

Time-bounded distributed QoS-aware service configuration in heterogeneous
cooperative environments

Luís Nogueira, Luís Miguel Pinho

ABSTRACT

The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to execute services within
the users’ requested Quality of Service levels, particularly in open real-time environments where the characteristics of the computational load cannot
always be predicted in advance but, nevertheless, response to events still has to be provided within precise timing constraints in order to guarantee a
desired level of performance.

This paper proposes a cooperative service execution, allowing resource constrained devices to collectively execute services with their more

powerful neighbours, meeting non-functional requirements that otherwise would not be met by an individual execution. Nodes dynamically group
themselves into a new coalition, allocating resources to each new service and establishing an initial service configuration which maximises the
satisfaction of the QoS constraints associated with the new service and minimises the impact on the global QoS caused by the new service’s arrival.

However, the increased complexity of open real-time environments may prevent the possibility of computing optimal local and global resource
allocations within a useful and bounded time. As such, the QoS optimisation problem is here reformulated as a heuristic-based anytime optimisation
problem that can be interrupted at any time and quickly respond to environmental changes. Extensive simulations demonstrate that the proposed
anytime algorithms are able to quickly find a good initial service solution and effectively optimise the rate at which the quality of the current solution
improves at each iteration of the algorithms, with an overhead that can be considered negligible when compared against the introduced benefits.

Keywords

Distributed systems, Dynamic real-time systems, Quality of service, Anytime algorithms

1. Introduction

Real-time computing systems were originally developed to

support safety critical, mission critical, or business critical control

applications characterised by stringent timing constraints and,

indeed, much of real-time computing is still used for these types
of applications. In these systems, missing a single deadline can

jeopardise the entire system behaviour or even cause catastrophic

consequences. Hence, they need to be designed under worst-case

assumptions and executed with predictable kernel mechanisms to

meet the required performance in all anticipated scenarios.
While the high cost of such an approach is acceptable for

applications with dramatic failure consequences, it is no longer

justified in a growing number of new real-time systems in areas
such as multimedia, automotive information and entertainment

systems, mobile phone networks, robotics, and radar tracking. A

deadline miss does not constitute a system or application failure
but it is only less satisfactory for the user and, as such, the approach

is generally regarded as cheaper and more flexible. In fact, in
order to satisfy a set of constraints related to weight, space, and

energy consumption, these systems are typically built using small
microprocessors with low processing power and limited resources.

The challenge is how to efficiently execute applications in these

new embedded real-time systems while meeting non-functional
requirements, such as timeliness, robustness, dependability,

performance etc. This is where QoS management applies. QoS-
aware applications have an important property; they can perform

at degraded levels and still satisfy the users to a certain degree.
This property is quite different from traditional applications which

either perform at a given quality level or not at all.
Reserving resources is basic for supporting QoS mechanisms.

An application cannot provide stable QoS characteristics if it does

not have some guarantees on the available amount of resources.

The operating system or middleware reserves a portion of the

system’s resources for an application, which then has to provide
a predefined stable output quality.

However, the move from the traditional self-enclosed real-time
system to open real-time systems is also one of moving from

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

static to dynamic environments [24,20]. Open real-time systems

allow a mix of independently developed real-time and non real-

time applications to coexist in the same system. As such, the

set of applications to be executed and their aggregate resource

and timing requirements are unknown until runtime, implying

that accurate optimisation models are then difficult to obtain

and quickly become outdated. The solution is to make these new

real-time systems adaptable to the environment, thus capable to

react to changes in the operating conditions by acting on the

applications’ and system’s parameters.

Nevertheless, an increasing number of real-time applications

need a considerable amount of computation power and are push-

ing the limits of traditional data processing infrastructures [63].

Consider, for example, the real-time stream processing systems

described in [41,15,59]. The quantity of data produced by a vari-

ety of data sources and sent to end systems for further processing

is growing significantly, increasingly demanding more processing

power, and the challenges become even more critical when a coor-

dinated content analysis of data sent from multiple sources is nec-

essary [15]. Thus, with a potentially unbounded amount of stream

data and limited resources, some of the processing tasks may not

be satisfyingly answered, even within the users’ minimum accept-

able QoS levels [59].

In this context, a cooperative QoS-aware execution of resource

intensive services among neighbour nodes seems a promising

solution to address these increasingly complex demands on re-

sources and desirable performance. The CooperatES (Cooperative

Embedded Systems) framework [46–48] facilitates the cooperation

among neighbours when a particular set of QoS constraints can-

not be satisfyingly answered by a single node. Nodes dynamically

group themselves into a new coalition, allocating resources to each

new service and establishing an initial Service Level Agreement

(SLA). The proposed SLA maximises the satisfaction of the QoS con-

straints associated with the new service and minimises the impact

on the global QoS caused by the new service’s arrival [46,47].

However, the increased complexity of dynamic open scenarios

may prevent the possibility of computing optimal local and global

resource allocations within a useful and bounded time, as the

optimal level of deliberation varies from situation to situation. This

is true for many real-time applications, where it may be preferable

to have approximate results of a poorer but acceptable quality

delivered on time, to late results with the desirable optimal quality.

For example, it is better for a collision avoidance system to issue a

timely warning together with an estimated location of the obstacle

than a late description of the exact evasive action. Another example

is video and sound processing. While poorer quality images and

voices on a timely basis may be acceptable, late frames and long

periods of silence often are not. Other examples can be found

in route optimisation of automated vehicles [64,61], computer

games [25], and real-time control [5].

It is therefore beneficial to build systems that can trade

off the computational cost for the quality of the achieved

solution [68]. This paper reformulates the distributed resource

allocation problem as an anytime optimisation problem with a

range of acceptable solutions with varying qualities and whose

deliberation time is dynamically imposed as a result of emerging

environmental conditions [48].

Nodes start by negotiating partial, acceptable service proposals

that are later refined if time permits, in contrast to a traditional

QoS optimisation approach that either runs to completion or is not

able to provide a useful solution. At each iteration, the proposed

QoS optimisation tries to find a new feasible set of QoS levels with

an increasing utility. This improvement is larger at the early stages

of computation and diminishes over time.

Thanks to the anytime nature of the proposed approach, it is

possible to interrupt the QoS optimisation process at any point in

its execution and still be able to obtain a service solution and a

measure of its quality, which is expected to improve as the run

time of the algorithms increases. The binary notion of correctness

associated with traditional QoS optimisation algorithms is then

replaced by a set of quality measured outputs. For the remainder of

this paper, the solution’s quality measure indicates how close the

offered QoS level is to the user’s desired QoS level.

The rest of this paper is organised as follows. The next section

analyses related work. Section 3 describes our model and used

notation, followed by a detailed description of the structure of

the proposed framework for a QoS-aware cooperative execution

of resource intensive services in Section 4. Section 5 presents

a generic QoS description scheme that guarantees information

consistency and compatibility in a community of distributed

heterogeneous nodes. In Sections 6 and 7, the proposed anytime

approach for a cooperative service execution’s configuration

that maximises the user’s satisfaction with provided service is

described and validated in detail. Section 8 presents the results

of extensive simulations conducted, with the main objectives of

analysing the performance of the proposed anytime approach and

comparing it against the traditional versions of the algorithms.

Finally, Section 9 concludes the paper.

2. Related work

Traditional QoS optimisation algorithms often assumed that for

a given invocation of a task, the quality of provided service for

a particular amount of resources was constant. While this may

be sufficient for some applications, there are others (e.g. radar

tracking, multimedia, etc.) where some environmental factors

outside the direct control of the system affect the fixed relationship

between the provided level of service and resource requirements.

As such, mechanisms for arbitration of QoS levels based on the

concept of flexible resource requirements have been studied

extensively either at individual nodes or distributed environments.

The concept of online admission control has been applied to

resource reservation for dynamically arriving tasks and several

efforts appear in the context of real-time operating systems and

networks research. Relevant work can be found in [62,44,28,56].

At the network level, scheduling algorithms for package

deliberation provide specific quality levels [11], while resource

reservation protocols such as the Resource ReSerVation Protocol

(RSVP) [67] provide support for end-to-end resource reservation

for specific sessions. DiffServ and IntServ [6] are examples of IETF

standards that integrate RSVP for the support of real-time as well

as the current non real-time service in IP networks.

The Real-Time Transport Protocol (RTP) [60] is a transport

protocol for carrying real-time traffic flows in an IP network. It

provides a standard packet header format which gives sequence

numbering, media-specific time stamp data, source identification,

and payload identification, among other things. RTP is usually

carried using UDP. RTP is supplemented by the Real-Time Transfer

Control Protocol (RTCP), which carries control information about

the current RTP session. RTP do not address the issue of resource

reservation but relies on reservation protocols such as RSVP.

However, most of this research has been focused on low-

level system mechanisms. While individual resource management

is an important factor for an efficient QoS management, we

believe that it is not sufficient for the ultimate end-users who

experience the resulting QoS. It is known that different users

might tolerate different levels of service, or could be satisfied with

different quality combination choices. In order to achieve the users’

acceptance requirements and to satisfy the imposed constraints, a

QoS-aware resource management must support QoS negotiation,

admission, and reservation mechanisms in an integrated and

accessible way.

Jensen et al. proposed a soft real-time scheduling technique

based on application benefit [27]. Each application specified a

benefit curve that indicated the relative benefit to be obtained
by scheduling the application at various times with respect to its

deadlines. The goal was to schedule applications so as to maximise

an overall system’s benefit. While this approach is intuitively very

appealing, it is computationally intractable.

Nevertheless, the work of Jensen et al. led to the adoption

of utility functions to represent varying satisfaction with service

changes in several other works. In [7], Brand et al. propose a

mediation method for resource allocation based on the maximums

processor usage and users’ benefit as measures for QoS levels and

present the Dynamic QoS Manager (DQM) middleware. DQM is

based on the notion of applications’ specified execution levels that

reflect algorithmic modes in which applications can execute. It

uses the execution level information and the current state of the

system to dynamically determine appropriate QoS allocations for

the running applications.

