
ITERATIVE REFINEMENT APPROACH FOR
QOS-AWARE SERVICE CONFIGURATION

Luis Nogueira, Luis Miguel Pinho
IPP Hurray Research Group, Polythecnic Institute of Porto, Portugal
luis@dei.isep.ipp.pt, lpinho@dei.isep.ipp.pt

Abstract In heterogeneous environments, diversity of resources among the devices
may affect their ability to perform services with specific QoS constraints,
and drive peers to group themselves in a coalition for cooperative ser­
vice execution. The dynamic selection of peers should be influenced
by user's QoS requirements as well as local computation availability,
tailoring provided service to user's specific needs. However, complex
dynamic real-time scenarios may prevent the possibility of computing
optimal service configurations before execution. An iterative refinement
approach with the ability to trade off deliberation time for the quality
of the solution is proposed. We state the importance of quickly finding
a good initial solution and propose heuristic evaluation functions that
optimise the rate at which the quality of the current solution improves
as the algorithms have more time to run.

1. INTRODUCTION
The amount of data produced by a variety of data sources and sent

to end systems to further processing is growing significantly. There
are several examples of sensors being installed to continuously measure
environmental properties and disseminate data streams. These applica­
tions are pushing the limits of traditional data processing infrastructures
[15]. The challenges become even more critical when coordinated con­
tent analysis of stream data from multiple sources is necessary [3]. This
calls for an architecture that supports the distribution of the process­
ing task to different nodes in order to be able to cope with increasing
resource requirements.

At the same time, quality-aware processing of those data streams is
increasingly being considered an important user demand, receiving wide
attention in real-time research. Unfortunately, in most systems, users do
not have any real influence over the QoS they can obtain, since service

Please use the foil owing format when citing this chapter:

Noguera, L., Pinho, L.M., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L.,

Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 155-164.

156 From Model-Driven Design to Resource Management for Distributed Embedded Systems

characteristics are fixed when the systems are initiated. Furthermore,
users can differ enormously in their service requirements as well as appli­
cations in the resources which need to be available to perform a service
with a specific level of quality. Therefore, there is an increasing need for
customisable services that can be tailored to user's specific requirements
[14]. A QoS negotiation model is the key to build predictable, gracefully
degradable services for real-time applications [1].

This paper addresses the growing demand on resources and perfor­
mance requirements by allowing resource constrained devices to cooper­
ate with more powerful or less congestioned neighbour nodes to meet
resource allocation requests and handle stringent constraints, oppor­
tunistically taking advantage of global network resources and processing
power.

We are primarily interested in dynamic scenarios where new tasks
can appear while others are being executed, the processing of those tasks
has associated real-time execution constraints, and service execution can
be performed by a coalition of neighbour nodes. Such scenarios may
prevent the possibility of computing optimal resource allocations before
execution. Instead, nodes should negotiate partial, good-enough service
proposals that can be latter refined if time permits. Moreover, taking
the cost of decision-making into account is not an easy task, since the
"optimal" level of deliberation varies from situation to situation. It is
therefore beneficial to build systems that can trade off computational
resources for quality of results.

We propose and evaluate new anytime algorithms for coalition for­
mation and service proposal formulation with the ability to trade off
deliberation time by the quality of the solutions. The proposed algo­
rithms can be interrupted at any time and provide a solution and a
measure of its quality. This quality is expected to improve as the run
time of the algorithms increase. A higher adaptation to changing condi­
tions in dynamic environments is thus introduced by allowing flexibility
in the execution times of the algorithms.

The conformity of both algorithms with the desired properties of any­
time algorithms and the validation through extensive simulations of the
design decisions of our approach is detailed in [11]. The achieved results
emphasise our believe that use of anytime algorithms for coalition for­
mation and service proposal formulation significantly improve the ability
of our framework to adapt to changes in a dynamic heterogeneous envi­
ronments.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 157

2. RELATED WORK
The quality of the outputs may depend on the available amount of

resources. For example, in multimedia applications, higher network and
CPU bandwidth produces better audio and video quality, at higher res­
olutions and/or higher frame rates. As such, researchers have been
proposing and optimising several techniques for resource management
in resource constrained devices.

