST 0x07 Beacon request command type.
CMD_COORDINATOR_REALIGNMENT 0x08 Coordinator realignment command type.
CMD_GTS_REQUEST 0x09 GTS request command type.

Table 22 - Command type enumerations description.

 Association response enumerations description table [1 pag 126].

Enumeration Value Description
CMD_RESP_ASSOCIATION_SUCCESSFUL 0x00 The association was successful.
CMD_RESP_PAN_CAPACITY 0x01 The association was denied because

the PAN is at full capacity.
CMD_RESP_ACCESS_DENIED 0x02 The association was denied because

the PAN denied access.

Table 23 - Association response status enumerations description.

 Mac PIB attributes enumerations description table used in the MLME_GET and
MLME_SET primitives.

Enumeration Value Description
MACACKWAITDURATION 0x40 The GET/SET reference of the PIB

macAckWaitDuration.
MACASSOCIATIONPERMIT 0x41 The GET/SET reference of the PIB

macAckWaitDuration.
MACAUTOREQUEST 0x42 The GET/SET reference of the PIB macAutoRequest
MACBATTLIFEEXT 0x43 The GET/SET reference of the PIB macBattLifeExt
MACBATTLIFEEXTPERIODS 0x44 The GET/SET reference of the PIB

macBattLifeExtPeriods
MACBEACONPAYLOAD 0x45 The GET/SET reference of the PIB

macBeaconPayload
MACMAXBEACONPAYLOA
DLENGTH

0x46 The GET/SET reference of the PIB
macMaxBeaconPayloadLength

MACBEACONORDER 0x47 The GET/SET reference of the PIB macBeaconOrder
MACBEACONTXTIME 0x48 The GET/SET reference of the PIB

macBeaconTxTime
MACBSN 0x49 The GET/SET reference of the PIB macBSN
MACCOORDEXTENDEDADD
RESS

0x4a The GET/SET reference of the PIB
macCoordExtendedAddress

MACCOORDSHORTADDRES
S

0x4b The GET/SET reference of the PIB
macCoordShortAddress

MACDSN 0x4c The GET/SET reference of the PIB macDSN
MACGTSPERMIT 0x4d The GET/SET reference of the PIB macGTSPermit
MACMAXCSMABACKOFFS 0x4e The GET/SET reference of the PIB

macMaxCSMABackoffs

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

91

MACMINBE 0x4f The GET/SET reference of the PIB macMinBE
MACPANID 0x50 The GET/SET reference of the PIB macPANId
MACPROMISCUOUSMODE 0x51 The GET/SET reference of the PIB

macPromiscuousMode
MACRXONWHENIDLE 0x52 The GET/SET reference of the PIB

macRxOnWhenIdle
MACSHORTADDRESS 0x53 The GET/SET reference of the PIB macShortAddress
MACSUPERFRAMEORDER 0x54 The GET/SET reference of the PIB

macSuperframeOrder.
MACTRANSACTIONPERSIST
ENCETIME

0x55 The GET/SET reference of the PIB
macTransactionPercistenceTime

Table 24 - MAC GET/SET reference PIB enumerations description.

GTS direction enumerations description table.

Enumeration Value Description

GTS_TX_ONLY 0x00 GTS direction from device to coordinator.
GTS_RX_ONLY 0x01 GTS direction from coordinator to device

Table 25 - GTS direction enumeration descriptions.

Auxiliary Files (Under contrib.hurray.tos.system):

frame_format.h

 This file contains the frame structure definitions. All the frames structures used
by the protocol, being command, data, acknowledgment and beacon frames are defined
in this file.