Curescu et al. proposed a time-aware admission control and

resource allocation scheme that aims to allocate bandwidth

such that the accrued utility of the whole system, accumulated

over time, is maximised [13]. The approach synthesises the

consequences of resource reallocation for different types of

applications and uses this information to perform a periodic

reallocation optimisation.

In coping with the shortage of QoS support from an end-

user point of view, Rajkumar et al. [57] proposed Q-RAM, a

QoS-based resource allocation model in which multiple resources

are allocated to maximise the overall system’s utility. The static

resource allocation algorithms of Q-RAM were extended to support

a dynamic task traffic model [24] and to handle non-monotonic

dimensions [21]. Further improvement techniques to reduce

the computation complexity of the initial proposal and their

application to radar tracking are described in [19].

Working from the user’s perspective and maximising the user

perceived quality or utility has also been addressed in several other

works. In [28], the user’s QoS preferences are considered for the

application’s runtime behaviour control and resource allocation

planning. Example preferences include statements that a video-

phone call should pause a movie unless it’s being recorded and that

video should be degraded before audio when all desired resources

are not available. These are useful hints for high-level QoS control

and resource planning, but are inadequate for quantitatively

measuring QoS, or analytically planning and allocating resources.

Abdelzaher et al. used a similar concept to propose a QoS negoti-

ation mechanism that ensures graceful service degradation in cases

of overload, failures, or violation of pre-runtime assumptions [1].

The authors suggest that a user should be able to express his spec-

trum of acceptable QoS levels, as well as a quantitative perceived

utility of receiving service at each of those levels. QoS levels are

then statically mapped to certain quality choice combinations. A

similar approach is taken in [30]. But neither of the works ad-

dresses the balancing of competing resource demands or has de-

veloped an effective specification method of QoS preferences or a

mechanism to facilitate utility data acquisition.

A generic architecture for resource reservation and allocation

that supports flow-specific QoS specifications as well as online

monitoring and control of both individual resources and heteroge-

neous resource sets was proposed by Foster et al. [17]. The archi-

tecture builds on differentiated service mechanisms to enable the

coordinated management of distinct flow types, networks, CPUs,

and storage systems.

Another architecture for the adaptive management of multiple

resources on a general purpose operating system was proposed

by Palopoli et al. in [53], extending a prior architecture dedicated

exclusively to the adaptation of the CPU’s bandwidth for QoS

control [12].

In grid environments, a similar concept was used by Chunlin

et al. in [33] to present a utility-based QoS optimisation strategy

for multi-criteria scheduling. The QoS optimisation problem is split

in a task optimisation subproblem performed on behalf of the user

and in a resource optimisation subproblem performed on behalf of

the grid.

While we certainly share some concerns with these works, and

also apply utility-based adaptation strategies [46], we go a step

further and propose a QoS-aware cooperative service execution

to deal with a large number of tasks, multiple resources, and

highly dynamic real-time operation constraints in open real-time

systems.

Several studies in computation offloading propose task par-

tition/allocation schemes that allow the computation to be of-

floaded, either entirely or partially, from resource constrained

(wireless) devices to a more powerful neighbour [66,23,39]. These

works conclude that the efficiency of an application execution can

be improved by careful partitioning of the workload between a de-

vice and a fixed neighbour. Often, the goal is to reduce the needed

computation time and energy consumption [40,29,52,58,10] by

monitoring different resources, predicting the cost of local exe-

cution and that of a remote one and deciding between a local or

remote execution. However, most of the work in this direction is

limited to the case where there is only on resource-limited device

and one relatively more capable neighbour to offload computation

to. Also, none of these works supports the maximisation of each

user’s specific QoS preferences while offloading computation.

Our work facilitates the cooperation among heterogeneous

nodes whenever a particular set of QoS constraints cannot be

satisfyingly answered by a single node. The resulting coalition is

the one which maximises the satisfaction of the QoS constraints

associated with the new service and minimises the impact on the

global QoS caused by the new service’s arrival.

Furthermore, the CooperatES framework differs from other

QoS-aware frameworks by considering, due to the increasing

complexity of open real-time systems, the needed tradeoff

between the level of optimisation and the usefulness of an optimal

runtime system’s adaptation behaviour. The fundamental problem

that has to be faced is the uncertainty of the environment. In

particular, when considering real-time requirements, uncertainty

means that desired bounds may not be met when adapting the

system to the dynamically changing environmental conditions.

This idea has been formalised using the concepts of imprecise

computation and anytime algorithms. Liu et al. [38] have

recognised imprecise computation (for monotone tasks), sieve

functions (for non-monotone tasks) and multiple versions as the

three ways by which unbounded components can be integrated

into real-time systems.

Imprecise computation uses monotone functions to produce

intermediate results as a task executes. The value of these results

is expected to improve as the execution of the task continues. The

computation required to produce a result with minimum quality

forms the mandatory part of the task. Clearly, this mandatory part

must have a worst case execution time that is guaranteed by the

schedulability analysis. The rest of the task’s execution is called

optional. The optional part is (usually) an iterative refinement

algorithm that progressively improves the quality of the result

generated by the mandatory part. These concepts were integrated

with replication and checkpoint techniques to reduce the cost of

providing fault tolerance and enhanced availability [37].

Anytime algorithms [14,26,68] are based on the idea that

the computation time needed to compute optimal solutions will

typically reduce the overall utility of the system. An anytime

algorithm is an iterative refinement algorithm that can be

interrupted and asked to provide an answer at any time. It is

expected that the quality of the answer will increase (up to some

maximum quality) as the anytime algorithm is given increasing

time to run, offering a tradeoff between the quality of the results

and computational requirements. Associated with an anytime

algorithm is a performance profile, a function that maps the time

given to an anytime algorithm (and in some cases input quality) to

the quality of the solution produced by that algorithm.

Open real-time environments also demand a particular atten-

tion to the dynamic scheduling of the framework’s management

and services’ execution. Abeni and Buttazo proposed the Con-

stant Bandwidth Server (CBS) scheduler [2] to efficiently handle

soft real-time requests with a variable or unknown execution be-

haviour under the EDF [36] scheduling policy. To avoid unpre-

dictable delays on hard real-time tasks, soft tasks are isolated

through a bandwidth reservation mechanism, according to which

each soft task gets a fraction of the CPU and it is scheduled in

such a way that it will never demand more than its reserved band-

width, independently of its actual requests. This is achieved by as-

signing each soft task a deadline, computed as a function of the

reserved bandwidth and its actual requests. If a task requires to

execute more than its expected computation time, its deadline is

postponed so that its reserved bandwidth is not exceeded. As a

consequence, overruns occurring on a served task will only delay

that task, without compromising the bandwidth assigned to other

tasks.

The resource reservation approach of CBS has been ex-

tended [35,8,42,9,34], introducing the ability to exploit tasks’ ear-

lier completions and reclaim the resulting residual capacities to

further increase resource usage and handle soft tasks’ overloads

more efficiently. Nevertheless, new open real-time systems can

benefit from a more flexible overload control, achieved with the

combination of guaranteed and best-effort servers and reducing

isolation in a controlled fashion in order to donate reserved, but

still unused, capacities to currently overloaded servers.

The Capacity Sharing and Stealing (CSS) scheduler [48] proposes

to handle overloads with additional capacity that is available from

two sources: (i) by reclaiming unused allocated capacity when

jobs complete in less than their budgeted execution time; and

(ii) by stealing allocated capacities to non-isolated servers used

to schedule sporadic best-effort jobs. The integration of the CSS

scheduler into the CooperatES framework is discussed in detail

in [49].

3. Problem description and system model

We are primarily interested in dynamic scenarios where new

tasks can appear while others are being executed. The processing

of those tasks has associated real-time execution constraints, and

service execution can be performed by a coalition of neighbour

nodes. Due to these characteristics, resource availability is highly

dynamic as services enter and leave the system at anytime.

Consider a distributed system with several heterogeneous

nodes, each with its specific set of resources Ri. For some of

those nodes there may be a constraint on the type and size

of services they can execute within the users’ acceptable QoS

levels. Therefore, this work addresses a distributed cooperative

execution of resource intensive services in order to maximise the

users’ satisfaction with the obtained QoS. Nodes may cooperate

either because they cannot deal alone with the resource allocation

demands imposed by users and services or because they can reduce

the associated cost by working together.

It is assumed that a service S can be executed at varying

levels of QoS to achieve an efficient resource usage that constantly

adapts to the devices’ specific constraints, nature of executing

tasks and dynamically changing system conditions. There will

be a set of independent tasks to be executed, resulting from

partitioning the resource intensive service S. Correct decisions on

service partitioning must be made at run time when sufficient

information about workload and communication requirements

become available [66], since they may change with different
execution instances and users’ QoS preferences.

Each service has a set of parameters that can be changed in

order to configure the supplied QoS and its correspondent resource

demand. Each subset of parameters that relates to a single aspect

of service quality is called a QoS dimension. For example, consider

the transmission of multiple audio/video streams over a network.

This scenario involves a network with a given bandwidth and

nodes serving and receiving the streams. Typical audio related

parameters are the sampling rate (8, 16, 24, 44, 48 kHz), the

sampling bits (8, 16), and the end-to-end latency (100, 75,
50, 25 ms), while in video it is usually considered the picture

dimension (SQCIF, QCIF, CIF, CIF4), colour depth (1, 3, 8, 16, . . .), and

frame rate (1, . . . , 30). Each of these QoS dimensions has different
resource requirements for each possible level of service.

Different configurations of a stream can have different utility
values for different users and applications. For example, for a

particular user, a transmission of a music concert may place higher
quality requirements on audio, although colour video may be also

desirable, while another user of a remote surveillance system may
require higher video quality with a minimum of gray scale images.
Let Q be the set of the user’s QoS constraints associated with

service S. Each Qkj is a finite set of quality choices for the jth

attribute of dimension k. This can be either a discrete or continuous

set.
Users provide a single specification of their own range of QoS

preferences Q for a complete service S, ranging from a desired
QoS level Ldesired to the maximum tolerable service degradation,

specified by a minimum acceptable QoS level Lminimum, without
having to understand the individual tasks that make up the service.

