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Abstract 
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics 
of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually 
data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour 
nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper 
describes a framework that facilitates the distribution of resource intensive services across a community of 
nodes, forming temporary coalitions for a cooperative QoS-aware execution. The increasing need to tailor 
provided service to each application’s specific needs determines the dynamic selection of peers to form such 
a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if 
needed. Isolation between different services is achieved by guaranteeing a minimal service quality to 
accepted services and by an efficient overload control that considers the challenges and opportunities of 
dynamic distributed embedded systems. 
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Abstract

Most of today’s embedded systems are required to work
in dynamic environments, where the characteristics of the
computational load cannot always be predicted in advance.
Furthermore, resource needs are usually data dependent
and vary over time. Resource constrained devices may need
to cooperate with neighbour nodes in order to fulfil those re-
quirements and handle stringent non-functional constraints.
This paper describes a framework that facilitates the distri-
bution of resource intensive services across a community of
nodes, forming temporary coalitions for a cooperative QoS-
aware execution. The increasing need to tailor provided
service to each application’s specific needs determines the
dynamic selection of peers to form such a coalition. The
system is able to react to load variations, degrading its per-
formance in a controlled fashion if needed. Isolation be-
tween different services is achieved by guaranteeing a min-
imal service quality to accepted services and by an efficient
overload control that considers the challenges and oppor-
tunities of dynamic distributed embedded systems.

1. Introduction

In the last years, the use of processor-based devices in
our daily life has increased in a very significant way. Mo-
bile phones, PDAs and consumer electronics devices (set-
top boxes, TVs, DVD players, etc), just to name a few, are
increasingly using microprocessors as a core system com-
ponent instead of dedicated hardware. Most of these de-
vices share a number of important characteristics such as a
tight interaction with the environment, limited and hetero-
geneous resources and demanding quality and time require-
ments.

Considering these constraints, one of the most inter-
esting challenges in embedded systems is how to provide
support for an efficient execution of complex applications,
meeting non-functional requirements such as timeliness, ro-
bustness, dependability, performance, etc. This is where

Quality of Service (QoS) applies and the reason for the in-
crement on work on QoS management during the last years.

Furthermore, most of today’s embedded systems are re-
quired to work in dynamic environments, where the char-
acteristics of the computational load cannot always be pre-
dicted in advance. In some cases, the environment is so
dynamic that one or more internal computational mecha-
nisms need to be modified/upgraded in order to cope with
the changes. However, response to events still have to be
provided within precise timing constraints in order to guar-
antee a desired level of performance. Hence, embedded sys-
tems are inherently real-time.

We have recently proposed a distributed dynamic QoS-
aware architecture for embedded systems [11] to address
the increasingly complex demands on resources and per-
formance requirements, reflected in multiple attributes over
multiple quality dimensions. Resource constrained devices
are allowed to cooperate with more powerful (or less con-
gestioned) neighbour nodes, to meet resource allocation re-
quests and handle stringent constraints, opportunistically
taking advantage of global network resources and process-
ing power. This is achieved via the formation of a temporary
group of individual nodes, which, due to its higher flexi-
bility and agility, is capable of effectively respond to new,
challenging, requirements. We call these groupscoalitions.

Rather than assuming that the coalition formation pro-
cess can have all the time it needs to compute its optimal
output, a time-bounded distributed QoS-aware service con-
figuration among available heterogeneous neighbours was
proposed in [12]. The main idea is that for large and com-
plex problems finding the best possible solution may take
a long time and a sub-optimal solution that can be found
quickly may be more useful.

Predictability in such a dynamic environment is strictly
related to the capacity of controlling the incoming work-
load, preventing abrupt and unpredictable performance
degradations. A real-time embedded system must react to
load variations, degrading its performance in a controlled
fashion. It is necessary to prevent a service that needs
more than the expected resource reservations to introduce



unbounded delays on other services’ execution. An over-
load should remain isolated to that particular service, not
jeopardising the performance of other services.

A classical real-time approach based on a rigid off-line
design and worst-case assumptions would keep resources
unused most of the time, which is not acceptable specially
when resources are scarce. On the other hand, an off-line
design based on average-case behaviour is also critical since
it would be difficult to guarantee timing constraints when
resource needs were overloaded. Smarter techniques are
needed to sense the current state of the environment and
react as a consequence. This means that, to cope with dy-
namic environments, a system must be adaptive, adjusting
its internal strategies in response to changes in the environ-
ment.

