
The Capacity Exchange Protocol

Luı́s Nogueira, Luı́s Miguel Pinho
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{luis,lpinho}@dei.isep.ipp.pt

Abstract

This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, as-
suming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance
is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among tasks to minimise the
degree of deviation from the ideal system’s behaviour caused by inter-application blocking.

The proposed Capacity Exchange Protocol (CXP) is simpler than other proposed solutions for sharing resources in open
real-time systems since it does not attempt to return the inherited capacity in the same exact amount to blocked servers. This
loss of optimality is worth the reduced complexity as the protocol’s behaviour nevertheless tends to be fair and outperforms
the previous solutions in highly dynamic scenarios as demonstrated by extensive simulations.

A formal analysis of CXP is presented and the conditions under which it is possible to guarantee hard real-time tasks are
discussed.

1 Introduction

There is an increasing demand for highly dynamic real-time systems where several independent services with different
timing requirements can coexist. Also, it is widely known that in many real-time applications the worst-case execution
time (WCET) of some tasks is rare and much longer than the average case. As such, reserving resources based on a worst-
case feasibility analysis will drastically reduce resource utilisation, causing a severe system’s performance degradation when
compared to a soft guarantee based on average execution times. At the same time, it is increasingly difficult to compute
WCET bounds in modern hardware without introducing excessive pessimism [11].

However, if resources are reserved based on average case estimations, it is necessary to prevent a task that needs more
than its average execution time to introduce unbounded delays on other tasks’ execution, keeping the overload isolated to a
particular task and not jeopardising the schedulability of the other tasks.

Abeni and Buttazo proposed the Constant Bandwidth Server (CBS) scheduler [1] to efficiently handle soft real-time
requests with a variable or unknown execution behaviour under the EDF [18] scheduling policy. To avoid unpredictable
delays on hard real-time tasks, soft tasks are isolated through a bandwidth reservation mechanism, according to which each
soft task gets a fraction of the CPU and it is scheduled in such a way that it will never demand more than its reserved
bandwidth, independently of its actual requests. This is achieved by assigning each soft task a deadline, computed as a
function of the reserved bandwidth and its actual requests. If a task requires to execute more than its expected computation
time, its deadline is postponed so that its reserved bandwidth is not exceeded. As a consequence, overruns occurring on a
served task will only delay that task, without compromising the bandwidth assigned to other tasks.

Several other works [16, 6, 20, 7, 15] have extended this resource reservation approach with the ability to exploit tasks’
earlier completions and reclaim the resulting residual capacities to further increase resource usage and handle soft tasks’
overloads more efficiently.

These ideas are particularly interesting to open real-time systems where several independently developed services can
coexist without any previous knowledge about their execution requirements and tasks’ inter-arrival times. Nevertheless, new
highly dynamic open real-time systems introduce new requirements and opportunities that are not being completely handled.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Assume a QoS-aware framework that allows cooperation among neighbour nodes to address the increasing demands on
resources and performance [21] where it is desirable to be able to process the framework’s management algorithms [23, 22]
at a certain minimum rate while previously accepted services are being executed. Overloaded servers dealing with currently
executing users’ services should be able to use capacities reserved for the framework’s management, giving them priority
with respect to new service requests or QoS adaptations that eventually would bring more workload to the system.

The Capacity Sharing and Stealing (CSS) scheduler [24] was proposed to handle overloads by making additional capacity
available from two sources: (i) reclaiming unused allocated capacity when jobs complete in less than their budgeted execution
time; and (ii) stealing allocated capacities to non-isolated servers used to schedule sporadic best-effort jobs. CSS offers
the flexibility to consider the coexistence of guaranteed and best-effort servers in the same system, reducing isolation in a
controlled fashion in order to donate reserved, but still unused capacities to currently overloaded servers, achieving a lower
mean tardiness of periodic guaranteed services.

However, tasks were assumed to be independent. A challenging problem in dynamic open real-time systems is how to
schedule tasks that share access to some of the system’s resources and exhibit precedence constraints, without a complete
knowledge of their behaviour. The purpose of this paper is to address both problems, enhancing CSS with the ability to
work in more general real world scenarios. It proposes the Capacity Exchange Protocol (CXP), integrating the concept of
bandwidth inheritance [14] with the efficient capacity sharing and stealing mechanism of CSS to mitigate the cost of blocking
on soft real-time tasks.

CXP is particularly suitable to schedule soft real-time tasks with precedence constraints in highly dynamic open real-time
systems without requiring any offline knowledge of how many services will need to be concurrently executed neither which
resources will be accessed and by how long they will be held. The achieved results suggest that CXP effectively minimises
the impact of bandwidth inheritance on blocked tasks, outperforming other currently available solutions for open systems.

Although the goal of this paper is to minimise the cost of blocking among soft real-time tasks, hard schedulability guar-
antees can still be provided even if hard and soft real-time tasks share resources at the expense of some pessimism on the
computation of blocking times when tasks access (nested) critical sections.

The rest of the paper is structured as follows.

2 System model

This work focus on dynamic open real-time systems where all services execute on a single shared processor, the sum of
the reserved capacities is no more than the maximum capacity of the processor, and the scheduler does not have a complete
knowledge about the services’ execution requirements.

A service can be composed by a set of real-time and non-real-time tasks which can generate a virtually infinite sequence
of jobs. The jth job of task τi arrives at time ai,j , is released to the ready queue at time ri,j , and starts to be executed at time
si,j with deadline di,j = ai,j + Ti, with Ti being the period of τi. The arrival time of a particular job is only revealed during
execution, and the exact execution requirements ei,j and which resources will be accessed and by how long will be held can
only be determined by actually executing the job to completion until time fi,j . These times are characterised by the relations
ai,j ≤ ri,j ≤ si,j ≤ fi,j .

Tasks may simultaneously need exclusive access to one or more of the system’s resources R, during part or all of their
execution. If task τi is using resource Ri, it locks that resource. Since no other task can access Ri until it is released by τi, if
τj tries to access Ri it will be blocked by τi. Blocking can also be indirect (or transitive) if although two tasks do not share
any resource, one of them may still be indirectly blocked by the other through a third task.

