

Sporadic Multiprocessor Linux Scheduler

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-090102

Version: 0

Date: 01-15-2009

Paulo Baltarejo Sousa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-090102 Sporadic Multiprocessor Linux Scheduler

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Sporadic Multiprocessor Linux Scheduler

Paulo Baltarejo Sousa

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: pbsousa@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

The advent of the multicore systems renewed the interest of research community in real-time scheduling on

multiprocessor systems. Real-time scheduling theory for uniprocessors is considered a mature research field, but real-

time scheduling theory for multiprocessors is an emerging research field. Being part of this research community we

have decided to implement the Sporadic Multiprocessor Linux Scheduler (SMLS) for a new real-time scheduling

algorithm that was designed to schedule real-time sporadic tasks on multiprocessor systems.This technical report

describes the implementation of the SMLS.

Sporadic Multiprocessor Linux Scheduler

Paulo Baltarejo Sousa
IPP-HURRAY! Research Group,

Polytechnic Institute of Porto (ISEP-IPP),
Rua Dr. António Bernardino de Almeda 431,

4200-072 Porto, Portugal
pbsousa@dei.isep.ipp.pt

Abstract

The advent of multicore systems has renewed the interest of re-
search community on real-time scheduling on multiprocessor systems.
Real-time scheduling theory for uniprocessors is considered a mature
research field, but real-time scheduling theory for multiprocessors is an
emerging research field. Being part of this research community I have
decided to implement the Sporadic Multiprocessor Linux Scheduler
that implements a new real-time scheduling algorithm, which was de-
signed to schedule real-time sporadic tasks on multiprocessor systems.
This technical reports describes the implementation of the SMLS.

1 Introduction

Multicore platforms are being commercialized coming with an increasing
number of cores, expecting to reach hundreds of processors per chip in the
future [1]. These new platforms triggered the interest of the research com-
munity for real-time scheduling on multiprocessor systems. Actually, they
have renewed the interest of the research community for this issue, because
real-time scheduling on multiprocessors has started a long time ago [2, 3].

Real-time scheduling theory is well-developed for uniprocessors and is
considered a mature research field, but real-time scheduling theory for mul-
ticore systems is an emerging research field. I have chosen to study real-time
multicore scheduling theory with practice. So, I want to know whether pre-
dictions made by that scheduling theory are valid in practice. Usually these
theoretical algorithms assume a set of assumption that do not have corre-
spondence in a real system. For instance, they usually consider negligible
the time for context switching and the execution time of the scheduler.

This technical report describes the implementation of the Sporadic Mul-
tiprocessor Linux Scheduler (SMLS), which implements the recently pub-
lished Sporadic Multiprocessor Scheduling (SMS) algorithm [4] that was
designed to schedule real-time sporadic tasks on multiprocessor systems.

1

According to our best knowledge there are not any previous implementa-
tions of this algorithm, so this is the first attempt to deeply study this
algorithm in practice.

The SMLS has been implemented by modifying the general purpose
Linux 2.6.28 kernel version downloaded from www.kernel.org. Our choice
did not fall with any real-time Linux version, because (i) Linux 2.6.28 kernel
version is provided with features that I believe to be relevant for implement-
ing this algorithm, such as high resolution timers, preemption and dynamic
ticks, and (ii) there are too many versions of real-time Linux that shows
there are no consensus on what constitutes a real-time Linux [5].

This document is structured as follows. In Section 2 I begin an overview
of the most relevant concepts of real-time multiprocessor scheduling and I
also introduce the Linux modular scheduling framework. Based mainly on
material from [4], I describe the main concepts of the Sporadic Multipro-
cessor Scheduling (SMS) algorithm in Section 3. Next, I proceed with my
contributions to improve the performance of the SMS algorithm, in Section 4.
In Section 5 I describe the main issues related to the SMLS implementation.
And I conclude this document discussing my plans for studying the SMS
algorithm in Section 7.

2 Background

The purpose of this section is to give to the reader the necessary background
to understand the content of this document.

2.1 Real-Time Scheduling Algorithms on Multiprocessors

The most common definition of real-time systems is: Real-Time Systems are
defined as those systems in which the correctness of the system depends on
the logical result of computation, but also on the time at which the results
are produced. This time is usually referred to as deadline.

Real-time applications are usually composed by multiple tasks. Depend-
ing on the criticality level, tasks can be classified as: (i) hard real-time,
when missing a deadline produces undesirable or fatal results and (ii) soft
real-time, where missing a deadline is not desirable but the system can still
work correctly [6].

Another characteristic of real-time tasks is the periodicity, which defines
the frequency in which they are activated or appear in the system. They
can be classified as: (i) periodic, which appear regularly with at some known
rate, (ii) aperiodic, which appear irregularly with at some unknown rate and
(iii) sporadic, which appear irregularly with at some known rate.

