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ABSTRACT 
 

The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to execute services within 
the users’ requested Quality of Service levels, particularly in open real-time environments where the characteristics of the computational load cannot 
always be predicted in advance but, nevertheless, response to events still has to be provided within precise timing constraints in order to guarantee a 
desired level of performance. 

This paper proposes a cooperative service execution, allowing resource constrained devices to collectively execute services with their more 

powerful neighbours, meeting non-functional requirements that otherwise would not be met by an individual execution. Nodes dynamically group 
themselves into a new coalition, allocating resources to each new service and establishing an initial service configuration which maximises the 
satisfaction of the QoS constraints associated with the new service and minimises the impact on the global QoS caused by the new service’s arrival. 

However, the increased complexity of open real-time environments may prevent the possibility of computing optimal local and global resource 
allocations within a useful and bounded time. As such, the QoS optimisation problem is here reformulated as a heuristic-based anytime optimisation 
problem that can be interrupted at any time and quickly respond to environmental changes. Extensive simulations demonstrate that the proposed 
anytime algorithms are able to quickly find a good initial service solution and effectively optimise the rate at which the quality of the current solution 
improves at each iteration of the algorithms, with an overhead that can be considered negligible when compared against the introduced benefits. 
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1. Introduction 

Real-time computing systems were originally developed to 

support safety critical, mission critical, or business critical control 

applications characterised by stringent timing constraints and, 

indeed, much of real-time computing is still used for these types 
of applications. In these systems, missing a single deadline can 

jeopardise the entire system behaviour or even cause catastrophic 

consequences. Hence, they need to be designed under worst-case 

assumptions and executed with predictable kernel mechanisms to 

meet the required performance in all anticipated scenarios. 
While the high cost of such an approach is acceptable for 

applications with dramatic failure consequences, it is no longer 

justified in a growing number of new real-time systems in areas 
such as multimedia, automotive information and entertainment 

systems, mobile phone networks, robotics, and radar tracking. A 

 
 

deadline miss does not constitute a system or application failure 
but it is only less satisfactory for the user and, as such, the approach 

is generally regarded as cheaper and more flexible. In fact, in 
order to satisfy a set of constraints related to weight, space, and 

energy consumption, these systems are typically built using small 
microprocessors with low processing power and limited resources. 

The challenge is how to efficiently execute applications in these 

new embedded real-time systems while meeting non-functional 
requirements, such as timeliness, robustness, dependability, 

performance etc. This is where QoS management applies. QoS- 
aware applications have an important property; they can perform 

at degraded levels and still satisfy the users to a certain   degree. 
This property is quite different from traditional applications which 

either perform at a given quality level or not at all. 
Reserving resources is basic for supporting QoS mechanisms. 

An application cannot provide stable QoS characteristics if it does 

not have some guarantees on the available amount of resources. 

The operating system or middleware reserves a portion of the 

system’s resources for an application, which then has to provide 
a predefined stable output quality. 

However, the move from the traditional self-enclosed real-time 
system to open real-time systems is also one of moving from 
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static to dynamic environments [24,20]. Open real-time systems 

allow a mix of independently developed real-time and non real- 

time applications to coexist in the same system. As such, the    

set of applications to be executed and their aggregate resource 

and timing requirements are unknown until runtime, implying 

that accurate optimisation models are then difficult to obtain 

and quickly become outdated. The solution is to make these new 

real-time systems adaptable to the environment, thus capable to 

react to changes in the operating conditions by acting on the 

applications’ and system’s parameters. 

Nevertheless, an increasing number of real-time applications 

need a considerable amount of computation power and are push- 

ing the limits of traditional data processing infrastructures [63]. 

Consider, for example, the real-time stream processing systems 

described in [41,15,59]. The quantity of data produced by a vari- 

ety of data sources and sent to end systems for further processing 

is growing significantly, increasingly demanding more processing 

power, and the challenges become even more critical when a coor- 

dinated content analysis of data sent from multiple sources is nec- 

essary [15]. Thus, with a potentially unbounded amount of stream 

data and limited resources, some of the processing tasks may not 

be satisfyingly answered, even within the users’ minimum accept- 

able QoS levels [59]. 

In this context, a cooperative QoS-aware execution of resource 

intensive services among neighbour nodes seems a promising 

solution to address these increasingly complex demands on re- 

sources and desirable performance. The CooperatES (Cooperative 

Embedded Systems) framework [46–48] facilitates the cooperation 

among neighbours when a particular set of QoS constraints can- 

not be satisfyingly answered by a single node. Nodes dynamically 

group themselves into a new coalition, allocating resources to each 

new service and establishing an initial Service Level Agreement 

(SLA). The proposed SLA maximises the satisfaction of the QoS con- 

straints associated with the new service and minimises the impact 

on the global QoS caused by the new service’s arrival [46,47]. 

However, the increased complexity of dynamic open scenarios 

may prevent the possibility of computing optimal local and global 

resource allocations within a useful and bounded time, as the 

optimal level of deliberation varies from situation to situation. This 

is true for many real-time applications, where it may be preferable 

to have approximate results of a poorer but acceptable quality 

delivered on time, to late results with the desirable optimal quality. 

For example, it is better for a collision avoidance system to issue a 

timely warning together with an estimated location of the obstacle 

than a late description of the exact evasive action. Another example 

is video and sound processing. While poorer quality images and 

voices on a timely basis may be acceptable, late frames and long 

periods of silence often are not. Other examples can be found   

in route optimisation of automated vehicles [64,61], computer 

games [25], and real-time control [5]. 

It is therefore beneficial  to  build  systems  that  can  trade  

off the computational cost for the quality of the achieved 

solution [68]. This paper reformulates the distributed resource 

allocation problem as an anytime optimisation problem with a 

range of acceptable solutions with varying qualities and whose 

deliberation time is dynamically imposed as a result of emerging 

environmental conditions [48]. 

Nodes start by negotiating partial, acceptable service proposals 

that are later refined if time permits, in contrast to a traditional 

QoS optimisation approach that either runs to completion or is not 

able to provide a useful solution. At each iteration, the proposed 

QoS optimisation tries to find a new feasible set of QoS levels with 

an increasing utility. This improvement is larger at the early stages 

of computation and diminishes over time. 

Thanks to the anytime nature of the proposed approach, it is 

possible to interrupt the QoS optimisation process at any point in 

its execution and still be able to obtain a service solution and a 

measure of its quality, which is expected to improve as the run 

time of the algorithms increases. The binary notion of correctness 

associated with traditional QoS optimisation algorithms is then 

replaced by a set of quality measured outputs. For the remainder of 

this paper, the solution’s quality measure indicates how close the 

offered QoS level is to the user’s desired QoS level. 

The rest of this paper is organised as follows. The next section 

analyses related work. Section 3 describes our model and used 

notation, followed by a detailed description of the structure of 

the proposed framework for a QoS-aware cooperative execution 

of resource intensive services in Section 4. Section 5 presents       

a generic QoS description scheme that guarantees information 

consistency and compatibility in a community of distributed 

heterogeneous nodes. In Sections 6 and 7, the proposed anytime 

approach for a cooperative service execution’s configuration  

that maximises the user’s satisfaction with provided service is 

described and validated in detail. Section 8 presents the results 

of extensive simulations conducted, with the main objectives of 

analysing the performance of the proposed anytime approach and 

comparing it against the traditional versions of the algorithms. 

Finally, Section 9 concludes the paper. 

 
2. Related work 

 
Traditional QoS optimisation algorithms often assumed that for 

a given invocation of a task, the quality of provided  service for 

a particular amount of resources was constant. While this may 

be sufficient for some applications, there are others (e.g. radar 

tracking, multimedia, etc.) where some environmental factors 

outside the direct control of the system affect the fixed relationship 

between the provided level of service and resource requirements. 

As such, mechanisms for arbitration of QoS levels based on the 

concept of flexible resource requirements have been studied 

extensively either at individual nodes or distributed environments. 

The concept of online admission control has been applied to 

resource reservation for dynamically arriving tasks and several 

efforts appear in the context of real-time operating systems   and 

networks research. Relevant work can be found in [62,44,28,56]. 

At the network level, scheduling algorithms for package 

deliberation provide specific quality levels [11], while resource 

reservation protocols such as the Resource ReSerVation Protocol 

(RSVP) [67] provide support for end-to-end resource reservation 

for specific sessions. DiffServ and IntServ [6] are examples of IETF 

standards that integrate RSVP for the support of real-time as well 

as the current non real-time service in IP networks. 

The Real-Time Transport Protocol (RTP) [60] is a transport 

protocol for carrying real-time traffic flows in an IP network. It 

provides a standard packet header format which gives sequence 

numbering, media-specific time stamp data, source identification, 

and payload identification, among other things. RTP is usually 

carried using UDP. RTP is supplemented by the Real-Time Transfer 

Control Protocol (RTCP), which carries control information about 

the current RTP session. RTP do not address the issue of resource 

reservation but relies on reservation protocols such as RSVP. 

