
A Framework for the Response Time Analysis of Fixed-
Priority Tasks with Stochastic Inter-arrival Times

Liliana Cucu

IPP-Hurray Research Group
Polytechnic Institute of Porto

ISEP, Rua Dr. A. Bernardino de Almeida, 431
4200-072 Porto Portugal

+351228340529

lcucu@dei.isep.ipp.pt

Eduardo Tovar
IPP-Hurray Research Group
Polytechnic Institute of Porto

ISEP, Rua Dr. A. Bernardino de Almeida, 431
4200-072 Porto Portugal

+351228340502

emt@dei.isep.ipp.pt

ABSTRACT
Real-time scheduling usually considers worst-case values for the
parameters of task (or message stream) sets, in order to provide
safe schedulability tests for hard real-time systems. However,
worst-case conditions introduce a level of pessimism that is often
inadequate for a certain class of (soft) real-time systems. In this
paper we provide an approach for computing the stochastic
response time of tasks where tasks have inter-arrival times
described by discrete probabilistic distribution functions, instead
of minimum inter-arrival (MIT) values.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and design – real-time
systems and embedded systems; C.3 [Special-purpose and
Application-based Systems]: real-time and embedded systems

General Terms
Algorithms, Design

Keywords
Real-time systems, Schedulability analysis, Stochastic analysis,
Fixed-priority scheduling

1. INTRODUCTION
A real-time system is usually characterized by deadlines, and any
schedulability analysis for these systems tries to answer the
question of whether deadlines are ever met or not. According to
the consequences of missing deadlines, a real-time system is often
categorized as hard or soft. In a hard real-time system no
deadlines can ever be missed, while in a soft real-time system
deadline misses can be tolerated from time to time. In this case,
the system designer may like to have a measure of the minimum
likelihood to miss deadlines.

Worst-case approaches taking minimum inter-arrival times (MIT)
as tasks' periods introduce an unacceptable level of pessimism in
the context of soft real-time systems. This is particularly true in
those systems where inter-arrival times of jobs (or messages) have
a large and known variability. Deadlines may be guaranteed, but
actual (allowed by the schedulability test) system utilization turns
out to be dramatically low.

In this paper, we are particularly interested in systems in which
worst-case computation times are constant, and inter-arrival times
are defined by random variables rather than by MIT values. The
results provided are of particular interest for distributed real-time
systems, where message streams are queued and distributed
stochastically. Typically, in these systems, message durations
(equivalent to jobs' computation time) have a small variability.

There has been a significant number of research works devoted to
this problem. However, and to our best knowledge, there are no
comparable results so far. In fact, there are a few related works
which consider special scheduling models providing isolation
between tasks [1], or assuming a known (a priori) maximum
number of arrivals, thus introducing an unnecessary level of
pessimism in the analysis [2]. The results provided in [2] are
improved in [3], albeit considering only one task described by
random inter-arrival times. In [4], the author addresses the
problem in a context where both computation and inter-arrival
times are described by random variables. The approach is based
on a modification of the queuing theory for real-time systems, but
results are only valid for particular cases of random variables. In
[5] the same approach is applied for the case of general random
variables, but all inter-arrival times of a task are defined by the
same distribution function. A more general approach is proposed
in [6], which only addresses the case of variability in computation
times, being their approach not extendible to the case of random
inter-arrival times.

In this paper we tackle the problem of random inter-arrival times
given by generic discrete probabilistic distribution functions when
fixed-priority systems are considered. Throughout this paper the
computation times are constant and we consider worst-case
values. The distribution functions are considered given and
known, either analytically or obtained from experiments. Their
determination is not the purpose of this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of the paper is organized as follows. Section 2 defines the
task model. In Section 3 we propose an approach for a stochastic
response time analysis of tasks when higher priority random tasks
exist. Section 4 illustrates the application of the approach to an
example task set, and ongoing work is drawn in Section 5.

2. TASK SET MODEL
We consider a system of n independent tasks:

{ }nS ττ ,...,1=

The tasks have fixed and unique priorities. Without loss of
generality, tasks are ordered according to the non-decreasing
order of their priorities. Each task τi is described as follows:

() { }niDC iiii ,...,1 ,,, ∈∀= Tτ

In the definition above, Ti corresponds to a non-negative discrete
random variable. Throughout the rest of this paper, variables in
bold will denote discrete random variables. In the above task
definition, Ci corresponds to the usual worst-case execution time
(WCET) of τi and Di to its relative deadline.