The real-time scheduling algorithm should schedule tasks according to
their demands such that their deadlines are met. One of the most used for
uniprocessor systems is the Earliest-Deadline-First (EDF) [2]. The EDF

2

scheduling algorithm is a dynamic priority driven algorithm in which higher
priority is assigned to the task that has earlier deadline.

Advances in process technology allow integration of multiple processors
on a single chip, called multicores. Multicore processors are now main-
stream, with the number of cores increasing, expecting to reach hundreds of
processors per chip in the future [1, 7].

Unfortunately, real-time scheduling on multiprocessors did not enjoy
such a success as it did on a uniprocessor. As early as in the 1960s, it
was observed by the inventor of EDF that [3]: ”Few of the results obtained
for a single processor generalize directly to the multiple processor ...”.

The research community has focused it interests on developing new
scheduling algorithms [4, 8] for multiprocessors systems, which in many cases
use concepts and principles used in the scheduling algorithms for uniproces-
sor.

The multiprocessor scheduling algorithms have traditionally been cate-
gorized as global or partitioned. Global scheduling algorithms store tasks in
one global queue, shared by all processors. At any moment, the m (assuming
that the system is composed by m processors) highest-priority tasks among
those are selected for execution on the m processors. Tasks can migrate
from one processor to another during the execution, that is, a execution of a
task can be preempted in one processor and resume its execution on another
processor. In contrast, partitioned scheduling algorithms partition the task
set such that all tasks in a partition are assigned to the same processor.
Tasks may not migrate from one processor to another. An important issue
is, in both systems, one task can be executed by only one processor at any
given time instant.

2.2 Linux Modular Scheduling Framework

The introduction of scheduling classes, in the Linux 2.6.23 kernel version,
made the core scheduler quite extensible. The scheduling classes encapsulate
scheduling policies and are implemented as modules [9]. Then, the kernel
consists of a scheduler core and various modules. These modules are hier-
archically organized by priority and the scheduler dispatcher will look for
runnable task of each module in a decreasing order priority.

Fig. 1 shows the three native scheduler modules. RT and CFS denote the
Real-Time and Completely Fair Scheduling scheduler modules, respectively.
Thus, in this system the dispatcher will always look in the runqueue of RT
for a runnable task. If the runqueue is empty, only then will it moves to
the CFS runqueue and so on. Note that, every processor has an idle task
in its runqueue that is executed when there is no other runnable task to be
executed.

3

RT CFS Idle

Figure 1: Linux native scheduler modules

3 Sporadic Multiprocessor Scheduling Algorithm

The Sporadic Multiprocessor Scheduling (SMS) algorithm [4], was designed
to schedule real-time sporadic tasks. The SMS algorithm tries to clamp down
on the number of preemptions (which involve operating system overheads)
and can be configured to achieve different levels of utilization bound and
migration costs. This algorithm can be categorized as semi-partitioned,
since it assigns m − 1 tasks (assuming that there are m processors in the
systems) to two processors and the rest to only one processor. Next, the
details of the algorithm will be discussed.

3.1 System Model

The SMS algorithm consider the problem of preemptively scheduling n spo-
radic tasks on m identical processors. A task τi is uniquely indexed in the
range 1..n and a processor in the range 1..m. Each task τi is characterized
by worst-case execution time Ci and minimum inter-arrival time Ti and by
the time that the execution must be completed, the deadline (Di). In this
algorithm it is assumed that Ti and Ci are real numbers and 0 ≤ Ci ≤ Ti

and Di = Ti.
A processor p executes at most one task at a time and no task may

execute on multiple processors simultaneously. The system utilization is
defined as Us = 1

m · Σn
i=1

Ci
Ti

. The SMS algorithm divides time into slot
of length S = TMIN

δ . Where TMIN is the minimal inter-arrival time of
all tasks (TMIN = min(T1, T2, · · · , Tn)) and δ is a parameter assigned by
the designer to control the frequency of migration of tasks assigned to two
processors.

α is an inflation parameter and is computed as follows: α = 1
2−

√
δ · (δ + 1)+

δ. Later in this document the purpose of α will be explained. SEP
is the utilization bound of SMS algorithm and is computed as follows:
SEP = 1 − (4 · α).

The SMS algorithm can be divided into two algorithms. An offline al-
gorithm for task assignment and an online dispatching algorithm. These
algorithms will be detailed in the next sections.

