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ABSTRACT 
Real-time scheduling usually considers worst-case values for the 
parameters of task (or message stream) sets, in order to provide 
safe schedulability tests for hard real-time systems. However, 
worst-case conditions introduce a level of pessimism that is often 
inadequate for a certain class of (soft) real-time systems. In this 
paper we provide an approach for computing the stochastic 
response time of tasks where tasks have inter-arrival times 
described by discrete probabilistic distribution functions, instead 
of minimum inter-arrival (MIT) values.  

Categories and Subject Descriptors 
D.4.7 [Operating Systems]: Organization and design – real-time 
systems and embedded systems; C.3 [Special-purpose and 
Application-based Systems]: real-time and embedded systems 

General Terms 
Algorithms, Design 

Keywords 
Real-time systems, Schedulability analysis, Stochastic analysis, 
Fixed-priority scheduling 

1. INTRODUCTION 
A real-time system is usually characterized by deadlines, and any 
schedulability analysis for these systems tries to answer the 
question of whether deadlines are ever met or not. According to 
the consequences of missing deadlines, a real-time system is often 
categorized as hard or soft. In a hard real-time system no 
deadlines can ever be missed, while in a soft real-time system 
deadline misses can be tolerated from time to time.  In this case, 
the system designer may like to have a measure of the minimum 
likelihood to miss deadlines. 

Worst-case approaches taking minimum inter-arrival times (MIT) 
as tasks' periods introduce an unacceptable level of pessimism in 
the context of soft real-time systems. This is particularly true in 
those systems where inter-arrival times of jobs (or messages) have 
a large and known variability. Deadlines may be guaranteed, but 
actual (allowed by the schedulability test) system utilization turns 
out to be dramatically low. 

In this paper, we are particularly interested in systems in which 
worst-case computation times are constant, and inter-arrival times 
are defined by random variables rather than by MIT values. The 
results provided are of particular interest for distributed real-time 
systems, where message streams are queued and distributed 
stochastically. Typically, in these systems, message durations 
(equivalent to jobs' computation time) have a small variability. 

There has been a significant number of research works devoted to 
this problem. However, and to our best knowledge, there are no 
comparable results so far. In fact, there are a few related works 
which consider special scheduling models providing isolation 
between tasks [1], or assuming a known (a priori) maximum 
number of arrivals, thus introducing an unnecessary level of 
pessimism in the analysis [2]. The results provided in [2] are 
improved in [3], albeit considering only one task described by 
random inter-arrival times. In [4], the author addresses the 
problem in a context where both computation and inter-arrival 
times are described by random variables. The approach is based 
on a modification of the queuing theory for real-time systems, but 
results are only valid for particular cases of random variables. In 
[5] the same approach is applied for the case of general random 
variables, but all inter-arrival times of a task are defined by the 
same distribution function. A more general approach is proposed 
in [6], which only addresses the case of variability in computation 
times, being their approach not extendible to the case of random 
inter-arrival times. 

In this paper we tackle the problem of random inter-arrival times 
given by generic discrete probabilistic distribution functions when 
fixed-priority systems are considered. Throughout this paper the 
computation times are constant and we consider worst-case 
values. The distribution functions are considered given and 
known, either analytically or obtained from experiments. Their 
determination is not the purpose of this paper.  
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The rest of the paper is organized as follows. Section 2 defines the 
task model. In Section 3 we propose an approach for a stochastic 
response time analysis of tasks when higher priority random tasks 
exist. Section 4 illustrates the application of the approach to an 
example task set, and ongoing work is drawn in Section 5. 

2. TASK SET MODEL 
We consider a system of n independent tasks: 

{ }nS ττ ,...,1=    

The tasks have fixed and unique priorities. Without loss of 
generality, tasks are ordered according to the non-decreasing 
order of their priorities. Each task τi is described as follows: 

( ) { }niDC iiii ,...,1   ,,, ∈∀= Tτ    

In the definition above, Ti corresponds to a non-negative discrete 
random variable. Throughout the rest of this paper, variables in 
bold will denote discrete random variables. In the above task 
definition, Ci corresponds to the usual worst-case execution time 
(WCET) of τi and Di to its relative deadline.  

Each new release j of a task τi may be defined by different random 
variables. We denote by Ti,j the random variable giving the inter-
arrival time between the (j − 1)th and the jth job of a task τi. It is 
assumed that these Ti,j random variables are independent of other 
jobs of task τi and of jobs of other tasks τk (with k ≠ i). 