Tasks may also exhibit precedent constraints among them. A task τi is said to precede another task τk if τk cannot start
until τi is finished. Such a precedence relation is formalised as τi ≺ τk and guaranteed if fi,j ≤ sk,j . Precedence constraints
are defined in the service’s description at admission time by a directed graph G, where each node represents a task and each
directed arc represents a precedence constraint τi ≺ τk between two tasks τi and τk. Given a partial order ≺ on the tasks, the
release times and the deadlines are said to be consistent with the partial order if τi ≺ τk ⇒ ri,j ≤ rk,j and di,j < dk,j .

Each real-time task τi is associated to a CSS server Si that is characterised by a pair (Qi, Ti), where Qi is the maximum
reserved capacity and Ti is the server period. If it is possible to perform an accurate analysis of hard real-time tasks and
bound their execution times, minimum inter-arrival times, and the duration of the accessed critical sections and maximum
blocking time, then it is possible to find an assignment of Qi and Ti to a isolated server Si that guarantees the schedulability
of a hard real-time task, independently of the behaviour of other tasks. Please refer to Section 6 for a detailed analysis.

2

3 The Capacity Sharing and Stealing approach

The CSS scheduler [24] integrates and extends some of the best principles of previous approaches to efficiently handle
soft-tasks’ overloads. It combines the ability to efficiently reclaim allocated capacities that were unused when jobs complete
in less than their budgeted execution time with the ability to steal reserved capacities from inactive servers used to schedule
sporadic best-effort jobs in overload situations. CSS not only offers the flexibility to consider the coexistence of guaranteed
and best-effort servers in the same system, but also to give priority to the overload control of guaranteed services.

Guaranteed and best-effort services are scheduled using two different types of servers. For a guaranteed isolated server,
a specific amount of a resource is ensured to be available every period. However, an inactive best-effort non-isolated server,
can have some or all of its reserved capacity stolen by active overloaded servers. Non-isolated servers were motivated by the
increasing use of imprecise computation models and anytime algorithms in dynamic real-time systems [4, 23, 22].

Both types of servers are characterised by a pair (Qi, Ti), where Qi is the server’s reserved capacity and Ti its period.
Then, the fraction of the CPU reserved to server Si (the utilisation factor) is given by Ui = Qi

Ti
.

Extending the traditional parameters of a CBS server [1], each CSS server keeps a specific recharging time ri and a pointer
to the server from which the reserved capacity is going to be decreased (accounted), eliminating the need of extra queues or
additional servers’ states to dynamically manage all the available capacities. CSS’s dynamic budget accounting mechanism
ensures that at time t, the currently executing server Si is using a residual capacity cr originated by an early completion of
another active server, its own reserved capacity ci, or is stealing capacity cs from an inactive non-isolated server, using the
following rules:

• Rule A: Whenever a server Sj completes its kth job and there is no pending work, its remaining capacity cj > 0 is
released as residual capacity cr = cj that can immediately be reclaimed by eligible active servers, until the currently
assigned Sj’s deadline dj,k. Sj is kept active with its current deadline.

• Rule B: The next server Si scheduled for execution points to the earliest deadline server Sr from the set of eligible
active servers with residual capacity cr > 0 and deadlines dr ≤ di,k. Si consumes the pointed residual capacity cr,
running with the deadline dr of the pointed server. Whenever cr is exhausted and there is pending work, Si disconnects
from Sr and selects the next available server S′r (if any).

• Rule C: If all available residual capacities are exhausted and the current kth job is not complete, the server consumes
its own reserved capacity ci either until job’s completion or ci’s exhaustion. On a ci’s exhaustion, Si is kept active with
its current deadline di,k.

• Rule D: With pending work and no reserved capacity left, Si connects to the earliest deadline server Ss from the
set of eligible inactive non-isolated server with remaining capacity cs > 0 and deadlines ds ≤ di,k. Si steals the
pointed inactive capacity cs, running with its current deadline di,k. Whenever cs is exhausted and the job has not been
completed, the next non-isolated capacity c′s is used (if any).

Note that at a particular time t there is only one server pointing to another server. Also note that, a CSS server suspends
its capacity recharging and deadline update until a specific replenishment time ri, set to the current server’s deadline, imple-
menting a hard reservation (refer to [26] for a description of hard vs soft reservations). This way, an active server which has
already exhausted its own reserved capacity can keep its priority both when reclaiming any new spare capacity that may be
released and when stealing inactive non-isolated capacities until its original deadline.

A server Si is active at instant t if (i) the served task is ready to execute; (ii) is executing, consuming the pointed capacity;
or (iii) the server is supplying its residual capacity to other servers until its deadline. Si is inactive if (i) there are no pending
jobs to serve; or (ii) the server has no residual capacity to supply to the other servers.

State transitions are determined by the (i) arrival of a new job, (ii) capacity exhaustion, or (iii) non-existence of pending
jobs at replenishment time. An inactive server becomes active with the arrival of the new jth job at time ai,j , if ai,j ≥ di,j−1.
If ai,j < di,j−1, the job is only released at the next Si’s replenishment instant ri. On the other hand, an active server becomes
inactive if (i) all its reserved capacity is consumed and there are no pending jobs to serve (capacity exhaustion can occur
while supplying its residual capacity to other servers or using its capacity to finish a job); or (ii) there are no pending jobs at
replenishment time. At replenishment time ri, unconsumed capacities are discarded.

The increased computational complexity of fairly assign residual capacities to all active servers and the fact that fairly
distributing residual capacities to a large number of servers can originate a situation where no enough excess capacity is
provided to any one to avoid a deadline miss, lead us to assign all residual bandwidth to the currently executing overloaded

3

server (Rule B). Furthermore, since jobs’ execution requirements are not known beforehand, it makes sense to devote as
much excess capacity as possible to the currently executing server, maximising its chances to complete the current job before
its deadline. This policy has already been proved to minimise deadline postponements and the number of preemptions [16].

When the reserved capacity of server Si is exhausted and there is still pending work, Si is allowed to steal inactive non-
isolated capacities to handle its overload (Rule D). However, capacity stealing is interrupted whenever Si is preempted or a
replenishment event occurs on the capacity being stolen. Also, since Si keeps its current deadline di,k ≥ ds when stealing
non-isolated capacities, capacity stealing is also interrupted when a new job for the inactive non-isolated server Ss arrives.
When this happens, Ss becomes active with its current remaining capacity. Note that all active (isolated and non-isolated)
servers can reclaim residual capacities and steal inactive non-isolated capacities.