3.2 Tasks Assigning Algorithm

The first step of the algorithm is to sort the task set by task utilization
(Ui = Ci

Ti
) in descending order, such that τ1 is the heaviest and τn is the

4

lightest tasks, respectively. Tasks whose utilization exceed SEP (henceforth
called heavy tasks) are each assigned to a dedicated processor. Then, the
remaining tasks are assigned to the remaining processors in a manner similar
to next-fit bin packing [10]. Assignment is done in such a manner that
the utilization of processors is exactly SEP . Task splitting is performed
whenever a task causes the utilization of the processor to exceed SEP . In
this case, this task (henceforth called a split task) is split by the current
processor p and by the next one p + 1. Then, in these processors there
are time window (called reserves) where this split task has priority over
other tasks (henceforth called non-split tasks) assigned to these processors.
The length of the reserves are chosen such that no overlap occurs, the split
task can be scheduled, and also all non-split tasks can meet deadlines. The
non-split tasks are scheduled under EDF.

Consider a system with four processors (m = 4) and seven tasks (n = 7).
Table 1 shows the worst case execution time (Ci), minimum inter-arrival
time (Ti) and utilization (Ui = Ci

Ti
) of each task τi. As a matter of simplicity,

the task set is already sorted in descending order by Ui. Assume also that
δ = 4 and consequently the utilization of the SMS algorithm is 88.85 %
(SEP = 0.8885). The time units are intentionally omitted in Table 1,
because they are not important for understanding the algorithm.

Task C T U

τ1 9 10 0.9000
τ2 7 12 0.5833
τ3 7 13 0.5385
τ4 8 16 0.5000
τ5 6 14 0.4286
τ6 6 16 0.3750
τ7 3 17 0.1765

Table 1: Task set

The task assignment algorithm works as follows: since τ1 is a heavy task
it is assigned to a dedicated processor (P1). τ2 is assigned to processor (P2),
but assigning task τ3 to processor P2 would cause the utilization of processor
P2 to exceed SEP (0.5833 + 0.5385 > 0.8885). Therefore, task τ3 is split
between processor P2 and processor P3. A portion of task τ3 is assigned to
processor P2, just enough to make the utilization of processor P2 equal to
SEP , that is 0.3052. This part is referred as hi split[P2] and the remaining
portion (0.2332) of task τ3 is assigned to processor P3, which is referred as
lo split[P3]. The task set assignment to processors is shown on Table 2.
Note that, the Up of each processor is shown in the last column.

5

Processor Tasks and Utilization U
lo split hi split

P1 τ1: 0.9000 0.9000
P2 τ2: 0.5833 τ3: 0.3052 0.8885
P3 τ3: 0.2332 τ4: 0.5000 τ5: 0.1533 0.8885
P4 τ5: 0.2733 τ6: 0.3750 and τ7: 0.1765 0.8247

Table 2: Task set assignment

3.3 Dispatching Algorithm

On a dedicated processor, the dispatching algorithm is very simple, whenever
there is one task ready to be executed, the processor executes this task.
Recall that the time is divided into timeslot of length S = TMIN

δ and non-
dedicated processors usually execute split and non-split tasks. For that,
the timeslot might be divided in three parts. The first time units x are
reserved for executing the lo split[p] and the last time units y are reserved
for executing the hi split[p]. The remainder is reserved for executing non-
split tasks. However, it is important to note that one split task executes
one portion on processor p and the remaining portion on another processor
p + 1. This means that a split task τi will execute on both processors but
not simultaneously (Fig. 2).

t
p + 1

p y

x

S

Figure 2: x and y reserves for one task

Reserves x and y for each split task must be sized such that x+y
S =

Ci
Ti

. Depending on the phasing of the arrival and deadline of τi relative to
timeslot boundaries, the fraction of time available for τi between its arrival
and deadline may differ from x+y

S , since a split task only executes during the
reserves. Consequently, it is necessary to inflate reserves by α in order to
always meet deadlines: x = S ·(α+lo split[p+1]) and y = S ·(α+hi split[p]).
Note that, the timeslot composition is usually different for every processors.

The online dispatching algorithm works over timeslot of each processor
and whenever the dispatcher is running, it checks to find the time elapsed
in the current timeslot: (i) if the current time falls within a reserve (x
or y) and if the assigned split task is ready to be executed, then the split
task is scheduled to run on processor. Otherwise, the non-split task with the
earliest deadline is scheduled to execute on processor. (ii) If the current time

6

does not fall within a reserve, the non-split task with the earliest deadline
is scheduled to run on processor.