Each new release j of a task τi may be defined by different random
variables. We denote by Ti,j the random variable giving the inter-
arrival time between the (j − 1)th and the jth job of a task τi. It is
assumed that these Ti,j random variables are independent of other
jobs of task τi and of jobs of other tasks τk (with k ≠ i).

We consider Ti,j to be discrete, and thus its probability mass
function is given by:

() { }jikkk

k
ji tTP

t

,,...,1
,

∈
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=T
(1)

The possible values of tk in the definition of Ti,j are as follows:

[]max
,

min
, , jijik ttt ∈

We denote the set of possible values of tk by
ν(Ti,j). Its cumulative distribution function is defined as follows:

() () []max
,

min
,, , with ,

, jijiji ttttPtF
ji

∈≤= TT
 (2)

For the sake of simplicity, from now on we denote as periodic
tasks those tasks τi for which the random variable concerning
inter-arrival information is a constant, while tasks with at least
two possible values for the inter-arrival information are denoted
as random tasks. Thus, the periodic tasks are those with ki,j = 1,
∀j∈ℵ in Equation (1). We denote by Phpi the set of indexes of
periodic tasks which have a priority higher or equal to the priority
of the task under analysis. Similarly, we denote by Rhpi the set of
indexes of random tasks which have a priority higher or equal to
the priority of that task. Obviously Phpi, Rhpi ⊆ {1, …, n}.

3. STOCHASTIC ANALYSIS - OVERVIEW
In this section we will briefly outline our approach for computing
the stochastic response time of fixed-priority tasks having
stochastic inter-arrival times. In Section 4, some further details
will be provided.

3.1 Assumptions
We suppose, without loss of generality, that task τi is a periodic or
sporadic task for which response time needs to be evaluated. We
denote this response time by Ri, which is a random variable that
gives a set of values for the response time, and for each of these
values, its probability.

Also without loss of generality, we assume a pre-emptive context.
A non pre-emptive formulation (usually required for message
stream models) can then easily be derived.

For the sake of simplicity we consider that all tasks, including
random tasks, have the first release time equal to zero.
Nonetheless, this does not imply a loss of generality of our
results. It can be easily proved that the worst-case response time
of a task is obtained in this case even if there are random tasks
with higher priority. Also for simplicity, and without loss of
generality, we consider that all inter-arrival times of each random
task are defined by the same random variable. This last
assumption would mean that Equation (1) is simplified as follows:

() { }i
k

k
iji kk

tTP
t

i
,...,1 with and ,, ∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

== τTT (3)

3.2 Overview of the Approach
If the task set is strictly composed of periodic tasks, then the
following well-know formulation [7] allows computing the worst-
case response time of a task τi:

j
hpij j

i
ii C

T
RCR ×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

∈

 (4)

where hpi denotes the set of tasks with a priority higher or equal
to that of τi. Equation (4) is solved iteratively, by forming a
recurrence relationship. However, the above formulation does not
hold if random tasks with higher or equal priority exist in the task
set, unless MIT values are taken into the formulation. Therefore,
while trying to adhere to the above formulation, we introduce an
alternative approach:

)(kkRkk
k

i
Pkii CC

T hpihpi
×⊗⊗⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎥
⎥

⎤
⎢
⎢

⎡
⊗⊗= ∈∈ NRCR (5)

In Equation (4), Ci is a constant random variable with a unique
value Ci, which corresponds to the worst-case execution time
(WCET) of τi. Nk is the random variable giving the number of
arrivals of τk together with the probabilities of those numbers.
With the symbol ⊗ we denote the convolution of two random
variables. Note that the sum of two independent discrete random
variables is given by the convolution of the two.

We will now briefly outline an algorithm able to efficiently find a
solution for Equation (5). The solution is found, similarly to what
happens with Equation (4), by forming a recurrence relationship,
albeit with additional details to properly handle the stochastic
nature of the formulation. Let m denote each of the iterations
performed to find the solution of Equation (5). In each iteration m,
we perform the two steps described next.