However, most of this research has been focused on low- 

level system mechanisms. While individual resource management 

is an important factor for an efficient QoS management, we 

believe that it is not sufficient for the ultimate end-users who 

experience the resulting QoS. It is known that different users 

might tolerate different levels of service, or could be satisfied with 

different quality combination choices. In order to achieve the users’ 

acceptance requirements and to satisfy the imposed constraints, a 

QoS-aware resource management must support QoS negotiation, 

admission, and reservation mechanisms in an integrated and 

accessible way. 



 

Jensen et al. proposed a soft real-time scheduling technique 

based on application benefit [27]. Each application specified a 

benefit curve that indicated the relative benefit to be obtained  
by scheduling the application at various times with respect to its 

deadlines. The goal was to schedule applications so as to maximise 

an overall system’s benefit. While this approach is intuitively very 

appealing, it is computationally intractable. 

Nevertheless, the work of  Jensen  et  al.  led  to  the  adoption  

of utility functions to represent varying satisfaction with service 

changes in several other works. In [7], Brand et al. propose a 

mediation method for resource allocation based on the maximums 

processor usage and users’ benefit as measures for QoS levels and 

present the Dynamic QoS Manager (DQM) middleware. DQM is 

based on the notion of applications’ specified execution levels that 

reflect algorithmic modes in which applications can execute.  It  

uses the execution level information and the current state of the 

system to dynamically determine appropriate QoS allocations for 

the running applications. 

Curescu et al. proposed a time-aware admission control and 

resource allocation scheme that aims to allocate  bandwidth  

such that the accrued utility of the whole system, accumulated 

over time, is maximised [13]. The approach synthesises the 

consequences of resource reallocation for different types of 

applications and uses this information to perform a periodic 

reallocation optimisation. 

In coping with the shortage of QoS support from an end-  

user point of view, Rajkumar et al. [57] proposed Q-RAM, a 

QoS-based resource allocation model in which multiple resources 

are allocated to maximise the overall system’s utility. The static 

resource allocation algorithms of Q-RAM were extended to support 

a dynamic task traffic model [24] and to handle non-monotonic 

dimensions [21]. Further improvement techniques to  reduce  

the computation complexity of the initial proposal and their 

application to radar tracking are described in [19]. 

Working from the user’s perspective and maximising the user 

perceived quality or utility has also been addressed in several other 

works. In [28], the user’s QoS preferences are considered for the 

application’s runtime behaviour control and resource allocation 

planning. Example preferences include statements that a video- 

phone call should pause a movie unless it’s being recorded and that 

video should be degraded before audio when all desired resources 

are not available. These are useful hints for high-level QoS control 

and resource planning, but are inadequate for quantitatively 

measuring QoS, or analytically planning and allocating resources. 

Abdelzaher et al. used a similar concept to propose a QoS negoti- 

ation mechanism that ensures graceful service degradation in cases 

of overload, failures, or violation of pre-runtime assumptions [1]. 

The authors suggest that a user should be able to express his spec- 

trum of acceptable QoS levels, as well as a quantitative perceived 

utility of receiving service at each of those levels. QoS levels are 

then statically mapped to certain quality choice combinations. A 

similar approach is taken in [30]. But neither of the works ad- 

dresses the balancing of competing resource demands or has de- 

veloped an effective specification method of QoS preferences or a 

mechanism to facilitate utility data acquisition. 

A generic architecture for resource reservation and allocation 

that supports flow-specific QoS specifications as well as online 

monitoring and control of both individual resources and heteroge- 

neous resource sets was proposed by Foster et al. [17]. The archi- 

tecture builds on differentiated service mechanisms to enable the 

coordinated management of distinct flow types, networks, CPUs, 

and storage systems. 

Another architecture for the adaptive management of multiple 

resources on a general purpose operating system was proposed 

by Palopoli et al. in [53], extending a prior architecture dedicated 

exclusively to the adaptation of the CPU’s bandwidth for QoS 

control [12]. 

In grid environments, a similar concept was used by Chunlin 

et al. in [33] to present a utility-based QoS optimisation strategy 

for multi-criteria scheduling. The QoS optimisation problem is split 

in a task optimisation subproblem performed on behalf of the user 

and in a resource optimisation subproblem performed on behalf of 

the grid. 

While we certainly share some concerns with these works, and 

also apply utility-based adaptation strategies [46], we go a step 

further and propose a QoS-aware cooperative service execution 

to deal with a large number of tasks, multiple resources, and 

highly dynamic real-time operation constraints in open real-time 

systems. 

Several studies in computation offloading propose task par- 

tition/allocation schemes that allow the computation to be of- 

floaded, either entirely or partially, from resource constrained 

(wireless) devices to a more powerful neighbour [66,23,39]. These 

works conclude that the efficiency of an application execution can 

be improved by careful partitioning of the workload between a de- 

vice and a fixed neighbour. Often, the goal is to reduce the needed 

computation time and energy consumption [40,29,52,58,10] by 

monitoring different resources, predicting the cost of local exe- 

cution and that of a remote one and deciding between a local or 

remote execution. However, most of the work in this direction is 

limited to the case where there is only on resource-limited device 

and one relatively more capable neighbour to offload computation 

to. Also, none of these works supports the maximisation of each 

user’s specific QoS preferences while offloading computation. 

Our work facilitates the cooperation among heterogeneous 

nodes whenever a particular set of QoS constraints cannot be 

satisfyingly answered by a single node. The resulting coalition is 

the one which maximises the satisfaction of the QoS constraints 

associated with the new service and minimises the impact on the 

global QoS caused by the new service’s arrival. 

Furthermore, the CooperatES framework differs from other 

QoS-aware frameworks by considering, due to the increasing 

complexity of open real-time systems, the needed tradeoff 

between the level of optimisation and the usefulness of an optimal 

runtime system’s adaptation behaviour. The fundamental problem 

that has to be faced is the uncertainty of the environment. In 

particular, when considering real-time requirements, uncertainty 

means that desired bounds may not be met when adapting the 

system to the dynamically changing environmental conditions. 

This idea has been formalised using the concepts of imprecise 

computation and anytime algorithms. Liu et al. [38] have 

recognised imprecise computation (for monotone tasks), sieve 

functions (for non-monotone tasks) and multiple versions as the 

three ways by which unbounded components can be integrated 

into real-time systems. 

Imprecise computation uses monotone functions to produce 

intermediate results as a task executes. The value of these results 

is expected to improve as the execution of the task continues. The 

computation required to produce a result with minimum quality 

forms the mandatory part of the task. Clearly, this mandatory part 

must have a worst case execution time that is guaranteed by the 

schedulability analysis. The rest of the task’s execution is called 

optional. The optional part is (usually) an iterative refinement 

algorithm that progressively improves the quality of the result 

generated by the mandatory part. These concepts were integrated 

with replication and checkpoint techniques to reduce the cost of 

providing fault tolerance and enhanced availability [37]. 

Anytime algorithms [14,26,68] are based on  the  idea  that 

the computation time needed to compute optimal solutions will 

typically reduce the overall utility of the system. An anytime 

algorithm is an iterative refinement algorithm that can be 

interrupted and asked to provide an answer at any time. It is 

expected that the quality of the answer will increase (up to some 



 

maximum quality) as the anytime algorithm is given increasing 

time to run, offering a tradeoff between the quality of the results 

and computational requirements. Associated with an anytime 

algorithm is a performance profile, a function that maps the time 

given to an anytime algorithm (and in some cases input quality) to 

the quality of the solution produced by that algorithm. 

Open real-time environments also demand a particular atten- 

tion to the dynamic scheduling of the framework’s management 

and services’ execution. Abeni and Buttazo proposed the Con- 

stant Bandwidth Server (CBS) scheduler [2] to efficiently handle 

soft real-time requests with a variable or unknown execution be- 

haviour under the EDF [36] scheduling policy. To avoid unpre- 

dictable delays on hard real-time tasks, soft tasks are isolated 

through a bandwidth reservation mechanism, according to which 

each soft task gets a fraction of the CPU and it is scheduled in 

such a way that it will never demand more than its reserved band- 

width, independently of its actual requests. This is achieved by as- 

signing each soft task a deadline, computed as a function of the 

reserved bandwidth and its actual requests. If a task requires to 

execute more than its expected computation time, its deadline is 

postponed so that its reserved bandwidth is not exceeded. As a 

consequence, overruns occurring on a served task will only delay 

that task, without compromising the bandwidth assigned to other 

tasks. 

The resource reservation approach of CBS has been ex- 

tended [35,8,42,9,34], introducing the ability to exploit tasks’ ear- 

lier completions and reclaim the resulting residual capacities to 

further increase resource usage and handle soft tasks’ overloads 

more efficiently. Nevertheless, new open real-time systems can 

benefit from a more flexible overload control, achieved with the 

combination of guaranteed and best-effort servers and reducing 

isolation in a controlled fashion in order to donate reserved, but 

still unused, capacities to currently overloaded servers. 