Table 3 presents the timeslot composition for every processor for the
system model presented on Section 3.2 and Fig. 3 shows a simplified execu-
tion timeline. The timeslot length is S = 2.5000 and the inflation factor is
α = 0.2786. In the execution timeline presented on Fig. 3 only one activa-
tion of each task is assumed and also the release time of all tasks is at the
same instant. The execution of the tasks is represented by rectangles labeled
with the task’s name. A black circle states the end of execution of a task.
As one can see, the split tasks execute only within reserves. For instance,
task τ3 on processor P2 executes only on reserves. Outside its reserves it
does not use the processor, even if it is free. In contrast, the non-split tasks
execute mainly outside the reserves but potentially also within the reserves,
namely, when there is no split task ready to be executed. There are two
clear situations in the Fig. 3 that illustrate this. First, task τ7 executes at
the beginning of the timeslot, which begins at 12.50, because the split task
τ5 has finished its execution on the previous timeslot. Second, split task τ5
ends its execution a little bit before the end of timeslot that finishes at 12.50
and there is some time available on the reserve, which is used by non-split
task τ4.

Processor x non-reserve y

P1 0.0000 2.5000 0.0000
P2 0.0000 1.6673 0.8327
P3 0.6528 1.3893 0.4579
P4 0.7529 1.7471 0.0000

Table 3: Timeslot composition

0 t

S S S S S S

P4

P3

P2

P1

2.5 5.0 7.5 10.0 12.5 15.0

τ1

τ2 τ2 τ2 τ2 τ2τ3 τ3 τ3 τ3 τ3

τ3 τ3 τ3 τ3 τ3τ4 τ4 τ4 τ4 τ4 τ4τ5 τ5 τ5 τ5 τ5

τ5 τ5 τ5 τ5 τ5τ6 τ6 τ6 τ6 τ7 τ7

Figure 3: Execution timeline

7

4 Improvements to the SMS Algorithm

Usually, from theory to practice there are some obstacles and barriers that
depend on the platform used to. In this section, two improvements to the
SMS algorithm are described: a new timeslot compostion and a new way to
compute the TMIN parameter.

4.1 New Timeslot Selection

The algorithm defines at most two reserves x and y in the timeslot of each
processor and one split task τi executes one portion on reserve y of the
processor p and the other portion on reserve x of the processor p + 1. Nev-
ertheless, looking for two consecutive timeslots I realize that whenever a
split task finishes the execution on processor p, the task has to immediately
resume execution on its reserve on processor p + 1. Actually, this situation
can imply more overhead and more preemptions. This will be explained as-
suming the task set presented in Section 3.2, more specifically the situation
illustrated in Fig. 4.

Before the explanation it is important state that, there is always some
time clock drift between processors. Let us assume that the current processor
is processor P3 and the current time is a little bit more than 2.5, which falls
in the x reserves. Then, the next step is to assign task τ3 to the processor P3

to be executed on. However, this can not be done before checking if task τ3
is running on the processor P2. And if it is, on one hand, processor P3 sends
an interprocessor interrupt to force rescheduling on processor P2 to stop the
execution of the task τ3. On the other hand, processor P3 according to the
dispatching algorithm selects a non-split task to be executed on it.

This causes additional overhead and more preemptions, that could be
avoided if the x reserve was available some time units later. So, the timeslot
composition in such manner that x reserve is available M time units later
(Fig. 5). However, this introduce a new detail, which must be the length of
the M? I inquire the authors of [4] and they stated that M < 2 · α · S time
units and using this value the scheduling analysis presented in [4] is still
valid, thus every system that is schedulable under the previously published
SMS algorithm is also schedulable under this changed algorithm.

0 t

S S

P3

P2

2.5 5.0

τ2 τ2τ3 τ3

τ3 τ3τ4 τ4τ5 τ5

Figure 4: Timeline execution of the
split task τ3

t

S SS S

p + 1

p y y

M Mx x

Figure 5: Position of M component
in the timeslot composition

8

Fig 6 shows the new timeslot composition: M ,x,N and y for each cpu.
Where N = S −M −x− y. Note that, the timesolt’s components M , x and
y could be equal to zero.

t

S

M x N y

Figure 6: New timeslot composition

4.2 Improving Performance

According to the original SMS algorithm TMIN is computed as the minimal
arrival time of all tasks (TMIN = min(T1, T2, · · · , Tn)) and the timeslot
length S = TMIN

δ . However, I realize that the Ti of the heavy tasks could
be excluded. Thus the S could be potentially larger, if Ti of these tasks were
the smaller. Note that, larger timeslot imply fewer preemptions and each
task executes more time in each timeslot, consequently, the performance
increases.

Using the original SMS algorithm the timeslot length is S = 2.5000 for
the task set presented in Section 3.2, since TMIN = 10, which is precisely
the minimal inter arrival time of a heavy task (τ1). So, if the TMIN was
computed without the T1, then the value of TMIN = 12, and consequently
the timeslot length was also larger (S = 3.0000).

5 Sporadic Multiprocessor Linux Scheduler

In this section, the implementation of the Sporadic Multiprocessor Linux
Scheduler (SMLS) will be described. The SMLS implementation consist
on a set of modifications on the Linux 2.6.28 kernel version in order to
support real-time sporadic tasks that will be scheduled according to the
SMS algorithm. To differentiate these tasks from other tasks present in the
system, in this document, these tasks will be referred as SMS tasks.

