
The Utilization Bound of Static-Priority Preemptive
Partitioned Multiprocessor Scheduling is 50%

Björn Andersson,Member, IEEE

Abstract— This paper studies static-priority preemptive
scheduling on a multiprocessor using partitioned scheduling.
We propose a new scheduling algorithm and prove that if the
proposed algorithm is used and if less than 50% of the capacity is
requested then all deadlines are met. It is known that for every
static-priority multiprocessor scheduling algorithm, there is a
task set that misses a deadline although the requested capacity
is arbitrary close to 50%.

Index Terms— real-time scheduling, partitioning, bin-packing
algorithms, static-priority scheduling, preemptive scheduling,
multiprocessors.

I. I NTRODUCTION

CONSIDER the problem of scheduling a set ofn spo-
radically arriving tasks using preemptive static-priority

scheduling onm processors. A task�i can arrive many times.
These arrival times cannot be controlled by the scheduling
algorithm and the scheduling algorithm learns about the exact
arrival time at the arrival time — no earlier. The arrival
times from the same task�i are separated byTi time units
or more. Every time task�i arrives, it needs to execute for
Ci time units no later thanTi time units after its arrival;
otherwise it misses a deadline.Ci is called the execution
time of �i and for historical reasons,Ti is called the period
of �i. The utilization boundUBA of a scheduling algorithm
A is a number such that if1m �Pn

i=1
Ci

Ti
� UBA then all

tasks meet their deadlines when scheduled by algorithmA.
The design space of preemptive static-priority multiprocessor
scheduling algorithms can be categorized as partitioned vs
global scheduling. Global scheduling algorithms store tasks
that have arrived but not finished its execution in one queue
which is shared among all processors. At every moment the
m highest priority tasks among the tasks that have arrived
but not finished its execution are selected for execution on
the m processors using preemption and migration if neces-
sary. Partitioned scheduling algorithms partition the set of
tasks such that all tasks in a partition are assigned to the
same processor. Tasks are not allowed to migrate, hence the
multiprocessor scheduling problem is transformed to many
uniprocessor scheduling problems. Common for all static-
priority multiprocessor scheduling algorithms is that they
cannot have a utilization bound greater than 50% [1], [2].

This article is based on a conference paper presented at the 15th Euromicro
Conference on Real-Time Systems.

Manuscript received March 29, 2006.
The author’s affiliation for this work was Department of Computer En-

gineering, Chalmers University of Technology, SE–412 96 Göteborg, Swe-
den. ba@ce.chalmers.se. He is now with the IPP-Hurray! Research Group,
Polytechnic Institute of Porto, Rua Dr. Antonio Bernardino de Almeida 431,
4200-072 Porto, Portugal.bandersson@dei.isep.ipp.pt.

Partitioned static-priority scheduling is well-studied [1], [3]–
[12] but they all have a utilization bound of at most 41% [1],
[13], leaving room for improvements.

In this paper, we propose a partitioning algorithm, called R-
BOUND-MP-NFR, and prove that it has a utilization bound
of 50%. We hence close the problem for partitioning.

We assume that (i) tasks do not use any other resource than
a processor and (ii) a task can always be preempted and there
is no overhead associated with a preemption.

The remainder of this paper is organized as follows. Sec-
tion II gives a background on partitioned scheduling and
in particular it shows the necessary ingredient to achieve a
utilization bound greater than 41%. Section III studies parti-
tioned scheduling when periods are restricted. This restriction
is removed in Section IV. Section V quantifies how many
more task sets that can be guaranteed by the new utilization
bound. Finally, Section VI closes with a discussion, presents
conclusions and future work.

II. PARTITIONED SCHEDULING

The partitioned method divides tasks into partitions, each
having its own dedicated processor. Unfortunately, the problem
of deciding whether a schedulable partition exist is NP-
complete [12]. Therefore many heuristics for partitioning have
been proposed, a majority of which are versions of the bin-
packing algorithm1. These bin-packing algorithms rely on a
schedulability test in order to know whether a task can be
assigned to a processor or not. This reduces our problem from
partitioning a set of tasks to meet deadlines into the problem
of partitioning a set of tasks such that, on every processor, the
schedulability test can guarantee that all tasks on that processor
meet their deadlines. As a schedulability test, a natural choice
is to use the knowledge that: if

Pnp
i=1 ui � np �(21=np�1) and

rate-monotonic is used to schedule tasks on processorp then
all deadlines are met [14]. (Letui=Ci/Ti andnp denote the
number of tasks assigned to processorp.) This schedulability
test is often used, but as shown in Example 1 below, this bound
is not tight enough to allow us to design a multiprocessor
scheduling algorithm with a utilization bound of 50%.