The Capacity Sharing and Stealing (CSS) scheduler [48] proposes 

to handle overloads with additional capacity that is available from 

two sources: (i) by reclaiming unused allocated capacity when 

jobs complete in less than their budgeted execution time; and 

(ii) by stealing allocated capacities to non-isolated servers used 

to schedule sporadic best-effort jobs. The integration of the CSS 

scheduler into the CooperatES framework is discussed in detail 

in [49]. 

 
3. Problem description and system model 

We are primarily interested in dynamic scenarios where new 

tasks can appear while others are being executed. The processing 

of those tasks has associated real-time execution constraints, and 

service execution can be performed by a coalition of neighbour 

nodes. Due to these characteristics, resource availability is highly 

dynamic as services enter and leave the system at anytime. 

Consider a distributed system with several heterogeneous 

nodes, each with its specific set of resources Ri. For some of 

those nodes there may  be  a  constraint  on  the  type  and  size 

of services they can execute within the users’ acceptable QoS 

levels. Therefore, this work addresses a distributed cooperative 

execution of resource intensive services in order to maximise the 

users’ satisfaction with the obtained QoS. Nodes may cooperate 

either because they cannot deal alone with the resource allocation 

demands imposed by users and services or because they can reduce 

the associated cost by working together. 

It is assumed that a service S can be executed at varying 

levels of QoS to achieve an efficient resource usage that constantly 

adapts to the devices’ specific constraints, nature of executing 

tasks and dynamically changing system conditions. There will 

be a set of independent tasks to be executed, resulting from 

partitioning the resource intensive service S. Correct decisions on 

service partitioning must be made at run time when sufficient 

information about workload and communication requirements 

become available [66], since they may change with different 
execution instances and users’ QoS preferences. 

Each service has a set of parameters that can be changed in 

order to configure the supplied QoS and its correspondent resource 

demand. Each subset of parameters that relates to a single aspect 

of service quality is called a QoS dimension. For example, consider 

the transmission of multiple audio/video streams over a network. 

This scenario involves a network with a given bandwidth and 

nodes serving and receiving the streams. Typical audio related 

parameters  are  the  sampling  rate  (8,  16,  24,  44,  48  kHz), the 

sampling  bits  (8,  16),  and   the   end-to-end   latency   (100,   75,  
50, 25 ms), while in video it is usually considered the picture 

dimension (SQCIF, QCIF, CIF, CIF4), colour depth (1, 3, 8, 16, . . .), and 

frame rate (1, . . . , 30). Each of these QoS dimensions has different 
resource requirements for each possible level of   service. 

Different configurations of a stream can have different utility 
values for different users and applications. For example, for a 

particular user, a transmission of a music concert may place higher 
quality requirements on audio, although colour video may be also 

desirable, while another user of a remote surveillance system may 
require higher video quality with a minimum of gray scale images. 
Let Q be the set of the user’s QoS constraints associated with 

service S. Each Qkj is a finite set of quality choices for the jth 

attribute of dimension k. This can be either a discrete or continuous 

set. 
Users provide a single specification of their own range of QoS 

preferences Q for a complete service S, ranging from a desired 
QoS level Ldesired to the maximum tolerable service degradation, 

specified by a minimum acceptable QoS level Lminimum, without 
having to understand the individual tasks that make up the service. 

As a result, the user is able to express acceptable compromises 
in the desired QoS and assign utility values to QoS levels. Note 
that this assignment is decoupled from the process of establishing 
the supplied service QoS levels themselves and determining the 
resource requirements for each level. 

Given the spectrum of the user’s acceptable QoS levels Q for 

service S, the coalition formation problem can be described as: 

Given a set of neighbour nodes N and a resource allocation 
demand enforced by Q , if the resource demand cannot be 

satisfyingly answered by a single node, neighbour nodes should 

cooperate to fulfill such resource demand. The selection of a 

subset of nodes in N to cooperatively execute S should be 

influenced by either the maximisation of the QoS constraints 
Q associated with S and by the minimisation of the impact on 

the current QoS of the previously accepted services caused by 

the arrival of S. 

Searching  for  an  optimal  resource  allocation  with  respect    
to a particular goal has always been one of the fundamental 

problems in QoS management. However, as the complexity of open 

distributed systems increases, it is also increasingly difficult to 
achieve an optimal resource allocation that deals with both users’ 

and nodes’ constraints within a useful and bounded time. Note that 

if the system adapts too late to the new resource requirements, it 

may not be useful and may even be  disadvantageous. 

Our proposal is to quickly establish an initial, sub-optimal, 

solution according to the set of QoS constraints that have to be 

satisfied. Then, if time permits, the initial solution is gradually 

refined until it finally reaches its optimal value or the available 

deliberation time expires. At each iteration, a new set of SLAs    

is found with an increasing utility to the user’s request under 

negotiation but these successive adjustments get smaller as the 

QoS optimisation process progresses. 

Please note that the paper is focused on the anytime 

configuration of a distributed cooperative service execution  and 



 

 

 
 

Fig. 1.    Framework structure. 

 

not on the coalition’s operation phase. The dynamic adaptation of 

the coalition’s service provisioning to changes in the environment 

is discussed, at a local level, in [50] and in [51], at the global 

coalition level. 

Furthermore, the proposed anytime algorithms also are com- 

pletely independent from how the code to be executed on the orig- 

inal node’s behalf arrives to the coalition members. It is, for now, 

assumed that only nodes equipped a priori with a service’s code 

blocks respond to a cooperation request, thus eliminating the need 

to migrate code at runtime and transfer the service’s current state. 

 
4. The  CooperatES framework 

 
The objective of the CooperatES (Cooperative Embedded 

Systems) framework is to enable resource-constrained devices to 

solve computationally expensive services by redistributing parts of 

the service onto other devices. Such distribution is influenced by 

the maximisation of the QoS preferences associated with the new 

service requests, addressing the increasingly complex demands on 

performance and customisable service provisioning. 

Each node has a significant degree of autonomy and it is 

capable of performing tasks and sharing resources with other 

nodes. A service can be executed by a single node or by a group of 

nodes, depending on the user’s node capabilities and on the user’s 

imposed quality constraints. In either case, the service is processed 

in a transparent way for the user, as users are not aware of the 

exact distribution used to solve the computationally expensive 

services. The framework facilitates the tasks’ distribution across 

a community of nodes, forming temporary coalitions for a 

cooperative service execution. Fig. 1 presents the structure of the 

proposed framework, running on every node of the network. 

In the proposed model, QoS-aware applications must explicitly 

request the service execution to the underlying QoS framework, 

thus providing explicit admission control, abstracting from the ex- 

isting underlying distributed middleware and from the operating 

system. The model itself abstracts from the communication and ex- 

ecution environments. 

Central to the behaviour of the framework is the QoS Provider 

of each node, which is responsible for processing both local and 

remote resource requests. Rather than reserving local resources 

directly, it contacts the Resource Managers to grant specific 

resource amounts to the requesting task. Note that, in this paper, it 

is assumed that failures of resources will not occur during services’ 

execution but only that they may get overloaded. 

Each Resource Manager is a module that manages a particular 

resource. This module interfaces with the actual implementation 

in a particular system of the resource controller, such as the device 

driver for the network, the scheduler for the CPU, or with the 

software that manages other resources (such as memory). 

Resource managers have the ability to use each other in order to 

allow systems to be built supporting QoS requirements either from 

the point of view of the user (e.g. user-perceived high quality), of 
applications (e.g. video frame rate) or of the system (e.g. CPU cost). 
With the layering represented in Fig. 2, an interactive application 
can be more user friendly and easier to use by providing only 
high-level user perceptive quality, whilst other applications can be 
programmed to use application-related QoS constraints. 

Local and remote service requests arrive dynamically at any 
node and are formulated as a set of acceptable QoS levels in 
decreasing preference order. To guarantee the request locally, the 
Local Provider computes a set of SLAs that tries to maximise the 
utility associated with the new service’s  QoS  configuration  as  
well as to minimise the impact on the current QoS of previously 
accepted  services. 

If the resource demand imposed by the user’s QoS constraints 
cannot be locally satisfied, the Coalition Organiser is responsible 
for the coalition formation process. It broadcasts the service’s 
description as well as the user’s quality preferences, evaluates the 
received service proposals and decides which nodes will be part 
of the coalition. We consider the existence of an atomic broadcast 
mechanism in the system, guaranteeing that all nodes receive the 
same service requests and proposals in the same order. 

The System Manager maintains the overall system configura- 
tion, detects nodes entering and leaving the network, and manages 
the coalition’s operation and dissolution. 

Note that although we consider a collaborative environment, 
proper resource usage must be monitored in run time [3], in order 
to decide based on the actual system’s resource usage and not 
only on the resource usage assumptions of requesting services. A 
prototype implementation of the framework is described in [55]. 