Computation offloading to a remote machine has been explored to
achieve power and performance gains [6, 7, 13]. The authors conclude
that the efficiency of an application execution can be improved by care­
ful partitioning the workload between a device and a fixed neighbour.
Optimal application partitioning depends on the trade off between the
computation workload and the communication cost. However, a method
for finding and selecting the best subset of service providers among the
set of neighbour nodes is still missing. Also, to the best of our knowl­
edge, previous work in offloading do not take into consideration QoS
constraints imposed by users in their service requests. Since different
users can access multiple devices at the same time, supporting users'
QoS preferences in service execution is a key issue.

Work on applications' decomposition into tasks has, for example, been
reported in [3, 9, 16]. Interpretation of QoS constraints and consequent
mapping on resource parameters as been described, for example, in [12,
4, 5]. We focus on proposing a generic model that enables a distributed
QoS-aware service allocation, with the ability to adapt to dynamically
changing system conditions.

Our preliminary work [10] proposes a system where heterogeneous
nodes organise themselves into a coalition for cooperative service execu­
tion, dictated by computational capabilities. However, the assumption
that the algorithms can have all the time they need to compute their
outputs was used.

The work on anytime algorithms [2, 17] recognises that the compu­
tation time needed to compute optimal solutions will typically reduce
the overall utility of the system. An anytime algorithm is an iterative
refinement algorithm that can be interrupted and asked to provide an
answer at any time. It is expected that the quality of the answer will in­
crease (up to some maximum quality) as the anytime algorithm is given
increasing time to run, offering a trade off between the quality of the
results and computational requirements. Associated with an anytime
algorithm is a performance profile, a function that maps the time given
to an anytime algorithm (and in some cases input quality) to the quality
of the solution produced by that algorithm.

158 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3. TIME-BOUNDED COALITION
A coalition formation process should enable the selection of individual

nodes that, based on their own resources and availability, will constitute
the best group to satisfy user's QoS requirements Q associated with
service S. The anytime approach proposed here extends the algorithm
introduced in [10] by allowing it to return many possible approximate
answers and a measure of their qualities for a given input of service
proposals to evaluate. Those service proposals are sent by neighboin:
nodes, in reply to a cooperative service execution request with associated
user's QoS constraints that this node is not able to fulfil by itself.

We consider a user's service request to be formulated through the rela­
tive decreasing importance of a set of QoS dimensions [10]. Furthermore,
for each dimension a relative decreasing importance order of attributes,
and possible values for each attribute, is also specified. As a result, the
user is able to express acceptable compromises in QoS and their relative
importance.

All admissible proposals are evaluated according to user's QoS pref­
erences, measuring the distance between requested and proposed values
[10]. The best proposal is the one that contains the attributes' values
more closely related to user's preferences, in all QoS dimensions.

Time-bounded coalition formation implies trying to quickly find a
good initial solution and gradually improve that solution if time permits.
The selection of the next candidate proposal to be evaluated from the
set of available proposals should be done in a order that maximises the
expected improvement in solution quality. It is necessary to make a trade
off between search effort and solution quality explicitly in the heuristic
selection of the next candidate proposal so that we can optimise search
effort directly, rather than relying in arbitrary proposal evaluation. As
such, for each taisk Ti we select the next candidate proposal Pki from the
set of received proposals Pi to be evaluated for task T ,̂ as the one sent
by node N^ that has the greatest local reward Rk-

The local reward i?/. is an indicator of node's local QoS optimisation,
according to the set of tasks being locally executed and their QoS con­
straints. We claim that the local reward achieved by a node should be
used to guide the coalition formation process, since nodes with higher
local reward have a higher probability to be offering service closer to
user's request under negotiation.

The anytime coalition formation algorithm, seeking distributed QoS
optimisation, is described in Algorithm 1. Since the formation of a
coalition is aimed at maximising the benefits associated to a cooper­
ative service execution, the quality of each generated coalition can be

From Model-Driven Design to Resource Management for Distributed Embedded Systems 159

measured by using the evaluation values of the best proposals for each
service's task.

^coalition
\coalition\

\s\ ,

\coalition\
y . 1 - Bestp,
^ \coalition\

For an empty set of proposals the quality of the coalition is zero. Note
that the quality of the coalition is also zero, if there are not any proposals
for one or more tasks Ti of service S.