Example 1:Considerm + 1 tasks withTi = 1 andCi =p
2� 1+ � to be scheduled onm processors. For this system,

there must be a processorp which is assigned two tasks. On
that processor the utilization is

Pnp
i=1 Ci=Ti = 2 � (p2�1+�)

1The bin-packing algorithm works as follows: (1) sort the tasks according
to some criterion; (2) select the first task and an arbitrary processor; (3)
attempt to assign the selected task to the selected processor by applying a
schedulability test for the processor; (4) if the schedulability test fails, select
the next available processor; if it succeeds, select the next task; (5) goto step 3.

which is greater than2 � (p2 � 1). Hence, there is no way
to partition tasks so that all tasks can be guaranteed by this
schedulability test to meet deadlines. We can do this reasoning
for everym and every�. By letting�! 0 andm!1 we can
see that UB for algorithms that are based on this schedulability
test cannot be greater than

p
2 � 1, which is approximately

41%.
Note that the task set in Example 1 could actually be

guaranteed by a necessary and sufficient schedulability test to
meet deadlines (provided that� is not too large). It is known
that if all tasks are harmonic2 then the uniprocessor utilization
bound is 100%3, and then the task set in Example 1 could
be assigned with two tasks on one processor. A uniprocessor
schedulability test that could exploit this information could
allow a multiprocessor scheduling algorithm to achieve a
utilization bound of 50%. This is what we will do.

R-BOUND [10] is a uniprocessor schedulability test which
exploits harmonicity. Letrp denote the fraction between the
maximum and the minimum period among the tasks assigned
to processorp. If we restrict our attention to the case when
8p : 1 � rp < 2 (we will relax this restriction later), we have
the following theorem (from [10]).

Theorem 1:Let B(rp; np) = np(r
1=np
p � 1) + 2=rp � 1.

If
Pnp

i=1 Ci=Ti � B(rp; np) and rate-monotonic is used to
schedule tasks on processorp then all deadlines are met.

R-BOUND-MP is a previously known multiprocessor
scheduling algorithm that exploits R-BOUND [10]. R-
BOUND-MP combined R-BOUND with a first-fit bin-packing
algorithm. However, its utilization bound is not known and
it is difficult to analyze. For this reason, in order to show
which utilization bound a partitioned scheduling algorithm can
achieve, we will design two derivatives of R-BOUND-MP.
First, we will consider an algorithm R-BOUND-MP-NFRNS
(R-BOUND-MP with next-fit-ring noscaling) and prove its
utilization bound when1 � max�i2� Ti

min�i2� Ti
< 2. (� denotes

the set of alln tasks.) Then we will consider the algorithm
R-BOUND-MP-NFR (R-BOUND-MP with next-fit-ring) and
prove its utilization bound when periods are not restricted.

III. R ESTRICTED PERIODS

In this section, we assume that1 � max�i2� Ti
min�i2� Ti

< 2

holds. Clearly it means that no matter how we assign tasks
to processors, it holds that8p : 1 � rp < 2 and hence
Theorem 1 can be used. We will use the algorithm R-BOUND-
MP-NFRNS, illustrated in Algorithm 1. It works as follows:
(i) sort tasks in ascending order of periods, that is, the task
with the shortest period is considered first, (ii) use Theorem 1
as a schedulability test on each uniprocessor, (iii) assign
tasks with the next-fit bin-packing algorithm and (iv) when
a task cannot be assigned to processorm, try to assign it on
processor 1, if this does not work then declare FAILURE. If
the algorithm terminates and has partitioned the whole task set

2In a harmonic task set, the periodsTi and Tj of any two tasks�i and
�j are related as follows: eitherTi is an integer multiple ofTj , or Tj is an
integer multiple ofTi.

3This is easy to see by dropping the ceiling in the equations/inequalities in
exact schedulability tests [15], [16].

Algorithm 1 R-BOUND-NP-NFRNS, a task-to-processor as-
signment algorithm.

Input : A task set� .
Output : An assignment of a task to a processor.