3.2.1 Step 1
Firstly, we determine an intermediate pseudo-random variable,
denoted as Li

m, which has ⎟ν(Ri
m-1)⎜ values. By ⎟ν(Ri

m-1)⎜ we
understand the set of values of random variable Ri

m-1. Therefore,
each value Li

m of Li
m corresponds to a value rv

 m-1 ∈ ν(Ri
m-1), thus

computed in iteration m − 1. Basically in this first step of iteration
m, we compute the level-i busy period taking into account new
arrivals of tasks belonging to the set Phpi, while using a fixed
number of instances of tasks belonging to Rhpi as computed in
iteration m − 1.

Each value Li
m(rv

 m-1) of the ⎟ν(Ri
m-1)⎜ values of Li

m is computed
by the following equation, which does not contain any random
variable:

() () () k
Rk

m
vkk

Pk k

m
v

m

i
m

v
m CrNC

T
rL

CrL
hpihpi

i

i
×+×

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑∑

∈

−

∈

−
− 1

1
1 (6)

In Equation (6), Nk(rv
 m-1) is the number of arrivals of τk as

computed in iteration m − 1. Equation (6) is solved iteratively by
forming a recurrence relationship. For the first of the m iterations
(m = 1) the relevant values for initiating the iterative procedure to
solve the only Equation (6) are as follows:

()⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈∀==
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

 ,0
0 aluerelevant v thes, thu

1
0

1

00
1

0
1

0
100

hpikk

ii

RknrN
r

r
RR

In summary, an intermediate pseudo-random variable Li
m is build

upon the ⎟ν(Ri
m-1)⎜ results obtained for Li

m(r) solutions such that
each value of the Li

m is equal to a solution of one equation and
their probabilities are those of rv

 m-1 in Ri
m-1.

As an example, in iteration m = 1, Li
1 is going to have only one

value with probability 1, since no interference of tasks belonging
to set of Rhpi are considered in the first iteration:

{ }niCC
T
L

CL k
Rk

k
Pk k

i
ii

hpihpii
,...,1 ,

1

0
1

1,1
1,1 ∈∀

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×+×⎥

⎥

⎤
⎢
⎢

⎡
+== ∑∑

∈∈
L

In the formulation above, and the in L1
i,v, v denotes the index of

each of the different values that the pseudo-random variable may
assume.

3.2.2 Step 2
In the second step of each iteration m, a new random variable Ri

m
is obtained by convoluting Li

m with a random variable
corresponding to the interference caused by new arrivals of tasks
belonging to Rhpi given the new level-i busy period as computed
in step 1. Therefore,

()k
m
kRk

mm C
hpiii

×⊗⊗= ∈ ∆LR (7)

∆k
m is a random variable which is computed for each of the values

obtained for Li
m in step 1 for each of the random tasks belonging

to Rhpi. Further details on ∆k
m will be provided in Section 3.3.

At this point, the variable Ri
m will correspond to the random

variable Ri
m-1 to which new arrivals of higher priority periodic

and random tasks are added.

Actually, Equations (6) and (7) are particular analytical
formulations of a more general equation which would allow us to
integrate both steps of each iteration m into only one step. The
obvious reason for separating it into two steps is that the
integration would increase considerably the computational cost of
the approach.

3.2.3 Improvement of the Approach
The iterative procedure finishes when at the end of an iteration m,
either Ri

m contains only unchanged values or all new values are
larger than the deadline. Obviously the response time is a non-
decreasing function and the probability of the values is
decreasing, which implies the convergence of the algorithm.

In order to detect when the response time, which is a random
variable, contains only unchanged values we need to define a
proper comparison function between two random variables.

Additionally, we could continue the iteration also with the
unchanged values, but any further iteration will leave them
unchanged. The presence of these values would unnecessarily
increase the complexity of the approach, this without producing
any new values for the response time in the next iteration.

We start an iteration m with a known random variable Ri
m-1. Then

we obtain an intermediate pseudo-random variable (Li
m) and

finally we compute Ri
m. In order to “eliminate” the unchanged

values, we use the Comp function applied to the random variables
Li

m and Ri
m in order to obtain the random variable that will

actually be used as initial value in iteration m + 1.

As an example, assume the following scenario at a given m
iteration:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1.0
5

1.0

4

3.0
3

4.0

2

1.0
1

3.0

4

2.0
3

5.0

1

m

m

i

i

R

L

The result of applying the Comp function will be:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

1.0
5

4.0

2
, mmm

iii
Comp RLR

Therefore, we actually apply this “transformation” in Ri
m before

starting a new iteration m. This is illustrated in Figure 1, which
describes a simplified version of our approach.