Algorithm 1 Iterative coalition formation
for each Ti G S do

Select next candidate proposal PKI^ maximising local reward
Ep^. = evaluate{Pki)
if Ep^. — Bestp. > a then

Bestp, = Ep,.
Update coalition with N^ for task Ti

else if 0 < Ep^^. — Bestp. < a and Rp^. > Rsestp. then
Bestp, = Ep^.
Update coahtion with Nk for task Ti

end if
end for

The algorithm continues, if time permits, to evaluate received service
proposals trying to improve the quality of the current solution. It is
possible that another node, while achieving a lower local reward, pro­
poses a better service for the specific request under negotiation. The
service proposal formulation algorithm, described in the next section,
always suggests the best solution for a particular user, even if it has to
degrade the provided level of service of previous existing tasks. It is
the responsibility of the coalition formation algorithm to select between
similar proposals (whose evaluation values differ in less than a) those
nodes that achieve higher local rewards, promoting load balancing.

The algorithm terminates when it finds that the quality of a coalition
cannot be further improved or the local reward of each node that belongs
to that coalition is maximum.

4. TIME-BOUNDED SERVICE PROPOSAL
Requests for cooperative service execution arrive dynamically at any

node. Each user's request is formulated as a set of acceptable multi­
dimensional QoS levels in decreasing preference order. To guarantee the

160 From Model-Driven Design to Resource Management for Distributed Embedded Systems

request locally, the node executes a local QoS optimisation algorithm de­
scribed in Algorithm 2. Conventional admission control schemes either
guarantee or reject each request, implying that future requests may be
rejected because resources have already been committed to previous re­
quests. We use a QoS negotiation mechanism that , in cases of overload,
or violation of pre-run-time assumptions guarantees graceful degrada­
tion. In our model, guaranteeing a user's request is the certification
that the service will be provided in one of the QoS levels expressed in
the request.

A service configuration proposed for a specific task Ti will achieve
a reward r̂ determined by the proximity of the proposal with respect
to the QoS preferences specified in user's service request. Its value is
maximum if the task is being served at the highest requested level in
all QoS dimensions. Otherwise, it is affected by a penalty factor that
increases with the distance for user's preferred values [10].

As introduced in the previous section, each node sends along with
the service proposal a measure of global satisfaction resulting from its
proposal acceptance. The local reward Rj expresses a degree of global
satisfaction for all the users that have tasks being executed by a partic­
ular node Nj, with specific QoS levels. For a node Nj, the local reward
Rj = d ^ ^ ^ i ^ T j / n achieved by a set of tasks is determined combining
the reward of each task being locally executed as a measure of global
satisfaction of the proposed solution.

Unless all tasks are executed at their highest QoS level, there is a
difference between the actual local reward achieved by the currently
selected QoS levels and the maximum possible local reward that would
be achieved if all local tasks were executed at their highest requested QoS
level. This difference can be caused by either resource limitations, which
is unavoidable, or poor load balancing, which can be improved by sending
actual local rewards in service proposals, and selecting, for proposals
with similar evaluation values, those nodes that achieve higher local
rewards. Selecting the node with higher local reward for similar service
proposals, not only maximises service satisfaction for a particular user,
but also maximises global system's utility, since a higher local reward
clearly indicates that the previous set of tasks being locally executed had
to suffer less QoS degradation in order to accommodate the new task.

In [8], it was demonstrated that the QoS optimisation problem in­
volving multiple resources and multiple QoS dimensions is NP-hard. An
optimal solution based on dynamic programming and an approximation
scheme based on a local search technique was presented. However, the
computation time needed to find an optimal solution can reduce the over­
all utility of the system. In addition, the deliberation cost is dependent

From Model-Driven Design to Resource Management for Distributed Embedded Systems 161

on local resources' availability and user's QoS constraints. Therefore, it
is beneficial to build systems that can trade the quality of results against
the cost of computation [17].

The proposed anytime algorithm considers two different scenarios
when formulating a service proposal. The first one involves guaran­
teeing the new task without changing the level of service of previously
guaranteed tasks. The second one, due to node's overload, demands
service degradation in existing tasks in order to accommodate the new
requesting task. Our local QoS optimisation (re)computes the set of
QoS levels for all local tasks, including the new requested one. Offering
QoS degradation as an alternative to task rejection has been proved to
achieve higher perceived utility [1].