Several authors have already proposed scheduling algo-
rithms that achieve guaranteed service and inter-task isola-
tion, using mean execution times (e.g. [2, 8, 3, 9, 7]). Nev-
ertheless, highly dynamic distributed embedded systems in-
troduce new requirements and opportunities not completely
handled by those schedulers.

Previously guaranteed users’ services coexist with the ar-
rival of new service requests for a cooperative execution of
resource intensive applications. As such, it is desirable to
be able to process the framework’s management algorithms
at a certain minimum rate. However, overloaded servers
that deal with users’ services should be able to use capac-
ities reserved for those algorithms, giving priority to pre-
viously guaranteed services with respect to new service re-
quests that eventually would bring more workload to the
system. A significant reduction in the mean tardiness of pe-
riodic users’ services can be achieved by stealing reserved
capacities for the framework’s management [10].

The rest of this paper is organised as follows. Section 2
describes the proposed cooperative QoS-aware framework.
Section 3 resumes the anytime approach to the distributed
resource allocation and Section 4 presents the CSS sched-
uler. Finally, Section 5 concludes the paper.

2. Cooperative execution framework

Consider a network with several nodes, each one with
its own particular set of resources, where real-time and non
real-time applications co-exist. Such an environment is ex-
pected to be heterogeneous, consisting of nodes with several
resource capabilities. For some of those there may be a con-
straint on the type and size of applications they can execute
with user’s required quality of service.

Service partitioning and offloading to a remote machine
has been successfully proposed for power and performance
gains [4, 5, 6, 14, 16]. Since computation workload and
communication cost may change with different execution
instances and different users, correct decisions on service

partitioning must be made at run time when sufficient infor-
mation about workload and communication requirements
become available [17]. These works conclude that the ef-
ficiency of an application execution can be improved by
careful partitioning the workload between a resource con-
strained device and a fixed, more powerful, neighbour.

However, it is known that users can differ enormously
in their service requirements as well as applications in the
resources which need to be available. As such, support-
ing each user’s specific QoS preferences while offloading
service execution is a key issue. A method for distribut-
ing a complex service by the subset of service providers
that offers the best service to each particular user was pro-
posed in [11]. The purpose of a QoS-aware service alloca-
tion to a group of nodes is to maximise user’s satisfaction
with achieved QoS, addressing the increasing demands on
resources and performance. Nodes may cooperate either be-
cause they can not deal alone with resource allocation de-
mands or because they can reduce the associated cost of
service execution by working together.

Each node has a significant degree of autonomy, capa-
ble of performing tasks and sharing resources with other
nodes. Nodes process user-requested services in a trans-
parent way, as users are not aware of the exact distribution
used to solve the computationally expensive services. The
framework facilitates the distribution of the resource inten-
sive tasks, resulting from service partitioning, across a com-
munity of nodes, forming temporary coalitions for cooper-
ative service execution considering users’ QoS constraints.

Figure 1 presents the structure of the proposed frame-
work, running on every node of the network. A preliminary
prototype implementation of the framework is described in
[15].

Figure 1. Framework structure

In this model, QoS-aware applications must explicitly
request the service execution to the underlying QoS frame-
work, thus providing explicit admission for controlling the
system, abstracting from existing underlying distributed



middleware and from the operative system. The model it-
self abstracts from the communication and execution envi-
ronments.

Central to the behaviour of the framework is theQoS
Provider, which is responsible for processing both local
and distributed resource requests. Rather than reserving re-
sources directly, it contacts theResource Managersto grant
specific resource amounts to the requesting task.

Within the QoS Provider, theCoalition Organiseris re-
sponsible for the coalition formation process, atomically
distributing service requests, receiving individual nodes’
proposals and deciding which node(s) will provide the ser-
vice. We consider the existence of an atomic broadcast
mechanism in the system, guaranteeing that all nodes re-
ceive the same service requests and proposals in the same
order.

TheLocal Provideris responsible for replying to service
requests with service configuration proposals, and for main-
taining the state of node’s resource allocations and services
provided.

TheSystem Managermaintains the overall system con-
figuration, detecting nodes entering and leaving the system,
manages coalition operation and its dissolution.

EachResource Manageris a module that manage a par-
ticular resource. This module interfaces with the actual
implementation in a particular system of the resource con-
troller, such as the device driver for the network, the sched-
uler for the CPU, or by software that manages other re-
sources (such as memory).