3.3 Further Details
In this section we will further detail the step 2 briefly described in
Section 3.2.2. Specifically, we start by introducing the proposed
analytical formulation for the random variable ∆k

m introduced in
Section 3.2.2 in Equation (7). The proposed refinement is as
follows:

()()()()k
m

k
k

Rk
mm CvnShift

ihpiii
×⊗⊗= ∈ LFLR *

0 , (8)

In Equation (8), the function Fk
* gives a random variable with the

number of arrivals of random task τk from the time instant 0 to the
time instant corresponding to the value to v(Li

m), together with the
probabilities of each of those number of arrivals to occur.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

−

−

−

−

−

−

−
−

1
,

1
,

1
3,

1
3,

1
2,

1
2,

1
1,

1
1,1

...

...
 m

vi

m
vi

m
i

m
i

m
i

m
i

m
i

m
im

p
r

p
r

p
r

p
r

i
R

hpiRk
m
k

m
i

m
i

n

r

L

∈
−

−

∀ , and

 valueinitial

(6)) (Eq. ,

1
1,

1
1,

1,

hpiRk
m
k

m
i

m
i

n

r

L

∈
−

−

∀ , and

 valueinitial

(6)) (Eq. ,

1
2,

1
2,

2,

…
hpiRk

m
vk

m
vi

m
vi

n

r

L

∈
−

−

∀ , and

 valueinitial

(6)) (Eq. ,

1
,

1
,

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −−−− 1

,

,
1

3,

3,
1

2,

2,
1

1,

1,
...
...

 m
vi

m
vi

m
i

m
i

m
i

m
i

m
i

m
im

p
L

p
L

p
L

p
L

i
L

 { } tasksrandom of arrivals new⊗= mm
ii
LR

 ()mmm
iii

Comp RLR ,=

Figure 1. Simplified version of the approach.

We will now reason on how to compute these values. Let Xk,j be
the random variable giving the values of release times of the jth
job of a task τk. This random variable is obtained as follows:

kkkjkjk TXTXX =⊗= − 0,1,, with ,

This formulation is correct because Xk,j-1 and Tk are independent.
Therefore, the random variables Xk,j allow us to calculate the
number of arrivals of random tasks from time instant 0 to time
instant t. We define first the function

() [] ik,tFk ≠→ℵ where,10:.,

as follows:

() ()tXtXPtnF nknkk >∧≤= − ,1,,

where P(Xk,n-1 ≤ t ∧ Xk,n > t) is the probability that Xk,n > t
knowing that Xk,n-1 ≤ t is true. We obtain this probability by
considering, while calculating Xk,n only the values of Xk,n-1 which
are smaller or equal to t. Thus we consider the following
restriction

tx
nk
≤
−1,X

of Xk,n-1. Given this, we formulate Fk(n,t) as follows:

() ()tXPtnF tx
nkk >= ≤

,, (9)

The random variable giving the number of arrivals at a time t and
their respective probabilities is obtained using function Fk(.,t) as
follows:

() ()⎟⎟⎠
⎞

⎜⎜
⎝

⎛
=

tnF
n

t
k

k ,
*F (10)

To give an instantiating example, assume a task τk with the inter-
arrival times defined by the following random variable:

jk,j ∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,

5.0
16

3.0

12

2.0
8

T

Thus, we have the following:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

25.0
32

3.0

28

29.0
24

12.0

20

04.0
16

 ;
5.0

16

3.0
12

2.0

8
 ;

1
0

2,1,0, kkk XXX

According to Equation (9), and for n = 1, we have:

() ()

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗=⊗=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

=>=

≤≤

≤

1
0

5.0
16

3.0

12

2.0
8

 where,5.01212,1

,
12

0,1,
12

1,1

12
1,1

jk
x

jk
x

x
k XPF

TXTX

For n = 2, we have:

() () 5.011212,2 12
2,1 −=>= ≤x

k XPF

For n > 2, Fk(n,2) = 0. Thus, we get for the example the following
result:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

5.05.0
21

12*
kF

Finally, and before concluding Section 3.