3.1 Handling overloads with CSS

The next example details how CSS can handle soft tasks’ overloads without postponing deadlines, either by greedily re-
claiming residual capacities or stealing inactive non-isolated servers’ capacities used to schedule sporadic best-effort services.
It has been demonstrated [24] that this approach can reduce the mean tardiness of periodic guaranteed services in systems
where guaranteed and best-effort services can coexist.

Consider the following periodic task set, described by average execution times and period: τ1 = (2, 5), τ2 = (4, 10),
τ3 = (3, 15). τ1 is served by the non-isolated server S1, while tasks τ2 and τ3 are served by the isolated servers S2 and S3,
respectively. A possible CSS’s scheduling of this task set is detailed in Figure 1. When a server is using a residual or stolen
capacity from another server a pointer indicates where the budget accounting is being performed.

Figure 1. Handling overloads with CSS

At time t = 3, τ2 has an early completion and a residual capacity cr = 1 with deadline dr = 10 is available. Server S3

is scheduled for execution and connects to the earliest deadline residual capacity available of server S2. τ3 consumes cr = 1
before starting to consume its own capacity at time t = 4. At time t = 7, an overload of τ3 is handled by S3, stealing capacity
from the inactive non-isolated server S1. A new deadline for the stolen capacity cs is set to time t = 12.

Note that at time t = 9 a new job of τ2 arrives but the job is only released at time t = 10. Advancing execution times is
against our purpose of executing periodic activities with stable frequencies.

At time t = 15, after S2 completes its job by stealing some of the inactive non-isolated capacity of S1, a new job for
server S1 arrives. S1 reaches the active state, keeping its currently available capacity and corresponding deadline.

At time t = 16, server S1 has no remaining capacity and stops executing. At time t = 19, a replenishment of S1’s
capacity occurs and it continues to execute the pending job, releasing the residual capacity cr = 1 with deadline dr = 24
at time t = 20 when it completes its job’s execution. This residual capacity is used by server S2 before consuming its own
capacity at time t = 21.

At time t = 25, a new job of τ1 arrives and the non-isolated server S1 becomes active. It first consumes the residual
capacity cr = 1 with deadline dr = 30, generated at time t = 24 by an early completion of τ2, before consuming its own
capacity.

At time t = 33 an overload of τ2 is first handled by stealing capacity of the inactive non-isolated server S1 and then, at
time t = 38, consuming the available residual capacity generated by an early completion of task τ3. Recall that a server
remains active until its deadline, even if it has exhausted its capacity.

4

4 Sharing resources in open systems

A great amount of work has been addressed to minimise the adverse effects of blocking when considering shared resources
among tasks. Resource sharing protocols such as the Priority Ceiling Protocol [28], Dynamic Priority Ceiling [9], and Stack
Resource Policy [2] have been proposed to provide guarantees to hard real-time tasks accessing mutually exclusive resources.
Solutions based on these protocols were already proposed [13, 8, 7, 3] but they all require a prior knowledge of the maximum
resource usage for each task and cannot be directly applied to dynamic open real-time systems.

A resource sharing protocol that is independent from the actual tasks’ requirements was proposed in [14]. The Bandwidth
Inheritance (BWI) protocol allows a shared access to resources without requiring any prior knowledge about the tasks’ struc-
ture and temporal behaviour and guarantees that tasks that do not access shared resources are not affected by the behaviour
of other tasks. It extends the CBS scheduler to work in the presence of shared resources, adopting the Priority Inheritance
Protocol (PIP) [28] to handle task blocking. Although the PIP was initially thought in the context of fixed priority scheduling,
it can be applied to dynamic priority scheduling, holding its basic properties: it limits the worst-case blocking that must be
endured by a job j to the duration of at most min(n,m) critical sections where n is the number of jobs with lower priority
than j and m the number of different semaphores used by j.

However, the main drawback of BWI is its unfairness in bandwidth distribution. A blocking task can use most (or all)
of the reserved capacity of one or more blocked tasks, without compensating the tasks it blocked. Blocked tasks may then
lose deadlines that could otherwise be met. At the same time, servers keep postponing their deadlines and recharging their
capacities on every capacity exhaustion, potentially severely delaying blocked tasks with earlier deadlines which will finish
later than tasks with longer deadlines. It is known that allowing a task to use resources allocated to the next job of the same
task may cause future jobs of that task to miss their deadlines by larger amounts [24, 15]. This violation of the original
capacity distribution can have a huge negative impact in the overall system’s performance.

Figure 2 illustrates these problems with a simple example. Three servers S1 = (2, 5), S2 = (1, 3), and S3 = (1, 4) serve
three tasks with execution times equal to their respective servers’ capacity. Tasks τ1 and τ2 share access to resource R for the
duration of their execution times, while τ3 is independent from the other two.

Figure 2. BWI’s drawbacks

Note how an early arrival of the second job of task τ1 at time t = 4 allows τ1 to consume 3 units of execution in the interval
[0, 5], more than its initial reservation. The nonexistence of a compensation mechanism and the automatically deadline update
are responsible for the deadline miss of the second job of task τ2.

To address this issue, BWE [31] and CFA [27] integrate bandwidth compensation mechanisms into BWI, trying to fairly
compensate blocked servers in exactly the same amount of capacity that was consumed by a blocking task while executing in
a blocked server. To achieve this, BWI maintains a global n ∗ n matrix (n is the number of servers in the system) in order to
record the amount of budget that should be exchanged between servers, a budget list at each server to keep track of available
budgets, and dynamically manages resource groups at each blocking and releasing of a shared resource. CFA requires each
server to manage two task lists with different priorities and a counter that keeps track of the amount of borrowed capacity
from a higher priority server, converting the inheritor into a debtor. Contracted debts are payed by blocking servers, until the
blocked servers’ counters are successively decremented to zero.

5

The increased computational complexity of these attempts to fairly compensate borrowed capacities and the fact that CSS
tends to fairly distribute residual capacities in the long run [24], lead us to propose an efficient capacity exchange protocol
that merges the benefits of a smart greedy capacity reclaiming policy with the concepts of bandwidth inheritance and hard
reservations. Adding to the lower complexity of our approach, achieved results detailed in Section 7 demonstrate that taking
advantage of all of the available capacity instead of only exchanging capacities within the same resource group leads to a
better system’s performance in dynamic open real-time systems.