 
5. Expressing quality of service 

Given the heterogeneity of services to be executed, users’ qual- 

ity preferences, underlying operating systems, networks, devices, 
and the dynamics of their resource usages, QoS specification be- 
comes an important issue in the context of a distributed QoS-aware 
cooperative service execution framework. However, as open dis- 
tributed systems become more complex, so is the specification of 
requested and supplied QoS among users and service providers. 
Nodes must either have a common understanding of how QoS 
should be specified, or be able to map their individual specifica- 
tions into a common  one. 

The definition of such a generic QoS scheme must include qual- 
ity dimensions, attributes and values, as well as relations that map 
dimensions to attributes and attributes to values. Adopting a com- 
mon QoS description scheme in an open distributed environment 
guarantees information consistency and compatibility in a com- 
munity of heterogeneous nodes. Information consistency is satis- 
fied when each specific expression has the same meaning for every 
node. Information compatibility is achieved when any concept is 
described by the same expression, for all the nodes. Furthermore, 
a generic QoS scheme should also be extensible to support the later 
addition of new terms and relations as the system evolves. In this 
paper, we model each of these diverse requirements by the follow- 
ing structure: 
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Fig. 2.   Resource managers’ layering. 
 

Deps defines the set of existing dependencies among the values 

of the existing attributes. A dependence between Atri and Atrj is 

represented as Depij f (Valki, Valkj), Attri, Attrj Attr . Such 

dependency relations specify that a task offers a certain level of 

QoS under the condition that some specified QoS will be offered by 

the environment or by other tasks. 

Using a video streaming application as an example, the 

following is a list of quality dimensions that might me associated 

with any particular application. The list is given to illustrate the 

proposed model and is not intended to be exhaustive. 

 

 

 

 

 

 

 

 

 

 

 

Having such a QoS characterisation of a particular application 

domain, users and service providers are now able to define service 

requirements and proposals in order to reach an agreement on 

service provisioning. Since QoS is often multi-dimensional, a 

user (or application) might want to make some quality tradeoff, 

especially when the available resources are scarce. Therefore, it 

is to the user’s advantage to be able to specify a set of personal 

QoS requirements using an interface that explicitly allows the 

definition of quality tradeoffs. 

Consider the following example. Typically, the video frame rate 

fluctuates as the system’s load fluctuates. However, frame rate is 

an important QoS parameter for talk shows because it affects lip 

synchronisation [45]. As such, other QoS parameters like the frame 

size or image quality may be better candidates for degradation 

when the needed resources become scarce. On the other hand, in 

a remote video surveillance system, a grey scale, low frame  rate 

may be sufficient, but a high image quality is important. As such, 

an efficient system’s QoS optimisation policy must consider the 

specific quality requirements of each user or application. 

A flexible approach to deal with the heterogeneity and load 

variations of dynamic open environments is to define such 

personal quality requirements through a utility model. Several 

works associate with each pre-defined QoS level a utility function 

that specifies the user’s benefit in obtaining service within those 

values [1,57,33]. However, it may be clearly infeasible to make 

the user specify an absolute utility value for every pre-defined 

quality choice. While we want a semantically rich request in 

order to achieve a service provisioning closely related to the 

user’s quality preferences, we also want the user to actually be 

able to express personal QoS preferences in a service request. 

Equally important, we believe that the system should dynamically 

determine promised QoS levels according to the each user’s 

accepted QoS values for each QoS dimension and local resource 

availability. As such, the reward of executing a task at one of those 

dynamically determined QoS levels will depend on the number, 

and relative importance, of the QoS dimensions being served closer 

to the user’s desired QoS level. 

Following those goals, a more natural and realistic way is     

to simply impose a service request based on a qualitative, not 

quantitative, measure. With a relative decreasing order on quality 

dimensions, their attributes, and accepted values, a user is able to 

encode the relative importance of the new service’s performance at 

the different QoS levels without the need to quantify every quality 

tradeoff with absolute values. For example, a user of a remote video 

surveillance system can easily state that video is more important 

than audio, and the image’s quality is more important than the 

obtained frame rate and colour depth with the following service 

request: 

 

 

 

 

 

 

 

 

 

The evaluation of the user’s acceptability of each service 

proposal with respect to the expressed quality preferences is 

detailed in the next section. 
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6. Coalition formation 

The coalition formation  process  should  enable  the  selection  
of individual nodes that, based on their own resources and 
availability, will constitute the best group to satisfy the user’s   QoS 

In Eq. (3), the function da(Propki, Prefki) quantifies, for an 

attribute i, the degree of acceptability of the proposed value Propki, 

when compared to the user’s preferred value Prefki and is defined 

as 

requirements associated with a resource intensive service. By best 
group, we mean the group formed by those nodes which offer  

 

service closer to the user’s desired QoS  level. 
A service request is considered to be formulated through the 

 

 

relative  decreasing importance (K 1 . . . n) of a set of n QoS 
dimensions, ranging from a desired QoS level Ldesired and the 
maximum tolerable service degradation, specified by a minimum 
acceptable QoS level Lminimum. For each dimension, a relative 
decreasing  importance  order  of  attributes  is  also  specified  (i     
1 . . . attrk), where k is the number of attributes of dimension K . 

Please note that k and i are not the identifiers of dimensions and 
attributes in a domain’s QoS description, but their relative position 
in user’s service  request. 

When the user’s node Ni cannot provide service within the 
user’s acceptable QoS levels Qi, the QoS Provider broadcasts a 
cooperation request to execute service Si. The set of tasks that can 
be remotely executed is determined by a task partition/allocation 
scheme that dynamically considers the tradeoff between local 
execution requirements and communication costs [66]. The 
cooperation request includes a description of each remote task Ti, 

the user’s QoS constraints, and a timeout ∆t for the reception of 
service proposals. 

Every neighbour node Nj which is able to satisfy the request, 
formulates a service proposal according to a local QoS optimisation 
algorithm (see Section 7 for details), and replies to node Ni with 
both its service proposal Pji and its local reward Rj, resulting from 
its proposal acceptance. For now, it suffices to say that the local 
reward is an indicator of the node’s local QoS optimisation level, 
according to the set of services being locally executed and their 
QoS constraints. How each node measures its local reward will be 
detailed in Section 7. 

It is clear that different groups of nodes will have different 
degrees of efficiency in the service’s cooperative execution 
performance due to different capabilities of their members and 
their current state. As such, the coalition’s members selection must 
be determined by the proximity of their service proposals with 
respect to the expressed user’s multi-dimensional QoS constraints. 

Each admissible proposal1 Pi is then evaluated by determining, for 
each QoS dimension, a weighted sum of the differences between 
the user’s preferred values and the values proposed in Pji, using 
Eq. (1). Recall that the user’s QoS constraints are presented in a 
decreasing preference order. 

 

 

   

where n is the number of QoS dimensions and 0 wk 1 is the 
relative importance of QoS dimension k, Qk, to the user, and can 
defined as 

 

 

The degree of acceptability of each proposed attribute’s value 
when compared to the request one is given by Eq. (3), considering 
continuous and discrete domains. 

 

 

 
1 A proposal is admissible if it can satisfy all QoS dimensions within the user’s 

acceptable QoS levels. 

If attribute i  has  a  continuous  domain,  this  quantification 

is a normalised difference between the  proposed  value  and  

the preferred one. Examples of QoS attributes with continuous 

domains include video frame rate, frame size, and network 

bandwidth. 

For discrete domains, Eq. (4) considers the preferences attached 

to Propki and Prefki by using their relative position in the 

application’s QoS requirements specification. Examples of discrete 

QoS attributes include the audio and video containers and the data 

encryption algorithm. 

In [32] the authors use the notion of a Quality Index, defining a 

bijective function that maps the elements of a discrete domain into 

integer values. We use a similar approach, by mapping the position 

(index) of that attribute in the domain’s specification into Propki’s 

and Prefki’s scoring values. When the domain’s QoS description 

defines the possible values for some attribute of a QoS dimension 

Qk by a set of intervals, Qk in Eq. (4) must relate to the particular 

interval where Propki is found. In a similar fashion, if the user 

expresses his set of acceptable values for an attribute of dimension 

Qk considering a set of intervals, Prefki should be the first value on 

the Propki’s interval and the relative decreasing order of importance 

of that interval to the user must be considered. 

The best proposal for each of the service’s tasks is thus the one 

that presents the lowest distance to the user’s quality preferences 

in all QoS dimensions. However, rather than assuming that this 

coalition formation process can have all the time it needs to 

compute its optimal output, we propose to achieve a time- 

bounded distributed QoS-aware service configuration among a set 

of heterogeneous neighbours. 

 
6.1. Anytime global QoS optimisation 

 

The participants in the anytime coalition formation process 

will be the user’s node and the subset of neighbour nodes able to 

offer service within the user’s required QoS levels. The user’s node, 

playing the role of organiser, starts and guides all the negotiation 

process, broadcasting the service’s requirements and user’s QoS 

constraints and evaluating the received service proposals, sent by 

the respondent neighbours. 