1: Sort tasks such thatT1 � T2 � : : : � Tn.
2: i := 1
3: j := 1
4: while (i � n) loop
5: If no task has been assigned to processor j then
6: assign task�i to processor j.
7: i := i + 1
8: else
9: Let �pj1 denote the first task that

10: was assigned to processorj.
11: Let �j denoteTi=Tpj1.
12: Let nj denote the number of tasks assigned to processorj.
13: Let UPROCESSORj denote the sum of the
14: utilization of all tasks assigned to processorj.
15: UBOUNDj := (nj + 1) � (�

1=(nj+1)

j � 1) + 2=�j � 1
16: if UPROCESSORj + Ci=Ti � UBOUNDj then
17: assign task�i to processor j.
18: i := i + 1
19: else
20: if j=m then
21: Let n10 denote the number of tasks assigned to
22: processor 1.
23: Let UPROCESSOR10 denote the sum of the
24: utilization of all tasks assigned to processor1.
25: Let UBOUND10 = (n10+ 1) � (21=(n10+1)

� 1)
26: if UPROCESSOR10+ Ci=Ti � UBOUND10 then
27: assign task�i to processor 1.
28: i := i + 1
29: else
30: declare failure.
31: end if
32: else
33: j := j + 1
34: end if
35: end if
36: end if
37: end loop
38: declare success.

then the algorithm declares SUCCESS. Example 2 illustrates
the workings of our algorithm R-BOUND-MP-NFRNS.

Example 2:Consider 4 tasks with f(T1 = 1; C1 =
0:1); (T2 = 1:1; C2 = 0:935); (T3 = 1:2; C3 = 0:084); (T4 =
1:3; C4 = 0:26) to be scheduled on2 processors using R-
BOUND-MP-NFRNS. The algorithm sorts the tasks in as-
cending order of periods. In this example, sorting does not
change the indices. We can compute the utilizations of tasks:
u1 = 0:1,u2 = 0:85,u3 = 0:07 andu4 = 0:2.

The current processor is processor1. (The variable j, initial-
ized on line 3 in Algorithm 1 keeps track of this.) Tasks are
now assigned in order.�1 is assigned to processor 1. Then�2
is attempted to be assigned to processor 1, but it fails because
the T2=T1 = 1:1, andn1 + 1 = 2 gives a utilization bound
0:915 for these two tasks, and the sum of utilization of these
two tasks is 0.95. Hence�2 is assigned to processor 2.

Now, processor 2 is the current processor.�3 is attempted to
be assigned to processor 2, and it succeeds becauseT3=T2 =
1:2=1:1 = 1:09, and n2 + 1 = 2 gives a utilization bound
0:922 for these two tasks, and the sum of utilization of these

two tasks is0:92.
Processor 2 is still the current processor.�4 is at-

tempted to be assigned to processor 2, but it fails because
max(T2; T3; T4)=min(T2; T3; T4) = 1:3=1:1 = 1:18 and
n2+1 = 3 gives a utilization bound0:86 for these three tasks,
and the sum of utilization of these three tasks is1:12. Since
processor 2 is the last processor and�4 failed, we make an
attempt to assign�4 to the first processor, that is, processor 1.
This succeeds becausen1 + 1 = 2 gives a utilization bound
0:828 for these two tasks, and the sum of utilization of these
two tasks is0:3. Hence�2 is assigned to processor 1.

Now that we have stated the algorithm R-BOUND-MP-
NFRNS and seen its operation in an example, we are ready
to prove its performance. Theorem 2 does that.

Theorem 2 (Utilization bound of R-BOUND-MP-NFRNS):
If R-BOUND-MP-NFRNS is used andT1 � T2 � : : : � Tn
andTn=T1 < 2 and 1

m

Pn
i=1 ui � 1=2, then R-BOUND-MP-

NFRNS will find a partitioning (declare SUCCESS).
Proof: We will derive a lower bound on the utilization of

task sets that declared failure. We will do so by first phrasing
necessary conditions on a task set that declared failure. We will
then formulate a minimization problem which offers a lower
bound on the utilization of a task set that declared failure. And
then, we will state a sequence of other minimization problems
where the objective function to each of them is a lower bound
on the objective function to a previous minimization problem
in the sequence.

Let us consider any arbitrary task set that caused R-
BOUND-MP-NFRS to declare failure. If it was not the last
task (the one with the longest period) that failed, then we can
always remove the task that had a higher index than the failed
task, and then the utilization would be lower. Hence, we can
assume that it was the task with the greatest index that failed.
Let �failed denote that task.