4.1 The Capacity Exchange Protocol

With CXP, every server maintains a list of served tasks ordered by tasks’ deadlines. A task can then be added to more than
one task list and be executed on more than its dedicated server. Initially, each server has only its dedicated task in its task list
and, as long as no task is blocked, servers behave as in the original CSS scheduler. With blocking, the following rules are
introduced:

• Rule E: When a high priority task τi is blocked by a lower priority task τj when accessing a resource R, τj is inherited
by server Si. The execution time of τj is now accounted to the currently pointed server by Si. If task τj has not yet
released the shared resource R when Si exhausts all the capacity it can use, τj continues to be executed by the earliest
deadline server with available capacity that needs to access R, until τj releases R.

• Rule F: If a blocking task τj is inherited by a blocked server Si, delaying the execution of task τi, then τi is also added
to Sj’s task list. When task τi is unblocked it is executed by the earliest deadline server which has τi in its task list
until it is finished or the server exhausts all the capacity it can use(whatever comes first).

• Rule G: If at time t, no active server with pending jobs can continue to execute using some of the rules B, C, or D,
and there is at least one active server Sr with residual capacity greater than zero, available residual capacities with
deadlines greater than the one assigned to the current job jp,k of the earliest deadline server Sp with pending work can
be used to execute jp,k through bandwidth inheritance.

Rule E describes the integration of the bandwidth inheritance mechanism in the dynamic budget accounting of CSS. The
currently executing server always consumes the pointed capacity, either its own or another available and valid capacity in the
system.

Rule F allows a blocked task τi that has been delayed in its execution to be executed by the earliest deadline server with
available capacity which has τi in its task list, that may now be different from Si. Note that capacity exchange due to blocking
is performed without the goal of a fair compensation, reducing the complexity and overhead of CXP.

In general, the hard reservation approach may cause the loss of more deadlines since once a server’s capacity is depleted
capacity recharging is suspended until the server’s next activation. To minimise its drawbacks and take advantage of a more
constant rate in tasks’ execution Rule G allows the use of bandwidth inheritance to execute unfinished tasks, including those
from servers that do not directly or indirectly share any resource with the selected server, if at a particular time no active
server in the system is able to reclaim new residual capacities or steal inactive non-isolated capacities to continue executing
its pending work after a capacity exhaustion.

Since the queue of active servers is ordered by deadlines, CXP easily keeps track of the earliest deadline server with
pending work and no capacity left Sp as well as the earliest deadline server with available residual capacity Sr when traversing
the queue to select the next running server. If the end of the queue of active servers is reached without finding a server with
pending work and available capacity, server Sr is selected as the running server and inherits the first task of Sp’ list and
executes it consuming its own residual capacity. Since a server always starts to consume the earliest residual capacity
available, no modification to the budget accounting mechanism is needed to correctly account for the consumed capacity.

Note that Rules A and B of the original CSS scheduler ensure that residual capacities originated by earlier completions
can be reclaimed by any active eligible server. Blocked servers can then take advantage of any residual capacity, even if it is
released by a server that does not share any resource with the reclaiming server. Furthermore, this residual capacity tends to
be reclaimed in a fair manner among needed servers across the time line [16, 24].

Figure 3 illustrates how CXP can minimise the cost of blocking and exchange capacity between servers, scheduling the
same set of tasks used to analyse the BWI’s drawbacks in Figure 2.

At time t = 1, task τ2 is added to server S1’s task list (Rule F). At time t = 2, task τ2 is unblocked and is executed by
server S1, since it is the earliest deadline server with remaining capacity with τ2 in its task list (the same happens at time

6

Figure 3. Sharing resources with CXP

t = 8). Note that despite the earlier arrival of task τ1’s second job at time t = 4, S1’s deadline is not set to d1,2 = 9 and
the job is only released at time t = 5, implementing a hard reservation (see Section 3 for details). Also note that capacities
are exchanged between all the system’s servers and not only within a specific resource group, maximising the use of extra
capacities to handle overloads and still meet deadlines. An overload of the independent task τ3 was handled by reclaiming
the residual capacity originated by an earlier completion of task τ1 at time t = 12.

While preserving the isolation principles of independent tasks and inheritance properties of critical sections of BWI,
CXP introduces significant improvements in the system’s performance by efficiently exchanging capacities between hard
reservation servers. Since the execution and inter-arrival times of jobs are not known in advance it is important to minimise
the impact of misbehaved tasks that exceed their expected execution times or have a shorter inter-arrival time of jobs.

5 Handling precedence constraints in open systems

Additional constraints on real-time systems arise when the execution of the data’s producer must precede the execution
of the consumer of that data. Such precedence constraints may affect the system’s schedulability, and in more complex
scenarios, both shared resources and precedence constraints can be present among the tasks.

It is well known that precedence constraints can be guaranteed in real-time scheduling by priority assignment. In fact,
with dynamic scheduling, any task will always precede any other task with a later deadline. This suggests that precedence
constraints that are consistent with the tasks’ deadlines do not affect the schedulability of the task set. In fact, the idea behind
the consistency with the partial order is to enforce a precedence constraint by using an earlier deadline.

Formal work exists, showing how to modify deadlines in a consistent manner so that EDF can be used without violating
the precedence constraints. Garey et al. [12] show that the consistency of release times and deadlines can be used to integrate
precedence constraints in the task model. Spuri and Stankovic [30] introduce the concept of quasi-normality to give more
freedom to the scheduler so that it can also obey shared resource constraints, and provide sufficient conditions for schedules to
obey a given precedence graph. The authors prove that with deadline modification and some type of inheritance it is possible
to integrate precedence constraints and shared resources. Mangeruca et al. [19] consider situations where the precedence
constraints are not all consistent with the tasks’ deadlines and show how schedulability can be recovered by considering a
constrained scheduling problem based on a more general class of precedence constraint.

However, all these works base their modifications of deadlines on a previous knowledge of the tasks’ execution times. To
make use of these previous results in open real-time systems, the consistency of release times and deadlines with the partial
order must be enforced considering estimated execution times when applying some known technique [12, 29, 19, 5, 10] at
admission time.