In order to be useful in practice, an anytime approach must try 

to quickly find a sufficiently good initial solution and gradually 

maximise its improvement at  each  iteration,  if  time  permits. 

As such, a particular attention must be devoted to the method 

used to select the next proposal to be evaluated from the set      

of received proposals, rather than depending on the order of 

proposals’ reception. The proposed anytime coalition formation 

algorithm, described in detail in Algorithm 1, uses each node’s local 

reward as a a heuristic to guide the coalition formation process. 

Clearly, nodes with a higher local reward have a higher probability 

to be offering service closer to this particular user’s request under 

negotiation since the utility achieved by all services being locally 

executed is higher. Then, for each remote  task Ti S, the next 

candidate proposal Pki to be selected from the set of received 

proposals Pi is the one sent by the node Nk with the greatest local 

reward Rk. 
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The proposed Algorithm 1 allows the global QoS optimisation 

process to return many possible approximate answers for a given 

input of service proposals to be evaluated. It can be interrupted at 

any time, providing a solution and a measure of its quality, which 

is expected to improve as the run time of the algorithm increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 
The quality of each generated coalition is measured by using the 

evaluation values of the best proposals for each service’s task. At 

each iteration, Eq. (6) returns the quality of the achieved solution. 

For an empty set of proposals the quality of the coalition is zero. 

Note that the quality of the coalition is also zero, if there are  not 

any proposals for one or more remote tasks Ti  ∈ S. 

The algorithm does not immediately produce an intermediate 

solution, since it must first analyse a proposal for each remote 

task Ti S. If t  indicates the duration of this initial step then, if 

interrupted at any time t < t  , the algorithm will return a coalition 

with zero quality. 

 

Axiom 2 (Growth Direction). The quality of a coalition only 

improves with increasing run time. 

The coalition’s members are only updated if a better proposal 

for any task Ti ∈ S is found. 

 

Axiom 3 (Growth Rate). The amount of increase in the coalition’s 

quality varies during computation. 

The solution’s quality rapidly increases in the first steps of the 

algorithm and its growth rate diminishes over time, as a result of 

the heuristic selection of the next candidate proposal submitted to 

evaluation. 

 

Axiom 4 (End Condition). After evaluating all candidate proposals 

the algorithm achieves its full  functionality. 

After evaluating all candidate proposals the anytime version of 
the algorithm will produce exactly the same solution quality as its 

traditional version [46] that only produces a solution with quality 

Qc oalition at the end of computation. If the time required to evaluate 
 
 

 
  a candidate proposal is te, the total required runtime of the anytime algorithm is the sum of all n evaluations. 

 

After determining an initial coalition, the algorithm continues, 

if time permits, to evaluate the remaining proposals as it tries   

to improve the quality of the current solution. It is possible that 

some other node, while achieving a lower local reward, can still 

propose a better proposal for the specific user’s request under 

negotiation at the expense of a greater downgrade of previously 

accepted services. 

Each node’s local reward is also used to improve a global load 

balancing. Consider two proposals whose evaluation differ by an 

amount less than α (this value can be defined by the user or by   

the framework). For a particular user, the perceived utility will be 

equally acceptable if any of those nodes is selected for participating 

in the new coalition. Selecting the node with a higher local reward 

from two similar service proposals, not only maximises service for  

a particular user, but also maximises the global system’s   utility. 

The algorithm terminates when all the received proposals are 

evaluated or if it finds that the quality of a coalition cannot be 

further improved because the local reward of each node that 

belongs to the current coalition is maximum. 

 
6.2. Formal description of the coalition formation’s anytime be- 

haviour 

 

The coalition formation’s anytime behaviour can be formally 

described using the set of axioms presented in [65]. The authors 

describe the anytime functionality of an algorithm using four 

axioms, each of which describes a different aspect of the anytime 

behaviour as follows: 

Axiom 1 (Initial Behaviour). There is an initial period during which 

the algorithm does not produce a coalition for a cooperative service 

execution. 

 

6.3. Conformity of the coalition formation algorithm with the 

desirable properties of anytime algorithms 

Not every algorithm that can produce a sequence of approx- 

imate results is a well-behaved anytime algorithm. According   
to Zilberstein [68] the desired properties of anytime algorithms 

include the following features: a measurable quality that can be 

determined precisely, a recognisable quality that can be easily de- 

termined at run time, the monotonicity of the result’s quality, the 

consistency of the result’s quality with respect to computation time 

and input quality, the diminishing returns of the solution’s quality 
over time, the interruptibility of the algorithm at any time and its 

preemptibility with minimal overhead. The conformity of the pro- 

posed anytime coalition formation algorithm with these desirable 

properties is checked in the next paragraphs. 

Property 6.3.1 (Measurable Quality). A coalition’s quality can be 
determined  precisely. 

Proof. According to Eq. (6), the quality of the generated coalition 
at each iteration of the algorithm can be directly computed from 

the evaluation values of the best proposals found for each of the 

service’s tasks.   D 

Property 6.3.2 (Recognisable Quality). The quality of a coalition can 
be easily determined at run time. 

Proof. Let S T1, . . . , Tn be the service under negotiation for a 
cooperative execution with a set of n   tasks. 

A coalition c is only updated to c when a better proposal for  
task Ti S  is found. The previous accepted service   proposal Pki, 
from node Nk to task Ti, is replaced with Pk i from node Nk , in the 
previously generated coalition  c. 
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Let |c| be the size of the generated coalition to execute service 

EPk i 
be the evaluation value of the new proposal Pk i, and EPki be 

the evaluation value of the old proposal  Pki. 
The quality of the updated coalition Qc can calculated by adding 

the quality Qc achieved by coalition c to the weighted difference 
between EPk i 

and EPki . 

 

Property 6.3.6 (Interruptibility). The algorithm can be stopped at  

any time and still be able to provide a   solution. 

Proof. Let t be the time needed to generate the initial coalition. If 

interrupted at any time t < t the algorithm will return an empty 

coalition, resulting in zero quality. 
When stopped at time t  > t  the algorithm returns the   best 

 
 

 

coalition determined until time t, which can be different from the 

 

This makes the determination of the new coalition’s quality 

straightforward and within a constant time.      D 

Property 6.3.3 (Monotonicity). The quality of the generated coali- 

tion is a nondecreasing function of time. 

Proof. Node Nk is only added to a coalition if and only if it proposes 

a better service for task Ti, that is, if it is closer to the user’s quality 

preferences than the best proposal found so far for task Ti. 

The algorithm always returns the coalition with the best 

proposals evaluated until time t for each of the service’s tasks, 

which can be different from the last set of evaluated proposals. 

According to Zilberstein [68], this characteristic in addition to a 

recognisable quality is sufficient to prove the monotonicity of an 

anytime algorithm.   D 

Property 6.3.4 (Consistency). For a given amount of computation 

time on a given input, the quality of the generated coalition is always 

the same. 

For a given amount of computation time ∆t on a given input 

of a set of service proposals P and user’s QoS preferences Q , the 

quality of the selected coalition for cooperative service execution 

is always the same, since the selection of candidate proposals for 

evaluation is deterministic. 

According to Eq. (5), the next proposal to be selected from 

evaluation Pki  for each task Ti S  is the one sent by  the node 

that has achieved the greatest local reward. As such, the algorithm 

guarantees a deterministic output quality for a given amount of 

time and input.   D 

Property 6.3.5 (Diminishing Returns). The improvement in the 

generated coalition’s quality is larger at the early stages of the 

computation and it diminishes over time. 

The quality of each generated coalition, given by Eq. (6), is 

measured using the evaluation values of the best proposals for each 

task Ti S. The best proposal is the one that contains the attributes’ 

values more closely related to user’s specific QoS preferences, in all 

QoS dimensions. 

Each node’s local reward, determined with Eq. (8), expresses 

a degree of satisfaction for all the users that have tasks being 

locally executed with specific QoS levels, including the service 

being currently negotiated. 

By selecting for evaluation, for each   task Ti S, the proposal 

sent by the node that achieved the higher local reward rapidly 

improves the quality of the generated coalition at an early stage    

of execution, since a high local reward indicates that the node is 

last set of evaluated proposals.     D 

Property 6.3.7 (Preemptibility). The algorithm can  be  suspended 

and resumed with minimal   overhead. 

Proof. Since the algorithm keeps the received proposals not yet 

evaluated and the determined coalition, it can be easily resumed 

after an interrupt.   D 

 
7. Service proposal formulation 

All entities that participate in a cooperative QoS-aware service 

execution negotiation must provide sufficient resources to propose 

a SLA within the user’s acceptable QoS levels. It is therefore the 

responsibility of each individual QoS Provider (Fig. 1) to map the 

user’s QoS constraints to local resource requirements, and then 

reserve resources accordingly (resource reservations are made 

through Resource Managers). The interpretation of QoS constraints 

and consequent mapping on the needed resource quantities has 

been explored in [57,18,22,4]. This paper is focused on the time- 

bounded coalition formation process and does not deal with  

this mapping. The reader can assume that applications make a 

reasonable accurate analysis of their resource requirements, made 

a priori through resource monitoring tools and followed by run- 

time adaptation. 