We consider Ti,j to be discrete, and thus its probability mass 
function is given by: 
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The possible values of tk in the definition of Ti,j are as follows: 
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,

min
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We denote the set of possible values of tk by  
ν(Ti,j). Its cumulative distribution function is defined as follows:  
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For the sake of simplicity, from now on we denote as periodic 
tasks those tasks τi for which the random variable concerning 
inter-arrival information is a constant, while tasks with at least 
two possible values for the inter-arrival information are denoted 
as random tasks. Thus, the periodic tasks are those with ki,j = 1, 
∀j∈ℵ in Equation (1). We denote by Phpi the set of indexes of 
periodic tasks which have a priority higher or equal to the priority 
of the task under analysis. Similarly, we denote by Rhpi the set of 
indexes of random tasks which have a priority higher or equal to 
the priority of that task. Obviously Phpi, Rhpi ⊆ {1, …, n}. 

3. STOCHASTIC ANALYSIS - OVERVIEW 
In this section we will briefly outline our approach for computing 
the stochastic response time of fixed-priority tasks having 
stochastic inter-arrival times. In Section 4, some further details 
will be provided. 

3.1 Assumptions 
We suppose, without loss of generality, that task τi is a periodic or 
sporadic task for which response time needs to be evaluated. We 
denote this response time by Ri, which is a random variable that 
gives a set of values for the response time, and for each of these 
values, its probability.  

Also without loss of generality, we assume a pre-emptive context. 
A non pre-emptive formulation (usually required for message 
stream models) can then easily be derived. 

For the sake of simplicity we consider that all tasks, including 
random tasks, have the first release time equal to zero. 
Nonetheless, this does not imply a loss of generality of our 
results. It can be easily proved that the worst-case response time 
of a task is obtained in this case even if there are random tasks 
with higher priority. Also for simplicity, and without loss of 
generality, we consider that all inter-arrival times of each random 
task are defined by the same random variable. This last 
assumption would mean that Equation (1) is simplified as follows: 
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3.2 Overview of the Approach 
If the task set is strictly composed of periodic tasks, then the 
following well-know formulation [7] allows computing the worst-
case response time of a task τi: 
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where hpi denotes the set of tasks with a priority higher or equal 
to that of τi. Equation (4) is solved iteratively, by forming a 
recurrence relationship. However, the above formulation does not 
hold if random tasks with higher or equal priority exist in the task 
set, unless MIT values are taken into the formulation. Therefore, 
while trying to adhere to the above formulation, we introduce an 
alternative approach:  
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In Equation (4), Ci is a constant random variable with a unique 
value Ci, which corresponds to the worst-case execution time 
(WCET) of τi. Nk is the random variable giving the number of 
arrivals of τk together with the probabilities of those numbers. 
With the symbol ⊗ we denote the convolution of two random 
variables. Note that the sum of two independent discrete random 
variables is given by the convolution of the two. 

We will now briefly outline an algorithm able to efficiently find a 
solution for Equation (5). The solution is found, similarly to what 
happens with Equation (4), by forming a recurrence relationship, 
albeit with additional details to properly handle the stochastic 
nature of the formulation. Let m denote each of the iterations 
performed to find the solution of Equation (5). In each iteration m, 
we perform the two steps described next. 



3.2.1 Step 1 
Firstly, we determine an intermediate pseudo-random variable, 
denoted as Li

m, which has ⎟ν(Ri
m-1)⎜ values. By ⎟ν(Ri

m-1)⎜ we 
understand the set of values of random variable Ri

m-1. Therefore, 
each value Li

m of Li
m corresponds to a value rv

 m-1 ∈ ν(Ri
m-1), thus 

computed in iteration m − 1. Basically in this first step of iteration 
m, we compute the level-i busy period taking into account new 
arrivals of tasks belonging to the set Phpi, while using a fixed 
number of instances of tasks belonging to Rhpi as computed in 
iteration m − 1. 

Each value Li
m(rv

 m-1) of the ⎟ν(Ri
m-1)⎜ values of Li

m is computed 
by the following equation, which does not contain any random 
variable: 
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In Equation (6), Nk(rv
 m-1) is the number of arrivals of τk as 

computed in iteration m − 1. Equation (6) is solved iteratively by 
forming a recurrence relationship. For the first of the m iterations 
(m = 1) the relevant values for initiating the iterative procedure to 
solve the only Equation (6) are as follows: 

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈∀==
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

              ,0
0 aluerelevant v  thes,       thu

           
1
0

 
1

00
1

0
1

0
100

hpikk

ii

RknrN
r

r
RR

 
 

In summary, an intermediate pseudo-random variable Li
m is build 

upon the ⎟ν(Ri
m-1)⎜ results obtained for Li

m(r) solutions such that 
each value of the Li

m is equal to a solution of one equation and 
their probabilities are those of rv

 m-1 in Ri
m-1. 