 The next table describes the structures defined in this file:

Structure Name Attributes Description
MPDU uint8_t length;

uint16_t frame_control;
uint8_t seq_num;
uint8_t data[121];

beacon_addr_short uint16_t destination_PAN_identifier;
uint16_t destination_address;
uint16_t source_address;
uint16_t superframe_specification;

beacon_struct uint8_t length;
uint16_t frame_control;
uint8_t seq_num;
uint16_t source_PAN_identifier;
uint16_t destination_address;
uint16_t source_address;
uint16_t superframe_specification;

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

92

beacon_addr_long uint16_t source_PAN_identifier;
uint32_t source_address0;
uint32_t source_address1;
uint16_t superframe_specification;

ACK uint8_t length;
uint16_t frame_control;
uint8_t seq_num;

cmd_association_req
uest

uint8_t command_frame_identifier;
uint8_t capability_information;

cmd_association_resp
onse

uint8_t command_frame_identifier;
uint16_t short_address;
uint8_t association_status;

cmd_disassociation_n
otification

uint16_t destination_PAN_identifier;
uint32_t destination_address0;
uint32_t destination_address1;
uint16_t source_PAN_identifier;
uint32_t source_address0;
uint32_t source_address1;
uint8_t command_frame_identifier;
uint8_t disassociation_reason;

cmd_beacon_request uint16_t destination_PAN_identifier;
uint16_t destination_address;
uint8_t command_frame_identifier;

cmd_gts_request uint16_t source_PAN_identifier;
uint16_t source_address;
uint8_t command_frame_identifier;
uint8_t gts_characteristics;

dest_short uint16_t destination_PAN_identifier;
uint16_t destination_address;

dest_long uint16_t destination_PAN_identifier;
uint32_t destination_address0;
uint32_t destination_address1;

intra_pan_source_sho
rt

uint16_t source_address;

intra_pan_source_lon
g

uint32_t source_address0;
uint32_t source_address1;

source_short uint16_t source_PAN_identifier;
uint16_t source_address;

source_long uint16_t source_PAN_identifier;
uint32_t source_address0;
uint32_t source_address1;

Table 26 - frame_format.h structures descriptions.

 The next table describes the constants defined in this file.

Constant Name Values Description
MPDU_HEADER_LEN 5
DEST_SHORT_LEN 4

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

93

DEST_LONG_LEN 10
INTRA_PAN_SOURCE_SHORT_LEN 2
INTRA_PAN_SOURCE_LONG_LEN 8
SOURCE_SHORT_LEN 4
SOURCE_LONG_LEN 10

Table 27 - frame_format.h constants descriptions.

mac_func.h

 This file contains auxiliary functions used in the implementation of the protocol.
Some functions are used in the construct or retrieve some particular fields in the frame
construction, like the frame control field, that require bit operations.
 The functions defined are the following:

uint8_t set_capability_information(uint8_t alternate_PAN_coordinator, uint8_t
device_type, uint8_t power_source, uint8_t receiver_on_when_idle, uint8_t security,
uint8_t allocate_address)
 Function used to build the 8 bit capability information of the device requesting
an association.

uint16_t set_frame_control(uint8_t frame_type,uint8_t security,uint8_t
frame_pending,uint8_t ack_request,uint8_t intra_pan,uint8_t dest_addr_mode,uint8_t
source_addr_mode)
 Function used to build the frame control of the MAC frames.

uint8_t get_frame_control_dest_addr(uint16_t frame_control)
 Function used to return the type of destination address specified in the frame
control.

uint8_t get_frame_control_source_addr(uint16_t frame_control)
 Function used to return the type of source address specified in the frame control.

bool get_security(uint8_t frame_control)
 Function used to return the security parameter specified in the frame control.

bool get_frame_pending(uint8_t frame_control)
 Function used to return the frame pending parameter specified in the frame
control.

bool get_ack_request(uint8_t frame_control)
 Function used to return the acknowledge request parameter specified in the
frame control.

bool get_intra_pan(uint8_t frame_control)
 Function used to return the Intra PAN request parameter specified in the frame
control.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

94

uint16_t set_superframe_specification(uint8_t beacon_order,uint8_t
superframe_order,uint8_t final_cap_slot,uint8_t battery_life_extension,uint8_t
pan_coordinator,uint8_t association_permit)
 Function used to build the 16 bit beacon superframe duration field.

uint8_t get_beacon_order(uint16_t superframe)
 Function used to return the beacon order parameter specified in the beacon
superframe specification.

uint8_t get_superframe_order(uint16_t superframe)
 Function used to return the superframe order parameter specified in the beacon
superframe specification.

bool get_pan_coordinator(uint16_t superframe)
 Function used to return the PAN coordinator parameter specified in the beacon
superframe specification.

bool get_association_permit(uint16_t superframe)
 Function used to return the association permit parameter specified in the beacon
superframe specification.