We will now consider the situation when R-BOUND-MP-
NFRS failed and use the following notation. Let�pjk be
the task that is thekth task assigned to processorj. Let
�1 denoteTp21=Tp11. Let �2 denoteTp31=Tp21. : : : Let �m
denoteTfailed=Tpm1. Let nj denote the number of tasks that
are assigned to processorj. n1 requires further explanation
because we assign tasks to processor 1 in two states: first
when no processor has been assigned a task, and later when
all processors have been assigned a task. We letn10 denote
the number of tasks assigned to processor1 when R-BOUND-
MP-NFRS declared failure.n1 denotes the number of tasks
assigned to processor1 when�p21 was assigned to processor2.

Task�p21 could not be assigned to processor 1 because the
schedulability test in Theorem 1 failed. Hence, on processor 1
it holds that:

up11 + (

n1X
k=2

up1k) + up21 > (n1 + 1)(�
1

n1+1

1 � 1) +
2

�1
� 1

(1)

In the same way, on processor 2, it holds that:

up21 + (

n2X
k=2

up2k) + up31 > (n2 + 1)(�
1

n2+1

2 � 1) +
2

�2
� 1

(2)

And so on, until processorm, where it holds that:

upm1 + (

nmX
k=2

upmk) + ufailed >

(nm + 1)(�
1

nm+1

m � 1) +
2

�m
� 1 (3)

Our algorithm R-BOUND-MP-NFRS attempts to assign
�failed to processor 1. It fails so the schedulability test
must have failed. Here we do not know anything about the
relationships between the periods (other than1 � Tfailed

Ti
< 2).

Hence we have:

up11 + (

n1X
k=2

up1k) + (

n10X
k=n1+1

up1k) + ufailed >

(n10+ 1) � (2 1
n10+1 � 1) (4)

Since we want to derive a utilization bound we have the
following problem:

minimize Us =
1

m
� (up11 + (

n1X
k=2

up1k) +

up21 + (

n2X
k=2

up2k) +

: : :+

upm1 + (

nmX
k=2

upmk) + (

n10X
k=n1+1

up1k) + ufailed)

subject to Inequalities 1–4 and subject to

0 < upij � 1; 8i; j (5)

�1 � �2 � : : : � �m = Tfailed=Tp11 < 2 (6)

1 � �i; 8i (7)

Note that the constraints Inequality 6 and Inequality 7
follow immediately fromT1 � T2 � : : : � Tn andTn=T1 <
2, which we assumed in the theorem.

We make a relaxation on Inequalities 1–4 by replacing>
by �, relax Inequality 5 to0 � upij and relax Inequality 6 by
replacing< by �.

One can see that(ni + 1)(�
1=(ni+1)
i � 1) monotonically

decreases with increasingni. We can computelimni!1(ni+

1)(�
1=(ni+1)
i � 1) = ln�i. Hence we have:

(ni + 1)(�
1=(ni+1)
i � 1) � ln�i (8)

In the same way, we have:

(ni0+ 1)(21=(ni0+1) � 1) � ln 2 (9)

Using Inequality 8 and Inequality 9, we can relax Inequali-
ties 1–4. All these relaxations change the constraints such that
a point which satisfied all constraints will also satisfy the new
constraints. We now have the problem:

minimize Us =
1

m
� (up11 + (

n1X
k=2

up1k) +

up21 + (

n2X
k=2

up2k) +

: : :+

upm1 + (

nmX
k=2

upmk) + (

n10X
k=n1+1

up1k) + ufailed)

subject to:

up11 + (

n1X
k=2

up1k) + up21 � ln�1 + 2=�1 � 1 (10)

up21 + (

n2X
k=2

up2k) + up31 � ln�2 + 2=�2 � 1 (11)

: : :

upm1 + (

nmX
k=2

upmk) + ufailed � ln�m + 2=�m � 1 (12)

up11 + (

n1X
k=2

up1k) + (

n10X
k=n1+1

up1k) + ufailed � ln 2 (13)

0 � upij ; 8i; j (14)

�1 � �2 � : : : � �m � 2 (15)

1 � �i; 8i (16)

Note that we are not interested in finding every global
minimizer. We simply want to find a global minimizer. Hence,
at a minimizer, we could always move to a new point (with
primed variables) which satisfies all constraints and does not
increase the objective function in the following way:

upi10 = upi1 +

niX
k=2

upik (17)

upik0 = 0; 8k � 2 (18)