Requests for task execution arrive dynamically at any node and 

are formulated as a set of acceptable multi-dimensional QoS levels 

in decreasing preference order. To guarantee the request locally, 

the QoS Provider executes a local QoS optimisation algorithm 

that tries to maximise the satisfaction of the new service’s QoS 

constraints as well as to minimise the impact on the current QoS 

of previously accepted services. 

Conventional admission control schemes either guarantee or 

reject each  service  request,  implying  that  future  requests  may  

be rejected because resources have already been committed to 

previous requests. We  use  a  QoS  negotiation  mechanism  that,  

in cases of overload, or violation of pre-run-time assumptions, 

guarantees a graceful  degradation. 

The CooperatES dynamically determines promised QoS levels 

from the user’s accepted QoS values for each QoS dimension and 

local resources’ availability. Furthermore, the reward of executing  

a task at one of those dynamically determined QoS levels depends 

on the number, and relative importance, of the QoS dimensions 

being served closer to the user’s desired QoS level. Eq. (7) computes 

the reward rTi achieved by a specific SLA for task Ti by measuring 

the distance between the user’s desired and the node’s proposed 

values. 

  
 

offering service closer to the majority of the requested QoS values 

for all local services. However, some other node may propose a 

better QoS level for the service under negotiation at the  expense 

  

of a higher downgrade of previously accepted services, achieving a 

lower local reward. As such, it is still possible that the solution’s 

quality can be further improved in the next iterations of the 

algorithm, but at a lower increment   rate. 

The actual concavity of the coalition’s formation behaviour is 

empirically evaluated in Section 8. D 

In Eq. (7) penalty is a parameter that decreases the reward value. 

This parameter can be fine tuned by the user or the framework’s 

manager according to several criteria and its value should increase 

with the distance to the user’s preferred   values. 

Using the utility achieved by each proposed SLA it is possible 

to determine a measure of the node’s global satisfaction resulting 



 

  

from the acceptance of the new service request. For a node Nj, the 

local reward Rj achieved by the set of proposed SLAs is given by 
 

 
 

 

 

 

 

Note that unless all tasks are executed at their highest 
requested QoS level there is a difference between the determined 

set of SLAs and the maximum theoretical local reward that would 

be achieved if all local tasks were executed at their highest QoS 

level. This difference can be caused by either resource limitations, 
which is unavoidable, or poor load balancing, which can be 

improved by sending actual local rewards in service proposals, and 

selecting, for proposals with similar evaluation values, those nodes 

that achieve higher local rewards, as discussed in the previous 

section. 

7.1. Anytime local QoS optimisation 

The high complexity of determining the best set of SLAs, 
taking into account both the users’ QoS preferences and node’s 

resource availability, makes it beneficial to propose an anytime 

approach that can trade the achieved solution’s quality with its 

computational cost in order to ensure a timely answer to events. 
The proposed anytime algorithm, detailed in Algorithm 2, 

clearly splits the formulation of a new set of SLAs into two different 

scenarios. The first one involves guaranteeing the new task without 

changing the QoS level of previously guaranteed tasks. The second 

one, due to the node’s overload, demands service degradation for 

the previous accepted tasks in order to accommodate the new 

requesting task. Offering QoS degradation as an alternative to task 

rejection has been proved to achieve higher perceived utility    [1]. 
The algorithm iteratively works on the problem of finding a 

feasible set of SLAs while maximising the users’ satisfaction and 

produces results that improve in quality over time. Instead of a 
binary notion of the solution’s correctness, the algorithm returns a 

proposal and a measure of its quality. The quality of each generated 

configuration Qconf , given by Eq. (9), considers the reward achieved 

by the service proposal configuration for the new arriving task  rTa , 

the  impact  on  the  provided  QoS  of  previous  existing  tasks and 
the value of the previous generated feasible configuration Qc onf . 

Initially, Qc  onf   is set to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Note that the algorithm may produce an  unfeasible  set  of  

SLAs due to local resource availability. As such, since a service 
proposal  can  only  be  considered  useful  within  a  feasible  set   

of configurations, the algorithm, if  interrupted,  always  returns  

the last found feasible solution. Nevertheless, each intermediate 

configuration, even if not feasible, is used to calculate the next 

possible solution, minimising the search   effort. The algorithm terminates when the time for the reception   of 

  
rTi 

 
 

 

proposals has expired (this time is sent in the cooperation request), 
when it finds a set of QoS levels that keeps all tasks feasible and the 

     quality of the solution cannot be further improved, or when it finds 

that, even at the lowest QoS level for each task, the new set is not 

  

When a new service request arrives, the algorithm starts by 
maintaining the QoS levels of previously guaranteed tasks and 

by selecting the worst requested QoS level, for all dimensions, 

for the new arrived task. The goal is to quickly find a feasible 
initial solution, an important property of anytime algorithms. 

Note that this is the SLA that has a higher probability of being 

feasible, without requiring any modification on the current QoS of 

previously accepted services. 

The algorithm continues to improve the quality of that initial 

solution, conducting the search for a better feasible solution in a 

way that maximises the expected improvement in the solution’s 

quality. With spare resources, the algorithm incrementally selects 

the configuration that maximises the increase in obtained reward 

for the new task. When QoS degradation is needed to accommodate 

the new task, the algorithm incrementally selects the configuration 

that minimises the decrease in obtained reward for the new set of 

tasks, which includes the newly arrived one. 

feasible. In this case the new service request is rejected. When it 

is not possible to find a valid solution for service execution within 

available time, then no proposal will be sent to the requesting node, 

and the node continues to serve existing tasks at their current QoS 

levels. 

7.2. Formal description of the service proposal formulation’s anytime 

behaviour 
 

Similarly to what has been presented for the coalition formation 

algorithm, the different aspects of the anytime functionality of the 

service proposal formulation algorithm will be described in this 
section using the four axioms presented in [65]. 

In the next paragraphs, the different aspect of the anytime 

behaviour of the proposed service proposal formulation algorithm 
will be formally described using the set of axioms presented in [65]. 

Axiom 5 (Initial Behaviour). Until a feasible set of SLAs is found the 

new task is rejected. 



 

An intermediate solution can only be considered if it produces 
a feasible set of SLAs. If t indicates the time at which the first 
feasible solution is found then, if interrupted at anytime t < t , 
the algorithm will reject the new task. 

 

Axiom 6 (Growth Direction). The quality of a feasible set of SLAs 
can only improve over time. 

A new feasible set of SLAs is only considered when it improves 
the solution’s quality. 

 

Axiom 7 (Growth Rate). The amount of increase in the solution’s 
quality varies during computation. 

The solution’s quality rapidly increases in the first steps of the 
algorithm and its growth rate diminishes over time. The algorithm 
starts by improving the new user’s preferred quality attributes  
until an unfeasible set of SLAs is found. On the other hand, when 
QoS degradation is needed in the search for a new feasible solution, 
the algorithm degrades the less important attributes for all local 
services. 

The actual concavity of the algorithm’s behaviour is empirically 
evaluated in Section  8. 

 

Axiom 8 (End Condition). When is not possible to improve the 
solution’s quality the algorithm achieves its full functionality. 

When it runs to completion, the anytime version of the 

algorithm will produce exactly the same solution as its traditional 
version [46] that only produces a solution with quality Qc onf at the 
end of its computation time. 

The anytime version terminates when it finds a set of QoS levels 
that keeps all tasks feasible and the quality of that solution cannot 
be further improved, or when it finds that, even at the lowest QoS 
level for each task, the new set is unfeasible. 

If the time required to improve or degrade an attribute and 
test for the schedulability of the solution is given by ts, the total 
required runtime of the anytime algorithm is the sum of all n 
needed changes in attributes to find the best feasible solution. 

 

7.3. Conformity of the service proposal formulation algorithm with 

the desirable properties of anytime algorithms 

The conformity of the proposed anytime service proposal 
formulation algorithm according to the desirable properties of 
anytime algorithms [68] is checked in the next paragraphs. 

Property 7.3.1 (Measurable Quality). The quality of a SLA can be 
determined  precisely 

Proof. At each iteration of the algorithm, Eq. (9) measures the 
quality of the proposed SLA by considering the proximity of the 
proposal with respect to the user’s request under negotiation and 
the impact of that proximity on the global utility achieved by the 
previously accepted tasks.     D 

Property 7.3.2 (Recognisable Quality). The quality of a set of SLAs 
can be easily determined at run time. 

Proof. The quality of each generated feasible set of SLAs is 

determined by using the rewards achieved by all tasks being locally 
executed, which includes the newly  arrived  one.  According  to  
Eq. (7), the rewards’ computation is straightforward and time- 
bounded.    D 

 
Property 7.3.3 (Monotonicity). The quality of the generated set of 

SLAs is a nondecreasing function of time. 