As an example, in iteration m = 1, Li
1 is going to have only one 

value with probability 1, since no interference of tasks belonging 
to set of Rhpi are considered in the first iteration: 
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In the formulation above, and the in L1
i,v, v denotes the index of 

each of the different values that the pseudo-random variable may 
assume. 

3.2.2 Step 2 
In the second step of each iteration m, a new random variable Ri

m 
is obtained by convoluting Li

m with a random variable 
corresponding to the interference caused by new arrivals of tasks 
belonging to Rhpi given the new level-i busy period as computed 
in step 1. Therefore,  
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∆k
m is a random variable which is computed for each of the values 

obtained for Li
m in step 1 for each of the random tasks belonging 

to Rhpi. Further details on ∆k
m will be provided in Section 3.3. 

At this point, the variable Ri
m will correspond to the random 

variable Ri
m-1 to which new arrivals of higher priority periodic 

and random tasks are added. 

Actually, Equations (6) and (7) are particular analytical 
formulations of a more general equation which would allow us to 
integrate both steps of each iteration m into only one step. The 
obvious reason for separating it into two steps is that the 
integration would increase considerably the computational cost of 
the approach. 

3.2.3 Improvement of the Approach 
The iterative procedure finishes when at the end of an iteration m, 
either Ri

m contains only unchanged values or all new values are 
larger than the deadline. Obviously the response time is a non-
decreasing function and the probability of the values is 
decreasing, which implies the convergence of the algorithm. 

In order to detect when the response time, which is a random 
variable, contains only unchanged values we need to define a 
proper comparison function between two random variables.  

Additionally, we could continue the iteration also with the 
unchanged values, but any further iteration will leave them 
unchanged. The presence of these values would unnecessarily 
increase the complexity of the approach, this without producing 
any new values for the response time in the next iteration.  

We start an iteration m with a known random variable Ri
m-1. Then 

we obtain an intermediate pseudo-random variable (Li
m) and 

finally we compute Ri
m. In order to “eliminate” the unchanged 

values, we use the Comp function applied to the random variables 
Li

m and Ri
m in order to obtain the random variable that will 

actually be used as initial value in iteration m + 1.  

As an example, assume the following scenario at a given m 
iteration: 
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The result of applying the Comp function will be: 
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Therefore, we actually apply this “transformation” in Ri
m before 

starting a new iteration m. This is illustrated in Figure 1, which 
describes a simplified version of our approach. 

3.3 Further Details 
In this section we will further detail the step 2 briefly described in 
Section 3.2.2. Specifically, we start by introducing the proposed 
analytical formulation for the random variable ∆k

m introduced in 
Section 3.2.2 in Equation (7). The proposed refinement is as 
follows: 
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In Equation (8), the function Fk
* gives a random variable with the 

number of arrivals of random task τk from the time instant 0 to the 
time instant corresponding to the value to v(Li

m), together with the 
probabilities of each of those number of arrivals to occur. 
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Figure 1. Simplified version of the approach. 
 
We will now reason on how to compute these values. Let Xk,j be 
the random variable giving the values of release times of the jth 
job of a task τk. This random variable is obtained as follows:  

kkkjkjk TXTXX =⊗= − 0,1,,   with ,   

This formulation is correct because Xk,j-1 and Tk are independent.  
Therefore, the random variables Xk,j allow us to calculate the 
number of arrivals of random tasks from time instant 0 to time 
instant t. We define first the function 

( ) [ ] ik,tFk ≠→ℵ    where,10:.,   

as follows: 
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where P(Xk,n-1 ≤ t ∧ Xk,n > t) is the probability that Xk,n > t  
knowing that  Xk,n-1 ≤ t is true. We obtain this probability by 
considering, while calculating Xk,n only the values of Xk,n-1 which 
are smaller or equal to t. Thus we consider the following 
restriction 
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of Xk,n-1. Given this, we formulate Fk(n,t) as follows:  
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The random variable giving the number of arrivals at a time t and 
their respective probabilities is obtained using function Fk(.,t) as 
follows: 
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To give an instantiating example, assume a task τk with the inter-
arrival times defined by the following random variable: 
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According to Equation (9), and for n = 1, we have: 
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For n = 2, we have: 
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For n > 2, Fk(n,2) = 0. Thus, we get for the example the following 
result: 
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Finally, and before concluding Section 3. 