As a result, the user is able to express acceptable compromises
in the desired QoS and assign utility values to QoS levels. Note
that this assignment is decoupled from the process of establishing
the supplied service QoS levels themselves and determining the
resource requirements for each level.

Given the spectrum of the user’s acceptable QoS levels Q for

service S, the coalition formation problem can be described as:

Given a set of neighbour nodes N and a resource allocation
demand enforced by Q , if the resource demand cannot be

satisfyingly answered by a single node, neighbour nodes should

cooperate to fulfill such resource demand. The selection of a

subset of nodes in N to cooperatively execute S should be

influenced by either the maximisation of the QoS constraints
Q associated with S and by the minimisation of the impact on

the current QoS of the previously accepted services caused by

the arrival of S.

Searching for an optimal resource allocation with respect
to a particular goal has always been one of the fundamental

problems in QoS management. However, as the complexity of open

distributed systems increases, it is also increasingly difficult to
achieve an optimal resource allocation that deals with both users’

and nodes’ constraints within a useful and bounded time. Note that

if the system adapts too late to the new resource requirements, it

may not be useful and may even be disadvantageous.

Our proposal is to quickly establish an initial, sub-optimal,

solution according to the set of QoS constraints that have to be

satisfied. Then, if time permits, the initial solution is gradually

refined until it finally reaches its optimal value or the available

deliberation time expires. At each iteration, a new set of SLAs

is found with an increasing utility to the user’s request under

negotiation but these successive adjustments get smaller as the

QoS optimisation process progresses.

Please note that the paper is focused on the anytime

configuration of a distributed cooperative service execution and

Fig. 1. Framework structure.

not on the coalition’s operation phase. The dynamic adaptation of

the coalition’s service provisioning to changes in the environment

is discussed, at a local level, in [50] and in [51], at the global

coalition level.

Furthermore, the proposed anytime algorithms also are com-

pletely independent from how the code to be executed on the orig-

inal node’s behalf arrives to the coalition members. It is, for now,

assumed that only nodes equipped a priori with a service’s code

blocks respond to a cooperation request, thus eliminating the need

to migrate code at runtime and transfer the service’s current state.

4. The CooperatES framework

The objective of the CooperatES (Cooperative Embedded

Systems) framework is to enable resource-constrained devices to

solve computationally expensive services by redistributing parts of

the service onto other devices. Such distribution is influenced by

the maximisation of the QoS preferences associated with the new

service requests, addressing the increasingly complex demands on

performance and customisable service provisioning.

Each node has a significant degree of autonomy and it is

capable of performing tasks and sharing resources with other

nodes. A service can be executed by a single node or by a group of

nodes, depending on the user’s node capabilities and on the user’s

imposed quality constraints. In either case, the service is processed

in a transparent way for the user, as users are not aware of the

exact distribution used to solve the computationally expensive

services. The framework facilitates the tasks’ distribution across

a community of nodes, forming temporary coalitions for a

cooperative service execution. Fig. 1 presents the structure of the

proposed framework, running on every node of the network.

In the proposed model, QoS-aware applications must explicitly

request the service execution to the underlying QoS framework,

thus providing explicit admission control, abstracting from the ex-

isting underlying distributed middleware and from the operating

system. The model itself abstracts from the communication and ex-

ecution environments.

Central to the behaviour of the framework is the QoS Provider

of each node, which is responsible for processing both local and

remote resource requests. Rather than reserving local resources

directly, it contacts the Resource Managers to grant specific

resource amounts to the requesting task. Note that, in this paper, it

is assumed that failures of resources will not occur during services’

execution but only that they may get overloaded.

Each Resource Manager is a module that manages a particular

resource. This module interfaces with the actual implementation

in a particular system of the resource controller, such as the device

driver for the network, the scheduler for the CPU, or with the

software that manages other resources (such as memory).

Resource managers have the ability to use each other in order to

allow systems to be built supporting QoS requirements either from

the point of view of the user (e.g. user-perceived high quality), of
applications (e.g. video frame rate) or of the system (e.g. CPU cost).
With the layering represented in Fig. 2, an interactive application
can be more user friendly and easier to use by providing only
high-level user perceptive quality, whilst other applications can be
programmed to use application-related QoS constraints.

Local and remote service requests arrive dynamically at any
node and are formulated as a set of acceptable QoS levels in
decreasing preference order. To guarantee the request locally, the
Local Provider computes a set of SLAs that tries to maximise the
utility associated with the new service’s QoS configuration as
well as to minimise the impact on the current QoS of previously
accepted services.

If the resource demand imposed by the user’s QoS constraints
cannot be locally satisfied, the Coalition Organiser is responsible
for the coalition formation process. It broadcasts the service’s
description as well as the user’s quality preferences, evaluates the
received service proposals and decides which nodes will be part
of the coalition. We consider the existence of an atomic broadcast
mechanism in the system, guaranteeing that all nodes receive the
same service requests and proposals in the same order.

The System Manager maintains the overall system configura-
tion, detects nodes entering and leaving the network, and manages
the coalition’s operation and dissolution.

Note that although we consider a collaborative environment,
proper resource usage must be monitored in run time [3], in order
to decide based on the actual system’s resource usage and not
only on the resource usage assumptions of requesting services. A
prototype implementation of the framework is described in [55].

5. Expressing quality of service

Given the heterogeneity of services to be executed, users’ qual-

ity preferences, underlying operating systems, networks, devices,
and the dynamics of their resource usages, QoS specification be-
comes an important issue in the context of a distributed QoS-aware
cooperative service execution framework. However, as open dis-
tributed systems become more complex, so is the specification of
requested and supplied QoS among users and service providers.
Nodes must either have a common understanding of how QoS
should be specified, or be able to map their individual specifica-
tions into a common one.

The definition of such a generic QoS scheme must include qual-
ity dimensions, attributes and values, as well as relations that map
dimensions to attributes and attributes to values. Adopting a com-
mon QoS description scheme in an open distributed environment
guarantees information consistency and compatibility in a com-
munity of heterogeneous nodes. Information consistency is satis-
fied when each specific expression has the same meaning for every
node. Information compatibility is achieved when any concept is
described by the same expression, for all the nodes. Furthermore,
a generic QoS scheme should also be extensible to support the later
addition of new terms and relations as the system evolves. In this
paper, we model each of these diverse requirements by the follow-
ing structure:

= ∀ ∈

Fig. 2. Resource managers’ layering.

Deps defines the set of existing dependencies among the values

of the existing attributes. A dependence between Atri and Atrj is

represented as Depij f (Valki, Valkj), Attri, Attrj Attr . Such

dependency relations specify that a task offers a certain level of

QoS under the condition that some specified QoS will be offered by

the environment or by other tasks.

Using a video streaming application as an example, the

following is a list of quality dimensions that might me associated

with any particular application. The list is given to illustrate the

proposed model and is not intended to be exhaustive.

Having such a QoS characterisation of a particular application

domain, users and service providers are now able to define service

requirements and proposals in order to reach an agreement on

service provisioning. Since QoS is often multi-dimensional, a

user (or application) might want to make some quality tradeoff,

especially when the available resources are scarce. Therefore, it

is to the user’s advantage to be able to specify a set of personal

QoS requirements using an interface that explicitly allows the

definition of quality tradeoffs.

Consider the following example. Typically, the video frame rate

fluctuates as the system’s load fluctuates. However, frame rate is

an important QoS parameter for talk shows because it affects lip

synchronisation [45]. As such, other QoS parameters like the frame

size or image quality may be better candidates for degradation

when the needed resources become scarce. On the other hand, in

a remote video surveillance system, a grey scale, low frame rate

may be sufficient, but a high image quality is important. As such,

an efficient system’s QoS optimisation policy must consider the

specific quality requirements of each user or application.

A flexible approach to deal with the heterogeneity and load

variations of dynamic open environments is to define such

personal quality requirements through a utility model. Several

works associate with each pre-defined QoS level a utility function

that specifies the user’s benefit in obtaining service within those

values [1,57,33]. However, it may be clearly infeasible to make

the user specify an absolute utility value for every pre-defined

quality choice. While we want a semantically rich request in

order to achieve a service provisioning closely related to the

user’s quality preferences, we also want the user to actually be

able to express personal QoS preferences in a service request.

Equally important, we believe that the system should dynamically

determine promised QoS levels according to the each user’s

accepted QoS values for each QoS dimension and local resource

availability. As such, the reward of executing a task at one of those

dynamically determined QoS levels will depend on the number,

and relative importance, of the QoS dimensions being served closer

to the user’s desired QoS level.

Following those goals, a more natural and realistic way is

to simply impose a service request based on a qualitative, not

quantitative, measure. With a relative decreasing order on quality

dimensions, their attributes, and accepted values, a user is able to

encode the relative importance of the new service’s performance at

the different QoS levels without the need to quantify every quality

tradeoff with absolute values. For example, a user of a remote video

surveillance system can easily state that video is more important

than audio, and the image’s quality is more important than the

obtained frame rate and colour depth with the following service

request:

The evaluation of the user’s acceptability of each service

proposal with respect to the expressed quality preferences is

detailed in the next section.

=

≤ ≤

∈

6. Coalition formation

The coalition formation process should enable the selection
of individual nodes that, based on their own resources and
availability, will constitute the best group to satisfy the user’s QoS

In Eq. (3), the function da(Propki, Prefki) quantifies, for an

attribute i, the degree of acceptability of the proposed value Propki,

when compared to the user’s preferred value Prefki and is defined

as

requirements associated with a resource intensive service. By best
group, we mean the group formed by those nodes which offer

service closer to the user’s desired QoS level.
A service request is considered to be formulated through the

relative decreasing importance (K 1 . . . n) of a set of n QoS
dimensions, ranging from a desired QoS level Ldesired and the
maximum tolerable service degradation, specified by a minimum
acceptable QoS level Lminimum. For each dimension, a relative
decreasing importance order of attributes is also specified (i
1 . . . attrk), where k is the number of attributes of dimension K .

Please note that k and i are not the identifiers of dimensions and
attributes in a domain’s QoS description, but their relative position
in user’s service request.