The algorithm iteratively work on the problem of finding a feasible
service configuration that maximises user's satisfaction and produces
results that improve in quality over time. Equation 2 shows how the
quality of each generated feasible configuration Qconf is calculated by
considering the reward achieved by the service proposal configuration for
the new arriving task VTa, the impact on the provided QoS of previous
existing tasks and the value of the previous generated feasible configu­
ration Q'^Q^f^ Initially, Q'^^^^^ is equal to zero.

Qconf = [rn * ^ ^ " ^ j (2)

When a new service request arrives, the algorithm starts by maintain­
ing the QoS levels of previously guaranteed tasks and by selecting the
worst requested QoS level, for all dimensions, for the new arrived task.
As such, the reward of the initial service configuration for the new task
is low (the exact value is determined by the penalty factors used in a
particular system), affecting node's local reward. On the other hand,
the impact of this new task on the provided level of previously existing
tasks is inexistent. Also, this initial solution is the service configuration
that has a higher probability of being feasible, considering the new ar­
rived task. The algorithm continues to improve the quality of the initial
solution, conducting the search for a better feasible solution in a way
that maximises the expected improvement in solution's quality. When
there are enough resources the algorithm selects, from the set of possible
upgrades, the next configuration thatmaximises the reward achieved by
the new arrived task. When QoS degradation is needed, it selects the
configuration that minimises the decrease in local reward.

At each iteration the algorithm produces a new service configuration
that may not be feasible due to local resources availability and user's QoS

162 From Model-Driven Design to Resource Management for Distributed Embedded Systems

constraints expressed in request. Since a service proposal can only be
considered useful within a feasible set of configurations, the algorithm,
if interrupted, always returns the best found feasible solution. However,
each intermediate configuration, even if not feasible, is used to calculate
the next solution, minimising search effort.

When the new task can be accommodated without degrading the QoS
of previously existing tasks, the algorithm incrementally selects the con­
figuration that maximises the increase in obtained reward, according
to user's QoS preferences expressed in his request. When QoS degra­
dation is needed, the algorithm incrementally selects the configuration
that minimises the decrease in obtained reward of all tasks.

Algori thm 2 Iterative service proposal formulation
Each task Ti being locally executed has associated a set of user QoS
constraints Q \
Each QL = {QL[0] , . . . , Q L W } is a finite set of n quality choices for the

j ^ ^ attribute of the k^^ QoS dimension associated with task T ,̂ expressed
in decreasing order of preference.

Step 1: Improve QoS level of the new arrived task Ta
Select the worst requested QoS level, in all j attributes of all k dimen­
sions, Q%j[n], for task T^.
Maintain level of service for all previously guaranteed tasks.
while the new set of tasks is feasible do

for each k QoS dimension in Ta receiving service at Q^ • [m] > Qkj [0]
do

Determine the utility increase by upgrading attribute j to m — 1
Find maximum increase and upgrade attribute to the m — I's
level

end for
end while
Step 2: Find global minimal degradation to accommodate Ta
Select for all k dimensions of task Ta the final result of Step 1, Q%j[m]
while the new set of tasks is not feasible do

for each task Ti receiving service at Q L [m] > Q\.- [n] do
Determine the utility decrease by degrading attribute j to m + 1
Find task Tmin whose reward decrease is minimum and degrade
attribute j to the m + I's level

end for
end while

The algorithm terminates when the time for the reception of proposals
has expired (this time is sent in user's request), when it finds a set of

From Model-Driven Design to Resource Management for Distributed Embedded Systems 163

feasible QoS levels and the quality of the solution can not be further
improved, or when it finds that, even at the lowest QoS level for each
task, the new set is not feasible. In this case the new arrived task is
rejected. When it is not possible to find a feasible solution to include
the new task within available time, the node continues to serve existing
tasks at their current QoS levels and does not send any service proposal
to the requesting node.

The algorithm always improves or maintains the quality of the solution
as it has more time to run. This is done by keeping the best feasible
solution so far, if the result of each iteration is not always proposing a
feasible set of tasks.

5. CONCLUSIONS AND F U T U R E W O R K
Resource constrained devices may need to cooperate with neighbour

nodes in order to fulfil complex services, with specific user's QoS con­
straints. Given a set of tasks to be executed, we consider situations
where a service is assigned to a group of nodes for cooperative execution
in a dynamic heterogeneous environment.