Because the function F*
k
m (v(Li

m)) provide results corresponding 
to the time span [0, v(Li

m)] there is a need to “eliminate” the 
arrivals already taken into account at iteration m−1; that is, those 
arrivals in the time span [0, v(Li

m-1)]. Therefore, we apply to  
F*

k
m (v(Li

m)) a function Shift which returns a random variable 
having the same probabilities, but with values decreased by n0

k: 
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with n0
k given by: 
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Thus at iteration m, we consider only the random arrivals from 
time interval [v(Li

m-1), v(Li
m)]. 

To iteration m+1 
Or finish 

Iteration m 



3.4 Pseudo-code Algorithm 
In this section we summarize the approach described in Sections 
3.2 and 3.3 through a pseudo-code algorithm (Figure 2). 
 

1: let m = 1 

2: let R0 = Nk0 = 0  

2: while R changed values and deadline not missed do 

3:   for index = 1 to |ν(Ri
m-1)| do 

4:     compute each of the Lim with Eq. (6) with ν(Ri
m-1)  

5:     as initial value and using Nk(ν(Ri
m-1)) 

6:   end for 

7:   Lim from the Lim values with probabilities as in Ri
m-1 

8:   for all k ∈ Rhpi do 

9:     for index = 1 to |ν(Lim)| do 

10:       compute F*im using Eqs. (10) and (9) 

11:       /* the F*im values will be used in */ 

12:       /* the next iteration             */ 

13:       compute n0k using Eqs. (12) 

14:       apply the shift function as Eq. (11) 

15:    end for 

16:  end for  

17:  compute Ri
m using Eq. (8)  

18:  if Ri
m and Lim have common values then  

19:    Ri
m = Ri

m \common values  

20:  end if 

21:  let m = m + 1 

22: end while 

 

Figure 2. Pseudo-code Algorithm of the approach. 
 

4. NUMERICAL EXAMPLE 
We will now instantiate the approach proposed in Section 3 to a 
task set example. The purpose is also to provide further intuition 
to the reader concerning the application of the analytical 
formulations provided. 

We consider the system S of five tasks. The tasks’ parameters are 
as shown in Table 1. For the sake of simplicity we consider that 
all the periodic tasks have the first release time equal to zero. We 
also consider that all the inter-arrival times of each random task 
are defined by the same random variable. 

We will now elaborate the example concerning the response time 
analysis of task τ4. For this particular case, we will have  
Phpi = {2} and Rhpi = {1,3} as the sets of the periodic and random 
tasks with higher priority than τ4, respectively.  

In the first iteration (m = 1):  
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Table 1. Task set example. 

Task Inter-arrival WCET 
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We need now to compute the number of arrivals of each random 
task belonging to Rhpi in the time span [0, L4

1]: 
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Therefore,  
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Before proceeding to iteration m = 2, we perform the Comp 
function as follows: 
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In the second iteration (m = 2): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×+×+×⎥

⎥

⎤
⎢
⎢

⎡
+==

1
10

1

3
1
31

1
12

2

2
1,4

4
2

1,42
4

CnCnC
T
L

CLL  

We need now to compute the number of arrivals of each random 
task belonging to Rhpi in the time span [0, L4

2]: 
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Using Equation (12), we obtain: 
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These values are used in the first term of the Shift function as 
follows: 
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Before proceeding to iteration m = 3, we perform the Comp 
function as follows: 
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In the third iteration (m = 3):  
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We need now to compute the number of arrivals of each random 
task belonging to Rhpi in the time span [0, L4

3]: 
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Using Equation (12), we obtain: 
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1
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These values are used in the first term of the Shift function as 
follows: 
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We might continue with the fourth iteration if we want to 
calculate more values of the response time of task τ4. All the 
values after 17 are larger than the relative deadline (if we assume 
it to be equal to the period = 15). So, we already have the 
probability of meeting its deadline: 
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Given that we know: 
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5. ONGOING WORK 
In this paper we proposed a framework for computing the 
response time of a fixed-priority scheduled task within a task set 
where the inter-arrival times of tasks may be described by discrete 
random variables. We are presently working on the extension of 
our algorithm to the case of continuous variables. 

The random variables considered are assumed independent, which 
is eventually not a realistic assumption for some real-time 
systems. Research is on-going concerning addressing this issue in 
the context of the framework proposed in this paper. 

The number of iterations of the algorithm is bounded by the value 
of the deadline of τi. Thus the algorithm presented here is 
polynomial in the value of the deadline.  The complexity of each 
of the iterations depends on the complexity of calculating a 
convolution, and in order to decrease its complexity approaches 
like those presented in [8] are being investigated. 
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