Note thatupij is permitted to be greater than1.
If �1 � �2 � : : : � �m < 2 then we can increase any�i

so that�1 � �2 � : : : � �m = 2. This clearly does not affect
the objective function. Neither does it violate any constraints
because@(ln�i+2=�i�1)

@�i
can be computed to1

�2i
� (�i� 2) and

this is non-positive because�i � 2. �i � 2 follows from
�1 ��2 � : : : ��m = 2 and1 � �i. Hence we have the problem:

minimize Us =
1

m
� (up11 + up21 + : : :+ upm1 +

(

n10X
k=n1+1

up1k) + ufailed)

subject to:

up11 + up21 � ln�1 + 2=�1 � 1 (19)

up21 + up31 � ln�2 + 2=�2 � 1 (20)

: : :

upm1 + ufailed � ln�m + 2=�m � 1 (21)

up11 + (

n10X
k=n1+1

up1k) + ufailed� ln 2 (22)

0 � upij ; 8i; j (23)

�1 � �2 � : : : � �m = 2 (24)

1 � �i; 8i (25)

We can add (
Pn10

k=n1+1 up1k) to the lhs of Equality 21; every
feasible point will remain feasible in this way. Then, we can
always move to a new point (with variables having “new”
in its superscript) which satisfies all constraints and does not
increase the objective function in the following way:

unewfailed = ufailed +

ni0X
k=n1+1

up1k (26)

unewp1k = 0; 8k � n1 + 1 (27)

Note thatupij andufailed is permitted to be greater than1.
Now the term(

Pn10
k=n1+1 up1k) has disappeared from Equal-

ity 22. Note that in Inequalities 19–22, each variableupik and
ufailed show up in exactly two constraints. Summing the left-
hand side of Inequalities 19–22 and dividing by two gives us
a lower bound on the objective function. We can also relax
the problem by dropping Equality 23 and Equality 25. Hence
we have the problem:

minimize Us =
1

2m
� (ln 2 + ln�1 + 2=�1 � 1

+ ln�2 + 2=�2 � 1 + : : :+ ln�m + 2=�m � 1)

subject to:

�1 � �2 � : : : � �m = 2 (28)

A necessary condition for a local minimizer is that the
gradient of the Lagrangian function is zero (see for example
Theorem 14.1 in [17]). Let� denote the Lagrange multiplier
for �1 ��2 � : : : ��m = 2. Using this gives us that a necessary
condition for a local minimizer is:

1

m
� (1

2
� (1=�1 � 2=�21))� � � �2 � �3 � �4 � : : : � �m = 0

1

m
� (1

2
� (1=�2 � 2=�22))� � � �1 � �3 � �4 � : : : � �m = 0

Algorithm 2 Scale Task Set.
Input : A task set� . Output : Another task set� 0.

1: q = max(T1; T2; : : : ; Tn)
2: for each i 2 �
3: Ti0 = Ti � 2

log2(q=Ti)

4: Ci0 = Ci � 2
log2(q=Ti)

5: end for
6: sort tasks in� 0 in increasing period
7: return� 0

1

m
� (1

2
� (1=�3 � 2=�23))� � � �1 � �2 � �4 � : : : � �m = 0

: : :

1

m
� (1

2
� (1=�m � 2=�2m))� � � �1 � �2 � �3 � �4 � : : : = 0

Since a global minimizer is a local minimizer, the conditions
are also necessary for a global minimizer.

Rewriting each of them and using�1 � �2 � : : : � �m = 2
yields:

1

m
� (1� 2=�1) = 4�

1

m
� (1� 2=�2) = 4�

: : :

1

m
� (1� 2=�m) = 4�

This implies that:

�1 = �2 = : : : = �m

We now have the following problem:

minimize Us =
1

2m
� (ln 2 +m � (ln�1 + 2=�1 � 1))

subject to�m1 = 2.
Rewriting yields:

minimize Us =
ln 2

2m
+

1

2
� (ln (21=m) +

2

21=m
� 1)

We compute@Us@m < 0 and limm!1 Us = 1=2. Hence we
have thatUs � 1=2.

This states the theorem.

IV. N OT RESTRICTED PERIODS

In this section, we will see that if task periods are not
restricted as they were in the previous section then it is
possible to scale the periods and execution times of all tasks
such that the restriction holds. This is meaningful because we
will use a theorem which claims that if the scaled task set
meets all deadlines then the task set which is not scaled also
meets its deadlines.