Various groups of nodes may have different degrees of
efficiency in tasks’ execution performance due to different
capabilities of their members. Coalition’s members selec-
tion should be determined by the proximity of service pro-
posals with respect to expressed user’s multi-dimensional
QoS constraints. This configuration of a cooperative ser-
vice execution is detailed in the next section.

3. Distributed service configuration

QoS-aware applications usually can provide different
quality levels, with associated estimations of the needed re-
sources, that can be dynamically changed during execution.
We base our approach on a general form of QoS contract be-
tween service providers and users, achieved by negotiation
and dictated by users’ preferences.

User’s QoS requirements are described through a seman-
tically rich QoS specification interface for multidimensional
QoS provisioning [11], allowing the user and applications
to define fine-grained service requests. A service request
expresses the spectrum of acceptable QoS levels, ranging
from a desired QoS levelLdesired and the maximum toler-
able service degradation, specified by a minimum accept-
able QoS levelLminimum. The relative decreasing order

of importance imposed in dimensions, attributes and values
expresses user’s preferences in a qualitative way, eliminat-
ing the need to specify a quantitative utility of every quality
choice, for all the QoS dimensions of a particular applica-
tion.

Service providers that are selected to form a new coali-
tion allocate resources to the new set of tasks, achieving
the best possible instantaneous QoS and establishing an ini-
tial Service Level Agreement (SLA) for the new task. A
SLA contains a service description whose parameters are
in between the user’s desired QoS levelLdesired and the
maximum tolerable service degradation, specified by a min-
imum acceptable QoS levelLminimum. Once a SLA is ad-
mitted, it may be downgraded to a lower QoS level (until
Lminimum is reached) in order to accommodate new ser-
vice requests. Notice that after a service has been accepted
for execution, there is a guarantee that at lest the minimum
desired level of service will be provided.

In adaptive real-time embedded systems resource needs
are usually data dependent and vary over time. Further-
more, new tasks can appear while others are being executed
with associated real-time execution constraints. Such dy-
namic scenarios may prevent the possibility of computing
optimal resource allocations before execution. Moreover,
taking the cost of decision-making into account is not an
easy task, since the ”optimal” level of deliberation varies
from situation to situation. Instead, nodes should negoti-
ate partial, good-enough service proposals that can be latter
refined if time permits.

It is therefore beneficial to build systems that can trade-
off computational resources for quality of results. Anytime
algorithms for coalition formation and service proposal for-
mulation with the ability to trade off deliberation time by
the quality of the solutions were already proposed [12]. The
algorithms can be interrupted at any time and provide a so-
lution and a measure of its quality, which is expected to
improve as the run time of the algorithms increases. The
conformity of both algorithms with the desired properties
of anytime algorithms and the validation through extensive
simulations of the design decisions of our approach is de-
tailed in [13]. The achieved results emphasise our believe
that use of anytime algorithms for coalition formation and
service proposal formulation significantly improve the abil-
ity of our framework to adapt to changes in dynamic hetero-
geneous environments.

In the next sections a brief description of the anytime
approach for a distributed cooperative execution of resource
intensive services is presented.

3.1. Coalition formation

After broadcasting the resource intensive service’s de-
scription and associated user’s QoS constraints, a time-



bounded coalition formation implies to quickly find a good
initial solution and gradually improve that solution if time
permits. The selection of the next candidate proposal to
be evaluated from the set of available proposals should be
done in a way that maximises the expected improvement in
solution quality and do not rely on a arbitrary evaluation of
received proposals. As such, for each task that results from
partitioning the resource intensive service, the next candi-
date proposal from the set of received proposals to be eval-
uated isthe one sent by the node with the greatest local
reward.

The local reward is an indicator of node’s local QoS op-
timisation, according to the set of tasks being locally exe-
cuted and their user-defined QoS constraints. We claim that
the local reward achieved by a node should be used to guide
the coalition formation process, since nodes with higher lo-
cal reward have a higher probability to be offering service
closer to the user’s request under negotiation.