This paper proposes algorithms for coalition formation and service
proposal formulation with the ability to trade off deliberation time for
quality of results. At each iteration, the search of a better solution is
guided by heuristic evaluation functions that optimise the rate at which
the quality of the current solution improves overtime. These capabilities
are essential for successful operation in dynamic real-time environments,
as it may not be feasible to compute an optimal answer before providing
a solution for a cooperative service execution.

The proposed anytime algorithms significantly improve the abihty of
our framework to adapt to changes in dynamic environments by allowing
flexibility in the execution times of the algorithms. A complete integra­
tion in the existing framework is under development.

ACKNOWLEDGMENTS
This work was supported by FCT, through the CISTER Research

Unit (FCT UI 608) and the Reflect project (POSI/EIA/60797/2004).

REFERENCES

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos negotiation in real-time
systems and its application to automated flight control. IEEE Transactions on
Computers, Best of RTAS '97 Special Issue, 49(11):1170-1183, November 2000.

[2] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings
of the 7th National Conference on Artificial Intelligence, pages 49-54, 1988.

164 From Model-Driven Design to Resource Management for Distributed Embedded Systems

[3] Viktor S. Wold Eide, Prank Eliassen, Ole-Christoffer Granmo, and Olav Lysne.
Supporting timeliness and accuracy in distributed real-time content-based video
analysis. In Proceedings of the 11th ACM international conference on Multime­
dia, pages 21-32. ACM Press, 2003.

[4] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara. Qos mapping between
user's preference and bandwidth control for video transport. In Proceedings
of the 5th International Workshop on Quality of Service, pages 291-302, New
York,USA, 1997.

[5] Vera Goebel and Thomas Plagemann. Mapping user-level qos to system-level qos
and resources in a distributed lecture-on-demand system. In IEEE Computer
Society, editor. Proceedings of The 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, page 197, 199.

[6] Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, and Klara Nahrst-
edt. Adaptive offloading for pervasive computing. IEEE Pervasive Computing
Magazine, 3(3):66-73, 2004.

[7] Ulrich Kermer, Jamey Hicks, and James Rehg. A compilation framework for
power and energy management on mobile computers. In 14th International
Workshop on Parallel Computing, pages 115-131, 2001.

[8] Chen Lee, John Lehoczky, Dan Siewiorek, Ragunathan Rajkumax, and Jef
Hansen. A scalable solution to the multi-resource qos problem. In 20th IEEE
Real-Time Systems Symposium, pages 315-326, 1999.

[9] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S. Regazzoni. Distributed ar­
chitectures and logical-task decomposition in multimedia surveillance systems.
Proceedings of the IEEE, 89(10) :1419-1440, October 2001.

[10] Luis Nogueira and Luis Miguel Pinho. Dynamic qos-aware coalition formation.
In Proceedings of the 19th IEEE International Parallel and Distributed Process­
ing Symposium, Denver, Colorado, April 2005.

[11] Luis Nogueira and Luis Miguel Pinho. Time-bounded distributed qos-aware ser­
vice configuration in heterogeneous cooperative environments. Technical report,
IPP Hurray Research Group. Available at http://hurray.isep.ipp.pt/, January
2006.

[12] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation
model for qos management. In Proceedings of the 18th IEEE Real-Time Systems
Symposium, page 298. IEEE Computer Society, 1997.

[13] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Sav­
ing portable computer battery power through remote process execution. Mobile
Computing and Communications Review, 2(1): 19-26, 1998.

[14] Sven Schmidt, Thomas Legler, Daniel Schaller, and Wolfgang Lehner. Real-time
scheduling for data stream management systems. In 17th Euromicro Conference
on Real-Time Systems (ECRTS'05), pages 167-176, 2005.

[15] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The 8 requirements

of real-time stream processing. SIGMOD Record, 34(4):42-47, 2005.
[16] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation

offloading. In Proceedings of the ACM SI GPL AN 2004 Conference on Program­
ming Language Design and Implementation, pages 119-130. ACM Press, 2004.

[17] Shlomo Zilberstein. Using anytime algorithms in intelUgent systems. Artificial
Inteligence Magazine, 17(3):73-83, 1996.