Such an approach immediately raises two questions: (i) what happens if a precedent task requires more capacity than
declared? (ii) how can a task know if its predecessors have already finished? CXP provides answers for both questions and
can be used to handle blocking due to precedence violations in the same way as for a critical section blocking, minimising
the impact of misbehaved tasks on the overall system’s performance. We base our approach on the idea that if task τj ≺ τi

7

has not yet finished at time si,k, when the kth instance of τi is selected to execute, it is blocking its successor.
Given a partial order ≺ on the tasks, described by a directed graph G, servers’ state changes in CXP allow an easy

verification of the current condition of a precedent task τj . Recall that a server that has completed its job is only kept active
until its deadline if it is supplying some residual capacity originated by an earlier completion of its previous job.

• Rule H: If a precedent server Sj is active at time si,k, Si checks the current value of Sj’s residual capacity. If its equal
to zero, then τj has not yet been completed and must be added to Si’s task list.

Note that a server that is scheduled for execution already checks the current state of the residual capacity of earlier deadline
servers as it tries to consume them before its own reserved capacity and precedence constraints are handled as an access to a
shared resource.

The next example illustrates how CXP allows an easy integration of precedence constraints among tasks without requiring
any previous knowledge of their exact computation times. Figure 4 shows a possible scheduling of three servers S1 = (2, 8),
S2 = (4, 10), and S3 = (3, 15) used to serve three tasks, based on their estimated average execution times and periods, that
exhibit the precedence constraints τ1 ≺ τ2 ≺ τ3.

Figure 4. Handling tasks’ precedences with CSS

Time t = 3 illustrates the situation where the successor server knows it has to complete its predecessor’s task. Since S1 is
still active and its residual capacity is set to zero, task τ1 has not yet been completed and must continue to be executed in S2

prior to τ2’s execution.
On the other hand, at time t = 6 and t = 10, servers can start executing their dedicated tasks. At time t = 6, S2 becomes

inactive by completing τ2 and exhausting its capacity. Its inactive state clearly indicates that task τ2 has been completed and
S2 is not able to supply any residual capacity to other servers. At time t = 10, however, the predecessor server S1 is active
but with residual capacity available. This is only possible when a server has completed its current task using less that its
budgeted capacity.

6 Theoretical validation

Demanding that soft real-time (SRT) tasks declare the maximum duration of the critical sections on each accessed resource
at admission time is against the basic purpose of an open system itself. However, hard real-time (HRT) tasks still need to be
guaranteed based on the knowledge of their worst-case behaviour.

One way to achieve this in an open system is to implement the critical sections as library functions whose WCET can be
determined. Of course, this comes at the cost of some pessimism but a server for a HRT tasks must always have a reserved
capacity based on the worst case.

If nested critical sections are allowed, the system’s libraries must also impose a totally ordered access to resources, since
for a deadlock to be possible, a blocking chain must exist in which there is a circular relationship. Furthermore, deadlocks
can be detected and exceptions raised if a misbehaving task attempts to acquire resources in a improper order, by following
the chain of accessed resources and detecting a resource that is already in the list.

On the other hand, when considering precedence constraints, guarantees to HRT tasks can only be provided in sets of HRT
tasks, since the WCET of SRT tasks cannot be determined offline.

8

In the remaining of this section, we assume that resources are orderly accessed through shared libraries and discuss how
to assign the maximum capacity Qi and period Ti to an isolated server which has to serve a hard real-time task in an open
system with n hard reservation servers with a total utilisation of

∑n
i=1

Qi

Ti
≤ 1. We start by proving the correctness of the

proposed capacity exchange mechanism of CXP.

Definition 1 At a particular time instant t, the total amount of available system’s execution capacity Ca is the sum of the
remaining reserved capacities greater than zero that can be used to execute a task (either the remaining execution or residual
capacities of active servers or the remaining execution capacities of inactive non-isolated servers whose capacity can be
stolen by active servers).

Lemma 1 Just after a task τi releases the shared resource R, the total amount of available system’s execution capacity Ca

is the same as in the non-resource sharing case.

Proof

While task τi is accessing the shared resource R during t units of time, it can block some other task. It follows from the
bandwidth inheritance protocol that when a task blocks another one it inherits the latter’s server. CXP’s dynamic budget
accounting mechanism guarantees that while a server is executing any task from its task list, it is consuming the capacity of
the currently pointed server. This may be a residual capacity originated by an early completion of some other task, its own
reserved capacity, or a stolen inactive non-isolated capacity.

Hence, the total amount of available system’s execution capacity Ca when task τi releases the shared resource R is
independent of whether the task was executed only by its dedicated server Si or not. In the worst case, the longest time a
server can be connected to another server is bounded by the currently pointed server’s capacity and deadline.

¤

Lemma 2 No capacity is exchanged after its deadline

Proof

Let ai,k denote the instant at which the kth instance of task τi arrives and its dedicated server Si is inactive. At ai,k, a new
execution capacity ci = Qi is generated. If Si is a non-isolated server and some amount cs of its reserved capacity was stolen
while it was inactive, the server becomes active with the remaining execution capacity ci = Qi − cs.

Let ∀i,k di,k = max{ai,k, di,k−1}+ Ti be the deadline ∀i,k ri = di,k be the replenishment time associated with capacity
ci.

Let L be the task list of server Si. L is composed at least by jobs of task τi, but can also contain, due to blocking, inherited
tasks (Rule E) and tasks that were delayed by the execution of τi in high priority servers (Rule F).

Let [t, t + ∆t[denote a time interval during which server Si is executing the earliest unblocked task of L, consuming its
own reserved capacity ci. Consequently, Si has used an amount equal to c′i = ci −∆t ≥ 0 of its own capacity during this
period. As such, ci must be decreased to c′i, until its value is equal to zero.

Let fi,k denote the time instant when server Si completes the last job of L. The remaining execution capacity ci > 0 is
released as residual capacity cr = ci and ci is set to zero.

At instant fi,k, the next active server Sj with pending work and remaining execution capacity is scheduled for execution,
according to the EDF policy. If the inequality di,k ≤ dj,l holds, server Sj can use the released residual capacity cr until its
deadline di,k or cr = 0.

Let [t, t + ∆t[denote a time interval during which server Sj is executing, consuming the residual capacity cr. Conse-
quently, Sj has used an amount equal to c′r = cr −∆t ≥ 0 of Si’s residual capacity during this period. As such, cr must be
decreased to c′r, until its value is equal to zero.

If at some instant t all active servers have exhausted the amount of execution capacities they can use and there are
unfinished jobs, the job of the earliest deadline unfinished task τu is added to the task list of the earliest deadline active
server Sr with residual capacity cr > 0. Assume that Si is the selected server.