The algorithm continues, if time permits, to evaluate re-
ceived service proposals trying to improve the quality of
the current solution. It is possible that another node, while
achieving a lower local reward, proposes a better service for
the specific request under negotiation. The service proposal
formulation algorithm, resumed in the next section, always
suggests the best solution for a particular user, even if it has
to degrade the provided level of service of previous exist-
ing tasks. It is the responsibility of the coalition formation
algorithm to select between similar proposals (whose evalu-
ation values differ in less than some configurable threshold)
those nodes that achieve higher local rewards, promoting
load balancing.

The algorithm terminates when it finds that the quality of
a coalition cannot be further improved or the local reward
of each node that belongs to that coalition is maximum.

3.2. Service proposal formulation

Requests for cooperative service execution arrive dy-
namically at any node. To guarantee the request locally,
the node executes a local QoS optimisation algorithm, con-
sidering the set of acceptable multi-dimensional QoS levels
expressed in decreasing preference order in user’s service
request. The QoS negotiation mechanism, in cases of over-
load or violation of pre-run-time assumptions, guarantees
graceful service degradation. In our model, guaranteeing
a user’s request is the certification that the service will be
provided inoneof the QoS levels expressed in the service
request.

A service configuration proposed for a specific task will
achieve a reward determined by the proximity of the pro-
posal with respect to the QoS preferences specified in user’s
service request. Its value is maximum if the task is being
served at the highest requested level in all QoS dimensions.

Otherwise, it is affected by a penalty factor that increases
with the distance for user’s preferred values [11].

The node’s local reward is then obtained by combining
the reward of each task being locally executed, as a mea-
sure of a global satisfaction with the proposed service so-
lution. Unless all tasks are executed at their highest QoS
level, there is a difference between the actual local reward
achieved by the currently selected QoS levels and the maxi-
mum possible local reward that would be achieved if all lo-
cal tasks were executed at their highest requested QoS level.
This difference can be caused by either resource limitations,
which is unavoidable, or poor load balancing, which can be
improved by sending actual local rewards in service pro-
posals, and selecting, for proposals with similar evaluation
values, those nodes that achieve higher local rewards.

Selecting the node with higher local reward for similar
service proposals, not only maximises service satisfaction
for a particular user, but also maximises global system’s
utility, since a higher local reward clearly indicates that the
previous set of tasks being locally executed had to suffer
less QoS degradation in order to accommodate the new task.

The proposed anytime algorithm considers two different
scenarios when formulating a service proposal. The first
one involves guaranteeing the new task without changing
the level of service of previously guaranteed tasks. The sec-
ond one, due to node’s overload, demands service degra-
dation in existing tasks in order to accommodate the new
requesting task. The local QoS optimisation (re)computes
the set of QoS levels for all local tasks, including the new re-
quested one. Offering QoS degradation as an alternative to
task rejection has been proved to achieve higher perceived
utility [1].

4. Scheduling services and requests

The basic assumptions made on classical scheduling the-
ory are no longer valid in new dynamic embedded systems.
A new approach is needed to handle the dynamic changes of
applications’ requirements and constraints in a predictable
fashion, enforcing timing constraints with a certain degree
of flexibility, aiming to achieve the desired tradeoff between
predictable performance and an efficient use of resources.

The Capacity Sharing and Stealing (CSS) scheduling
algorithm [10] integrates and extends recent advances in
dynamic deadline scheduling with resource reservation.
Namely, while achieving isolation among tasks, it can effi-
ciently reclaim residual capacities to reduce deadline post-
ponements and steal capacity from inactive non-isolated
servers, reducing the mean tardiness of periodic jobs.

CSS considers the coexistence ofnon-isolatedand iso-
lated servers in the same system. For an isolated server a
given amount of a resource is ensured to be available at ev-
ery period. An inactive non-isolated server, however, can



have some or all of its reserved capacity stolen by active
overloaded servers. Non-isolated servers are motivated by
the use of imprecise computation models, such as the any-
time algorithms for the framework’s management, provid-
ing a useful scheme for integrating complex and unbounded
computations into real-time systems.

Since the execution time of each job is not known before-
hand, it makes sense to devote as much excess capacity as
possible to the currently executing server, giving it a chance
to complete without deadline postponements, rather than
distribute this capacity (usually in proportion of servers’
bandwidths) among a large number of servers, without pro-
viding enough excess capacity to any of the servers to avoid
deadline postponements.