Note that SMS tasks are sporadic tasks and typically these kind of tasks
are always present in the system waiting for events. I assume that, the SMS
tasks algorithm is as shown in Listing 1.
while (t rue)
{

wa i t f o r e v en t () ;
execute () ;

}

Listing 1: SMS task algorithm

9

5.1 SCHED SMS macro

In order to identify the new scheduling policy it is required to define a
new macro. For that, I have to change /kernel source code/include/
linux/sched.h and /usr/include/bits/sched.h files in order to define
the SCHED SMS macro (Listing 2).
/∗
∗ Schedu l ing p o l i c i e s
∗/

#define SCHEDNORMAL 0
#define SCHED FIFO 1
#define SCHED RR 2
. . .

#define SCHED SMS 7
. . .

Listing 2: Definition of the SCHED SMS macro

5.2 Dispatching Algorithm

In this section a detailed description of the dispatching algorithm implemen-
tation of the SMS algorithm is provided.

5.2.1 Data Structures

A Linux process is an instance of a program in execution [11]. To manage
processes, the kernel maintains information about each process in a pro-
cess descriptor. The information stored in each process descriptor (struct
task struct, defined in /kernel source code/include/linux/sched.h) con-
cerns with run-state of process, address space, list of open files, process
scheduling class, just to mention some. All process descriptors are stored
in a circular doubly-linked list. Note that, in the context of this document,
the meaning of a process or a task is the same.

To support the SMS algorithm some additional fields must be added to
this data structure. Listing 3 shows the most important fields added. Fields
cpu1 and cpu2 are used to set the logical identifier of processor(s) in which
the task will be executed. Note that, according to the SMS algorithm each
non-split task executes only on one processor, and each split task executes
on two processors. In the former, these fields are set with the same identifier,
in the latter, the lo split[τi] and hi split[τi] are executed on processors which
identifiers are set on cpu1 and cpu2, respectively. The relative deadline of
each task is set on the deadline field. Each SMS task has a specifc identifier,
which is stored in the task id field.
struct t a s k s t r u c t {

. . .
int cpu1 ;
int cpu2 ;
unsigned long long dead l ine ;
int t a s k i d ;

10

. . .
} ;

Listing 3: Fields added to the struct task struct data structure

Each processor holds a run-queue of all runnable processes assigned to it.
The scheduling algorithm uses this run-queue to select the ”best” process
to be executed. The information for these processes is stored in a per-
processor data structure called struct rq, which is declared in the /kernel
source code/kernel/sched.c. Listing 4 shows new data structures required
by the SMS algorithm: these data structure are defined in the /kernel source
code/kernel/sched.c and were added to the struct rq data structure.

The information about each SMS task is stored using the struct sms task
data structure. Thus, task field is a pointer to the process descriptor. The
absolute deadline is stored on the deadline field. A data type struct
rb node field is required for using SMS tasks on a red-black tree (node edf).
The linux kernel has already implemented red-black tree (/kernel source
code/include/linux/rbtree.h). Basically, red-black trees are balanced
binary trees whose external nodes are sorted by a key, the most operations
are done in O(log(n)) time, thus a red-black tree is indicated in situations
where nodes come and go frequently.

All SMS tasks assigned to one processor are managed using the struct
sms rq data structure (Listing 4). The root of the red-black tree is the field
rb edf. All non-split tasks are organized in a red-black tree by the absolute
deadline. The composition of the timeslot is defined using four fields: m,x,
n and y. The x and y are used for split tasks and the others for non-split
tasks. However, the non-split tasks can also be executed in the x and y
reserves, if there are no split task to be executed.

Two pointers for process descriptor are used for the split tasks (lo split
and hi split). Since split tasks are shared by two processors then, synchro-
nization is required and is achieved by the lock field, which can have only
two values: locked and unlocked.

Tipically, a periodic timer interrupt mechanism, called tick is used by
the kernel to get the control of the system. Because, the kernel code wil
be executed when the tick expires. In our system, the HZ macro is set to
1000,so, the frequency of the tick is approximately of 1 ms, more precisely
999, 848 ns. This means that the granularity of our system is 1 ms. I did not
experiment higher timer frequencies, but according to [5] experimentation
with higher timer frequencies resulted in an unstable system.

To get a better grasp of the SMS timing behavior in a real system, Fig. 7
shows a timeline execution of task of processor P2 according to the task set
presented in Section 3.2, in which I now assume the time unit in milliseconds.
As one can see, the theoretical and the practical timing behaviors of the SMS
algorithm are different. The timeslot length is equal to 2.5 ms and the tick
occurs every 1 ms, therefore the timeslot length is not a multiple of the tick.