When the user’s node Ni cannot provide service within the
user’s acceptable QoS levels Qi, the QoS Provider broadcasts a
cooperation request to execute service Si. The set of tasks that can
be remotely executed is determined by a task partition/allocation
scheme that dynamically considers the tradeoff between local
execution requirements and communication costs [66]. The
cooperation request includes a description of each remote task Ti,

the user’s QoS constraints, and a timeout ∆t for the reception of
service proposals.

Every neighbour node Nj which is able to satisfy the request,
formulates a service proposal according to a local QoS optimisation
algorithm (see Section 7 for details), and replies to node Ni with
both its service proposal Pji and its local reward Rj, resulting from
its proposal acceptance. For now, it suffices to say that the local
reward is an indicator of the node’s local QoS optimisation level,
according to the set of services being locally executed and their
QoS constraints. How each node measures its local reward will be
detailed in Section 7.

It is clear that different groups of nodes will have different
degrees of efficiency in the service’s cooperative execution
performance due to different capabilities of their members and
their current state. As such, the coalition’s members selection must
be determined by the proximity of their service proposals with
respect to the expressed user’s multi-dimensional QoS constraints.

Each admissible proposal1 Pi is then evaluated by determining, for
each QoS dimension, a weighted sum of the differences between
the user’s preferred values and the values proposed in Pji, using
Eq. (1). Recall that the user’s QoS constraints are presented in a
decreasing preference order.

where n is the number of QoS dimensions and 0 wk 1 is the
relative importance of QoS dimension k, Qk, to the user, and can
defined as

The degree of acceptability of each proposed attribute’s value
when compared to the request one is given by Eq. (3), considering
continuous and discrete domains.

1 A proposal is admissible if it can satisfy all QoS dimensions within the user’s

acceptable QoS levels.

If attribute i has a continuous domain, this quantification

is a normalised difference between the proposed value and

the preferred one. Examples of QoS attributes with continuous

domains include video frame rate, frame size, and network

bandwidth.

For discrete domains, Eq. (4) considers the preferences attached

to Propki and Prefki by using their relative position in the

application’s QoS requirements specification. Examples of discrete

QoS attributes include the audio and video containers and the data

encryption algorithm.

In [32] the authors use the notion of a Quality Index, defining a

bijective function that maps the elements of a discrete domain into

integer values. We use a similar approach, by mapping the position

(index) of that attribute in the domain’s specification into Propki’s

and Prefki’s scoring values. When the domain’s QoS description

defines the possible values for some attribute of a QoS dimension

Qk by a set of intervals, Qk in Eq. (4) must relate to the particular

interval where Propki is found. In a similar fashion, if the user

expresses his set of acceptable values for an attribute of dimension

Qk considering a set of intervals, Prefki should be the first value on

the Propki’s interval and the relative decreasing order of importance

of that interval to the user must be considered.

The best proposal for each of the service’s tasks is thus the one

that presents the lowest distance to the user’s quality preferences

in all QoS dimensions. However, rather than assuming that this

coalition formation process can have all the time it needs to

compute its optimal output, we propose to achieve a time-

bounded distributed QoS-aware service configuration among a set

of heterogeneous neighbours.

6.1. Anytime global QoS optimisation

The participants in the anytime coalition formation process

will be the user’s node and the subset of neighbour nodes able to

offer service within the user’s required QoS levels. The user’s node,

playing the role of organiser, starts and guides all the negotiation

process, broadcasting the service’s requirements and user’s QoS

constraints and evaluating the received service proposals, sent by

the respondent neighbours.

In order to be useful in practice, an anytime approach must try

to quickly find a sufficiently good initial solution and gradually

maximise its improvement at each iteration, if time permits.

As such, a particular attention must be devoted to the method

used to select the next proposal to be evaluated from the set

of received proposals, rather than depending on the order of

proposals’ reception. The proposed anytime coalition formation

algorithm, described in detail in Algorithm 1, uses each node’s local

reward as a a heuristic to guide the coalition formation process.

Clearly, nodes with a higher local reward have a higher probability

to be offering service closer to this particular user’s request under

negotiation since the utility achieved by all services being locally

executed is higher. Then, for each remote task Ti S, the next

candidate proposal Pki to be selected from the set of received

proposals Pi is the one sent by the node Nk with the greatest local

reward Rk.

=

∈

=

∈

The proposed Algorithm 1 allows the global QoS optimisation

process to return many possible approximate answers for a given

input of service proposals to be evaluated. It can be interrupted at

any time, providing a solution and a measure of its quality, which

is expected to improve as the run time of the algorithm increases.

The quality of each generated coalition is measured by using the

evaluation values of the best proposals for each service’s task. At

each iteration, Eq. (6) returns the quality of the achieved solution.

For an empty set of proposals the quality of the coalition is zero.

Note that the quality of the coalition is also zero, if there are not

any proposals for one or more remote tasks Ti ∈ S.

The algorithm does not immediately produce an intermediate

solution, since it must first analyse a proposal for each remote

task Ti S. If t indicates the duration of this initial step then, if

interrupted at any time t < t , the algorithm will return a coalition

with zero quality.

Axiom 2 (Growth Direction). The quality of a coalition only

improves with increasing run time.

The coalition’s members are only updated if a better proposal

for any task Ti ∈ S is found.

Axiom 3 (Growth Rate). The amount of increase in the coalition’s

quality varies during computation.

The solution’s quality rapidly increases in the first steps of the

algorithm and its growth rate diminishes over time, as a result of

the heuristic selection of the next candidate proposal submitted to

evaluation.

Axiom 4 (End Condition). After evaluating all candidate proposals

the algorithm achieves its full functionality.

After evaluating all candidate proposals the anytime version of
the algorithm will produce exactly the same solution quality as its

traditional version [46] that only produces a solution with quality

Qc oalition at the end of computation. If the time required to evaluate

 a candidate proposal is te, the total required runtime of the anytime algorithm is the sum of all n evaluations.

After determining an initial coalition, the algorithm continues,

if time permits, to evaluate the remaining proposals as it tries

to improve the quality of the current solution. It is possible that

some other node, while achieving a lower local reward, can still

propose a better proposal for the specific user’s request under

negotiation at the expense of a greater downgrade of previously

accepted services.

Each node’s local reward is also used to improve a global load

balancing. Consider two proposals whose evaluation differ by an

amount less than α (this value can be defined by the user or by

the framework). For a particular user, the perceived utility will be

equally acceptable if any of those nodes is selected for participating

in the new coalition. Selecting the node with a higher local reward

from two similar service proposals, not only maximises service for

a particular user, but also maximises the global system’s utility.

The algorithm terminates when all the received proposals are

evaluated or if it finds that the quality of a coalition cannot be

further improved because the local reward of each node that

belongs to the current coalition is maximum.

6.2. Formal description of the coalition formation’s anytime be-

haviour

The coalition formation’s anytime behaviour can be formally

described using the set of axioms presented in [65]. The authors

describe the anytime functionality of an algorithm using four

axioms, each of which describes a different aspect of the anytime

behaviour as follows:

Axiom 1 (Initial Behaviour). There is an initial period during which

the algorithm does not produce a coalition for a cooperative service

execution.

6.3. Conformity of the coalition formation algorithm with the

desirable properties of anytime algorithms

Not every algorithm that can produce a sequence of approx-

imate results is a well-behaved anytime algorithm. According
to Zilberstein [68] the desired properties of anytime algorithms

include the following features: a measurable quality that can be

determined precisely, a recognisable quality that can be easily de-

termined at run time, the monotonicity of the result’s quality, the

consistency of the result’s quality with respect to computation time

and input quality, the diminishing returns of the solution’s quality
over time, the interruptibility of the algorithm at any time and its

preemptibility with minimal overhead. The conformity of the pro-

posed anytime coalition formation algorithm with these desirable

properties is checked in the next paragraphs.

Property 6.3.1 (Measurable Quality). A coalition’s quality can be
determined precisely.

Proof. According to Eq. (6), the quality of the generated coalition
at each iteration of the algorithm can be directly computed from

the evaluation values of the best proposals found for each of the

service’s tasks. D

Property 6.3.2 (Recognisable Quality). The quality of a coalition can
be easily determined at run time.

Proof. Let S T1, . . . , Tn be the service under negotiation for a
cooperative execution with a set of n tasks.

A coalition c is only updated to c when a better proposal for
task Ti S is found. The previous accepted service proposal Pki,
from node Nk to task Ti, is replaced with Pk i from node Nk , in the
previously generated coalition c.

S,

∈

∈

∈

Let |c| be the size of the generated coalition to execute service

EPk i
be the evaluation value of the new proposal Pk i, and EPki be

the evaluation value of the old proposal Pki.
The quality of the updated coalition Qc can calculated by adding

the quality Qc achieved by coalition c to the weighted difference
between EPk i

and EPki .

Property 6.3.6 (Interruptibility). The algorithm can be stopped at

any time and still be able to provide a solution.

Proof. Let t be the time needed to generate the initial coalition. If

interrupted at any time t < t the algorithm will return an empty

coalition, resulting in zero quality.
When stopped at time t > t the algorithm returns the best

coalition determined until time t, which can be different from the

This makes the determination of the new coalition’s quality

straightforward and within a constant time. D

Property 6.3.3 (Monotonicity). The quality of the generated coali-

tion is a nondecreasing function of time.

Proof. Node Nk is only added to a coalition if and only if it proposes

a better service for task Ti, that is, if it is closer to the user’s quality

preferences than the best proposal found so far for task Ti.

The algorithm always returns the coalition with the best

proposals evaluated until time t for each of the service’s tasks,

which can be different from the last set of evaluated proposals.

According to Zilberstein [68], this characteristic in addition to a

recognisable quality is sufficient to prove the monotonicity of an

anytime algorithm. D

Property 6.3.4 (Consistency). For a given amount of computation

time on a given input, the quality of the generated coalition is always

the same.

For a given amount of computation time ∆t on a given input

of a set of service proposals P and user’s QoS preferences Q , the

quality of the selected coalition for cooperative service execution

is always the same, since the selection of candidate proposals for

evaluation is deterministic.