Each server starts by using available residual capacities,
according to an EDF policy, before using its own capacity,
aiming at reducing the number of deadline shifts. When a
job completes, any remaining capacity is immediately avail-
able to the next server to be scheduled. CSS preemptively
allocates residual capacities as soon as they are available to
the earliest deadline server with the priority of the donat-
ing server, maximising its likelihood of using those residual
capacities to meet its deadline, as opposed to the approach
of only start consuming residual capacities after a own bud-
get’s exhaustion.

When available residual capacities and a server’s own
capacity were not enough to handle the execution require-
ments of the current job, CSS enables the currently execut-
ing server to steal future reserved capacities of other servers.
Since the arrival times of new jobs are not known before-
hand an overloaded active server can only steal reserved ca-
pacities of inactive non-isolated servers. Remember that the
algorithm must guarantee the reserved capacities for all iso-
lated servers.

When a server consumes some capacity amount, either
residual, its own, or a stolen capacity, budget accounting
must be performed. The proposed dynamic budget account-
ing mechanism ensures that at timet, the currently execut-
ing serverSi is using a residual capacitycr, originated by
an early completion of another active server, its own capac-
ity ci or is stealing capacitycs from an inactive non-isolated
server.

As an example of an efficient overload handling by CSS
consider the following periodic task set, described by avail-
able capacity and period:τ1 = (2, 5), τ2 = (4, 10),
τ3 = (3, 15). Taskτ1 is served by a non-isolated server,
while tasksτ2 andτ3 are served by isolated servers, all hav-
ing deadlines equal to their periods and a reserved capacity
equal to their average execution times. A possible execution
of this task set is presented in Figure 2. When a server is us-
ing capacity from another server, either a residual or stolen
capacity, a pointer indicates where the budget accounting is
being performed.

Figure 2. Overload handling with CSS

Note that at timet = 15, during an overload being han-
dled byS2 by stealing the non-isolatedS1’s capacity, a new
job for serverS1 arrives.S2 stops usingS1’s capacity, and
the non-isolated serverS1 reaches the active state, keeping
the current values for its capacity and deadline. In the pro-
posed cooperative service execution environment, the any-
time algorithm served byS1 would compute its solution in
the remaining available time and the deadline miss at time
t = 19 would be avoided. Figure 2 exemplifies CSS in a
more general scenario.

In [10] it has been demonstrated that, when CSS is used
in systems were some services can appear less frequently,
and when they do can be served in a best-effort manner, giv-
ing priority to an overload control of guaranteed services,
it achieves a higher performance than other dynamic sched-
ulers, when considering the mean tardiness of periodic guar-
anteed services. The achieved results become even more
significant when tasks’ computation times have a large vari-
ance.

5. Conclusions

Recent work in computation offloading proposes task
partition/allocation schemes that allow the computation to
be offloaded, either entirely or partially, from resource con-
strained devices to a more powerful neighbour. Often, the
objective is to reduce computation time and energy con-
sumption. However, meeting non-functional requirements
while providing support for an efficient execution of com-
plex applications in embedded devices is very challenging.

With the proposed framework a device may be able to
solve the requested service on its own if it has enough re-
sources or may delegate portions of the service to other
available and willing neighbours. Given a resource alloca-
tion demand enforced by each application’s QoS constraints
that must be satisfied, if the resource demand cannot be sat-
isfied by a single node or when a single node handles the



request inefficiently, the best subset of nodes in the network
will cooperate to fulfil the resource demand.

For large and complex problems, finding the best possi-
ble cooperative service configuration may take a long time
and a sub-optimal solution that can be found quickly may
be more useful. The ability to tradeoff deliberation time for
quality of results is essential for a successful operation in
dynamic real-time environments. At the same time, pre-
dictability in such environments is strictly related to the
capacity of controlling the incoming workload, preventing
abrupt and unpredictable performance degradations. It is
necessary to prevent a service that needs more than the ex-
pected resource reservations to introduce unbounded delays
on other services’ execution. The CSS algorithm consid-
ers the coexistence of isolated and non-isolated bandwidth
servers and, while achieving isolation among tasks, per-
forms an efficient reclaiming of unused computation time
as well as allows an overload server to steal capacity from
inactive non-isolated servers.

With cooperation between nodes, by forming coalitions
among themselves, resources can be allocated by splitting
application’s tasks by the subset of nodes that offers service
closer to the expressed QoS constraints. At the same time,
while isolation among users’ services is guaranteed, nodes
with less workload will be able to reclaim more time to find
a service solution, potentially presenting a service proposal
closer to each user’s request and promoting load balancing.
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