Let [t, t + ∆t[denote a time interval during which server Si is executing, consuming its own residual capacity cr. Conse-
quently, Si has used an amount equal to c′r = cr −∆t ≥ 0 of its residual capacity during this period. As such, cr must be
decreased to c′r, until its value is equal to zero.

At replenishment time t = ri any remaining unused residual capacity cr of server Si is discarded and cr is set to zero.

9

¤

Theorem 1 Given a system with n servers with utilisation U =
∑n

i=1
Qi

Ti
which uses CXP for accessing shared resources,

it can be guaranteed that, at any time, the system’s utilisation U is no more than the case when the served tasks do not share
access to some resources.

Proof

Without resource sharing, CXP ensures that no server consumes more than its reserved capacity Qi every period Ti and the
amount of capacity that can be reclaimed or stolen is limited in the worst case by the reserved capacity and deadlines of the
pointed servers. By directly applying the results of Lemma 1 and Lemma 2, the same properties hold in CXP when tasks
share access to resources.

¤

Theorem 2 A blocked task scheduled by CXP never has less available time to complete its execution than under the basic
BWI protocol

Proof

From Rule F, CXP guarantees that a blocked task τi resumes its execution in the earliest deadline server which has τi in its
task list, which may be different from its dedicated server Si. With BWI, however, the blocked task τi is only able to resume
its execution when its dedicated server Si has no more blocking tasks in its task list and is the earliest deadline among all
active servers.

As a consequence, the time that is available for a blocked task τi to complete its execution may be increased with CXP
but never reduced when compared against BWI.

¤

After proving the correctness of the capacity exchange mechanism of CXP, we now discuss how to provide guarantees to
hard real-time tasks starting with some important definitions that help to clarify the following analysis.

Definition 2 Two tasks are in the same resource group G if they directly or indirectly share some resource.

Definition 3 Given a task τi served by server Si, the blocking time Bi is defined as the maximum time that all other tasks
can be executed by Si, for each job of τi.

Lemma 3 Given a task τi served by server Si, only tasks in the same resource group G can be added to Si’s task list and
contribute to Bi, for each instance of τi.

Proof

Initially, each active server has exactly one task in its task list. It follows from the bandwidth inheritance protocol that if a
task τi is blocked by task τj when accessing a resource R, then τj is added to the task list of server Si. If τj is also blocked
on another resource, the chain of blocking is followed and all the blocked tasks are added to Si until a non-blocked task
is reached. The task list of all other servers remains unchanged. Hence, the number of tasks that can contribute to Bi is
restricted to those tasks that belong to the same resource group G.

¤

Theorem 3 If a HRT task τi is served by an isolated server Si with parameters (Qi, Ti), where the reserved capacity
Qi = Ci + Bi is determined by adding the WCET Ci of τi to the maximum blocking Bi that can be experienced by an
instance of τi, and Ti is the minimum inter-arrival time of τi’s jobs, then τi will meet its deadline, regardless of the behaviour
of the other tasks in the system.

Proof

10

From Theorem 1 it follows that each isolated server Si always receives Qi units of execution capacity every Ti units of time.
Lemma 3 assures that the set of tasks that can be executed by Si is restricted to those tasks in the same resource group G.
Hence, if a HRT task τi does not access any shared resource it is not affected by the behaviour of other tasks. Therefore,
if each instance of τi consumes up to Ci ≤ Qi units of execution capacity and instances are separated at least by Ti, is is
guaranteed that task τi finishes no later than Si’s capacity exhaustion and it will meet all its deadlines.

If a HRT task τi accesses some shared resources during its execution, we have to consider the maximum time that other
tasks can be executed by Si through bandwidth inheritance. It follows from Lemma 3 that whether task τi meets its deadline
depends only on the timing requirements Ci of task τi and on the maximum blocking time Bi that can be experienced by
each instance of task τi. Hence, in order not to miss any deadline of a HRT task τi it is sufficient to assign a capacity of
Qi = Ci + Bi to the isolated server Si.

¤

From Theorem 3 it is possible to derive sufficient conditions for the schedulability of HRT tasks scheduled by CXP. HRT
tasks which do not access any shared resource can be guaranteed exactly like in the original CSS algorithm by assigning
them to isolated servers with capacities Qi = Ci, where Ci is the WCET of task τi, and periods Ti equal to the minimum
inter-arrival times of τi’s jobs. A HRT task τi which accesses shared resources during its execution can be guaranteed if it is
assigned to an isolated server Si whose capacity Qi = Ci + Bi also accounts for the maximum blocking time Bi that can be
experienced by each instance of τi.

6.1 Blocking time computation

An exact computation of the worst-case blocking time Bi for a HRT task τi is a complex problem in open systems where
the unpredictable behaviour of SRT tasks may cause the associated servers to exhaust their capacities while inside the critical
sections, causing many possible situations in which a SRT task can block a HRT task. Without a complete knowledge of the
number, type, and behaviour of tasks that may, directly or indirectly, interact through shared resources with a HRT task τi it
is impossible to perform an accurate offline analysis and compute the worst case blocking Bi that can be experienced by τi

without imposing some pessimism.
The dynamic properties of an open real-time systems only allows us to assume that the WCET of the critical sections that

may be accessed by any task through the system’s libraries can be indirectly computed through an offline analysis of those
shared libraries. With nested critical sections, the WCET must consider the worst possible path in the blocking chain. The
reader may refer to [32] for an extensive survey of the current methods and tools to compute WCETs.

This may be considered too pessimistic since, to guarantee a set of n HRT tasks, the blocking times must all be summed
together at admission time, but the dynamic nature of an open system and lack of information impose such a pessimism.
It is impossible to completely identify the conditions under which any task that is dynamically admitted in the system can
interfere with a HRT task. Of course, this comes at the cost of a lower system’s utilisation to guarantee HRT tasks. However,
with CXP, SRT tasks can benefit from the unused reserved capacities of HRT tasks, minimising this restriction.

If a resource group G is guaranteed to be composed only by HRT tasks, it is possible to explore all possible blocking
situations and compute a more accurate and less pessimistic value for Bi, using, for example, an algorithm similar to the one
presented in [17].

7 Evaluation

Extensive simulations were conducted in order to evaluate how the flexible management of reserved capacities performed
by CXP can minimise the cost of blocking of soft real-time tasks in the presence of shared resources and conditions of
overload. Multiple and independent runs with initial conditions and parameters but different seeds for the random values
were used to drive the simulations [25] using a discrete uniform distribution.