According to Eq. (5), the next proposal to be selected from

evaluation Pki for each task Ti S is the one sent by the node

that has achieved the greatest local reward. As such, the algorithm

guarantees a deterministic output quality for a given amount of

time and input. D

Property 6.3.5 (Diminishing Returns). The improvement in the

generated coalition’s quality is larger at the early stages of the

computation and it diminishes over time.

The quality of each generated coalition, given by Eq. (6), is

measured using the evaluation values of the best proposals for each

task Ti S. The best proposal is the one that contains the attributes’

values more closely related to user’s specific QoS preferences, in all

QoS dimensions.

Each node’s local reward, determined with Eq. (8), expresses

a degree of satisfaction for all the users that have tasks being

locally executed with specific QoS levels, including the service

being currently negotiated.

By selecting for evaluation, for each task Ti S, the proposal

sent by the node that achieved the higher local reward rapidly

improves the quality of the generated coalition at an early stage

of execution, since a high local reward indicates that the node is

last set of evaluated proposals. D

Property 6.3.7 (Preemptibility). The algorithm can be suspended

and resumed with minimal overhead.

Proof. Since the algorithm keeps the received proposals not yet

evaluated and the determined coalition, it can be easily resumed

after an interrupt. D

7. Service proposal formulation

All entities that participate in a cooperative QoS-aware service

execution negotiation must provide sufficient resources to propose

a SLA within the user’s acceptable QoS levels. It is therefore the

responsibility of each individual QoS Provider (Fig. 1) to map the

user’s QoS constraints to local resource requirements, and then

reserve resources accordingly (resource reservations are made

through Resource Managers). The interpretation of QoS constraints

and consequent mapping on the needed resource quantities has

been explored in [57,18,22,4]. This paper is focused on the time-

bounded coalition formation process and does not deal with

this mapping. The reader can assume that applications make a

reasonable accurate analysis of their resource requirements, made

a priori through resource monitoring tools and followed by run-

time adaptation.

Requests for task execution arrive dynamically at any node and

are formulated as a set of acceptable multi-dimensional QoS levels

in decreasing preference order. To guarantee the request locally,

the QoS Provider executes a local QoS optimisation algorithm

that tries to maximise the satisfaction of the new service’s QoS

constraints as well as to minimise the impact on the current QoS

of previously accepted services.

Conventional admission control schemes either guarantee or

reject each service request, implying that future requests may

be rejected because resources have already been committed to

previous requests. We use a QoS negotiation mechanism that,

in cases of overload, or violation of pre-run-time assumptions,

guarantees a graceful degradation.

The CooperatES dynamically determines promised QoS levels

from the user’s accepted QoS values for each QoS dimension and

local resources’ availability. Furthermore, the reward of executing

a task at one of those dynamically determined QoS levels depends

on the number, and relative importance, of the QoS dimensions

being served closer to the user’s desired QoS level. Eq. (7) computes

the reward rTi achieved by a specific SLA for task Ti by measuring

the distance between the user’s desired and the node’s proposed

values.

offering service closer to the majority of the requested QoS values

for all local services. However, some other node may propose a

better QoS level for the service under negotiation at the expense

of a higher downgrade of previously accepted services, achieving a

lower local reward. As such, it is still possible that the solution’s

quality can be further improved in the next iterations of the

algorithm, but at a lower increment rate.

The actual concavity of the coalition’s formation behaviour is

empirically evaluated in Section 8. D

In Eq. (7) penalty is a parameter that decreases the reward value.

This parameter can be fine tuned by the user or the framework’s

manager according to several criteria and its value should increase

with the distance to the user’s preferred values.

Using the utility achieved by each proposed SLA it is possible

to determine a measure of the node’s global satisfaction resulting

from the acceptance of the new service request. For a node Nj, the

local reward Rj achieved by the set of proposed SLAs is given by

Note that unless all tasks are executed at their highest
requested QoS level there is a difference between the determined

set of SLAs and the maximum theoretical local reward that would

be achieved if all local tasks were executed at their highest QoS

level. This difference can be caused by either resource limitations,
which is unavoidable, or poor load balancing, which can be

improved by sending actual local rewards in service proposals, and

selecting, for proposals with similar evaluation values, those nodes

that achieve higher local rewards, as discussed in the previous

section.

7.1. Anytime local QoS optimisation

The high complexity of determining the best set of SLAs,
taking into account both the users’ QoS preferences and node’s

resource availability, makes it beneficial to propose an anytime

approach that can trade the achieved solution’s quality with its

computational cost in order to ensure a timely answer to events.
The proposed anytime algorithm, detailed in Algorithm 2,

clearly splits the formulation of a new set of SLAs into two different

scenarios. The first one involves guaranteeing the new task without

changing the QoS level of previously guaranteed tasks. The second

one, due to the node’s overload, demands service degradation for

the previous accepted tasks in order to accommodate the new

requesting task. Offering QoS degradation as an alternative to task

rejection has been proved to achieve higher perceived utility [1].
The algorithm iteratively works on the problem of finding a

feasible set of SLAs while maximising the users’ satisfaction and

produces results that improve in quality over time. Instead of a
binary notion of the solution’s correctness, the algorithm returns a

proposal and a measure of its quality. The quality of each generated

configuration Qconf , given by Eq. (9), considers the reward achieved

by the service proposal configuration for the new arriving task rTa ,

the impact on the provided QoS of previous existing tasks and
the value of the previous generated feasible configuration Qc onf .

Initially, Qc onf is set to zero.

Note that the algorithm may produce an unfeasible set of

SLAs due to local resource availability. As such, since a service
proposal can only be considered useful within a feasible set

of configurations, the algorithm, if interrupted, always returns

the last found feasible solution. Nevertheless, each intermediate

configuration, even if not feasible, is used to calculate the next

possible solution, minimising the search effort. The algorithm terminates when the time for the reception of

rTi

proposals has expired (this time is sent in the cooperation request),
when it finds a set of QoS levels that keeps all tasks feasible and the

 quality of the solution cannot be further improved, or when it finds

that, even at the lowest QoS level for each task, the new set is not

When a new service request arrives, the algorithm starts by
maintaining the QoS levels of previously guaranteed tasks and

by selecting the worst requested QoS level, for all dimensions,

for the new arrived task. The goal is to quickly find a feasible
initial solution, an important property of anytime algorithms.

Note that this is the SLA that has a higher probability of being

feasible, without requiring any modification on the current QoS of

previously accepted services.

The algorithm continues to improve the quality of that initial

solution, conducting the search for a better feasible solution in a

way that maximises the expected improvement in the solution’s

quality. With spare resources, the algorithm incrementally selects

the configuration that maximises the increase in obtained reward

for the new task. When QoS degradation is needed to accommodate

the new task, the algorithm incrementally selects the configuration

that minimises the decrease in obtained reward for the new set of

tasks, which includes the newly arrived one.

feasible. In this case the new service request is rejected. When it

is not possible to find a valid solution for service execution within

available time, then no proposal will be sent to the requesting node,

and the node continues to serve existing tasks at their current QoS

levels.

7.2. Formal description of the service proposal formulation’s anytime

behaviour

Similarly to what has been presented for the coalition formation

algorithm, the different aspects of the anytime functionality of the

service proposal formulation algorithm will be described in this
section using the four axioms presented in [65].

In the next paragraphs, the different aspect of the anytime

behaviour of the proposed service proposal formulation algorithm
will be formally described using the set of axioms presented in [65].

Axiom 5 (Initial Behaviour). Until a feasible set of SLAs is found the

new task is rejected.

An intermediate solution can only be considered if it produces
a feasible set of SLAs. If t indicates the time at which the first
feasible solution is found then, if interrupted at anytime t < t ,
the algorithm will reject the new task.

Axiom 6 (Growth Direction). The quality of a feasible set of SLAs
can only improve over time.

A new feasible set of SLAs is only considered when it improves
the solution’s quality.

Axiom 7 (Growth Rate). The amount of increase in the solution’s
quality varies during computation.

The solution’s quality rapidly increases in the first steps of the
algorithm and its growth rate diminishes over time. The algorithm
starts by improving the new user’s preferred quality attributes
until an unfeasible set of SLAs is found. On the other hand, when
QoS degradation is needed in the search for a new feasible solution,
the algorithm degrades the less important attributes for all local
services.

The actual concavity of the algorithm’s behaviour is empirically
evaluated in Section 8.

Axiom 8 (End Condition). When is not possible to improve the
solution’s quality the algorithm achieves its full functionality.

When it runs to completion, the anytime version of the

algorithm will produce exactly the same solution as its traditional
version [46] that only produces a solution with quality Qc onf at the
end of its computation time.

The anytime version terminates when it finds a set of QoS levels
that keeps all tasks feasible and the quality of that solution cannot
be further improved, or when it finds that, even at the lowest QoS
level for each task, the new set is unfeasible.

If the time required to improve or degrade an attribute and
test for the schedulability of the solution is given by ts, the total
required runtime of the anytime algorithm is the sum of all n
needed changes in attributes to find the best feasible solution.

7.3. Conformity of the service proposal formulation algorithm with

the desirable properties of anytime algorithms

The conformity of the proposed anytime service proposal
formulation algorithm according to the desirable properties of
anytime algorithms [68] is checked in the next paragraphs.

Property 7.3.1 (Measurable Quality). The quality of a SLA can be
determined precisely

Proof. At each iteration of the algorithm, Eq. (9) measures the
quality of the proposed SLA by considering the proximity of the
proposal with respect to the user’s request under negotiation and
the impact of that proximity on the global utility achieved by the
previously accepted tasks. D

Property 7.3.2 (Recognisable Quality). The quality of a set of SLAs
can be easily determined at run time.

Proof. The quality of each generated feasible set of SLAs is

determined by using the rewards achieved by all tasks being locally
executed, which includes the newly arrived one. According to
Eq. (7), the rewards’ computation is straightforward and time-
bounded. D

Property 7.3.3 (Monotonicity). The quality of the generated set of

SLAs is a nondecreasing function of time.

Proof. The algorithm produces a new set of SLAs at each iteration,

as it tries to maximise the utility increase for the new task while

minimising the utility decrease for all previously accepted tasks

when the resources are scarce to accommodate the new task. Since

a service proposal can only be considered useful within a feasible

set of tasks, the algorithm always returns the best found feasible

solution rather than the last generated SLA.

