

Conjecture about global fixed-priority
preemptive multiprocessor scheduling of
implicit-deadline sporadic tasks: The
utilization bound of SM-US(sqrt(2)-1) is
sqrt(2)-1

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100512

Version:

Date: 05-29-2010

Björn Andersson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-100512 Conjecture about global fixed-priority preemptive multiprocessor

 scheduling of implicit-deadline sporadic tasks:

 The utilization bound of SM-US(sqrt(2)-1) is sqrt(2)-1

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Conjecture about global fixed-priority preemptive multiprocessor scheduling
of implicit-deadline sporadic tasks: The utilization bound of SM-US(sqrt(2)-1)
is sqrt(2)-1
Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider global fixed-priority preemptive multiprocessorscheduling of implicit-deadline sporadic tasks. I conjecturethat
the utilization bound of SM-US(sqrt(2)-1) is sqrt(2)-1.

Conjecture about global fixed-priority preemptive
multiprocessor scheduling of implicit-deadline
sporadic tasks: The utilization bound of

SM-US(
√

2 − 1) is
√

2 − 1

Björn Andersson
CISTER/IPP-Hurray Research Unit at the Polytechnic Institute of Porto

Email: bandersson@dei.isep.ipp.pt

Abstract—Consider global fixed-priority preemptive multipro-
cessor scheduling of implicit-deadline sporadic tasks. I conjecture
that the utilization bound of SM-US(

√

2 − 1) is
√

2 − 1.

I. PRELIMINARIES

Consider the problem of preemptively scheduling n spo-
radically arriving tasks on m ≥ 2 identical processors. A
task τi is uniquely indexed in the range 1..n and a processor
likewise in the range 1..m. A task τi generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs
cannot be controlled by the scheduling algorithm and are a
priori unknown. We assume that the arrival time between two
successive jobs by the same task τi is at least Ti. Every job
by τi requires at most Ci time units of execution over the next
Ti time units after its arrival. We assume that Ti and Ci are
real numbers and 0 ≤ Ci ≤ Ti. A processor executes at most
one job at a time and a job is not permitted to execute on
multiple processors simultaneously. The utilization is defined
as Us = (1/m) ·

∑n
i=1

Ci

Ti
. The utilization bound UBA of an

algorithm A is the maximum number such that all tasks meet
their deadlines when scheduled by A, if Us ≤ UBA.
Global fixed-priority preemptive scheduling is a specific

class of algorithms where each task is assigned a priority,
a number which remains unchanged during the operation of
the system. At every moment, the m highest-priority tasks
are selected for execution among tasks that are ready to
execute and has remaining execution. The scheduling decisions
are therefore determined by the assignment of priorities to
tasks. The priority-assignment scheme in the current state-
of-art which offers the highest utilization bound is SM-
US(2/(3 +

√
5); its utilization bound is 2/(3 +

√
5) [3]. It

categorize a task as heavy or light. A task is said to be heavy if
Ci

Ti
exceeds 2/(3+

√
5) and a task is said to be light otherwise.

Heavy tasks are assigned the highest priority and the light tasks
are assigned a lower priority; the relative priority order among
light tasks is given by SM; slack monotonic, meaning that if
Ti − Ci < Tj − Cj then τi is given higher priority than τj .
One can show (last page of [1]) that each priority assign-

ment scheme which is scale-invariant and independent has
a utilization bound at most

√
2 − 1. (A priority-assignment

scheme is scale-invariant if the relative priority order of a
priority assignment given does not change when we multiply
Ti and Ci of all tasks by the same positive constant. A priority-
assignment scheme is independent if priorityi = f (Ti,Ci), that
is the priority of a task τi depends only on its own parameters.)

II. THE CONJECTURE
Let SM-US(

√
2 − 1) denote a priority-assignment scheme

which categorized a task as heavy if Ci

Ti
exceeds

√
2−1 and a

task is categorized as light otherwise. Heavy tasks are assigned
the highest priority and the light tasks are assigned a lower
priority; the relative priority order among light tasks is given
by SM; slack monotonic, meaning that if Ti − Ci < Tj − Cj

then τi is given higher priority than τj .
I conjecture that the priority-assignment scheme SM-

US(
√

2 − 1) has the utilization bound
√

2 − 1.

III. SIGNIFICANCE OF THE CONJECTURE
If the conjecture would be true then we would have at

our disposal a priority-assignment scheme that attains the
best performance possible in the class of scale-invariant and
independent priority-assignment schemes.

IV. THE RATIONALE FOR STATING THE CONJECTURE

We can understand this conjecture by considering two task
set examples. As a first example, consider tasks τ1, τ2, . . ., τm

with Ti = 1,Ci =
√

2-1 and Tm+1 =
√

2 and Cm+1 = 2−
√

2
to be scheduled on m processors. For these tasks, it holds that
the utilization of each task is

√
2−1. Increasing the execution

time by an arbitrarily small amount will cause a deadline miss
for the case that all tasks arrive simultaneously. We conclude
from this example that we cannot prove a higher utilization
bound than

√
2 − 1 for the algorithm SM-US(

√
2 − 1).

REFERENCES
[1] B. Andersson and J. Jonsson, ”The utilization bounds of partitioned and

pfair static-priority scheduling on multiprocessors are 50%”, Proceedings
of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03),
pp. 33 - 40, 2003.

[2] L. Lundberg, ”Analyzing Fixed-Priority Global Multiprocessor Schedul-
ing”, Proceedings of the 8th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’02), pp. 145-153, 2002.

Fig. 1. [Adapted from [2]] An example of a task set where RM-US(0.375)
performs poorly. All tasks arrive at time 0. Tasks τ1, τ2,. . ., τm are assigned
the highest priority and execute on the m processors during [0,δ). Then the
tasks τm+1, τm+2,. . ., τ2m execute on the m processors during [δ,2δ). The
other groups of tasks execute in analogous manner. Task τn executes then until
time 1. Then the groups of tasks arrive again. The task set meets its deadlines
but an arbitrarily small increase in execution times causes a deadline miss.

[3] B. Andersson, ”Global Static-Priority Preemptive Multiprocessor
Scheduling with Utilization Bound 38%”, Proceedings of the 12th Inter-
national Conference On Principles Of DIstributed Systems (OPODIS’08),
pp. 73-88, 2008.