bool get_battery_life_extention(uint16_t superframe)
 Function used to return the battery life extension parameter specified in the
beacon superframe specification.

uint8_t get_final_cap_slot(uint16_t superframe)
 Function used to return the final CAP slot parameter specified in the beacon
superframe specification.

uint8_t set_txoptions(uint8_t ack, uint8_t gts, uint8_t indirect_transmission,uint8_t
security)
 Function used to build the 8 bit transmit option field used in the
MCPS_DATA.request primitiv issued by the MAC upper layer.

bool get_txoptions_ack(uint8_t txoptions)
 Function used to return the acknowledgment parameter specified in the data
transmission options.

bool get_txoptions_gts(uint8_t txoptions)
 Function used to return the GTS parameter specified in the data transmission
options.

bool get_txoptions_indirect_transmission(uint8_t txoptions)
 Function used to return the indirect transmission parameter specified in the data
transmission options.

bool get_txoptions_security(uint8_t txoptions)
 Function used to return the security parameter specified in the data transmission
options.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

95

uint8_t set_pending_address_specification(uint8_t number_short, uint8_t
number_extended)
 Function used to build the pending addresses specification fields used in the
beacon payload

uint8_t get_number_short(uint8_t pending_specification)
 Function used to return the number of short addresses of the pending addresses
list.

uint8_t get_number_extended(uint8_t pending_specification)
 Function used to return the number of extended addresses of the pending
addresses list.

uint8_t set_gts_specification(uint8_t gts_descriptor_count, uint8_t gts_permit)
 Function used to build the 8 bit GTS specification field included in the beacon
payload.

uint8_t get_gts_permit(uint8_t gts_specification)
 Function used to return the GTS permit parameter of the GTS specification field.

uint8_t set_gts_descriptor(uint8_t GTS_starting_slot, uint8_t GTS_length)
 Function used to build the 8 bit allocation/ deallocation device descriptor that is
included in the beacon GTS descriptor list..

uint8_t get_gts_descriptor_len(uint8_t gts_des_part)
 Function used to return the length parameter of the GTS descriptor.

uint8_t get_gts_descriptor_ss(uint8_t gts_des_part)
 Function used to return the start slot parameter of the GTS descriptor.

uint8_t set_gts_characteristics(uint8_t gts_length, uint8_t gts_direction, uint8_t
characteristic_type)
 Function used to build the GTS characteristics field used in the beacon payload.

uint8_t get_gts_length(uint8_t gts_characteristics)
 Function used to return the GTS total length parameter of the GTS
characteristics field.

bool get_gts_direction(uint8_t gts_characteristics)
 Function used to return the GTS direction list parameter of the GTS
characteristics field.

uint8_t get_characteristic_type(uint8_t gts_characteristics)
 Function used to return the characteristic type parameter of the GTS
characteristics field.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

96

4. Example Applications

This section refers to the example applications located under
contrib.app.<AppName>Example directory. The objective of these examples is to
provide a demonstration/testing of the protocol functionalities and allowing a simple
understanding of the implementation functions.

On every example the yellow led is on during the active period.

4.1. AssociationExample application

 This simple application is used to illustrate an association/disassociation of a
device. The device starts by trying to synchronize with the beacon. Then it sends an
association request and waits for the association response. After the association
procedure the device already has a short address and enables a timer to start sending
data messages to the coordinator. At the same time the device enables another timer that
will trigger a dissociation request to the coordinator.
 This application is linked directly to the MAC layer. The next figure illustrates
the component wiring to the Mac component.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

97

Figure 52 - AssociationExample component graph.

To complete this example there must be a PAN coordinator device, with an id 1, and
several devices. The PAN coordinator will accept association requests and will reply
with an association response.
The following sniffer output shows this interaction.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

98

Figure 53 - AssociationExample sniffer output.

4.2. GTSManagementExample application

 This simple application demonstrates the usage of the GTS allocation request.
The device already has a manually assigned short address and tries to request a transmit
GTS allocation. After the allocation is successfully acknowledge and the PAN
coordinator updates the GTS descriptors list in the beacon, the device will start to send

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

99

data messages to the coordinator. After 10 superframe counts the device will cease to
transmit data and send a GTS deallocation request. If the device with the short address
0x0002 requests a receive GTS allocation the coordinator will start to send data frames
to that device.
 This application is linked directly to the MAC layer. The next figure illustrates
the component wiring to the Mac component.