Consider two task sets� and � 0. � is not restricted.� 0
is computed from� according to Algorithm 2. Note that

Algorithm 2 does not change the utilization of tasks. In
addition we know that (from [10]):

Theorem 3:Given a task set� , let � 0 be the task set
resulting from the application of the algorithm Scale Task
Set to � . If � 0 is schedulable on one processor using rate-
monotonic scheduling, then� is schedulable on one processor
with rate-monotonic scheduling.

Now let R-BOUND-MP-NFR (R-BOUND-MP with next-
fit-ring) be an algorithm which works as follows. First, each
task in� is transformed according to Algorithm 2 into� 0 and
then the tasks in� 0 are assigned according to R-BOUND-MP-
NFRNS. We can see that every task in� has a corresponding
task in� 0, so �i is assigned to the processor where�i0 is. We
are now ready to state our utilization bound of R-BOUND-
MP-NFR when tasks are not restricted.

Theorem 4:If R-BOUND-MP-NFR is used and
Pn

i=1 ui
� m=2, then R-BOUND-MP-NFR will find a partitioning
(declare SUCCESS).

Proof: The proof is by contradiction. Suppose that the
theorem was false. Then there would exist a task set� withPn

i=1 ui � m=2 which failed. The first thing that R-BOUND-
MP-NFR does is to scale the task set, so a scaled task set� 0
will also declare failure when scheduled by R-BOUND-MP-
NFRNS. Sinceui of a task does not change when it is scaled,
we have that� 0 (which failed) has

Pn
i=1 ui � m=2. But this

is impossible according to Theorem 2.

V. QUANTIFYING THE NUMBER OF TASK SETS THAT CAN

BE GUARANTEED

Previous sections, showed that the new algorithm increases
the utilization bound of partitioning, from 41% to 50%. We
will now see how many extra task sets that can be guaranteed
to meet deadlines thanks to the increase in utilization bound.
We do so using an approach from previous work on analysis of
uniprocessor scheduling [21]. Letui be defined asui = Ci=Ti
and letu=< u1,u2,: : : ,un >T . Then, the measure of the region
of all task sets that is guaranteed by a utilization bound UB
is defined as:

Ln(UB �m) = fu 2 Rn : ui � 0;
nX
i=1

ui � UB �mg (29)

From [21] we obtain:

jLn(A)j = An

n!
(30)

Combining Equality 30 and Equality 29 yieldsLn(UB �
m) = (UB�m)n

n! . Analogous to [21], let the gain of the new
test be defined as:�n = Ln(0:5�m)

Ln((
p
2�1)�m)

. This gives us:

�n =

�
0:5p
2� 1

�n
� 1:207106783n (31)

We can see that the gain approaches infinity asn approaches
infinity. This is in contrast with work on uniprocessor schedu-
ability analysis [21], which offered a finite gain

p
2. Hence,

we conclude that the new bound offers a significant increase
in the number of task sets that can be guaranteed as compared
to the previously known best bound.

VI. D ISCUSSIONS ANDFUTURE WORK

We have proven a tight utilization bound for static-priority
preemptive partitioned static-priority scheduling. Our bound of
50% for partitioned static-priority scheduling is no worse than
the best bound of partitioned scheduling using EDF on each
uniprocessor [18]. This implies that although dynamic priori-
ties are beneficial in scheduling algorithms with migration (see
for example algorithm PF [19]), they offer no benefit in non-
migrative scheduling if utilization bound is the performance
metric of choice. We left open two important questions in
partitioned scheduling: (i) Can R-BOUND-MP (the original
algorithm, not our R-BOUND-MP-NFR) achieve a utilization
bound of 50%? and (ii) Can other bin-packing schemes, which
do not exploit harmonicity, achieve a utilization bound of
50%?

We assumed the restriction that a task has a deadline which
is equal to its period. It would be interesting to create an
algorithm for task set where this restriction does not hold.
Unfortunately, for such a case, the notion of utilization bound
does not apply; we have to resort to another performance
metric. One such metric is thecompetitive factor. We say that a
partitioning algorithm A has a competitive factorXA if it can
schedule every task set that any other scheduling algorithm
A0 can schedule if the processors provided to algorithmA
is XA times faster than the processors provided to the other
algorithm. We can see that an algorithm with a utilization
boundUBA has a competitive factorXA = 1=UBA. Using
this relationship gives our new algorithm a competitive factor
of 2. Recently, the scheduling of tasks with static-priority
preemptive scheduling using deadline monotonic [12] without
the restriction on the deadline was considered [20, page
328]. Unfortunately, even allowing pseudo-polynomial time-
complexity, the competitive factor of the proposed algorithm
was3.