Proof. The algorithm produces a new set of SLAs at each iteration, 

as it tries to maximise the utility increase for the new task while 

minimising the utility decrease for all previously accepted tasks 

when the resources are scarce to accommodate the new task. Since 

a service proposal can only be considered useful within a feasible 

set of tasks, the algorithm always returns the best found feasible 

solution rather than the last generated SLA. 

According to Zilberstein [68], this characteristic, in addition to 

a recognisable quality, is sufficient to prove the monotonicity of an 

anytime algorithm.   D 

Property 7.3.4 (Consistency). For a given amount of computation 

time on a given input, the quality of the generated SLA is always the 

same. 

Proof. For a given amount of computation time ∆t on a given input 

of a set of QoS constraints Q associated with a set of tasks τ , the 

quality of the proposed SLA is always the same, since the selection 

of attributes to improve or degrade is deterministic. 

At each iteration, the QoS attribute to be improved is the one 

that maximises an increase in the reward achieved by the new 

arrived task, while the QoS attribute to be degraded is the one 

that minimises the decrease in the global reward achieved by all 

tasks being locally executed. As such, the algorithm guarantees  

a deterministic output quality for a given amount of time and 

input.    D 

Property 7.3.5 (Diminishing Returns). The improvement in the 

quality of the generated SLA is larger at the early stages of the 

computation and it diminishes over time. 

Proof. An initial solution that maintains the QoS levels of the 

previously guaranteed tasks and selects the worst requested level 

in all QoS dimensions for the new arrived task is quickly generated. 

Its quality is given by Eq. (9), considering the rewards achieved by 

all tasks. 
At each iteration, the currently found solution is improved by 

either upgrading the QoS attribute that maximises an increase in 

the new service’s utility, or by downgrading the QoS attribute that 

minimises the decrease in all local services’ utility. As such, the 

increment in the solution’s quality is larger at the firsts iterations 

and it diminishes over time.     D 

Property 7.3.6 (Interruptibility). The algorithm can be stopped at  

any time and still provide a  solution. 

Proof. Let t be the time needed to generate the first feasible 

solution. If interrupted at any time t < t the algorithm will return 

an empty SLA, resulting in zero quality. 

When stopped at time t  > t  the algorithm returns the   best 
feasible set of SLAs generated until t, which can be different from 

the last evaluated set.      D 

Property 7.3.7 (Preemptibility). The algorithm can  be  suspended 

and resumed with minimal   overhead. 

Proof. Since the algorithm maintains the best generated feasible 

solution and the current configuration values it can be easily 

resumed after an interrupt.    D 

 
8. Evaluation 

The ideal way to evaluate the performance of the several 

algorithms proposed in this thesis would be to subject them to 

actual loads from a large portfolio of QoS-aware applications and 

embedded devices. Nevertheless, we have chosen to evaluate the 
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effectiveness of the CooperatES framework by creating a broad 

collection of profiles, chosen to cover the spectrum into which 

real applications and both embedded and their more powerful 

neighbour devices would fall or likely exhibit. 

Furthermore, special attention was devoted to introduce a high 

variability in the characteristics of the conducted simulations.    

It is known that not much can be concluded with a single 

simulation run. In fact, the results of a given simulation run are 

just particular instantiations of random variables that may have 

large variances [54]. While most of the methods for the analysis 

of the simulation’s output data rely on the fact that although the 

simulation results of a single simulation run are not independent, 

it is still possible to obtain independent observations across the 

results of several simulation runs (or simulation replicas) with a 

reasonably good statistical performance [31]. 

The main goal of the conducted evaluations was to measure 

the improvement in the performance of the CooperatES framework 

when operating in open and dynamic environments with respect 

to its previous version, where a traditional QoS optimisation 

approach was used [46]. In Section 8.2, the performance profiles of 

the proposed anytime algorithms are determined and Section 8.3 

discusses the computational cost of the proposed anytime 

algorithms when compared with our previous traditional QoS 

optimisation approach. 

The reported results were observed from multiple and indepen- 
dent simulation runs, with initial conditions and parameters, but 

different seeds for the random values2 used to drive the simula- 
tions, obtaining independent and identically distributed variables. 

The mean values of all generated samples were used to produce 
the charts, with a confidence level of 99.9% associated to each con- 

fidence interval. A confidence interval specifies a range of values 
within which the unknown population parameter, in this case the 

mean, may lie. For each chart, the wider confidence interval is dis- 
cussed. 

8.1. Setup 

 

An application that captures, compresses and transmits frames 

of video to end users, which may use a diversity of end devices and 

have different sets of QoS preferences, was used as a scenario for 

the simulations. The application was composed by a set of source 

units to collect the data, a compression unit to gather and compress 

the data that came from the multiple sources, a transmission unit 

to transmit the data over the network, a decompression unit to 

convert the data into each user’s specified format, and a user unit 

to display the data in the user’s end device. 

The number of simultaneous nodes in the system varied from 10 

to 100 while the number of simultaneous users varied from 1 to 20, 

generating different amounts of load and resource availability in 

the system. Each node was running a prototype implementation of 

the CooperatES framework, with a fixed set of mappings between 

requested QoS levels and resource requirements. The code bases 

needed to execute each of the streaming application’s units was 

loaded a priori in all the nodes. 

The characteristics of end devices and their more powerful 

neighbour nodes was randomly generated from the set of charac- 

teristics described in Table 1, creating a distributed heterogeneous 

environment. This non-equal partition of resources affected the 

ability of some nodes to singly execute some of the application’s 

units and has driven nodes to a coalition formation for a coopera- 

tive service execution. 

Requested QoS levels were randomly generated, at randomly 

selected end devices and at randomly generated times, expressing 

 
 

2   The random values were generated by the Mersenne Twister algorithm [43]. 

the spectrum of acceptable QoS levels in a qualitative way, ranging 

from a randomly generated desired QoS level to a randomly 

generated maximum tolerable service degradation. The relative 

decreasing order of importance imposed in dimensions, attributes 

and values was also randomly  generated. 

The QoS domain used to generate the users’ service requests 

was composed by the following list of QoS dimensions, attributes, 

and possible values. 

 

 

 

 

 

 

 

 

 

 

 

 

The simulator used in the conducted experiments was custom 

built by the authors in Erlang [16], a functional programming 

language designed to be run in a distributed environment 

populated with resource constrained devices. 

 
8.2. Evaluating performance profiles 

 

The behaviour of an anytime algorithm is described by a 

performance profile. The performance profile describes how the 

quality of the output gradually increases as a function of the 

computation time [68]. Such description of its behaviour is very 

attractive because it allows a tradeoff to be made between 

available computation time and output quality. 

Since there are many possible factors affecting the execution 

time of an algorithm, rather than measuring the algorithms’ 

absolute execution time on every simulation run, we have 

normalised it with respect to its completion time [69]. As such, in 

the next figures the algorithms’ computation times are represented 

as a percentage of their respective completion times. Nevertheless, 

both algorithms needed an average time lower than 1 s to compute 

their optimal solutions on a Intel Core Duo T5500 at 1.66   GHz. 

Fig. 3 shows the performance profile of the proposed anytime 

coalition formation algorithm, comparing two methods for select- 

ing the next proposal to be evaluated. The first one selects the 

proposal sent by the node with the highest local reward, while the 

second one relies on the order of proposals’ reception. 

Clearly, the proposed heuristic selection based on the nodes’ 

local reward achieves a better performance and lower variation. At 

only 20% of the completion time, when selecting proposals based 

on the nodes’ local reward, the algorithm achieves a solution’s 

quality of 83% 6% of its optimal solution, with a 99.9% confidence 

level. On the other hand, when evaluating proposals according 

to their arrival order, the solution’s expected quality varies on    

a higher degree. At 20% of the completion time, the algorithm 

achieves a solution’s quality of 32% 25% of its optimal solution, 

with a 99.9% confidence level. 

Therefore, the proposed heuristic selection of proposals based 

on the nodes’ local reward effectively maximises the expected 

improvement in the solution’s quality at an early stage of the 

needed computation time. This is a very important property for an 

anytime algorithm’s practical usefulness, since it means that after 
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Table 1 

Possible characteristics of nodes. 

 

 

 

 
 

 
 

Fig. 3.    Performance profile of the coalition formation algorithm. 

 

a small period of the running session, the results are expected to 

be sufficiently close to the results at completion time. 

Also note that these results empirically validate the formal anal- 

ysis of the desirable properties of anytime algorithms discussed in 

Section 6.3. From the algorithm’s performance profile plotted in 

Fig. 3 one can conclude that the coalition’s quality measure is a 

non-decreasing function of time whose increment diminishes over 

time. 