Figure 54 - GTSManagementExample component graph.

To complete this example there must be a PAN coordinator device, with an id 1, and
several devices. The PAN coordinator will accept GTS requests up to 7. The devices
will try to allocate a GTS time slot to send data. The allocation will last for 10
superframe periods after which the device will deallocate the time slot. During the
period of the allocation the device will light the green led. The following sniffer output
shows this interaction.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

100

…

…

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

101

Figure 55 - GTSManagementExample sniffer output.

4.3. DataSendExample application

 These simple applications demonstrate the different forms to send a data packet

with several types of transmission options combinations. In this application the devices
already have a short address meaning they are associated with the PAN coordinator.
When the application starts the short address and the PANId is assigned to the device
and a repeat timer starts. On each execution of the timer there are two different
operation modes depending if the device is the coordinator or not. The application starts
to send a message by issuing the MCPS_DATA.request primitive. The transmit options
or TxOptions parameter, last argument of the primitive, define the transmission options
for the data frame, allowing the frame to be send in the GTS or during the CAP period
using the CSMA/CA or like an indirect transmission. The frame can also be send with
an acknowledgment request. The function set_txoptions(ack, gts, indirect_transmission,
security) is used to build the TxOptions 8 bit variable.

This application is linked directly to the MAC layer. The next figure illustrates the
component wiring to the Mac component.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

102

Figure 56 - DataSendExample component graph.

To complete this example there must be a PAN coordinator device, with an id 1, and up
to three normal devices with an id from 2 to 4. The PAN coordinator will send data
packets indirectly. The device descriptors will show in the pending addresses fields of
the beacon. The normal devices will send periodic data packets and if their address is in
the pending addresses descriptor of the beacon, they will request the data packet. Every
time the primitive MCPS_DATA.request is issued by the MAC upper layer the green
led will toggle and when a message is received the red led will toggle. The following
sniffer output shows this interaction.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

103

…

Figure 57 - DataSendExample sniffer output

4.4. SimpleRoutingExample application

 This simple application demonstrates how to route data messages in a cluster
tree topology. Each device sends data messages to the PAN coordinator with the first 2
bytes of the data payload as a routing field with the destination address of the desired
device. When the PAN coordinator receives the data frame, it will read the payload and
create a new data frame with the destination source address of the short address located

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

104

in the 2 bytes of the data payload. The coordinator will insert in the data payload the
number of routed packets. The device already has a manually assigned short address.
This application is linked directly to the MAC layer. The next figure illustrates the
component wiring to the Mac component.

Figure 58 -SimpleRoutingExample component graph.

To complete this example there must be a PAN coordinator device, with an id 1, and
two normal devices one with an id 2 and 3. If the device has an id of 2 it will try to send
data messages to the coordinator, toggling the green led for each packet send. The
coordinator will read the data payload and will send a packet to the mote id 3. This mote
will toggle the red led for each packet received.
The following sniffer output shows this interaction.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

105

Figure 59 - SimpleRoutingExample sniffer output.

TR-061106 An IEEE 802.15.4 protocol implementation (in nesC/TinyOS): Reference Guide v1.0

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

106

5. References

[1] IEEE 802.15.4 Standard-2003, "Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs)", IEEE-SA Standards Board, 2003.

[2] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, D. Culler, “The nesC Language:
A Holistic Approach to Networked Embedded Systems”, in PLDI’03.

[3] www.tinyos.net

[4] Crossbow Technologies INC. http://www.xbow.com

[5] A. Koubaa , M. Alves, E. Tovar, “Lower Protocol Layers for Wireless Sensor
Networks: A Survey”, IPP-HURRAY Technical Report, HURRAY-TR-051101, Nov
2005.

[6] ATmega128L 8-bit AVR Microntroller Datasheet, Atmel ref: 2467MAVR-
11/04, http://www.atmel.com

[7] Chipcon, SmartRF CC2420 Datasheet (rev 1.3), 2005.
http://www.chipcon.com