Because the function F*
k
m (v(Li

m)) provide results corresponding
to the time span [0, v(Li

m)] there is a need to “eliminate” the
arrivals already taken into account at iteration m−1; that is, those
arrivals in the time span [0, v(Li

m-1)]. Therefore, we apply to
F*

k
m (v(Li

m)) a function Shift which returns a random variable
having the same probabilities, but with values decreased by n0

k:

()
()

()⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
−

=

 where

, 0
0

k

k

k

k
kk

xXP
x

xXP
nx

nShift

X

X

(11)

with n0
k given by:

()(){ } ()(){ }
()(){ }⎪

⎩

⎪
⎨

⎧

=
≠−

=
−

 aremax these; max
 aremax these ;maxmax

 1 ; 0

*

1**

ifv
ifvv

mif

m
k

m
k

m
k

i

ii

LF
LFLF

(12)

Thus at iteration m, we consider only the random arrivals from
time interval [v(Li

m-1), v(Li
m)].

To iteration m+1
Or finish

Iteration m

3.4 Pseudo-code Algorithm
In this section we summarize the approach described in Sections
3.2 and 3.3 through a pseudo-code algorithm (Figure 2).

1: let m = 1

2: let R0 = Nk0 = 0

2: while R changed values and deadline not missed do

3: for index = 1 to |ν(Ri
m-1)| do

4: compute each of the Lim with Eq. (6) with ν(Ri
m-1)

5: as initial value and using Nk(ν(Ri
m-1))

6: end for

7: Lim from the Lim values with probabilities as in Ri
m-1

8: for all k ∈ Rhpi do

9: for index = 1 to |ν(Lim)| do

10: compute F*im using Eqs. (10) and (9)

11: /* the F*im values will be used in */

12: /* the next iteration */

13: compute n0k using Eqs. (12)

14: apply the shift function as Eq. (11)

15: end for

16: end for

17: compute Ri
m using Eq. (8)

18: if Ri
m and Lim have common values then

19: Ri
m = Ri

m \common values

20: end if

21: let m = m + 1

22: end while

Figure 2. Pseudo-code Algorithm of the approach.

4. NUMERICAL EXAMPLE
We will now instantiate the approach proposed in Section 3 to a
task set example. The purpose is also to provide further intuition
to the reader concerning the application of the analytical
formulations provided.

We consider the system S of five tasks. The tasks’ parameters are
as shown in Table 1. For the sake of simplicity we consider that
all the periodic tasks have the first release time equal to zero. We
also consider that all the inter-arrival times of each random task
are defined by the same random variable.

We will now elaborate the example concerning the response time
analysis of task τ4. For this particular case, we will have
Phpi = {2} and Rhpi = {1,3} as the sets of the periodic and random
tasks with higher priority than τ4, respectively.

In the first iteration (m = 1):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×⎥
⎥

⎤
⎢
⎢

⎡
+==

1
5

1

2
2

1
1,4

4
1

1,41
4

C
T
L

CLL

Table 1. Task set example.

Task Inter-arrival WCET

τ1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6.0
15

3.0

10

1.0
8

1T
 3

τ2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
10

2T
 3

τ3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

4.0
20

6.0

15
3T

 2

τ4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
15

4T
 2

τ5 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6.0
22

4.0

14
1T

 2

We need now to compute the number of arrivals of each random
task belonging to Rhpi in the time span [0, L4

1]:

() ()

() ()⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

1
1

1
5

1
1

1
5

1
3

3
1

1,43

1
1

1
1

1,41

n
L

n
L

**

**

FF

FF

Therefore,

()()()
() ()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=×⊗⊗= ∈

1
10

1
235

1
21

1
31

1
5

1
0

1
0

1
5

5,0

3
1
31

1
1

1
4

1
4

CnCn

CShift k
*

kRk hpi
FLR

Before proceeding to iteration m = 2, we perform the Comp
function as follows:

() 111
4

1
444

, RRLR == Comp

In the second iteration (m = 2):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×+×+×⎥

⎥

⎤
⎢
⎢

⎡
+==

1
10

1

3
1
31

1
12

2

2
1,4

4
2

1,42
4

CnCnC
T
L

CLL

We need now to compute the number of arrivals of each random
task belonging to Rhpi in the time span [0, L4

2]:

() ()

() ()⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

1
1

1
10

4.0
2

6.0

1
4.0

6.0

10

2
3

3
2
43

2
2,1

2
1,1

1
2
41

n
L

nn
L

**

**

FF

FF

Using Equation (12), we obtain:

1 ;1 3
0

1
0 == nn

These values are used in the first term of the Shift function as
follows:

()()[] ()()[]
() () ()

() () ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=×⊗×⊗=

4.0
13

6.0

10
1

211
4.0

312

6.0
311

1
10

1
1

4.0
1

6.0
1

1
10

10,1110,1

3
2
31

2
2,11

2
1,1

331
2
4

2
4

CnCnCn

CShiftCShift ** FFLR

Before proceeding to iteration m = 3, we perform the Comp
function as follows:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

4.0
13

, 22
4

2
44

RLR Comp

In the third iteration (m = 3):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×+×+×⎥

⎥

⎤
⎢
⎢

⎡
+==

4.0
15

4.0

3
2
31

2
2,12

2

3
1,4

4
3

1,43
4

CnCnC
T
L

CLL

We need now to compute the number of arrivals of each random
task belonging to Rhpi in the time span [0, L4

3]:

() ()

() ()⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

6.0
2

4.0

1
6.0

4.0

15

1
2

1
15

3
2,3

3
1,3

3
3
43

3
1

1
3
41

nn
L

n
L

**

**

FF

FF

Using Equation (12), we obtain:

1 ;2 3
0

1
0 == nn

These values are used in the first term of the Shift function as
follows:

()()[] ()()[]
() () ()

() () ()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=×⊗×⊗=

24.0
17

16.0

15
6.0

2

4.0
0

1
0

4.0
15

6.0
212

4.0

211
1

322
4.0

15

6.0
1

4.0
1

1
2

4.0
15

15,1115,2

3
3

2,33
3

1,31
3
1

331
3
4

3
4

CnCnCn

CShiftCShift ** FFLR

We might continue with the fourth iteration if we want to
calculate more values of the response time of task τ4. All the
values after 17 are larger than the relative deadline (if we assume
it to be equal to the period = 15). So, we already have the
probability of meeting its deadline:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
24.0

76.0

noyes

Given that we know:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ≥
=

24.0
17

16.0

15

6.0
10

4
R

5. ONGOING WORK
In this paper we proposed a framework for computing the
response time of a fixed-priority scheduled task within a task set
where the inter-arrival times of tasks may be described by discrete
random variables. We are presently working on the extension of
our algorithm to the case of continuous variables.

The random variables considered are assumed independent, which
is eventually not a realistic assumption for some real-time
systems. Research is on-going concerning addressing this issue in
the context of the framework proposed in this paper.

The number of iterations of the algorithm is bounded by the value
of the deadline of τi. Thus the algorithm presented here is
polynomial in the value of the deadline. The complexity of each
of the iterations depends on the complexity of calculating a
convolution, and in order to decrease its complexity approaches
like those presented in [8] are being investigated.

6. ACKNOWLEDGMENTS
This work was partially funded by Fundação para a Ciência e
Tecnologia (FCT), under the CISTER research unit (UI608), and
by the Network of Excellence on Embedded Systems Design
under the IST-004527 ARTIST2 project.

7. REFERENCES
[1] L. Abeni and G. Buttazzo. QoS Guarantee Using Probabilistic

Deadlines. In Proceedings of the 11th Euromicro Conference on
Real-Time Systems (ECRTS99), pp. 242-249, June 1999.

[2] A. Burns, G. Bernat and I. Broster. A Probabilistic Framework for
Schedulability Analysis. In the Proceedings of the 3rd International
Embedded Software Conference (EMSOFT03), pp. 1-15, 2003.

[3] I. Broster and A. Burns. Applying Random Arrival Models to Fixed
Priority Analysis. In the Proceedings of the Work-In-Progress of the
25th IEEE Real-Time Systems Symposium (RTSS04), 2004.

[4] J.P. Lehoczky. Real-Time Queueing Theory. In the Proceedings of
the 10th IEEE Real-Time Systems Symposium (RTSS96), pp. 186-
195, 1996.

[5] H. Zhu, J.P. Hansen, J.P. Lehoczky and R. Rajkumar. Optimal
partitioning for Quantized EDF Scheduling. In the Proceedings of
the 23rd IEEE Real-Time Systems Symposium (RTSS02), pp. 202-
213, 2002.

[6] J.L. Díaz, D. F. García, K. Kim, C.G. Lee, L.L. Bello, J.M. López
and O. Mirabella. Stochastic Analysis of Periodic Real-Time
Systems. In the Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS02), pp. 289-300, 2002.

[7] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System. In The Computer Journal, Vol. 29, No. 5, pp. 390-395, 1986.

[8] M.Werman. Fast Convolution. In the Proceedings of the 11th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG03), 2003.