Resource sharing protocols that require a prior knowledge of the maximum resource usage time for each task such as the
Priority Ceiling Protocol, the Dynamic Priority Ceiling, or the Stack Resource Policy were not considered since they cannot
be directly applied to open real-time systems.

The first study compared the cumulative capacity that was consumed by the shortest period (SP) and longest period (LP)
tasks of a randomly generated task set when tasks share resources to the amount of capacity that would be consumed if the
same set of tasks did not shared any resources.

11

Different sets of 5 tasks were randomly generated, with varied execution requirements ranging from 20 to 60 units, and
period distributions ranging from 100 to 300 time units, always ensuring a system’s utilisation U ≤ 1. An isolated server
was assigned to each task, with a reserved capacity Qi equal to the task’s execution requirements and period Ti equal to the
task’s period. The execution requirements of each job were always equal to the reserved capacity of its dedicated server and
all jobs accessed the shared resource R during all their executions, with a new job being released immediately after a task
has completed its current job.

Each simulation ran until t = 250000, producing a large variety of inheritance and preemption situations among tasks,
and was repeated several times to ensure that stable results were obtained. The cumulated capacities consumed by the SP
and LP tasks were recorded every 200 time ticks and the mean values of all generated samples plotted in Figures 5 and 6,
respectively.

Figure 5. Capacity consumed by the SP task

Figure 6. Capacity consumed by the LP task

The achieved results show that with BWI, and due to blocking, while higher priority tasks can consume less than their
initial allocations, tasks with longer deadlines can consume more than their reserved capacities since BWI is affected by the
absence of a compensation mechanism. In contrast, the efficient capacity exchange mechanism of CXP ensures that both
tasks are able to get their allocated capacities even when accessing shared resources thus providing a better fairness than
BWI and sustaining the conclusions drawn from the examples in Section 4.

A second study compared the efficiency of the studied protocols BWI, BWE, CFA and CXP in lowering the mean tardiness
of a set of periodic jobs with variable execution times in highly dynamic scenarios. At each simulation run, a random number
of servers with a system’s utilisation up to 70% contended for the system’s resources with a dynamic traffic that demanded
up to 30% of the system’s capacity.

All servers were generated with varied reserved capacities Qi ranging from 15 to 50 units of execution and period dis-
tributions ranging from 50 to 500 time units, creating different types of load, from short to long deadlines and capacities.
Tasks arrived at randomly generated times and remained in the system for a variable period of time with each job having an
execution time in the range [0.8Qi, 1.2Qi] of its dedicated server’s reserved capacity, originating both overloads and residual
capacities due to early completions. There were 6 resources, whose access and duration of use was randomly distributed by
the servers, creating direct and transitive blocking situations and distinct resource groups.

For a fair performance comparison against the other algorithms only isolated servers were used in CXP, disabling its
ability to steal non-isolated capacities on overloads. The significant improvement on the system’s performance achieved by

12

allowing active overloaded servers to steal inactive non-isolated capacities, particularly in the presence of a large variation in
jobs’ computation times is detailed in [24].

Figure 7 illustrates the performance of the evaluated protocols as a function of the system’s load, measuring the mean
tardiness of periodic tasks under random workloads for different probabilities of jobs’ overload. The mean tardiness was
determined by

∑n
i=1 trdi/n, where trdi is the tardiness of task τi, and n the number of evaluated tasks.

Figure 7. Performance in dynamic scenarios

As expected, the achieved results clearly justify the use of a capacity exchange mechanism to minimise the impact of
blocking on the system’s performance. Without any compensation for the extra work on blocked servers, BWI obtains the
poorest result. Recall that with BWI, a blocked task is only able to use the remaining capacity of its dedicated server, if any.

BWE and CFA achieve similar performances when handling tasks with variable execution times. Both algorithms are
unable to reclaim residual capacities originated by early completions, wasting available resources to handle overloads and
minimise the number of deadline misses. Also, both algorithms immediately recharge a server’s capacity and extend its
deadline at every capacity exhaustion, allowing a task to use resources allocated to a future job, contributing for future jobs
of that task to miss their deadlines by larger amounts.

On the other hand, by reclaiming as much extra capacity as possible, CXP outperforms BWE and CFA in lowering the
mean tardiness of periodic tasks in highly dynamic scenarios. CXP not only exchanges capacities between all active servers,
not restricting capacity exchange to the same resource group, but it also reclaims all the available residual capacity to handle
overloads of soft real-time tasks.

Furthermore, these better results in highly dynamic scenarios were achieved with a less complex approach to exchange
reserved capacities among servers. Figure 8 illustrates the average overhead introduced by the optimisations of BWE, CFA,
and CXP in terms of the needed scheduling time and memory consumption during the previous study, using the base BWI
protocol as a reference.

Figure 8. Overhead using BWI as reference

As expected, the optimisations performed by BWE, CFA, and CXP introduce some overhead when compared against
BWI in terms of needed time and memory. Although all the three algorithms need only slightly more time than BWI to
determine which capacity is going to be accounted by the currently executing server, they substantially differ in terms of

13

storage information demands. BWE requires a global n ∗ n matrix to record the amount of capacity that must be exchanged
between servers and an extra list at each server to keep track of available capacities. CFA enhances BWI by adding a new
task queue to each server and one extra variable for each contracted debt between servers Si and Sj . On the other hand,
CXP focuses on minimising the cost of blocking by exchanging reserved capacities as early, and not necessarily as fairly,
as possible. As such, it does not not account the amount of borrowed capacity on each server neither manages individual
resource groups.

The fourth study compared the time and memory needed by CXP to schedule the same task set with and without prece-
dence constraints among its tasks. 10000 tasks sets were randomly generated, with different system’s utilisation in the range
[0.6, 1.0]. For each task set, a random set of precedence constraints consistent with the tasks deadlines was determined. Each
job had random execution requirements in the range [0.7Qi, 1.3Qi] of its dedicated server’s reserved capacity. Achieved
results allow us to conclude that CXP is able to handle precedence constraints among tasks whose exact behaviour is not
known beforehand without any noticeable overhead.