According to Zilberstein [68], this characteristic, in addition to

a recognisable quality, is sufficient to prove the monotonicity of an

anytime algorithm. D

Property 7.3.4 (Consistency). For a given amount of computation

time on a given input, the quality of the generated SLA is always the

same.

Proof. For a given amount of computation time ∆t on a given input

of a set of QoS constraints Q associated with a set of tasks τ , the

quality of the proposed SLA is always the same, since the selection

of attributes to improve or degrade is deterministic.

At each iteration, the QoS attribute to be improved is the one

that maximises an increase in the reward achieved by the new

arrived task, while the QoS attribute to be degraded is the one

that minimises the decrease in the global reward achieved by all

tasks being locally executed. As such, the algorithm guarantees

a deterministic output quality for a given amount of time and

input. D

Property 7.3.5 (Diminishing Returns). The improvement in the

quality of the generated SLA is larger at the early stages of the

computation and it diminishes over time.

Proof. An initial solution that maintains the QoS levels of the

previously guaranteed tasks and selects the worst requested level

in all QoS dimensions for the new arrived task is quickly generated.

Its quality is given by Eq. (9), considering the rewards achieved by

all tasks.
At each iteration, the currently found solution is improved by

either upgrading the QoS attribute that maximises an increase in

the new service’s utility, or by downgrading the QoS attribute that

minimises the decrease in all local services’ utility. As such, the

increment in the solution’s quality is larger at the firsts iterations

and it diminishes over time. D

Property 7.3.6 (Interruptibility). The algorithm can be stopped at

any time and still provide a solution.

Proof. Let t be the time needed to generate the first feasible

solution. If interrupted at any time t < t the algorithm will return

an empty SLA, resulting in zero quality.

When stopped at time t > t the algorithm returns the best
feasible set of SLAs generated until t, which can be different from

the last evaluated set. D

Property 7.3.7 (Preemptibility). The algorithm can be suspended

and resumed with minimal overhead.

Proof. Since the algorithm maintains the best generated feasible

solution and the current configuration values it can be easily

resumed after an interrupt. D

8. Evaluation

The ideal way to evaluate the performance of the several

algorithms proposed in this thesis would be to subject them to

actual loads from a large portfolio of QoS-aware applications and

embedded devices. Nevertheless, we have chosen to evaluate the

±

±

effectiveness of the CooperatES framework by creating a broad

collection of profiles, chosen to cover the spectrum into which

real applications and both embedded and their more powerful

neighbour devices would fall or likely exhibit.

Furthermore, special attention was devoted to introduce a high

variability in the characteristics of the conducted simulations.

It is known that not much can be concluded with a single

simulation run. In fact, the results of a given simulation run are

just particular instantiations of random variables that may have

large variances [54]. While most of the methods for the analysis

of the simulation’s output data rely on the fact that although the

simulation results of a single simulation run are not independent,

it is still possible to obtain independent observations across the

results of several simulation runs (or simulation replicas) with a

reasonably good statistical performance [31].

The main goal of the conducted evaluations was to measure

the improvement in the performance of the CooperatES framework

when operating in open and dynamic environments with respect

to its previous version, where a traditional QoS optimisation

approach was used [46]. In Section 8.2, the performance profiles of

the proposed anytime algorithms are determined and Section 8.3

discusses the computational cost of the proposed anytime

algorithms when compared with our previous traditional QoS

optimisation approach.

The reported results were observed from multiple and indepen-
dent simulation runs, with initial conditions and parameters, but

different seeds for the random values2 used to drive the simula-
tions, obtaining independent and identically distributed variables.

The mean values of all generated samples were used to produce
the charts, with a confidence level of 99.9% associated to each con-

fidence interval. A confidence interval specifies a range of values
within which the unknown population parameter, in this case the

mean, may lie. For each chart, the wider confidence interval is dis-
cussed.

8.1. Setup

An application that captures, compresses and transmits frames

of video to end users, which may use a diversity of end devices and

have different sets of QoS preferences, was used as a scenario for

the simulations. The application was composed by a set of source

units to collect the data, a compression unit to gather and compress

the data that came from the multiple sources, a transmission unit

to transmit the data over the network, a decompression unit to

convert the data into each user’s specified format, and a user unit

to display the data in the user’s end device.

The number of simultaneous nodes in the system varied from 10

to 100 while the number of simultaneous users varied from 1 to 20,

generating different amounts of load and resource availability in

the system. Each node was running a prototype implementation of

the CooperatES framework, with a fixed set of mappings between

requested QoS levels and resource requirements. The code bases

needed to execute each of the streaming application’s units was

loaded a priori in all the nodes.

The characteristics of end devices and their more powerful

neighbour nodes was randomly generated from the set of charac-

teristics described in Table 1, creating a distributed heterogeneous

environment. This non-equal partition of resources affected the

ability of some nodes to singly execute some of the application’s

units and has driven nodes to a coalition formation for a coopera-

tive service execution.

Requested QoS levels were randomly generated, at randomly

selected end devices and at randomly generated times, expressing

2 The random values were generated by the Mersenne Twister algorithm [43].

the spectrum of acceptable QoS levels in a qualitative way, ranging

from a randomly generated desired QoS level to a randomly

generated maximum tolerable service degradation. The relative

decreasing order of importance imposed in dimensions, attributes

and values was also randomly generated.

The QoS domain used to generate the users’ service requests

was composed by the following list of QoS dimensions, attributes,

and possible values.

The simulator used in the conducted experiments was custom

built by the authors in Erlang [16], a functional programming

language designed to be run in a distributed environment

populated with resource constrained devices.

8.2. Evaluating performance profiles

The behaviour of an anytime algorithm is described by a

performance profile. The performance profile describes how the

quality of the output gradually increases as a function of the

computation time [68]. Such description of its behaviour is very

attractive because it allows a tradeoff to be made between

available computation time and output quality.

Since there are many possible factors affecting the execution

time of an algorithm, rather than measuring the algorithms’

absolute execution time on every simulation run, we have

normalised it with respect to its completion time [69]. As such, in

the next figures the algorithms’ computation times are represented

as a percentage of their respective completion times. Nevertheless,

both algorithms needed an average time lower than 1 s to compute

their optimal solutions on a Intel Core Duo T5500 at 1.66 GHz.

Fig. 3 shows the performance profile of the proposed anytime

coalition formation algorithm, comparing two methods for select-

ing the next proposal to be evaluated. The first one selects the

proposal sent by the node with the highest local reward, while the

second one relies on the order of proposals’ reception.

Clearly, the proposed heuristic selection based on the nodes’

local reward achieves a better performance and lower variation. At

only 20% of the completion time, when selecting proposals based

on the nodes’ local reward, the algorithm achieves a solution’s

quality of 83% 6% of its optimal solution, with a 99.9% confidence

level. On the other hand, when evaluating proposals according

to their arrival order, the solution’s expected quality varies on

a higher degree. At 20% of the completion time, the algorithm

achieves a solution’s quality of 32% 25% of its optimal solution,

with a 99.9% confidence level.

Therefore, the proposed heuristic selection of proposals based

on the nodes’ local reward effectively maximises the expected

improvement in the solution’s quality at an early stage of the

needed computation time. This is a very important property for an

anytime algorithm’s practical usefulness, since it means that after

±

±

Table 1

Possible characteristics of nodes.

Fig. 3. Performance profile of the coalition formation algorithm.

a small period of the running session, the results are expected to

be sufficiently close to the results at completion time.

Also note that these results empirically validate the formal anal-

ysis of the desirable properties of anytime algorithms discussed in

Section 6.3. From the algorithm’s performance profile plotted in

Fig. 3 one can conclude that the coalition’s quality measure is a

non-decreasing function of time whose increment diminishes over

time.

A second study evaluated the behaviour of the anytime service

proposal formulation algorithm by measuring its performance

profile as well as the impact generated by the arrival of a new

service on the QoS level of previously accepted tasks. Recall from

Section 7 that the reward of a specific proposal measures how

useful it will be for a particular user and that the local reward

expresses a degree of global satisfaction for all the users that have

tasks being executed at a particular node.

The results were plotted by averaging the results of several

independent runs of the simulation, divided into two categories.

Fig. 4 presents the scenario where the average amount of available

resources per node is greater than the average amount of resources

demanded by the services being executed. The opposite scenario

is represented in Fig. 5, where the average amount of resources

per node is smaller than the average amount of demanded

resources.

In Fig. 4, the increase in the solution’s quality Qconf results from

the increase in the new task’s reward (Step 1 of the algorithm).

Recall that with spare resources the QoS levels of previously

accepted tasks remains the same. As such, this increase in the

new service’s reward also increases the node’s local reward, that

was affected by the initially proposed solution of serving the new

arrived service at the minimum requested QoS level. However,

due to resource limitations (Fig. 5), when trying to upgrade the

reward achieved by the new service, the generated configuration

may result in an unfeasible set of SLAs. Step 2 of service formulation

algorithm is then executed in order to try to find a new feasible

solution that presents a higher satisfaction for the service request

under negotiation. As discussed in Section 6, it is the responsibility

of the coalition formation algorithm to select between proposals

Fig. 4. Expected quality improvement with spare resources.

Fig. 5. Expected quality improvement with limited resources.

with similar evaluation values for the new user, those nodes that

achieve higher local rewards, promoting load balancing.

Note that, in both scenarios, the proposed heuristics optimise

the rate at which the quality of the determined solution for the new

task improves over time. With spare resources (Fig. 4), at only 20%

of the computation time, the solution’s quality for the new arrived

task is near 70% 5% of the achieved quality at completion time.

When QoS degradation is needed to accommodate the new task

(Fig. 5), its service proposal achieves 87% 4% of its final quality at

20% of computation time.