11

This could lead to undesirable behavior of the scheduler. As one can see in
the Fig. 7, tasks do not execute the same amount of time in every timeslot.
On the other hand, the context switch does not occur at the correct time
on the practical.

To solve the identified problem I need a mechanism by which timer
interrupts are allowed to occur with nanosecond precision, which I think that
is the ideal granularity for SMLS, but not necessarily on every nanosecond.

For each cpu is used a high resolution timer (struct hrtimer timer)
to state the begining of each part that compose the timeslot. That is, the
timer expires at the begining of the m,x, n and y parts in order to force the
invocation of the schedule core.

t
b

a τ2 τ2τ3 τ3

τ2 τ3 τ2 τ3

a) Theoretical b) Pratical

tick1 tick2 tick3 tick4 tick5 tick6

S S

Figure 7: Theoretical and practical timing behavior of the SMS algorithm

struct sms task {
struct t a s k s t r u c t ∗ task ;
unsigned long long dead l ine ;
struct rb node node edf ;
. . .

} ;

struct sms rq {
struct r b r oo t r b ed f ;
struct s p l i t t a s k {

s p i n l o c k t l ock ;
struct t a s k s t r u c t ∗ l o s p l i t ;
struct t a s k s t r u c t ∗ h i s p l i t ;

} s p l i t t a s k ;
unsigned long long m;
unsigned long long x ;
unsigned long long n ;
unsigned long long y ;
struct sms timer{

struct hrt imer t imer ;
. . .

} t imer ;
. . .

} ;

struct rq {
. . .
struct sms rq sms rq ;
. . .

12

} ;

Listing 4: New data structures

5.2.2 New Scheduling Policy

To add a new scheduling policy to the Linux kernel it is necessary to create
a new module. In this implementation, the SMS module was added on the
top of the modules hierarchy, thus it is the highest priority module. Our
system is hierarchically organized as it is shown in the Fig. 8.

SMS RT CFS Idle

Figure 8: Priority hierarchy of scheduler modules

Note that, each scheduler module is coded in a file. The RT, CFS and Idle
are coded in the /kernel source code/kernel/sched_rt.c, /kernel source
code/kernel/sched_fair.c and /kernel source code/kernel/sched_idletask.
c files, respectively. Then, to implement the SMS module I have created the
/kernel source code/kernel/sched_sms.c file.

According to the modular scheduling framework rules each module must
implement the set of functions specified in the sched class structure. List-
ing 5 shows the definition of sms sched class, which implements the SMS
module. The first field (next) of this structure is a pointer to sched class
which is pointing to the rt sched class that implements the RT module.

The other fields are functions that act as callbacks to specific events,
which will be described next.
const struct s c h ed c l a s s sms s ched c l a s s = {

. next = &r t s c h ed c l a s s ,

. enqueue task = enqueue task sms ,

. dequeue task = dequeue task sms ,
. . .
. check preempt curr = check preempt curr sms ,
. p i ck nex t ta s k = pi ck next task sms ,
. . .
. t a s k t i c k = task t i ck sms ,

} ;

Listing 5: sms sched class definition

The enqueue task sms is called whenever a SMS task enters in a runnable
state.

When a SMS task is no longer runnable, then the dequeue task sms
function is called that undoes the work of the enqueue task sms function.

As the name suggests, check preempt curr sms function, checks whether
the currently running task must be preempted. This function is called fol-
lowing the enqueueing or dequeueing of a task and also following any inter-

13

ruption. This function only sets a flag that indicates to the scheduler core
that the currently running task must be preempted.

pick next task sms function selects the task to be executed by the cur-
rent processor. This function is called by the scheduler core whenever the
currently running task is marked to be preempted.

task tick sms function is mostly called from time tick functions. In
the current implementation this function calls the check preempt curr sms
function, to check, if the current task must be preempted.

5.3 Task Assigning Algorithm

In this section a description of the tash assigning algorithm implementa-
tion of the SMS algorithm is provided. In the previous subsections it was
described the implementation of the SMS module. However, to schedule a
task, first it has to be present in the system. Initially, a SMS task is created
as any task in the system, using fork or clone system calls. After that, in
order to be a SMS task, there is the need to change the scheduling policy.
In this section I will describe this process.