ACKNOWLEDGMENT

The author is grateful to the reviewers for suggested im-
provements of the paper. This work was supported by the
Swedish Foundation for Strategic Research via the national
Swedish Real-Time Systems research initiative ARTES and by
the Portuguese Science Foundation, Fundac¸ão para Cîencia e
Tecnologia (FCT).

REFERENCES

[1] D. Oh and T. P. Baker. Utilization bounds forn-processor rate mono-
tone scheduling with static processor assignment.Real-Time Systems,
15(2):183–192, September 1998.

[2] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on
multiprocessors. InProc. of the IEEE Real-Time Systems Symposium,
pages 193–202, London, UK, December 5–7, 2001.

[3] S. K. Dhall. Scheduling Periodic-Time-Critical Jobs on Single Processor
and Multiprocessor Computing Systems. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champain, 1977.

[4] S. K. Dhall and C. L. Liu. On a real-time scheduling problem.Operations
Research, 26(1):127–140, January/February 1978.

[5] S. Davari and S.K. Dhall. On a real-time task allocation problem. In
19th Annual Hawaii International Conference on System Sciences, pages
8–10, Honolulu, Hawaii, 1985.

[6] S. Davari and S.K. Dhall. An on-line algorithm for real-time task
allocation. InProc. of the IEEE Real-Time Systems Symposium, volume 7,
pages 194–200, New Orleans, LA, December 1986.

[7] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New strategies for
assigning real-time tasks to multiprocessor systems.IEEE Transactions
on Computers, 44(12):1429–1442, December 1995.

[8] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks on
multiprocessor systems.Real-Time Systems, 9(3):207–239, November
1995.

[9] Y. Oh and S. H. Son. Fixed-priority scheduling of periodic tasks
on multiprocessor systems. Technical Report 95-16, Department of
Computer Science, University of Virginia, March 1995.

[10] S. Lauzac, R. Melhem, and D. Mossé. An efficient RMS admission
control and its application to multiprocessor scheduling. InProc. of
the IEEE Int’l Parallel Processing Symposium, pages 511–518, Orlando,
Florida, March 1998.

[11] S. Śaez, J. Vila, and A. Crespo. Using exact feasibility tests for allocating
real-time tasks in multiprocessor systems. In10th Euromicro Workshop
on Real Time Systems, pages 53–60, Berlin, Germany, June 17–19, 1998.

[12] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance Evaluation,
2(4):237–250, December 1982.

[13] J. M. López, J. L. D́ıaz, and D. F. Garcı́a. Minimum and maximum
utilization bounds for multiprocessor RM scheduling. InProc. of the
EuroMicro Conference on Real-Time Systems, pages 67–75, Delft, The
Netherlands, June 13–15 2001.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment.Journal of the Association for
Computing Machinery, 20(1):46–61, January 1973.

[15] M. Joseph and P. Pandya. Finding response times in a real-time system.
Computer Journal, 29(5):390–395, October 1986.

[16] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average behavior. InProc. of
the IEEE Real-Time Systems Symposium, pages 166–171, Santa Monica,
California, December 5–7, 1989.

[17] S. G. Nash and A. Sofer.Linear and Nonlinear optimization. McGraw-
Hill, 1996. ISBN 0-07-046065-5.

[18] J.M. López, M. Garćıa, J.L. D́ıaz, and D.F. Garcı́a. Worst-case utilization
bound for EDF scheduling on real-time multiprocessor systems. InProc.
of the 12th EuroMicro Conference on Real-Time Systems, pages 25–33,
Stockholm, Sweden, June 19–21, 2000.

[19] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress:
A notion of fairness in resource allocation.Algorithmica, 15(6):600–625,
June 1996.

[20] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of sporadic task systems. InProceedings of the Real-Time Systems
Symposium,, pages 321–329, Miami, Florida, December 5–8, 2005.

[21] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. A hyperbolic bound for
the rate monotonic algorithm. InProc. of the EuroMicro Conference
on Real-Time Systems, pages 59–66, Delft, The Netherlands, June 13–15
2001.

	hurray-tr-060812-cover.pdf
	