8 Conclusions

This paper presents the Capacity Exchange Protocol (CXP), combining the concept of bandwidth inheritance with an
efficient greedy capacity sharing and stealing mechanism to efficiently handle shared resources and precedence constraints
among tasks in dynamic open real-time systems. CXP efficiently minimises the cost of blocking by allowing a server to
reclaim residual capacities allocated but unused when jobs complete in less than their budgeted execution time, to steal
capacity from inactive non-isolated servers used to schedule best-effort jobs, and to exchange capacity between servers that
suffered bandwidth inheritance.

Achieved results justify the use of a capacity exchange mechanism that reclaims as much capacity as possible and does
not restrict itself to exchange capacities only within a resource sharing group.

The approach is particularly interesting in highly dynamic open real-time systems where is not possible to have a precise
knowledge of how many services will need to be concurrently executed neither which resources will be accessed and by how
long they will be held. Furthermore, CXP is able to provide hard schedulability guarantees at the expense of a lower system’s
utilisation.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In Proceedings of the 19th IEEE RTSS,
page 4, Madrid, Spain, December 1998.

[2] T. P. Baker. A stack-based resource allocation policy for realtime processes. In Proceedings of the IEEE Real-Time Systems Sympo-
sium, pages 191–200, Lake Buena Vista, Florida, USA, December 1990.

[3] S. K. Baruah. Resource sharing in edf-scheduled systems: A closer look. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, pages 379–387, Rio de Janeiro,Brazil, December 2006.

[4] G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain time. In Proceedings of the 25th IEEE RTSS, pages 328–225,
December 2004.

[5] J. Blazewicz. Scheduling dependent tasks with different arrival times to meet deadlines. In Proceedings of the International Workshop
on Modelling and Performance Evaluation of Computer Systems, pages 57–65, Ispra,Italy, October 1977.

[6] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In Proceedings of 21th IEEE RTSS, pages 295–304,
Orlando, Florida, 2000.

[7] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient reclaiming in reservation-based real-time systems with variable execution
times. IEEE Transactions on Computers, 54(2):198–213, February 2005.

[8] M. Caccamo and L. Sha. Aperiodic servers with resource constraints. In Proceedings of the 22nd IEEE Real-Time Systems Sympo-
sium, pages 161–170, London, UK, December 2001.

[9] M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: a concurrency control protocol for real-time systems. Real-Time Systems,
2(4):325–346, 1990.

[10] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks under precedence constraints. Real-Time Systems,
2(3):181–194, 1990.

[11] A. Colin and S. M. Petters. Experimental evaluation of code properties for wcet analysis. In Proceedings of the 24th IEEE RTSS,
pages 190–199, December 2003.

[12] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan. Scheduling unit-time tasks with arbitrary release times and deadlines.
SIAM Journal on Computing, 10(2):256–269, May 1981.

14

[13] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 89–99, Phoenix, Arizona, USA, December 1992.

[14] G. Lamastra, G. Lipari, and L. Abeni. A bandwidth inheritance algorithm for real-time task synchronization in open systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 151–160, London, UK, December 2001.

[15] C. Lin and S. A. Brandt. Improving soft real-time performance through better slack reclaiming. In Proceedings of the 26th IEEE
RTSS, pages 410–421, 2005.

[16] G. Lipari and S. Baruah. Greedy reclamation of unused bandwidth in constant-bandwidth servers. In Proceedings of the 12th ECRTS,
pages 193–200, Stockholm, Sweden, 2000.

[17] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization in reservation-based real-time systems. IEEE Transactions on Computers,
53(12):1591–1601, 2004.

[18] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM,
1(20):40–61, 1973.

[19] L. Mangeruca, A. Ferrari, and A. L. Sangiovanni-Vincentelli. Uniprocessor scheduling under precedence constraints. In Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 157–166, San Jose, CA, USA, April
2006.

[20] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris: A new reclaiming algorithm for server-based real-time systems. In
Proceedings of the 10th IEEE RTAS, page 211, Toronto, Canada, 2004.

[21] L. Nogueira and L. M. Pinho. Dynamic qos-aware coalition formation. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, page 135, Denver, Colorado, April 2005.

[22] L. Nogueira and L. M. Pinho. Dynamic adaptation of stability periods for service level agreements. In Proceedings of the 12th
IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pages 77–81, Sydney, Australia,
August 2006.

[23] L. Nogueira and L. M. Pinho. Iterative refinement approach for qos-aware service configuration. IFIP From Model-Driven Design
to Resource Management for Distributed Embedded Systems, 225:155–164, 2006.

[24] L. Nogueira and L. M. Pinho. Capacity sharing and stealing in dynamic server-based real-time systems. In Proceedings of the 21th
IEEE International Parallel and Distributed Processing Symposium, page 153, Long Beach,CA,USA, March 2007.

[25] N. Pereira, E. Tovar, B. Batista, L. M. Pinho, and I. Broster. A few what-ifs on using statistical analysis of stochastic simulation runs
to extract timeliness properties. In Proceedings of the 1st International Workshop on Probabilistic Analysis Techniques for Real-Time
Embedded Systems, Pisa, Italy, September 2004.

[26] R. Rajkumar, K. Juvva, A. Molano, , and S. Oikawa. Resource kernels: A resource-centric approach to real-time and multimedia
systems. In Proceedings of the SPIE/ACM Conference on Multimedia Computing and Networking, 1998.

[27] R. Santos, G. Lipari, and J. Santos. Scheduling open dynamic systems: The clearing fund algorithm. In Proceedings of the 10th
International Conference on Real-Time and Embedded Computing Systems and Applications, pages 114–129, Gothenburg, Sweden,
August 2004.

[28] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach to real-time synchronisation. IEEE Transaction
on Computers, 39(9):1175–1185, 1990.

[29] M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest deadline scheduling. In Proceedings of the 15th IEEE RTSS,
pages 2–11, San Juan, Puerto Rico, 1994.

[30] M. Spuri and J. A. Stankovic. How to integrate precedence constraints and shared resources in real-time scheduling. IEEE Transac-
tions on Computers, 43(12):1407–1412, 1994.

[31] S. Wang, K.-J. Lin, and S. Peng. Bwe: A resource sharing protocol for multimedia systems with bandwidth reservation. In Pro-
ceedings of the 4th IEEE International Symposium on Multimedia Software Engineering, pages 158–165, New-port Beach,CA,USA,
December 2002.

[32] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Muller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution time problem - overview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems, 2007.

15