5.3.1 struct sched param data structure

In order to set the scheduling parameters for a SMS task I have to change
the struct sched param data structure, in two files /usr/include/bits/
sched.h and /kernel source code/include/linux/sched.h. Listing 6 shows
the fields added to the struct sched param data structure. In the struct
sms task sched param data structure are defined a set of fields related to
the SMS tasks, like a specific identifier sms pid, the processor identifiers
where a specific task is assigned to (processor1 and processor2) and the
relative deadline (deadline). On the other hand, struct sms global sched param
data structure is composed by global information, like timeslot size slot time
and also processor reserves size reserve[NR CPUS][4].
struct sched param {

int s c h ed p r i o r i t y ;

struct sms task sched param{
int t a s k i d ;
int cpu1 ;
int cpu2 ;
unsigned long long dead l ine ;

} task ;
struct sms global sched param {

unsigned long long r e s e r v e [CPUS] [4] ;
unsigned long long s l o t t im e ;
. . .

} g l oba l ;
. . .

} ;

Listing 6: Changes on the struct sched param data structure

14

5.3.2 sched setscheduler function

The static priority is the priority assigned to the process when it was started.
It can be modified with the nice and sched setscheduler system calls.
This is done by setting the sched class field of the struct task struct
variable that represents the task in the system with the address of new
scheduling class variable. Listing 7 shows how this is done in the setscheduler
function. setscheduler function that is called by the sched setscheduler
function.
stat ic void s e t s c h e du l e r (struct rq ∗ rq , struct t a s k s t r u c t ∗p , int

po l i cy , int pr i o)
{

. . .
p−>po l i cy = po l i cy ;
switch (p−>po l i cy) {
. . .

case SCHED FIFO :
case SCHED RR:

p−>s c h ed c l a s s = &r t s c h e d c l a s s ;
break ;
case SCHED SMS:

p−>s c h ed c l a s s = &sms s ched c l a s s ;
break ;

}
. . .

}

Listing 7: Changes on the setscheduler function

The sched setscheduler function (Listing 8) sets the scheduling policy
and scheduling parameters of the process specified by the pointer p and the
parameters specified by the pointer param, respectively.
int s ched s e t s chedu l e r (struct t a s k s t r u c t ∗p , int po l i cy , struct

sched param ∗param)
{

. . .
i f (po l i cy == SCHED SMS) {

i f ((int)param−>g l oba l . s l o t t im e !=0) {
i n i t sm s r q g l o b a l (param) ;

}
p−>t a s k i d = param−>task . t a s k i d ;
p−>cpu1 = param−>task . cpu1 ;
p−>cpu2 = param−>task . cpu2 ;
p−>dead l ine = param−>task . dead l ine ;

}
. . .

s e t s c h ed u l e r (rq , p , po l i cy , param−>s c h ed p r i o r i t y) ;
. . .
return 0 ;

}

Listing 8: Changes on the setscheduler function

15

5.4 SMLS Logging System

In this section I will describe the logging system used by SMLS. This sys-
tem is based on a circular queue implemented in the kernel space. In order
to get the data stored in the circular for the user space it is used a char
device driver. Each SMS task related event is stored using a tuple {event,
timestamp, data}. I assume several kind of events: ENQUEUE, DEQUEUE,
SWITCH TO, SWITCH AWAY, START M, START X, START N and START Y. ENQUEUE
and DEQUEUE are related to the enqueue and dequeue events of a task. Con-
cerning to the context swicth, SWITCH AWAY is used to state when the task is
relinquished from processor and SWITCH TO is used to the task that is starting
executing. START M, START X, START N and START Y are used to indicate
the beginning of each timeslot part. The timestamp field states the time
instant when the event hapenned and the data field holds the information
related to the specific event.

Assuming the task set presented in the Table 1, Listing 9 shows the
output generated by the SMLS for the processor P3. Note that, there are
one instance of each task assigned to this processor in the system: task τ3
is a split task that runs on the x reserve; task τ5 is a split task that runs
on y reserve and task τ4 is a non-split task. As mentioned before, each
SMS tasks related event is stored using a tuple {even, timestamp, data}.
Concerning to the events: 2 means SWITCH TO; 3 means SWITCH AWAY and
5, 6,7 and 8 mean START M, START X, START N and START Y, respectively.
The data format for SWITCH TO and for SWITCH AWAY events is the SMS task
identifier (task id) followed by the job counter. For the other events, the
data field is usedt to specify when the event must be occured. Looking for
the first lines, we can realize the scheduling algorithm behaviour. In the first
line, it is shown the begin of M (event 2) and according to the scheduling
algorithm, in this part of the timeslot the task τ4 must be executed by
processor. Therefore, the job 1 of task τ5 is removed from processor (event
3) and the the job 1 of task τ4 is assigned to the processor (event 2).
. . .
5 ,468431346391 ,468431341873
3 ,468431347868 ,5 ,1
2 ,468431347868 ,4 ,1
6 ,468431349227 ,468431346873
3 ,468431350093 ,4 ,1
2 ,468431350093 ,3 ,1
7 ,469042342415 ,469042338373
3 ,469042343716 ,3 ,1
2 ,469042343716 ,4 ,1
8 ,470515248286 ,470515245374
3 ,470515249431 ,4 ,1
2 ,470515249431 ,5 ,1
. . .