Resource Type

Cpu

Memory

Storage

Network

Display

400 MHz, 750 MHz, 1 GHz, 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz

128 MB, 256 MB, 512 MB, 1 GB, 2 GB, 4 GB, 8 GB

512 MB, 1 GB, 10 GB, 30 GB, 50 GB, 200 GB, 500 GB
10 Mbps, 11 Mbps, 54 Mbps, 100 Mbps, 1 Gbps

None, 240×180, 320×240, 640×480, 720×480, 1024×768, 1280×1024

Unfeasible set

±

±
±

±

±

Also note that the quality of the node’s global service

solution identified by Qconf in both figures, quickly approaches

its maximum value at an early stage of the computation. The

diminishing returns property of the anytime service proposal

formulation was then empirically verified, after formal analysis in

Section 7.3. The same is true for the quality measure of a service

proposal which is a non-decreasing function of time, since the

best feasible configuration is only replaced if, and only if, another

feasible solution is found and has a higher quality for the user’s

request under negotiation (Fig. 5).

Both studies clearly demonstrate that the proposed anytime

algorithms can be useful even when there is no time to compute an

optimal local and global resource allocation. The solution’s quality

can be improved if the algorithms have more time to run, but it

rapidly approaches its optimal value at an early stage of the needed

computation time. For complex and dynamic real-time systems,

allowing a cooperative service configuration to be determined at

any time results in a significant improvement of the CooperatES

framework.

8.3. Overhead

Throughout the paper the idea that complex scenarios may

prevent the possibility of computing optimal resource allocations

was stated and anytime algorithms that can tradeoff the needed

deliberation time for the quality of the achieved results were

proposed. However, it is important to analyse the computational

cost required by this approach to reach its optimal solution when

compared with the traditional versions of those algorithms [46].

Without any restriction on the time needed to find an optimal

resource allocation, both algorithms follow more straightforward

approaches than their relative anytime counterparts. The tradi-

tional coalition formation algorithm evaluates all received propos-

als, based on their order of arrival, and selects the best proposal for

each of the service’s remote tasks. The traditional service proposal

formulation starts by selecting the user’s preferred QoS level and,

at each iteration, it downgrades the QoS attribute that minimises

the decrease in the node’s local reward, until a feasible set of SLAs

is found.

This section evaluates the impact of those different approaches

on the needed computation time to find an optimal solution. The

results discussed in the next paragraphs were normalised with

respect to the completion time of the traditional version of the

algorithms.

Fig. 6 details the computational cost of both versions of the

coalition formation algorithm. The traditional version is slightly

faster than its anytime counter part, it requires nearly 95% 2%

of the time needed by the anytime approach to reach its final,

and optimal, solution. This difference is explained by the way

both algorithms select the next proposal to evaluate. While

the traditional version sequentially evaluates service proposals

according to their order of arrival, the anytime approach selects

proposals based on the nodes’ local reward. This implies either

to sort the proposals’ set before starting the evaluation process

or to search, at each iteration, for the maximum remaining local

reward.

However, note that the anytime version needs as little as

near 10% of its completion time to achieve a solution’s quality

of 50% 6% of its optimal solution, and below 40% to achieve

90% 5% of its optimal solution. As discussed in the previous

section, such results cannot be achieved by evaluating proposals

based on their arrival order.

The comparison among both versions of the service proposal

formulation algorithm is detailed in Figs. 7 and 8. Fig. 7 compares

the needed computation time when the average amount of

resources per node is greater than the average amount of resources

necessary for each service execution, while Fig. 8 compares both

versions when the average amount of resources per node is smaller

than the average amount of resources necessary for each service
execution, demanding QoS degradation of the previously accepted

services.
Both figures allow us to conclude that, similarly to the coalition

formation algorithm, the traditional version is slightly faster to

achieve its only and optimal solution. While the anytime approach
tries to quickly find an initial feasible solution by considering the

worst QoS level requested by the user, the traditional version starts
by selecting the user’s preferred QoS level. As such, with spare

resources the traditional version is faster to achieve the optimal
resource allocation for the new set of tasks, while with limited
resources both versions need almost the same time.

However, in both scenarios the anytime version is by far quicker
in finding a feasible solution. With spare resources the required

time to find the first feasible solution with a quality near 10% 3%

of the optimal solution is less than 5% of its completion time.

With limited resources, the anytime version takes about 20% of its
computation time to reach a feasible solution with 15% 3% of the

optimal solution’s quality.
With these results for both algorithms, the advantages of the

anytime approach are clearly demonstrated, as its overhead can

be considered negligible when compared with the introduced
benefits. The anytime approach quickly achieves a feasible global

and local resource allocation and it maximises the rate at which
the quality of that initial solution increases over time.

9. Conclusions

As the complexity of various applications increases, multiple

tasks have to compete for the limited resources of a single

device. In this context, resource constrained devices may need

to collectively execute services with their neighbours in order
to fulfill the complex QoS constraints imposed by users and

applications. As such, it becomes very important to provide an

efficient arbitration of QoS levels in this highly dynamic, open,

shared, and heterogeneous environment.
This paper presented the CooperatES framework, a QoS-

aware framework that addresses the increasing demands on
resources and performance by allowing services to be executed

by temporary coalitions of nodes. Users encode their own relative
importance of the different QoS parameters for each service and

the framework uses this information to determine the distributed
resource allocation that maximises the satisfaction of those

constraints.
However, finding an optimal distributed service provisioning

that deals with both users’ and service providers’ quality

constraints can be extremely complex and take a long time. Unlike
conventional QoS optimisation algorithms that guarantee a correct

output only after termination, the proposed anytime approach
does not rely on the availability of deliberation time to provide

a solution and a measure of its quality. This tradeoff between
the available computation time and the quality of the achieved

solution is a powerful and useful approach in open dynamic real-
time systems where, despite their uncertainty, responses to events

still have to be provided within precise timing constraints in order
to guarantee a desired level of performance.

The conformity of the proposed algorithms with the desired

properties of anytime algorithms was proved and the design de-
cisions of our approach validated through extensive simulations

in highly dynamic scenarios. The achieved results clearly demon-
strate that proposed anytime algorithms are able to quickly find a

good initial solution and effectively optimise the rate at which the

quality of the current solution improves at each iteration of the al-

gorithms, with an overhead that can be considered negligible when
compared with the introduced benefits.

Fig. 6. Coalition formation: Anytime vs Traditional.

Fig. 7. Proposal formulation: Anytime vs Traditional with spare resources.

Fig. 8. Proposal formulation: Anytime vs Traditional with limited resources.

References

[7] S. Brandt, G. Nutt, T. Berk, J. Mankovich, A dynamic quality of service

middleware agent for mediating application resource usage, in: Proceedings

[1] T.F. Abdelzaher, E.M. Atkins, K.G. Shin, Qos negotiation in real-time systems
and its application to automated flight control, IEEE Transactions on
Computers 49 (11) (2000) 1170–1183 (Best of RTAS ’97 special issue).

[2] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-time
systems, in: Proceedings of the 19th IEEE RTSS, Madrid, Spain, 1998, pp. 4.

[3] R. Barbosa, L.M. Pinho, Mechanisms for reflection-based monitoring of real-
time systems, in: Work-In-Progress Session of the 16th ECRTS, 2004.

[4] H. Berthold, S. Schmidt, W. Lehner, C.-J. Hamann, Integrated resource
management for data stream systems, in: Proceedings of the 2005 ACM
Symposium on Applied Computing, ACM Press, 2005, pp. 555–562.

[5] R. Bhattacharya, G.J. Balas, Anytime control algorithm: Model reduction
approach, Journal of Guidance, Control, and Dynamics 27 (5) (2004) 767–776.

[6] R. Branden, D. Clark, S. Shenker, IETF RFC 1633: Integrated services in the
internet architecture: An overview, 1994.

[8] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, L. Abeni, Adaptive reservations
in a linux environment, in: Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada, 2004,
pp. 238–245.

[9] C. Curescu, S. Nadjm-Tehrani, Time-aware utility-based qos optimisation, in:
Proceedings of the 15th Euromicro Conference on Real-Time Systems, 2003,
pp. 83–92.

[10] T. Dean, M. Boddy, An analysis of time-dependent planning, in: Proceedings of
the 7th National Conference on Artificial Intelligence, 1988, pp. 49–54.

[11] V.S.W. Eide, F. Eliassen, O.-C. Granmo, O. Lysne, Supporting timeliness and ac-
curacy in distributed real-time content-based video analysis, in: Proceedings
of the 11th ACM international conference on Multimedia, ACM Press, 2003,
pp. 21–32.

[12] E.C.S. Laboratory, Open source erlang. Available at: http://www.erlang.org/.
[13] I. Foster, M. Fidlerc, A. Royd, V. Sandere, L. Winkler, End-to-end quality of

service for high-end applications, Elsevier Computer Communications Journal
27 (14) (2004) 1375–1388.

[14] K. Fukuda, N. Wakamiya, M. Murata, H. Miyahara, Qos mapping between user’s
preference and bandwidth control for video transport, in: Proceedings of the
5th International Workshop on Quality of Service, New York, USA, 1997, pp.
291–302.

[15] S. Ghosh, J. Hansen, R.R. Rajkumar, J. Lehoczky, Adaptive qos optimizations
with applications to radar tracking, in: Proceedings of the 10th International
Conference on Real-Time and Embedded Computing Systems and Applica-
tions, Gothenburg, Sweden, 2004.

[16] S. Ghosh, R.R. Rajkumar, J. Hansen, J. Lehoczky, Integrated resource
management and scheduling with multi-resource constraints, in: Proceedings
of the 25th IEEE Real-Time Systems Symposium, Lisbon, Portugal, 2004, pp.
12–22.

[17] S. Ghosh, R. Rajkumar, J.P. Hansen, J.P. Lehoczky, Scalable resource allocation
for multi-processor qos optimization, in: Proceedings of the 23rd International
Conference on Distributed Computing Systems, IEEE Computer Society, Rhode
Island, USA, 2003, p. 174.

[18] V. Goebel, T. Plagemann, Mapping user-level qos to system-level qos and
resources in a distributed lecture-on-demand system, in: I.C. Society (Ed.),
Proceedings of The 7th IEEE Workshop on Future Trends of Distributed
Computing Systems, vol. 199, pp. 197.

[19] X. Gu, A. Messer, I. Greenberg, D. Milojicic, K. Nahrstedt, Adaptive offloading for
pervasive computing, IEEE Pervasive Computing Magazine 3 (3) (2004) 66–73.