A second study evaluated the behaviour of the anytime service 

proposal formulation algorithm by measuring its performance 

profile as well as the impact generated by the arrival of a new 

service on the QoS level of previously accepted tasks. Recall from 

Section 7 that the reward of a specific proposal measures how 

useful it will be for a particular user and that the local reward 

expresses a degree of global satisfaction for all the users that have 

tasks being executed at a particular node. 

The results were plotted by averaging the results of several 

independent runs of the simulation, divided into two categories. 

Fig. 4 presents the scenario where the average amount of available 

resources per node is greater than the average amount of resources 

demanded by the services being executed. The opposite scenario 

is represented in Fig. 5, where the average amount of resources 

per node is smaller than the average amount of demanded 

resources. 

In Fig. 4, the increase in the solution’s quality Qconf results from 

the increase in the new task’s reward (Step 1 of the algorithm). 

Recall that with spare resources the QoS levels of previously 

accepted tasks remains the same. As such, this increase in the 

new service’s reward also increases the node’s local reward, that 

was affected by the initially proposed solution of serving the new 

arrived service at the minimum requested QoS level. However, 

due to resource limitations (Fig. 5), when trying to upgrade the 

reward achieved by the new service, the generated configuration 

may result in an unfeasible set of SLAs. Step 2 of service formulation 

algorithm is then executed in order to try to find a new feasible 

solution that presents a higher satisfaction for the service request 

under negotiation. As discussed in Section 6, it is the responsibility 

of the coalition formation algorithm to select between  proposals 

 

 
 

Fig. 4.    Expected quality improvement with spare resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5.    Expected quality improvement with limited resources. 

 
with similar evaluation values for the new user, those nodes that 

achieve higher local rewards, promoting load balancing. 

Note that, in both scenarios, the proposed heuristics optimise 

the rate at which the quality of the determined solution for the new 

task improves over time. With spare resources (Fig. 4), at only 20% 

of the computation time, the solution’s quality for the new arrived 

task is near 70% 5% of the achieved quality at completion time. 

When QoS degradation is needed to accommodate the new task 

(Fig. 5), its service proposal achieves 87% 4% of its final quality at 

20% of computation time. 

Resource Type 

Cpu 

Memory 

Storage 

Network 

Display 

400 MHz, 750 MHz, 1 GHz, 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz 

128 MB, 256 MB, 512 MB, 1 GB, 2 GB, 4 GB, 8 GB 

512 MB, 1 GB, 10 GB, 30 GB, 50 GB, 200 GB, 500 GB 
10 Mbps, 11 Mbps, 54 Mbps, 100 Mbps, 1 Gbps 

None, 240×180, 320×240, 640×480, 720×480, 1024×768, 1280×1024 

Unfeasible set 
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Also note that the quality of the node’s global service 

solution identified by Qconf in both figures, quickly approaches 

its maximum value at an early stage of the computation. The 

diminishing returns property of the anytime service proposal 

formulation was then empirically verified, after formal analysis in 

Section 7.3. The same is true for the quality measure of a service 

proposal which is a non-decreasing function of time, since the 

best feasible configuration is only replaced if, and only if, another 

feasible solution is found and has a higher quality for the user’s 

request under negotiation (Fig. 5). 

Both studies clearly demonstrate that the proposed anytime 

algorithms can be useful even when there is no time to compute an 

optimal local and global resource allocation. The solution’s quality 

can be improved if the algorithms have more time to run, but it 

rapidly approaches its optimal value at an early stage of the needed 

computation time. For complex and dynamic real-time systems, 

allowing a cooperative service configuration to be determined at 

any time results in a significant improvement of the CooperatES 

framework. 

 

8.3. Overhead 

 

Throughout the paper the idea that complex scenarios may 

prevent the possibility of computing optimal resource allocations 

was stated and anytime algorithms that can tradeoff the needed 

deliberation time for the quality of the achieved results were 

proposed. However, it is important to analyse the computational 

cost required by this approach to reach its optimal solution when 

compared with the traditional versions of those algorithms [46]. 

Without any restriction on the time needed to find an optimal 

resource allocation, both algorithms follow more straightforward 

approaches than their relative anytime counterparts. The tradi- 

tional coalition formation algorithm evaluates all received propos- 

als, based on their order of arrival, and selects the best proposal for 

each of the service’s remote tasks. The traditional service proposal 

formulation starts by selecting the user’s preferred QoS level and, 

at each iteration, it downgrades the QoS attribute that minimises 

the decrease in the node’s local reward, until a feasible set of SLAs 

is found. 

This section evaluates the impact of those different approaches 

on the needed computation time to find an optimal solution. The 

results discussed in the next paragraphs were normalised with 

respect to the completion time of the traditional version of the 

algorithms. 

Fig. 6 details the computational cost of both versions of the 

coalition formation algorithm. The traditional version is slightly 

faster than its anytime counter part, it requires nearly 95%  2% 

of the time needed by the anytime approach to reach its final, 

and optimal, solution. This difference is explained by the way 

both algorithms select the next  proposal  to  evaluate.  While  

the traditional version sequentially evaluates service proposals 

according to their order of arrival, the anytime approach selects 

proposals based on the nodes’ local reward. This implies either 

to sort the proposals’ set before starting the evaluation process 

or to search, at each iteration, for the maximum remaining local 

reward. 

However, note that the  anytime  version  needs  as  little  as 

near 10% of its  completion  time  to  achieve  a  solution’s  quality 

of 50%    6% of its optimal solution, and below 40% to achieve     

90% 5% of its optimal solution. As discussed in the previous 

section, such results cannot be achieved by evaluating proposals 

based on their arrival order. 

The comparison among both versions of the service proposal 

formulation algorithm is detailed in Figs. 7 and 8. Fig. 7 compares 

the needed computation time when the average amount of 

resources per node is greater than the average amount of resources 

necessary for each service execution, while Fig. 8 compares both 

versions when the average amount of resources per node is smaller 

than the average amount of resources necessary for each service 
execution, demanding QoS degradation of the previously accepted 

services. 
Both figures allow us to conclude that, similarly to the coalition 

formation algorithm, the traditional version is slightly faster to 

achieve its only and optimal solution. While the anytime approach 
tries to quickly find an initial feasible solution by considering the 

worst QoS level requested by the user, the traditional version starts 
by selecting the user’s preferred QoS level. As such, with spare 

resources the traditional version is faster to achieve the optimal 
resource allocation for the new set of tasks, while with limited 
resources both versions need almost the same    time. 

However, in both scenarios the anytime version is by far quicker 
in finding a feasible solution. With spare resources the required 

time to find the first feasible solution with a quality near 10% 3% 

of the optimal solution is less than 5% of its completion time. 

With limited resources, the anytime version takes about 20% of its 
computation time to reach a feasible solution with 15% 3% of the 

optimal solution’s quality. 
With these results for both algorithms, the advantages of the 

anytime approach are clearly demonstrated, as its overhead can 

be considered negligible when compared with the introduced 
benefits. The anytime approach quickly achieves a feasible global 

and local resource allocation and it maximises the rate at which 
the quality of that initial solution increases over time. 

 
9. Conclusions 

As the complexity of various applications increases, multiple 

tasks have to compete for the limited resources of a single 

device. In this context, resource constrained devices may need  

to collectively execute services with their neighbours in order   
to fulfill the complex QoS constraints imposed by users and 

applications. As such, it becomes very important to provide an 

efficient arbitration of QoS levels in this highly dynamic, open, 

shared, and heterogeneous environment. 
This paper presented the CooperatES framework, a QoS- 

aware framework that addresses the increasing demands on 
resources and performance by allowing services to be executed 

by temporary coalitions of nodes. Users encode their own relative 
importance of the different QoS parameters for each service and 

the framework uses this information to determine the distributed 
resource allocation that maximises the satisfaction of those 

constraints. 
However, finding an optimal distributed service provisioning 

that deals with both users’ and service providers’ quality 

constraints can be extremely complex and take a long time. Unlike 
conventional QoS optimisation algorithms that guarantee a correct 

output only after termination, the proposed anytime approach 
does not rely on the availability of deliberation time to provide   

a solution and a measure of its quality. This tradeoff between  
the available computation time and the quality of the achieved 

solution is a powerful and useful approach in open dynamic real- 
time systems where, despite their uncertainty, responses to events 

still have to be provided within precise timing constraints in order 
to guarantee a desired level of performance. 

The conformity of the proposed algorithms with the desired 

properties of anytime algorithms was proved and the design de- 
cisions of our approach validated through extensive simulations 

in highly dynamic scenarios. The achieved results clearly demon- 
strate that proposed anytime algorithms are able to quickly find a 

good initial solution and effectively optimise the rate at which the 

quality of the current solution improves at each iteration of the al- 

gorithms, with an overhead that can be considered negligible when 
compared with the introduced benefits. 



 

 

 

 
 

 

Fig. 6.   Coalition formation: Anytime vs Traditional. 

 

 

 

Fig. 7.   Proposal formulation: Anytime vs Traditional with spare resources. 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 8.   Proposal formulation: Anytime vs Traditional with limited resources. 
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