Listing 9: Output file

16

6 SMS task implementation

In this section I expain how to create a SMS task showing the required code
for that.

As previously referred the system call sched setscheduler allows chang-
ing the scheduling policy of a process. However, the invocation of this system
call must be performed by a process with root rights. Listing 10 shows the
elementary SMS task code. As one can see, there is the need to set the
task id,cpu1,cpu2 and deadline fields of the struct sched param data
structure. Note that, the deadline field must be set using nanoseconds
unit. sched setscheduler has three parameters, the first is the pid of the
process. If pid is 0, the scheduler of the calling process will be set. The sec-
ond argument is the policy and the last one is used to set the parameters.
Note that there is the need to include the sched.h header file.
. . .

#include <sched . h>
. . .
int l oop =1;

int main (int argc , char∗ argv []) {

struct sched param param ;
. . .
param . task . t a s k i d =3;
param . task . cpu1=2;
param . task . cpu2=3;
param . task . dead l ine =13000000000;
. . .
i f (s ched s e t s chedu l e r (0 , SCHED SMS , ¶m))
{

per ror (”ERROR”) ;
}
. . .

while (loop)
{

wa i t f o r e v en t () ;
execute () ;

}
. . .
return 0 ;

}

Listing 10: SMS task code

7 Conclusion and Future Work

Nowadays, real-time scheduling for uniprocessor is considered mature, but
real-time scheduling theory for multiprocessors has been triggered by the
advent of the multicore systems, so is an emerging research field. Multi-
processor systems are much more complex than the uniprocessor systems.
Usually, real-time scheduling analysis is based on a set of assumptions that

17

in a real implementation are not possible. For instance, they do not con-
sider some source of overheads like the context switch and the execution of
the scheduler, just to mention some. So, I have decided to study emerging
real-time scheduling theory for multiprocessors with practice, that is, using
real implementations of the algorithms. Motivated by this idea, I have im-
plemented a Sporadic Multiprocessor Linux Scheduler (SMLS) based on a
recently published real-time scheduling algorithm, the Sporadic Multipro-
cessor Scheduling (SMS) algorithm. The SMS algorithm schedules sporadic
tasks for multiprocessor systems in order to met their deadlines. This al-
gorithm tries to clamp down on the number of preemptions (which involve
operating system overheads) and can be configured to achieve different levels
of utilization bound and migration costs.

This first implementation gives us a better understanding of the algo-
rithm as well as the platform used to (Linux 2.6.28 kernel version), in a such
way that I have proposed a set of improvements to the algorithm in order
to get better performance. Further, I am now aware of the specific features
and details related to the implementation of the algorithm in this specific
platform.

Future work will include investigations into timing behavior of the SMLS
to get near of the SMS algorithm. The source of overheads will be explored
in order to reduce some latencies. Finally, performance comparisons will
be done with other algorithms to evaluate the performance of the SMS
algorithm and also of the SMLS.

8 Acknowledgments

I would like to thank Björn Andersson and Konstantinos Bletsas for useful
discussions.

References

[1] J. Held, J. Bautista, and S. Koehl. From a few cores to many: A tera-
scale computing research overview. White paper, Intel Corporation,
2006.

[2] C. L. Liu. Scheduling algorithms for hard-real-time multiprogramming
of a single processor. JPL Space Programs Summary, II(1):37–60, 1969.

[3] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[4] B. Andersson and K. Bletsas. Sporadic multiprocessor scheduling with
few preemptions. In ECRTS ’08: Proceedings of the 2008 Euromicro

18

Conference on Real-Time Systems, pages 243–252, Washington, DC,
USA, 2008. IEEE Computer Society.

[5] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and
J. H. Anderson. LITMUSRT: A status reports. In Proceedings of
the 9th Real-Time Linux Workshop, pages 107–123. Real-Time Linux
Foundation, 2007.

[6] John A. Stankovic. Misconceptions about real-time computing: A se-
rious problem for next-generation systems. Computer, 21(10):10–19,
1988.

[7] D. Geer. Industry trends: Chip makers turn to multicore processors.
Computer, 38(5):11–13, 2005.

[8] J. H. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of
asynchronous periodic tasks. Journal Computer and System Sciences,
68(1):157–204, 2004.

[9] A. Kumar. Multiprocessing with the completely fair scheduler. Tech-
nical report, IBM, 2008.

[10] Jr. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: a survey. In Approximation algorithms for
NP-hard problems, pages 46–93. PWS Publishing Co., Boston, MA,
USA, 1997.

[11] D. Bovet and M. Cesati. Understanding The Linux Kernel. O Reilly &
Associates Inc, 2005.

19