[20] J.P. Hansen, J. Lehoczky, R. Rajkumar, Optimization of quality of service in
dynamic systems, in: Proceedings of the 9th International Workshop on
Parallel and Distributed Real-Time Systems, 2001.

[21] N. Hawes, Anytime deliberation for computer game agents, Ph.D. Thesis,
School of Computer Science, The University of Birmingham, November 2003.

[22] E.J. Horvitz, Reasoning under varying and uncertain resource constraints, in:
Proceedings of the 7th National Conference on Artificial Intelligence, 1988, pp.
111–116.

of the 19th IEEE Real-Time Systems Symposium, 1998, pp. 307–317.

[23] M. Caccamo, G. Buttazzo, L. Sha, Capacity sharing for overrun control, in:
Proceedings of 21th IEEE RTSS, Orlando, Florida, 2000, pp. 295–304.

[24] M. Caccamo, G.C. Buttazzo, D.C. Thomas, Efficient reclaiming in
reservation- based real-time systems with variable execution times, IEEE
Transactions on Computers 54 (2) (2005) 198–213.

[25] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, R. Chan-
dramouli, Studying energy trade offs in offloading computation/compilation
in java-enabled mobile devices, IEEE Transactions on Parallel and Distributed
Systems 15 (9) (2004) 795–809.

[26] D. Clark, S. Shenker, L. Zhangn, Supporting real-time applications in an inte-
grated services packet network: Architecture and mechanism, in: Proceedings
of the SIGCOMM’92 Symposium on Communications Architectures and Proto-
cols, 1992, pp. 14–26.

[27] L. Marcenaro, F. Oberti, G.L. Foresti, C.S. Regazzoni, Distributed architectures
and logical-task decomposition in multimedia surveillance systems, Proceed-
ings of the IEEE 89 (10) (2001) 1419–1440.

[28] L. Marzario, G. Lipari, P. Balbastre, A. Crespo, Iris: A new reclaiming algorithm
for server-based real-time systems, in: Proceedings of the 10th IEEE RTAS,
Toronto, Canada, 2004, pp. 211.

[29] M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Transactions on
Modeling and Computer Simulation (TOMACS) 8 (1) (1998) 3–30.

[30] C.W. Mercer, S. Savage, H. Tokuda, Processor capacity reserves: Operating
system support for multimedia applications, in: Proceedings of the IEEE
International Conference on Multimedia Computing and Systems, 1994, pp.
90–99.

[31] K. Nakazono, Frame rate as a qos parameter and its influence on speech
perception, Multimedia Systems 6 (5) (1998) 359–366.

[32] L. Nogueira, L.M. Pinho, Dynamic qos-aware coalition formation, in: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium, Denver, Colorado, 2005, pp. 135.

[33] L. Nogueira, L.M. Pinho, Iterative refinement approach for qos-aware service
configuration, IFIP From Model-Driven Design to Resource Management for
Distributed Embedded Systems 225 (2006) 155–164.

[34] L. Nogueira, L.M. Pinho, Capacity sharing and stealing in dynamic server-based
real-time systems, in: Proceedings of the 21th IEEE International Parallel and
Distributed Processing Symposium, Long Beach, CA, USA, 2007, pp. 153.

[35] L. Nogueira, L.M. Pinho, Building adaptable, qos-aware dependable embedded
systems, in: Proceedings of the 3rd International Workshop on Dependable
Embedded Systems, Leeds, United Kingdom, 2006, pp. 72–77.

[36] L. Nogueira, L.M. Pinho, Dynamic adaptation of stability periods for service
level agreements, in: Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, Sydney,
Australia, 2006, pp. 77–81.

[37] L. Nogueira, L.M. Pinho, Dynamic qos adaptation of inter-dependent task sets
in cooperative embedded systems, in: Proceedings of the 2nd ACM
International Conference on Autonomic Computing and Communication
Systems, Turin, Italy, 2008, pp. 97.

[38] M. Othman, S. Hailes, Power conservation strategy for mobile computers using
load sharing, SIGMOBILE Mobile Computing Communications Review 2 (1)
(1998) 44–51.

[39] L. Palopoli, P. Valente, T. Cucinotta, L. Marzario, A. Mancina, A unified
framework for multiple type resource scheduling with qos guarantees, in:
Proceedings of the Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, Palma de Mallorca, Spain, 2005, pp. 67–75.

[40] N. Pereira, E. Tovar, B. Batista, L.M. Pinho, I. Broster, A few what-ifs on using
statistical analysis of stochastic simulation runs to extract timeliness properties,
in: Proceedings of the 1st International Workshop on Probabilistic Analysis
Techniques for Real-Time Embedded Systems, Pisa, Italy, 2004.

http://www.erlang.org/

[41] E.D. Jensen, C.D. Locke, H. Tokuda, A time-driven scheduling model for real-
time operating systems, in: Proceedings of the 6th IEEE Real-Time Systems
Symposium, 1985.

[42] M. Jones, P. Leach, R. Draves, J. Barrera, Modular real-time resource
management in the rialto operating system, in: Proceedings of the Fifth
Workshop on Hot Topics in Operating Systems, IEEE Computer Society, 1995,
p. 12.

[43] U. Kermer, J. Hicks, J. Rehg, A compilation framework for power and energy
management on mobile computers, in: 14th International Workshop on
Parallel Computing, 2001, pp. 115–131.

[44] S. Khan, Quality adaptation in a multisession multimedia system: Model,
algorithms and architecture, Ph.D. Thesis, University of Victoria, 1998.

[45] A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, 3rd edition,
McGraw-Hill, 2000.

[46] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, J. Hansen, A scalable solution to
the multi-resource QoS problem, in: Proceedings of the 20th IEEE Real-Time
Systems Symposium, 1999, pp. 315–326.

[47] C. Li, L. Li, Utility-based qos optimisation strategy for multi-criteria scheduling
on the grid, Journal of Parallel and Distributed Computing 67 (2) (2007) 142–
153.

[48] C. Lin, S.A. Brandt, Improving soft real-time performance through better slack
reclaiming, in: Proceedings of the 26th IEEE RTSS, 2005, pp. 410–421.

[49] G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant-
bandwidth servers, in: Proceedings of the 12th ECRTS, Stockholm, Sweden,
2000, pp. 193–200.

[50] C.L. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Journal of the ACM 1 (20) (1973) 40–61.

[51] J.W.S. Liu, K.-J. Lin, R. Bettati, D. Hull, A. Yu, Use of imprecise computation
to enhance dependability of real-time systems, Foundations of Dependable
Computing: Paradigms for Dependable Applications (1994) 157–182.

[52] J.W. Liu, K.-J. Lin, W.-K. Shih, A.C. shi Yu, J.-Y. Chung, W. Zhao, Algorithms for
scheduling imprecise computations, IEEE Computer 24 (5) (1991) 58–68.

[53] Z. Li, C. Wang, R. Xu, Task allocation for distributed multimedia processing on
wirelessly networked handheld devices, in: Proceedings of the 16th Interna-
tional Symposium on Parallel and Distributed Processing, IEE Computer Soci-
ety, 2002, p. 79.

[54] Z. Li, C. Wang, R. Xu, Computation offloading to save energy on handheld
devices: a partition scheme, in: Proceedings of the 2001 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems,
ACM Press, 2001, pp. 238–246.

[55] Analysis Techniques for Real-Time Embedded Systems, Pisa, Italy, 2004.
[56] L.M. Pinho, L. Nogueira, R. Barbosa, An ada framework for qos-aware

applications, in: Proceedings of the 10th Ada-Europe International Conference
on Reliable Software Technologies, York, UK, 2005, pp. 25–38.

[57] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, Resource kernels: A resource-
centric approach to real-time and multimedia systems, Readings in Multime-
dia Computing and Networking (2001) 476–490.

[58] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, A resource allocation model
for qos management, in: Proceedings of the 18th IEEE Real-Time Systems
Symposium, IEEE Computer Society, 1997, p. 298.

[59] A. Rudenko, P. Reiher, G.J. Popek, G.H. Kuenning, Saving portable computer
battery power through remote process execution, Mobile Computing and
Communications Review 2 (1) (1998) 19–26.

[60] S. Schmidt, T. Legler, D. Schaller, W. Lehner, Real-time scheduling for
data stream management systems, in: Proceedings of the 17th Euromicro
Conference on Real-Time Systems, 2005, pp. 167–176.

[61] H. Schulzrinne, S. Casner, R. Frederic, V. Jacobson, IETF RFC 1889: Rtp: A
transport protocol for real-time applications, 1996.

[62] J. Shackleton, D. Cofer, S. Cooper, Anytime scheduling for real-time embedded
control applications, in: Proceedings of the 23rd Digital Avionics Systems
Conference, vol. 2, Salt Lake City, UT, USA, 2004, pp. 101–110.

[63] J.A. Stankovic, K. Ramamritham, The spring kernel: A new paradigm for real-
time systems, IEEE Software 8 (3) (1991) 62–72.

[64] M. Stonebraker, U. Cetintemel, S. Zdonik, The 8 requirements of real-time
stream processing, SIGMOD Record 34 (4) (2005) 42–47.

[65] J. vanden Berg, D. Ferguson, J. Kuffner, Anytime path planning and
replanning in dynamic environments, in: Proceedings of the IEEE International
Conference on Robotics and Automation, Orlando, Florida, USA, 2006, pp.
2366–2371.

[66] F. van Harmelen, A. ten Teije, Describing problem solving methods using
anytime performance profiles, in: Proceedings of ECAI’00, Berlin, 2000, pp.
181–186.

[67] C. Wang, Z. Li, Parametric analysis for adaptive computation offloading,
in: Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, ACM Press, 2004, pp. 119–130.

[68] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala, Rsvp: A new resource
reservation protocol, IEEE Network (1993) 8–18.

[69] S. Zilberstein, Using anytime algorithms in intelligent systems, Artificial
Intelligence Magazine 17 (3) (1996) 73–83.

[70] S. Zilberstein, Operational rationality through compilation of anytime
algorithms, Ph.D. Thesis, Department of Computer Science, University of
California at Berkeley, 1993.

